JP2015048809A - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine Download PDF

Info

Publication number
JP2015048809A
JP2015048809A JP2013182493A JP2013182493A JP2015048809A JP 2015048809 A JP2015048809 A JP 2015048809A JP 2013182493 A JP2013182493 A JP 2013182493A JP 2013182493 A JP2013182493 A JP 2013182493A JP 2015048809 A JP2015048809 A JP 2015048809A
Authority
JP
Japan
Prior art keywords
passage
cooling
cooling passage
supercharger
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013182493A
Other languages
Japanese (ja)
Other versions
JP6060860B2 (en
Inventor
棚田 雅之
Masayuki Tanada
雅之 棚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013182493A priority Critical patent/JP6060860B2/en
Publication of JP2015048809A publication Critical patent/JP2015048809A/en
Application granted granted Critical
Publication of JP6060860B2 publication Critical patent/JP6060860B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling device for an internal combustion engine enabling early start of exhaust gas recirculation.SOLUTION: A cooling device 1 for an internal combustion engine includes a body cooling passage 11 that passes through an engine body. The cooling device 1 for the internal combustion engine includes: a supercharger cooling passage 21 that is connected to the body cooling passage 11 and passes through a turbine housing of a supercharger; and a recirculation path cooling passage 23 that passes through a cooler for exhaust gas recirculation. The cooling device 1 for the internal combustion engine includes: a communication cooling passage for communicating an outlet of the supercharger cooling passage 21 with an inlet of the recirculation path cooling passage 23; and a passage control valve 40 disposed on the communication cooling passage. The cooling device 1 for the internal combustion engine includes a control device 50 that outputs a command signal for communication of the communication cooling passage to the passage control valve 40 when a temperature of cooling water of the engine body is less than a predetermined temperature.

Description

本発明は、内燃機関の冷却装置に関する。   The present invention relates to a cooling device for an internal combustion engine.

特許文献1の排気還流装置は、排気還流路、排気還流用クーラ、および、還流路制御弁を有している。排気還流路は、排気通路と吸気通路とを互いに接続している。排気還流用クーラは、排気還流路に配置されている。還流路制御弁は、排気還流路のうちの排気還流用クーラよりも下流側の部分に配置されている。還流路制御弁は、内燃機関の冷却水の温度が閾値水温未満のとき、全閉状態に保持されることがある。   The exhaust gas recirculation device of Patent Document 1 has an exhaust gas recirculation path, an exhaust gas recirculation cooler, and a recirculation path control valve. The exhaust gas recirculation path connects the exhaust passage and the intake passage to each other. The exhaust gas recirculation cooler is disposed in the exhaust gas recirculation path. The recirculation path control valve is disposed in a portion of the exhaust recirculation path downstream of the exhaust recirculation cooler. The reflux path control valve may be held in a fully closed state when the temperature of the cooling water of the internal combustion engine is lower than the threshold water temperature.

特開2012−246791号公報JP 2012-246791 A

上記排気還流装置によれば、内燃機関の冷却水の温度が所定温度未満であって、還流路制御弁が全閉状態に保持されているとき、排気還流が行われない。このため、排気還流に基づく効果が得られない。   According to the exhaust gas recirculation apparatus, exhaust gas recirculation is not performed when the temperature of the cooling water of the internal combustion engine is lower than the predetermined temperature and the recirculation path control valve is held in the fully closed state. For this reason, the effect based on exhaust gas recirculation cannot be obtained.

本発明は、排気還流を早期に開始することを可能にする内燃機関の冷却装置を提供することを目的としている。   An object of the present invention is to provide a cooling device for an internal combustion engine that makes it possible to start exhaust gas recirculation early.

本内燃機関の冷却装置の独立した一形態は、次の事項を有している。前記内燃機関の冷却装置は、機関本体を通過する本体冷却通路と、前記本体冷却通路と接続され、過給機のタービンハウジングを通過する過給機冷却通路と、排気還流用クーラを通過する還流路冷却通路と、前記過給機冷却通路の出口と前記還流路冷却通路の入口とを互いに接続する連通冷却通路と、前記連通冷却通路上に配置された通路制御弁と、前記機関本体の冷却水の温度が所定温度未満のとき、前記連通冷却通路を連通させるための指令信号を前記通路制御弁に出力する制御装置とを有する。   An independent form of the cooling device for the internal combustion engine has the following matters. The internal combustion engine cooling device includes a main body cooling passage that passes through an engine main body, a supercharger cooling passage that is connected to the main body cooling passage and passes through a turbine housing of the supercharger, and a recirculation that passes through an exhaust gas recirculation cooler. A passage cooling passage, a communication cooling passage connecting the outlet of the supercharger cooling passage and the inlet of the reflux passage cooling passage, a passage control valve disposed on the communication cooling passage, and cooling of the engine body And a control device that outputs a command signal for communicating the communication cooling passage to the passage control valve when the temperature of the water is lower than a predetermined temperature.

本内燃機関によれば、冷却水の温度が所定温度未満のとき、過給機冷却通路を通過した冷却水が、連通冷却通路を介して還流路冷却通路に流れ込む。過給機冷却通路を流れる冷却水は、過給機との熱交換により温度が上昇する。このため、排気還流用クーラが還流路冷却通路を流れる冷却水から受ける熱量が多くなる。このため、排気還流用クーラの温度が上昇しやすくなる。このため、排気還流装置が、凝縮水または氷が発生しにくい状態に遷移するタイミングが早められる。このため、排気還流を早期に開始することが可能になる。   According to this internal combustion engine, when the temperature of the cooling water is lower than the predetermined temperature, the cooling water that has passed through the supercharger cooling passage flows into the reflux passage cooling passage through the communication cooling passage. The temperature of the cooling water flowing through the supercharger cooling passage rises due to heat exchange with the supercharger. For this reason, the amount of heat that the exhaust gas recirculation cooler receives from the cooling water flowing through the recirculation path cooling passage increases. For this reason, the temperature of the exhaust gas recirculation cooler is likely to rise. For this reason, the timing at which the exhaust gas recirculation device transitions to a state in which condensed water or ice is difficult to be generated is advanced. For this reason, exhaust gas recirculation can be started early.

(a)実施形態の冷却装置において冷却水温度が所定温度未満のときの冷却水の流れを示す模式図。(b)冷却水温度が所定温度以上のときの冷却水の流れを示す模式図。(A) The schematic diagram which shows the flow of a cooling water when a cooling water temperature is less than predetermined temperature in the cooling device of embodiment. (B) The schematic diagram which shows the flow of a cooling water when a cooling water temperature is more than predetermined temperature. 始動後時間および冷却水温度の関係の一例を示すグラフ。The graph which shows an example of the relationship between time after starting, and cooling water temperature.

図1を参照して、内燃機関の冷却装置1の構成について説明する。
冷却装置1は、冷却通路10、通路制御弁40、制御装置50、水温センサ60、および、電動ポンプ(図示略)を有している。電動ポンプは、冷却通路10内の冷却水を循環させる。冷却装置1は、過給機のタービンハウジング(図示略)を冷却水により冷却し、排気還流装置の排気還流用クーラ(図示略)を冷却水により暖機または冷却する。
With reference to FIG. 1, the structure of the cooling device 1 of an internal combustion engine is demonstrated.
The cooling device 1 includes a cooling passage 10, a passage control valve 40, a control device 50, a water temperature sensor 60, and an electric pump (not shown). The electric pump circulates the cooling water in the cooling passage 10. The cooling device 1 cools a turbine housing (not shown) of the supercharger with cooling water, and warms or cools an exhaust gas recirculation cooler (not shown) of the exhaust gas recirculation device with cooling water.

冷却通路10は、本体冷却通路11、本体下流冷却通路12、本体上流冷却通路13、過給機冷却通路21、過給機迂回通路22、還流路冷却通路23、還流装置迂回通路24、上流連通冷却通路31、および、下流連通冷却通路32を有している。   The cooling passage 10 includes a main body cooling passage 11, a main body downstream cooling passage 12, a main body upstream cooling passage 13, a supercharger cooling passage 21, a supercharger bypass passage 22, a return passage cooling passage 23, a return device bypass passage 24, and an upstream communication. A cooling passage 31 and a downstream communication cooling passage 32 are provided.

本体冷却通路11は、機関本体(図示略)の内部に形成されている。本体下流冷却通路12は、本体冷却通路11の出口と過給機冷却通路21の入口とを互いに接続している。本体上流冷却通路13は、還流路冷却通路23の出口と本体冷却通路11の入口とを互いに接続している。   The main body cooling passage 11 is formed inside the engine main body (not shown). The main body downstream cooling passage 12 connects the outlet of the main body cooling passage 11 and the inlet of the supercharger cooling passage 21 to each other. The main body upstream cooling passage 13 connects the outlet of the reflux passage cooling passage 23 and the inlet of the main body cooling passage 11 to each other.

過給機冷却通路21は、過給機のタービンハウジングの内部に形成されている。過給機迂回通路22は、本体下流冷却通路12と通路制御弁40の入口ポートの1つとを互いに接続している。還流路冷却通路23は、排気管流用クーラの内部に形成されている。還流装置迂回通路24は、通路制御弁40の出口ポートの1つと本体上流冷却通路13とを互いに接続している。   The supercharger cooling passage 21 is formed inside the turbine housing of the supercharger. The supercharger bypass passage 22 connects the main body downstream cooling passage 12 and one of the inlet ports of the passage control valve 40 to each other. The reflux path cooling passage 23 is formed inside the exhaust pipe flow cooler. The reflux device bypass passage 24 connects one of the outlet ports of the passage control valve 40 and the main body upstream cooling passage 13 to each other.

上流連通冷却通路31は、過給機冷却通路21の出口と通路制御弁40の入口ポートの別の1つとを互いに接続している。下流連通冷却通路32は、通路制御弁40の出口ポートの別の1つと還流路冷却通路23とを互いに接続している。   The upstream communication cooling passage 31 connects the outlet of the supercharger cooling passage 21 and another one of the inlet ports of the passage control valve 40 to each other. The downstream communication cooling passage 32 connects another one of the outlet ports of the passage control valve 40 and the reflux passage cooling passage 23 to each other.

通路制御弁40は、制御装置50と電気的に接続されている。通路制御弁40は、一例として、ロータリー式4方弁の形態を有している。通路制御弁40は、制御装置50の指令信号に基づいて、弁体(図示略)の回転位置を変化させる。通路制御弁40は、弁体の回転位置を変化させることにより、過給機迂回通路22および上流連通冷却通路31と、還流装置迂回通路24および下流連通冷却通路32との接続関係を変化させる。   The passage control valve 40 is electrically connected to the control device 50. The passage control valve 40 has, for example, a rotary four-way valve. The passage control valve 40 changes the rotational position of a valve body (not shown) based on a command signal from the control device 50. The passage control valve 40 changes the connection relationship between the supercharger bypass passage 22 and the upstream communication cooling passage 31, the reflux device bypass passage 24, and the downstream communication cooling passage 32 by changing the rotational position of the valve body.

上流連通冷却通路31および下流連通冷却通路32は、過給機冷却通路21と還流路冷却通路23とを互いに連通する連通冷却通路を構成している。通路制御弁40により上流連通冷却通路31および下流連通冷却通路32が互いに接続されるとき、連通冷却通路が開放される。通路制御弁40により上流連通冷却通路31および下流連通冷却通路32が互いに切断されるとき、連通冷却通路が閉鎖される。   The upstream communication cooling passage 31 and the downstream communication cooling passage 32 constitute a communication cooling passage that connects the supercharger cooling passage 21 and the reflux passage cooling passage 23 to each other. When the upstream communication cooling passage 31 and the downstream communication cooling passage 32 are connected to each other by the passage control valve 40, the communication cooling passage is opened. When the upstream communication cooling passage 31 and the downstream communication cooling passage 32 are disconnected from each other by the passage control valve 40, the communication cooling passage is closed.

水温センサ60は、制御装置50と電気的に接続されている。水温センサ60は、冷却通路10を流れる冷却水の温度(以下、「冷却水温度」)に応じて変化する検知信号を制御装置50に出力する。水温センサ60は、一例として、本体冷却通路11の出口に取り付けられる。なお、水温センサ60は、冷却通路10における別の部位に取り付けることができる。   The water temperature sensor 60 is electrically connected to the control device 50. The water temperature sensor 60 outputs a detection signal that changes according to the temperature of the cooling water flowing through the cooling passage 10 (hereinafter referred to as “cooling water temperature”) to the control device 50. The water temperature sensor 60 is attached to the outlet of the main body cooling passage 11 as an example. The water temperature sensor 60 can be attached to another part in the cooling passage 10.

制御装置50は、冷却装置1の電気駆動装置に関する各種の制御を実行する。制御装置50は、各種の制御の一例として、還流装置暖機制御を実行する。制御装置50は、水温センサ60の検知信号に基づいて、冷却水温度の推定値を算出する。   The control device 50 executes various controls related to the electric drive device of the cooling device 1. The control device 50 executes the reflux device warm-up control as an example of various controls. The control device 50 calculates an estimated value of the cooling water temperature based on the detection signal of the water temperature sensor 60.

水温センサ60が本体冷却通路11の出口に取り付けられる場合、冷却水温度の推定値は、本体冷却通路11の出口を通過する冷却水温度を反映した値を取る。なお、図1の一点鎖線は、通路制御弁40および水温センサ60と制御装置50との電気的な接続を示している。   When the water temperature sensor 60 is attached to the outlet of the main body cooling passage 11, the estimated value of the cooling water temperature takes a value reflecting the temperature of the cooling water passing through the outlet of the main body cooling passage 11. In addition, the dashed-dotted line of FIG. 1 has shown the electrical connection of the passage control valve 40 and the water temperature sensor 60, and the control apparatus 50. FIG.

還流装置暖機制御は、以下の内容を有している。
制御装置50は、冷却水温度の推定値に基づいて、暖機終了条件が成立しているか否かを判定する。暖機終了条件の成立は、排気還流にともない排気還流路(図示略)において凝縮水または氷が発生する可能性が低いことを示している。制御装置50は、暖機終了条件の成否に基づいて、通路制御弁40に指令信号を出力する。すなわち、制御装置50は、水温センサ60の検知信号に基づいて、通路制御弁40の弁体の回転位置を制御する。なお、制御装置50は、冷却水温度の推定値、および、凝縮水または氷の発生と相関を有するパラメータに基づいて、暖機終了条件の成否を判定することもできる。
The reflux device warm-up control has the following contents.
The control device 50 determines whether or not the warm-up termination condition is satisfied based on the estimated value of the coolant temperature. The establishment of the warm-up termination condition indicates that there is a low possibility that condensed water or ice is generated in the exhaust gas recirculation path (not shown) along with the exhaust gas recirculation. The control device 50 outputs a command signal to the passage control valve 40 based on whether or not the warm-up end condition is satisfied. That is, the control device 50 controls the rotational position of the valve body of the passage control valve 40 based on the detection signal of the water temperature sensor 60. Note that the control device 50 can also determine whether the warm-up termination condition is successful based on the estimated value of the cooling water temperature and a parameter having a correlation with the generation of condensed water or ice.

制御装置50は、暖機終了条件が成立していないと判定したとき、通路制御弁40の弁体に第1回転位置を取らせる指令信号を通路制御弁40に出力する。制御装置50は、一例として、冷却水温度の推定値が所定温度未満の大きさを取ることに基づいて、暖機終了条件が成立していないと判定する。   When it is determined that the warm-up termination condition is not satisfied, the control device 50 outputs a command signal that causes the valve body of the passage control valve 40 to take the first rotation position to the passage control valve 40. For example, the control device 50 determines that the warm-up termination condition is not satisfied based on the estimated value of the cooling water temperature being less than a predetermined temperature.

制御装置50は、暖機終了条件が成立していると判定したとき、通路制御弁40の弁体に第2回転位置を取らせる指令信号を通路制御弁40に出力する。制御装置50は、一例として、冷却水温度の推定値が所定温度以上の大きさを取ることに基づいて、暖機終了条件が成立していると判定する。   When it is determined that the warm-up termination condition is satisfied, the control device 50 outputs a command signal for causing the valve body of the passage control valve 40 to take the second rotation position to the passage control valve 40. For example, the control device 50 determines that the warm-up termination condition is satisfied based on the estimated value of the cooling water temperature being greater than or equal to a predetermined temperature.

通路制御弁40は、弁体が第1回転位置を取るとき、上流連通冷却通路31と下流連通冷却通路32とを互いに接続し、過給機迂回通路22と下流連通冷却通路32および還流装置迂回通路24とを接続しない。このため、冷却通路10が第1循環路を形成する(図1(a)参照)。第1循環路は、本体冷却通路11、本体下流冷却通路12、過給機冷却通路21、上流連通冷却通路31、下流連通冷却通路32、還流路冷却通路23、および、本体上流冷却通路13により構成される。   The passage control valve 40 connects the upstream communication cooling passage 31 and the downstream communication cooling passage 32 to each other when the valve body takes the first rotational position, and bypasses the supercharger bypass passage 22, the downstream communication cooling passage 32, and the reflux device bypass. The passage 24 is not connected. For this reason, the cooling passage 10 forms a first circulation path (see FIG. 1A). The first circulation path is constituted by the main body cooling passage 11, the main body downstream cooling passage 12, the supercharger cooling passage 21, the upstream communication cooling passage 31, the downstream communication cooling passage 32, the reflux passage cooling passage 23, and the main body upstream cooling passage 13. Composed.

通路制御弁40は、弁体が第2回転位置を取るとき、上流連通冷却通路31と還流装置迂回通路24とを互いに接続し、過給機迂回通路22と下流連通冷却通路32とを互いに接続する。このため、冷却通路10が第2循環路および第3循環路を形成する(図1(b)参照)。第2循環路は、本体冷却通路11、本体下流冷却通路12、過給機冷却通路21、上流連通冷却通路31、還流装置迂回通路24、および、本体上流冷却通路13により構成される。第3循環路は、本体冷却通路11、本体下流冷却通路12、過給機迂回通路22、下流連通冷却通路32、還流路冷却通路23、および、本体上流冷却通路13により構成される。   When the valve body takes the second rotational position, the passage control valve 40 connects the upstream communication cooling passage 31 and the reflux device bypass passage 24 to each other, and connects the supercharger bypass passage 22 and the downstream communication cooling passage 32 to each other. To do. For this reason, the cooling passage 10 forms a second circulation path and a third circulation path (see FIG. 1B). The second circulation path includes the main body cooling passage 11, the main body downstream cooling passage 12, the supercharger cooling passage 21, the upstream communication cooling passage 31, the reflux device bypass passage 24, and the main body upstream cooling passage 13. The third circulation path includes the main body cooling passage 11, the main body downstream cooling passage 12, the supercharger bypass passage 22, the downstream communication cooling passage 32, the reflux passage cooling passage 23, and the main body upstream cooling passage 13.

図2は、冷却装置1の始動が開始されてからの経過時間(以下、「始動後時間」)、および、冷却水温度の関係の一例を示している。図2の実線は、第1循環路(図1(a)参照)において過給機冷却通路21の出口を通過する冷却水の温度(以下、「過給機出口水温TT」)の変化を示している。図2の一点鎖線は、第1循環路(図1(a)参照)において本体冷却通路11の出口を通過する冷却水の温度(以下、「本体出口水温TE」)の変化を示している。本体出口水温TEおよび過給機出口水温TTは、始動後時間の増加にともない上昇する。過給機出口水温TTは、冷却装置1の始動直後から本体出口水温TEよりも高い。   FIG. 2 shows an example of the relationship between the elapsed time since the start of the cooling device 1 (hereinafter, “time after start”) and the coolant temperature. The solid line in FIG. 2 shows the change in the temperature of the cooling water passing through the outlet of the supercharger cooling passage 21 (hereinafter, “supercharger outlet water temperature TT”) in the first circulation path (see FIG. 1A). ing. 2 indicates a change in the temperature of the cooling water passing through the outlet of the main body cooling passage 11 (hereinafter, “main body outlet water temperature TE”) in the first circulation path (see FIG. 1A). The main body outlet water temperature TE and the supercharger outlet water temperature TT rise as the time after starting increases. The supercharger outlet water temperature TT is higher than the main body outlet water temperature TE immediately after the cooling device 1 is started.

図1および図2を参照して、冷却装置1の作用について説明する。
制御装置50は、還流装置暖機制御を実行することにより、通路制御弁40に第1循環路を形成させる(図1(a)参照)。第1循環路を循環する冷却水は、本体冷却通路11および本体下流冷却通路12を通過した後、過給機冷却通路21に流れ込む。過給機冷却通路21の冷却水は、タービンハウジング内を流れる排気との熱交換により温度が上昇する。
With reference to FIG. 1 and FIG. 2, the effect | action of the cooling device 1 is demonstrated.
The control device 50 causes the passage control valve 40 to form the first circulation path by executing the reflux device warm-up control (see FIG. 1A). The cooling water circulating through the first circulation path passes through the main body cooling passage 11 and the main body downstream cooling passage 12 and then flows into the supercharger cooling passage 21. The temperature of the cooling water in the supercharger cooling passage 21 rises due to heat exchange with the exhaust flowing in the turbine housing.

過給機冷却通路21を通過した冷却水は、上流連通冷却通路31および下流連通冷却通路32を通過して還流路冷却通路23に流れ込む。還流路冷却通路23の冷却水は、排気還流用クーラのハウジングと熱交換する。このため、排気還流用クーラのハウジングの温度が上昇する。このため、排気還流用クーラにおいて排気還流路を形成する壁面の温度が上昇する。このため、排気還流路において凝縮水または氷が発生しにくくなる。   The cooling water that has passed through the supercharger cooling passage 21 passes through the upstream communication cooling passage 31 and the downstream communication cooling passage 32 and flows into the reflux passage cooling passage 23. The cooling water in the reflux path cooling passage 23 exchanges heat with the housing of the exhaust gas recirculation cooler. For this reason, the temperature of the housing of the exhaust gas recirculation cooler rises. For this reason, the temperature of the wall surface forming the exhaust gas recirculation path rises in the exhaust gas recirculation cooler. For this reason, it becomes difficult to generate condensed water or ice in the exhaust gas recirculation path.

図2に示されるとおり、過給機出口水温TTは、本体出口水温TEよりも高い。このため、排気還流路を形成する壁面の温度の上昇速度は、過給機冷却通路21を通過した冷却水が還流路冷却通路23に流れ込まない場合と比較して高くなる。このため、冷却装置1によれば、凝縮水または氷が発生する可能性が高い状態から低い状態に遷移するタイミングが早くなる。   As shown in FIG. 2, the supercharger outlet water temperature TT is higher than the main body outlet water temperature TE. For this reason, the rising speed of the temperature of the wall surface forming the exhaust gas recirculation path is higher than the case where the cooling water that has passed through the supercharger cooling passage 21 does not flow into the recirculation path cooling passage 23. For this reason, according to the cooling apparatus 1, the timing which changes to a low state from the state with high possibility that condensed water or ice generate | occur | produces becomes early.

冷却装置1は、以下の効果を奏する。
冷却水温度の推定値が所定温度未満のとき、過給機冷却通路21を通過した冷却水が還流路冷却通路23に流れ込む。このため、排気還流装置において凝縮水または氷が発生しにくくなる。このため、凝縮水または氷がコンプレッサインペラ(図示略)に衝突するおそれが低減される。また、排気還流用クーラが過給機冷却通路21を通過した冷却水の熱を受けるため、凝縮水または氷が発生する可能性が低い状態に遷移しやすくなる。このため、排気還流装置により排気還流を開始するタイミングを早めることが可能になる。すなわち、冷却装置1は、排気還流を早期に開始することを可能にする。
The cooling device 1 has the following effects.
When the estimated value of the cooling water temperature is lower than the predetermined temperature, the cooling water that has passed through the supercharger cooling passage 21 flows into the reflux passage cooling passage 23. For this reason, it becomes difficult to generate condensed water or ice in the exhaust gas recirculation apparatus. For this reason, a possibility that condensed water or ice collides with a compressor impeller (not shown) is reduced. Further, since the exhaust gas recirculation cooler receives the heat of the cooling water that has passed through the supercharger cooling passage 21, it is easy to make a transition to a state where the possibility of generation of condensed water or ice is low. For this reason, it becomes possible to advance the timing which starts exhaust gas recirculation | reflux by an exhaust gas recirculation apparatus. That is, the cooling device 1 makes it possible to start exhaust gas recirculation early.

1…冷却装置、11…本体冷却通路、21…過給機冷却通路、23…還流路冷却通路、40…通路制御弁、50…制御装置。   DESCRIPTION OF SYMBOLS 1 ... Cooling device, 11 ... Main body cooling passage, 21 ... Supercharger cooling passage, 23 ... Reflux passage cooling passage, 40 ... Passage control valve, 50 ... Control device.

Claims (1)

機関本体を通過する本体冷却通路と、
前記本体冷却通路と接続され、過給機のタービンハウジングを通過する過給機冷却通路と、
排気還流用クーラを通過する還流路冷却通路と、
前記過給機冷却通路の出口と前記還流路冷却通路の入口とを互いに接続する連通冷却通路と、
前記連通冷却通路上に配置された通路制御弁と、
前記機関本体の冷却水の温度が所定温度未満のとき、前記連通冷却通路を連通させるための指令信号を前記通路制御弁に出力する制御装置と
を有する内燃機関の冷却装置。
A body cooling passage that passes through the engine body;
A supercharger cooling passage connected to the main body cooling passage and passing through a turbine housing of the supercharger;
A reflux path cooling passage that passes through the exhaust gas recirculation cooler;
A communication cooling passage connecting the outlet of the supercharger cooling passage and the inlet of the reflux passage cooling passage;
A passage control valve disposed on the communication cooling passage;
And a control device that outputs a command signal for communicating the communication cooling passage to the passage control valve when the temperature of the cooling water in the engine body is lower than a predetermined temperature.
JP2013182493A 2013-09-03 2013-09-03 Cooling device for internal combustion engine Expired - Fee Related JP6060860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182493A JP6060860B2 (en) 2013-09-03 2013-09-03 Cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182493A JP6060860B2 (en) 2013-09-03 2013-09-03 Cooling device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015048809A true JP2015048809A (en) 2015-03-16
JP6060860B2 JP6060860B2 (en) 2017-01-18

Family

ID=52699015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182493A Expired - Fee Related JP6060860B2 (en) 2013-09-03 2013-09-03 Cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6060860B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944721A (en) * 2017-12-20 2019-06-28 现代自动车株式会社 Cooler for recycled exhaust gas for vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139439U (en) * 1984-08-13 1986-03-12 マツダ株式会社 Engine exhaust turbo supercharger
JPH01313615A (en) * 1988-06-13 1989-12-19 Mazda Motor Corp Cooling device for engine equipped with supercharger
JP2000186630A (en) * 1998-12-22 2000-07-04 Toyota Motor Corp Internal combustion engine having combustion heater
JP5907275B2 (en) * 2012-09-14 2016-04-26 日産自動車株式会社 Cooling device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139439U (en) * 1984-08-13 1986-03-12 マツダ株式会社 Engine exhaust turbo supercharger
JPH01313615A (en) * 1988-06-13 1989-12-19 Mazda Motor Corp Cooling device for engine equipped with supercharger
JP2000186630A (en) * 1998-12-22 2000-07-04 Toyota Motor Corp Internal combustion engine having combustion heater
JP5907275B2 (en) * 2012-09-14 2016-04-26 日産自動車株式会社 Cooling device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944721A (en) * 2017-12-20 2019-06-28 现代自动车株式会社 Cooler for recycled exhaust gas for vehicle

Also Published As

Publication number Publication date
JP6060860B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6213322B2 (en) Internal combustion engine
JP5993759B2 (en) Engine intake cooling system
JP5799963B2 (en) Exhaust circulation device for internal combustion engine
US20160348620A1 (en) Assembly including a heat engine and an electric compressor configured to heat the air-fuel mixture
JPWO2013011573A1 (en) Engine cooling system
JP2017122425A (en) Control device of internal combustion engine with supercharger
BR102015031167B1 (en) CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP6414194B2 (en) Control device for internal combustion engine
US10024230B2 (en) Engine system and controller, control system and control method for engine system
JP6007128B2 (en) Exhaust recirculation system cooling system
JP2014148957A (en) Egr gas cooling device
JP2014001703A (en) Cooling system of internal combustion engine
JP6060860B2 (en) Cooling device for internal combustion engine
JP6245236B2 (en) Cooling device for internal combustion engine
WO2013011767A1 (en) Engine cooling circuit
JP5369677B2 (en) Engine cooling system
JP2013024083A (en) Cooling circuit for engine
JP2010242525A (en) Control device for water pump
JP6299270B2 (en) Cooling device for internal combustion engine
JP2015178777A (en) internal combustion engine
JP5994450B2 (en) Control device for variable flow pump
JP6364943B2 (en) Control device for internal combustion engine
JP2014122556A (en) Engine cooling device
JP2016176439A (en) Cooling device and controlling device for internal combustion engine
JP2013124546A (en) Cooling device of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R151 Written notification of patent or utility model registration

Ref document number: 6060860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees