JP2015047018A - Withstand voltage test method of gas-insulated switchgear, and transformer for gas-insulated instrument - Google Patents

Withstand voltage test method of gas-insulated switchgear, and transformer for gas-insulated instrument Download PDF

Info

Publication number
JP2015047018A
JP2015047018A JP2013177148A JP2013177148A JP2015047018A JP 2015047018 A JP2015047018 A JP 2015047018A JP 2013177148 A JP2013177148 A JP 2013177148A JP 2013177148 A JP2013177148 A JP 2013177148A JP 2015047018 A JP2015047018 A JP 2015047018A
Authority
JP
Japan
Prior art keywords
gas
voltage
transformer
test
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013177148A
Other languages
Japanese (ja)
Other versions
JP5527469B1 (en
Inventor
宗一 中島
Soichi Nakajima
宗一 中島
▲寛▼資 三谷
Hiyoshi Mitani
▲寛▼資 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2013177148A priority Critical patent/JP5527469B1/en
Application granted granted Critical
Publication of JP5527469B1 publication Critical patent/JP5527469B1/en
Priority to CN201410424720.0A priority patent/CN104422861A/en
Publication of JP2015047018A publication Critical patent/JP2015047018A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a withstand voltage test method of a gas-insulated switchgear which allows for simple withstand voltage test without requiring a testing transformer.SOLUTION: Withstand voltage test of a GIS is performed by performing reverse transformation from secondary to primary by means of a gas VT 12. In other words, the gas VT 12 is configured to perform reverse transformation from secondary to primary, and to generate a test voltage for its main path 14. Consequently, field withstand voltage test of a gas-insulated switchgear can be performed simply.

Description

本発明は、ガス絶縁開閉装置の耐電圧試験方法、及びこれに用いるガス絶縁計器用変圧器に関する。   The present invention relates to a withstand voltage test method for a gas insulated switchgear, and a gas insulated instrument transformer used therefor.

特許文献1等に開示のガス絶縁開閉装置(GIS)は、据付施工後において電気設備技術基準に定められる耐電圧試験が現地にて行われる。その際、GISの主電路に対して系統電圧の2倍程度の高電圧を印加する必要があるため、その試験用電圧を生成するための試験用変圧器を現地に搬入し、GISの主電路に接続することが行われる。   The gas insulated switchgear (GIS) disclosed in Patent Document 1 and the like is subjected to a withstand voltage test determined in electrical equipment technical standards after installation. At that time, it is necessary to apply a voltage about twice as high as the system voltage to the main circuit of the GIS. Therefore, a test transformer for generating the test voltage is brought to the site, and the main circuit of the GIS To be connected to.

特開2001−268732号公報(第5図等)JP 2001-268732 A (FIG. 5 etc.)

しかしながら、試験用変圧器の搬入作業やGISとの接続作業が煩雑なため、GISの現地耐電圧試験を簡易に、特に試験用変圧器を用いないで簡易に試験する手法の開発が検討されている。   However, since the work of bringing in the test transformer and the connection work with the GIS are complicated, the development of a method for easily testing the withstand voltage test of the GIS, in particular without using the test transformer, has been considered. Yes.

本発明は、上記課題を解決するためになされたものであって、その目的は、試験用変圧器が不要で耐電圧試験を簡易に行うことができるガス絶縁開閉装置の耐電圧試験方法、及びこれに用いるガス絶縁計器用変圧器を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its object is to withstand a voltage withstand voltage test method for a gas-insulated switchgear that can easily perform a withstand voltage test without requiring a test transformer, and An object of the present invention is to provide a transformer for gas insulation instrument used for this purpose.

上記課題を解決するガス絶縁開閉装置の耐電圧試験方法は、主電路の使用電圧以上の試験用電圧をその主電路に印加して電圧耐性を試験するガス絶縁開閉装置の耐電圧試験方法であって、前記ガス絶縁開閉装置にガス絶縁計器用変圧器が備えられるものであり、該ガス絶縁計器用変圧器の二次側から一次側に逆変成し前記主電路に対して前記試験用電圧を発生させて耐電圧試験を行うようにしたものである。   A withstand voltage test method for a gas-insulated switchgear that solves the above problems is a withstand voltage test method for a gas-insulated switchgear that tests a voltage resistance by applying a test voltage equal to or higher than the working voltage of the main circuit to the main circuit. The gas insulated switchgear is provided with a gas insulated instrument transformer, and reversely transforms from the secondary side to the primary side of the gas insulated instrument transformer and applies the test voltage to the main circuit. It is generated and a withstand voltage test is performed.

この構成によれば、ガス絶縁開閉装置に備えられるガス絶縁開閉装置にて二次側から一次側に逆変成し、主電路に対して試験用電圧を発生させて耐電圧試験が行われる。そのため、ガス絶縁開閉装置の現地耐電圧試験時に試験用変圧器を別途必要とせず、現地への試験用変圧器の搬入や接続作業が不要な簡易な試験を行うことが可能となる。   According to this configuration, the withstand voltage test is performed by reversely transforming from the secondary side to the primary side by the gas-insulated switchgear provided in the gas-insulated switchgear and generating a test voltage for the main electric circuit. Therefore, a separate test transformer is not required at the time of the local withstand voltage test of the gas-insulated switchgear, and it is possible to perform a simple test that does not require the introduction and connection of the test transformer to the site.

また上記課題を解決するガス絶縁計器用変圧器は、主電路の使用電圧以上の試験用電圧をその主電路に印加して電圧耐性を試験するガス絶縁開閉装置の耐電圧試験方法に用いるガス絶縁計器用変圧器であって、二次側から一次側に逆変成し前記主電路に対して前記試験用電圧を発生可能に構成されたものである。   Moreover, the transformer for a gas insulated instrument that solves the above-mentioned problems is a gas insulation used in a withstand voltage test method for a gas insulated switchgear that tests a voltage resistance by applying a test voltage higher than a working voltage of the main circuit to the main circuit. An instrument transformer, which is configured to reversely transform from a secondary side to a primary side and to generate the test voltage with respect to the main electric circuit.

この構成によれば、ガス絶縁開閉装置における主電路に試験用電圧を印加して耐電圧試験を行うべく、ガス絶縁開閉装置は二次側から一次側に逆変成しその主電路に対して試験用電圧を発生させる。そのため、ガス絶縁開閉装置の現地耐電圧試験時に試験用変圧器を別途必要とせず、現地への試験用変圧器の搬入や接続作業が不要な簡易な試験を行うことが可能となる。   According to this configuration, the gas-insulated switchgear is reversely transformed from the secondary side to the primary side to perform a withstand voltage test by applying a test voltage to the main circuit in the gas-insulated switchgear. Generate voltage. Therefore, a separate test transformer is not required at the time of the local withstand voltage test of the gas-insulated switchgear, and it is possible to perform a simple test that does not require the introduction and connection of the test transformer to the site.

また上記のガス絶縁計器用変圧器において、前記試験用電圧の発生の際に、変圧器を構成する鉄心が磁気飽和しないように構成されるのが好ましい。
この構成によれば、試験用電圧の発生の際に変圧器を構成する鉄心が磁気飽和しないように構成されるため、鉄心及びその周囲部品の破損が未然に防止できる。
In the gas insulated instrument transformer, it is preferable that the iron core constituting the transformer is not magnetically saturated when the test voltage is generated.
According to this configuration, since the iron core constituting the transformer is not magnetically saturated when the test voltage is generated, damage to the iron core and its surrounding parts can be prevented.

また上記のガス絶縁計器用変圧器において、変圧器本体は、二次コイルの外周側に一次コイルが同軸上に巻装されるものであり、両コイル間に絶縁ガスの流通可能な隙間が形成されるのが好ましい。   In the gas insulated instrument transformer, the transformer body is such that the primary coil is coaxially wound on the outer peripheral side of the secondary coil, and a gap is formed between the coils so that the insulating gas can flow. It is preferred that

この構成によれば、変圧器本体の一次・二次コイル間の隙間に絶縁ガスを流通させて放熱性を向上させているため、試験用電圧の発生時等の発熱を好適に放熱可能である。   According to this configuration, the insulating gas is circulated in the gap between the primary and secondary coils of the transformer main body to improve the heat dissipation, so that heat generated when a test voltage is generated can be suitably dissipated. .

本発明のガス絶縁開閉装置の耐電圧試験方法、及びこれに用いるガス絶縁計器用変圧器によれば、試験用変圧器が不要で耐電圧試験を簡易に行うことができる。   According to the withstand voltage test method for a gas insulated switchgear according to the present invention and the gas insulated instrument transformer used therefor, the withstand voltage test can be easily performed without using a test transformer.

一実施形態におけるガス絶縁開閉装置(GIS)の構成図である。It is a block diagram of the gas insulated switchgear (GIS) in one Embodiment. ガス絶縁計器用変圧器(ガスVT)の構成図である。It is a block diagram of the transformer for gas insulation instruments (gas VT). (a)(b)は変圧器本体の構成図である。(A) (b) is a block diagram of a transformer main body. 別例におけるガス絶縁計器用変圧器(ガスVT)の構成図である。It is a block diagram of the transformer for gas insulation meters (gas VT) in another example.

以下、ガス絶縁開閉装置の耐電圧試験方法、及びこれに用いるガス絶縁計器用変圧器の一実施形態について説明する。
図1に示すように、ガス絶縁開閉装置(GIS)10は、遮断器、断路器、接地開閉器等の主要電力機器を有する開閉装置本体(GIS本体)11を備え、このGIS本体11に対してガス絶縁計器用変圧器(ガスVT)12が一体に組み付けられてなる。GIS本体11とガスVT12とは、各々のタンク13a,タンク13b同士が連結されて一つの密閉空間が形成され、その空間に絶縁ガスGが充填されることで内部の各種電力機器の絶縁が図られている。
In the following, an embodiment of a withstand voltage test method for a gas insulated switchgear and a gas insulated instrument transformer used therefor will be described.
As shown in FIG. 1, a gas insulated switchgear (GIS) 10 includes a switchgear main body (GIS main body) 11 having main power devices such as a circuit breaker, a disconnecting switch, and a grounding switch. A gas insulated instrument transformer (gas VT) 12 is integrally assembled. The GIS main body 11 and the gas VT12 are connected to each other to form a sealed space, and the insulating gas G is filled in the space to insulate various power devices inside. It has been.

図2及び図3に示すように、ガスVT12は、タンク13b内に変圧器本体15が収容されている。変圧器本体15は、四角環状の鉄心16の上辺部に装着されるボビン17に二次コイル18が巻装され、該二次コイル18の外周側に配置されるボビン19に一次コイル20がその二次コイル18と同軸上に巻装されて構成されている。一次コイル20は接続導体21の基端部と接続され、接続導体21の先端部はGIS本体11側の主電路14と接続される。一次コイル20には、主電路14の電圧(系統電圧)が一次側電圧として印加される。二次コイル18は二次端子箱25に設置される端子部26とリード線27を介して接続され、一次及び二次コイル20,18にて降圧変成された二次側電圧が端子部26に出力される。そして、端子部26に計測機器(図示略)を接続することで、該計測機器による系統電圧及び電流の計測が可能となっている。   As shown in FIG.2 and FIG.3, as for gas VT12, the transformer main body 15 is accommodated in the tank 13b. The transformer body 15 has a secondary coil 18 wound around a bobbin 17 mounted on the upper side of a square annular iron core 16, and a primary coil 20 is mounted on a bobbin 19 disposed on the outer peripheral side of the secondary coil 18. The secondary coil 18 is wound around the same axis. The primary coil 20 is connected to the proximal end portion of the connection conductor 21, and the distal end portion of the connection conductor 21 is connected to the main electric circuit 14 on the GIS main body 11 side. The voltage (system voltage) of the main electric circuit 14 is applied to the primary coil 20 as a primary side voltage. The secondary coil 18 is connected to a terminal portion 26 installed in the secondary terminal box 25 via a lead wire 27, and the secondary side voltage stepped down by the primary and secondary coils 20 and 18 is applied to the terminal portion 26. Is output. Then, by connecting a measuring device (not shown) to the terminal portion 26, the system voltage and current can be measured by the measuring device.

また本実施形態のガスVT12は、系統電源から低圧電源を生成する電源装置として使用可能に構成されている。大規模な太陽光発電システムの開閉所等は僻地に建設されがちで、その開閉所内で100〜200V程度の低圧電源を得難い状況であるため、このような状況において本実施形態のガスVT12は電源装置として使用される。本実施形態のガスVT12では、例えば系統電圧(一次側電圧)が66kVに対して二次側で10〜40kVAの出力が得られ、端子部26からその出力の取り出しが可能に構成されている。   Further, the gas VT12 of the present embodiment is configured to be usable as a power supply device that generates a low-voltage power supply from a system power supply. Since a switch station or the like of a large-scale photovoltaic power generation system tends to be constructed in a remote area and it is difficult to obtain a low-voltage power supply of about 100 to 200 V in the switch station, the gas VT 12 of this embodiment is a power source in such a situation. Used as a device. In the gas VT 12 of this embodiment, for example, an output of 10 to 40 kVA is obtained on the secondary side with respect to the system voltage (primary side voltage) of 66 kV, and the output can be taken out from the terminal portion 26.

ここで、本実施形態のガスVT12の変圧器本体15の具体構成としては、一次コイル20が例えば丸線でその線径が1mm程度、二次コイル18が例えば角線でその断面積が48〜96mm2 程度のものが用いられ、一次側電圧が66kVから10〜40kVAの二次側出力が得られるようにしている。これに対し、従来の一般的な66kVクラスのガスVTは、一次コイルが例えば丸線でその線径が0.2〜0.3mm程度、二次コイルが例えば角線でその断面積が8〜16mm2 程度のものが用いられるため、二次側出力は小さい。因みに、一次及び二次コイル20,18の巻数については、従来のガスVTの一次及び二次コイルの巻数と同じとしている。 Here, as a specific configuration of the transformer body 15 of the gas VT 12 of the present embodiment, the primary coil 20 is, for example, a round wire and its wire diameter is about 1 mm, the secondary coil 18 is, for example, a square wire, and its cross-sectional area is 48 to 48. A secondary side output of about 96 mm 2 is used so that a primary side voltage of 66 kV to 10 to 40 kVA can be obtained. On the other hand, the conventional general 66 kV class gas VT has a primary coil of, for example, a round wire and a wire diameter of about 0.2 to 0.3 mm, a secondary coil of, for example, a square wire and a cross-sectional area of 8 to 8 mm. Since about 16 mm 2 is used, the secondary output is small. Incidentally, the number of turns of the primary and secondary coils 20 and 18 is the same as the number of turns of the primary and secondary coils of the conventional gas VT.

また本実施形態のガスVT12は、電源装置としての使用用途を考慮して二次側出力を10〜40kVAと大きく設定していることから、使用時での変圧器本体15の発熱を考慮し、図3に示すように一次コイル20と二次コイル18との間に隙間Sが設けられ、絶縁ガスGの流通による放熱性向上が図られている。因みに本実施形態では、二次コイル18の外周部と一次コイル20の内周部との間に略角柱状の支持部材22を軸方向に沿って周方向等間隔に複数配置し、該支持部材22にて一次コイル20を二次コイル18に対して支持すると共に、隣接の支持部材22間にて軸方向に沿って貫通する隙間Sを形成して絶縁ガスGが流通する構造としている。また、変圧器本体15に対するタンク13bの容量を従来の一般的なガスVTよりも大きいものを使用して絶縁ガスGを多く充填する構造とすれば、変圧器本体15(コイル20,18)からの発熱の放熱性が向上する。   In addition, the gas VT12 of the present embodiment has a secondary output set to be as large as 10 to 40 kVA in consideration of the intended use as a power supply device. Therefore, considering the heat generation of the transformer body 15 during use, As shown in FIG. 3, a gap S is provided between the primary coil 20 and the secondary coil 18, so that heat dissipation is improved by circulation of the insulating gas G. Incidentally, in this embodiment, a plurality of substantially prismatic support members 22 are arranged between the outer peripheral portion of the secondary coil 18 and the inner peripheral portion of the primary coil 20 at equal intervals in the circumferential direction along the axial direction. 22, the primary coil 20 is supported with respect to the secondary coil 18, and a gap S penetrating along the axial direction is formed between adjacent support members 22 so that the insulating gas G flows. Moreover, if it is set as the structure filled with much insulating gas G using the thing larger than the conventional general gas VT with respect to the capacity | capacitance of the tank 13b with respect to the transformer main body 15, from the transformer main body 15 (coils 20, 18). The heat dissipation of heat generation is improved.

ところで、このようなGIS10においては、据付施工後に現地耐電圧試験が行われる。従来の一般的な現地耐電圧試験では、GISの据付地に試験用変圧器を搬入し、試験用変圧器を主電路に接続し、主電路に対して系統電圧の2倍程度(系統66kVであれば、130kV程度)の試験用電圧が印加されてその電圧耐性が試験される。この従来の試験では試験用変圧器の搬入等が煩雑なため、本実施形態のガスVT12はその試験用変圧器としても機能するように構成されている。   By the way, in such GIS10, a local withstand voltage test is performed after installation construction. In the conventional general field withstand voltage test, a test transformer is brought into the installation site of the GIS, the test transformer is connected to the main circuit, and about twice the system voltage with respect to the main circuit (at a system of 66 kV). If so, a test voltage of about 130 kV) is applied and the voltage tolerance is tested. In this conventional test, since it is complicated to carry in the test transformer, the gas VT 12 of this embodiment is configured to function also as the test transformer.

即ち、本実施形態のガスVT12では、試験用電圧発生装置(図示略)を二次側の端子部26に接続して二次側から一次側に向けて逆変成し、一次側において例えば66kVの2倍程度(130kV程度)の試験用電圧が発生するように構成されている。試験用電圧を発生する際には変圧器本体15の鉄心16において多大な磁束が生じるため、その試験用電圧の発生の際に鉄心16が磁気飽和しないような構成となっている。またガスVT12の上記した放熱構造がこの試験用電圧の発生の際の発熱も好適に放熱される。   That is, in the gas VT 12 of this embodiment, a test voltage generator (not shown) is connected to the secondary side terminal portion 26 and reversely transformed from the secondary side to the primary side, and for example 66 kV on the primary side. The test voltage is about twice as high (about 130 kV). When a test voltage is generated, a great amount of magnetic flux is generated in the iron core 16 of the transformer body 15, so that the iron core 16 is not magnetically saturated when the test voltage is generated. In addition, the above-described heat dissipation structure of the gas VT12 suitably radiates heat generated when the test voltage is generated.

そして、上記したGIS10の現地耐電圧試験の際には、本実施形態のガスVT12の二次側から一次側に逆変成し、一次側の主電路14に対して規定の試験用電圧が印加され、GIS10の電圧耐性の試験が行われるようになっている。   In the field withstand voltage test of the GIS 10 described above, the gas VT 12 of the present embodiment is reversely transformed from the secondary side to the primary side, and a prescribed test voltage is applied to the primary side main circuit 14. A voltage tolerance test of GIS10 is conducted.

次に、本実施形態の特徴的な効果を記載する。
(1)本実施形態では、ガスVT12にて二次側から一次側に逆変成し、主電路14に対して試験用電圧を発生させてGIS10の耐電圧試験が行われる。換言すれば、本実施形態のガスVT12は、二次側から一次側に逆変成しその主電路14に対して試験用電圧を発生させるように構成されている。そのため、GIS10の現地耐電圧試験時に試験用変圧器を別途必要とせず、現地への試験用変圧器の搬入や接続作業が不要な簡易な試験を行うことができる。
Next, characteristic effects of the present embodiment will be described.
(1) In the present embodiment, the gas VT 12 is reversely transformed from the secondary side to the primary side, and a test voltage is generated for the main electric circuit 14 to perform a withstand voltage test of the GIS 10. In other words, the gas VT 12 of the present embodiment is configured to reversely transform from the secondary side to the primary side and generate a test voltage for the main electric circuit 14. Therefore, a separate test transformer is not required at the time of the local withstand voltage test of GIS 10, and a simple test that does not need to carry in and connect the test transformer to the site can be performed.

(2)試験用電圧の発生の際にガスVT12内の変圧器本体15の鉄心16が磁気飽和しないように構成されているため、鉄心16及びその周囲部品の破損を未然に防止することができる。   (2) Since the iron core 16 of the transformer body 15 in the gas VT 12 is not magnetically saturated when the test voltage is generated, damage to the iron core 16 and its surrounding parts can be prevented. .

(3)変圧器本体15の一次・二次コイル20,18間の隙間Sに絶縁ガスGを流通させて放熱性を向上させているため、試験用電圧の発生時等の発熱を好適に放熱することができる。   (3) Since the insulating gas G is circulated through the gap S between the primary and secondary coils 20 and 18 of the transformer main body 15 to improve heat dissipation, heat generated when a test voltage is generated is suitably dissipated. can do.

尚、上記実施形態は、以下のように変更してもよい。
・ガスVT12は、GIS10の1つのコンポーネントとして一体に組み込まれるものであったが、図4に示すような単独設置型のガスVT12aであってもよい。このガスVT12aは、タンク13aが独立したもの(単独で絶縁ガスGの充填が可能な密閉空間を有する構造)であり、またGIS本体11とは別箇所で主電路(系統)に接続するための気中ブッシング30を備えている。気中ブッシング30は、タンク13bに対して絶縁及び支持の機能を有する碍管31に導体32が挿通されてなり、導体32の先端部は主電路に、基端部は変圧器本体15(一次コイル20)にそれぞれ接続される。このような単独設置型のガスVT12aを用いてもよい。
In addition, you may change the said embodiment as follows.
The gas VT12 is integrally incorporated as one component of the GIS 10, but may be a single installation type gas VT12a as shown in FIG. This gas VT12a has an independent tank 13a (a structure having a sealed space that can be filled with the insulating gas G alone), and is connected to the main electric circuit (system) at a location different from the GIS main body 11. An air bushing 30 is provided. The air bushing 30 has a conductor 32 inserted through a soot pipe 31 that functions to insulate and support the tank 13b. The tip of the conductor 32 is connected to the main electric circuit, and the base end is the transformer main body 15 (primary coil). 20). Such a single installation type gas VT12a may be used.

・ガスVT12,12aを単相用にて構成したが、多相用(三相用)として構成してもよい。
・一次及び二次コイル20,18間に略角柱状の支持部材22を軸方向に沿って配置し、軸線と平行に貫通する隙間Sを形成したが、これに限定されるものではない。例えば、支持部材22を軸方向に沿って配置するものとしたが、周方向に略環状に配置するものであってもよい。また支持部材22を複数用いたが、隙間(孔)を有する環状の一つの部材を用いてもよい。また、ボビン17やボビン19に隙間(孔)を一体形成し、部材を省略してもよい。
-Although gas VT12, 12a was comprised for single phases, you may comprise for multiphase (for three phases).
Although the substantially prismatic support member 22 is disposed along the axial direction between the primary and secondary coils 20 and 18 and the gap S penetrating in parallel with the axis is formed, the present invention is not limited to this. For example, although the support member 22 is disposed along the axial direction, the support member 22 may be disposed in a substantially annular shape in the circumferential direction. Further, although a plurality of support members 22 are used, one annular member having a gap (hole) may be used. Further, a gap (hole) may be formed integrally with the bobbin 17 or the bobbin 19, and the member may be omitted.

・上記した一次及び二次電圧やコイル20,18の径・断面積等の数値は一例であり、これに限定されるものではなく、適宜変更してもよい。
次に、上記実施形態及び別例から把握できる技術的思想を以下に追記する。
The numerical values such as the primary and secondary voltages and the diameters and cross-sectional areas of the coils 20 and 18 described above are examples, and are not limited thereto, and may be changed as appropriate.
Next, a technical idea that can be grasped from the above embodiment and another example will be added below.

(イ)請求項2〜4の何れか1項に記載のガス絶縁計器用変圧器を備えたことを特徴とするガス絶縁開閉装置。   (A) A gas insulated switchgear comprising the gas insulated instrument transformer according to any one of claims 2 to 4.

10…ガス絶縁開閉装置(GIS)、12…ガス絶縁計器用変圧器(ガスVT)、14…主電路、15…変圧器本体、16…鉄心、18…二次コイル、20…一次コイル、G…絶縁ガス、S…隙間。   DESCRIPTION OF SYMBOLS 10 ... Gas insulation switchgear (GIS), 12 ... Gas insulation instrument transformer (gas VT), 14 ... Main electric circuit, 15 ... Transformer main body, 16 ... Iron core, 18 ... Secondary coil, 20 ... Primary coil, G ... insulating gas, S ... gap.

上記課題を解決するガス絶縁開閉装置の耐電圧試験方法は、主電路の使用電圧以上の試験用電圧をその主電路に印加して電圧耐性を試験するガス絶縁開閉装置の耐電圧試験方法であって、前記ガス絶縁開閉装置にガス絶縁計器用変圧器が備えられ、該ガス絶縁計器用変圧器の一次側から二次側に降圧変成された二次側電圧が計測用として使用可能に構成されるとともに、該ガス絶縁計器用変圧器は、さらに、一次側に印加される主電路の系統電圧から二次側にて電源を生成する電源装置として使用可能に構成され、該ガス絶縁計器用変圧器の変圧器本体は、二次コイルの外周側に一次コイルが同軸上に巻装され、両コイル間に絶縁ガスの流通可能な隙間が形成されるものであり、前記ガス絶縁計器用変圧器の二次側から一次側に逆変成し前記主電路に対して前記試験用電圧を発生させて耐電圧試験を行うようにしたものである。 A withstand voltage test method for a gas-insulated switchgear that solves the above problems is a withstand voltage test method for a gas-insulated switchgear that tests a voltage resistance by applying a test voltage equal to or higher than the working voltage of the main circuit to the main circuit. The gas-insulated switchgear is provided with a gas-insulated instrument transformer, and a secondary-side voltage stepped down from the primary side to the secondary side of the gas-insulated instrument transformer is configured to be usable for measurement. The gas insulated instrument transformer is further configured to be usable as a power supply device that generates power on the secondary side from the system voltage of the main circuit applied to the primary side. transformer body vessels, the primary coil on the outer peripheral side of the secondary coil is wound coaxially, it allows flow gap of the insulating gas between the two coils is shall been formed, the gas-insulated instrument transformer Reversely transformed from the secondary side to the primary side of the It is obtained to perform the withstand voltage test by generating a voltage for the test against path.

また変圧器本体の一次・二次コイル間の隙間に絶縁ガスを流通させて放熱性を向上させているため、試験用電圧の発生時等の発熱を好適に放熱可能である。
また上記課題を解決するガス絶縁計器用変圧器は、主電路の使用電圧以上の試験用電圧をその主電路に印加して電圧耐性を試験するガス絶縁開閉装置の耐電圧試験方法に用いるガス絶縁計器用変圧器であって、一次側から二次側に降圧変成された二次側電圧が計測用として使用可能に構成されるとともに、一次側に印加される主電路の系統電圧から二次側にて電源を生成する電源装置として使用可能に構成され、変圧器本体は、二次コイルの外周側に一次コイルが同軸上に巻装され、両コイル間に絶縁ガスの流通可能な隙間が形成されるものであり、二次側から一次側に逆変成し前記主電路に対して前記試験用電圧を発生可能に構成されたものである。
In addition, since the insulating gas is circulated in the gap between the primary and secondary coils of the transformer main body to improve the heat dissipation, heat generated when the test voltage is generated can be suitably dissipated.
Moreover, the transformer for a gas insulated instrument that solves the above-mentioned problems is a gas insulation used in a withstand voltage test method for a gas insulated switchgear that tests a voltage resistance by applying a test voltage higher than a working voltage of the main circuit to the main circuit. This is a transformer for instrumentation, and the secondary side voltage that is stepped down from the primary side to the secondary side is configured to be usable for measurement, and from the system voltage of the main circuit applied to the primary side to the secondary side The transformer body is configured so that it can be used as a power source for generating power, and the primary coil is coaxially wound around the outer periphery of the secondary coil, and a gap is formed between the coils to allow insulation gas to flow. It is configured to reversely transform from the secondary side to the primary side so that the test voltage can be generated with respect to the main electric circuit.

この構成によれば、ガス絶縁開閉装置における主電路に試験用電圧を印加して耐電圧試験を行うべく、ガス絶縁開閉装置は二次側から一次側に逆変成しその主電路に対して試験用電圧を発生させる。そのため、ガス絶縁開閉装置の現地耐電圧試験時に試験用変圧器を別途必要とせず、現地への試験用変圧器の搬入や接続作業が不要な簡易な試験を行うことが可能となる。
また変圧器本体の一次・二次コイル間の隙間に絶縁ガスを流通させて放熱性を向上させているため、試験用電圧の発生時等の発熱を好適に放熱可能である。
According to this configuration, the gas-insulated switchgear is reversely transformed from the secondary side to the primary side to perform a withstand voltage test by applying a test voltage to the main circuit in the gas-insulated switchgear. Generate voltage. Therefore, a separate test transformer is not required at the time of the local withstand voltage test of the gas-insulated switchgear, and it is possible to perform a simple test that does not require the introduction and connection of the test transformer to the site.
In addition, since the insulating gas is circulated in the gap between the primary and secondary coils of the transformer main body to improve the heat dissipation, heat generated when the test voltage is generated can be suitably dissipated.

(イ)ガス絶縁計器用変圧器を備えたことを特徴とするガス絶縁開閉装置。 (B) gas-insulated switchgear apparatus comprising the gas insulated voltage transformer.

Claims (4)

主電路の使用電圧以上の試験用電圧をその主電路に印加して電圧耐性を試験するガス絶縁開閉装置の耐電圧試験方法であって、
前記ガス絶縁開閉装置にガス絶縁計器用変圧器が備えられるものであり、該ガス絶縁計器用変圧器の二次側から一次側に逆変成し前記主電路に対して前記試験用電圧を発生させて耐電圧試験を行うようにしたことを特徴とするガス絶縁開閉装置の耐電圧試験方法。
A withstand voltage test method for a gas-insulated switchgear that tests a voltage resistance by applying a test voltage higher than a working voltage of a main circuit to the main circuit,
The gas insulated switchgear is provided with a gas insulated instrument transformer, and reversely transforms from the secondary side to the primary side of the gas insulated instrument transformer to generate the test voltage for the main electric circuit. A withstand voltage test method for a gas insulated switchgear characterized by performing a withstand voltage test.
主電路の使用電圧以上の試験用電圧をその主電路に印加して電圧耐性を試験するガス絶縁開閉装置の耐電圧試験方法に用いるガス絶縁計器用変圧器であって、
二次側から一次側に逆変成し前記主電路に対して前記試験用電圧を発生可能に構成されたことを特徴とするガス絶縁計器用変圧器。
A gas insulated instrument transformer used in a withstand voltage test method for a gas insulated switchgear for testing a voltage resistance by applying a test voltage equal to or higher than a working voltage of a main circuit to the main circuit,
A gas insulated instrument transformer characterized in that it is reversely transformed from a secondary side to a primary side and is capable of generating the test voltage for the main electric circuit.
請求項2に記載のガス絶縁計器用変圧器において、
前記試験用電圧の発生の際に、変圧器を構成する鉄心が磁気飽和しないように構成されたことを特徴とするガス絶縁計器用変圧器。
The gas insulated instrument transformer according to claim 2,
A gas insulated instrument transformer, wherein the iron core constituting the transformer is not magnetically saturated when the test voltage is generated.
請求項2又は3に記載のガス絶縁計器用変圧器において、
変圧器本体は、二次コイルの外周側に一次コイルが同軸上に巻装されるものであり、両コイル間に絶縁ガスの流通可能な隙間が形成されたことを特徴とするガス絶縁計器用変圧器。
In the transformer for gas insulation instruments according to claim 2 or 3,
The transformer main body is a coil in which the primary coil is coaxially wound on the outer peripheral side of the secondary coil, and a gap through which an insulating gas can flow is formed between the two coils. Transformer.
JP2013177148A 2013-08-28 2013-08-28 Dielectric strength test method for gas insulated switchgear and gas insulated instrument transformer used therefor Active JP5527469B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013177148A JP5527469B1 (en) 2013-08-28 2013-08-28 Dielectric strength test method for gas insulated switchgear and gas insulated instrument transformer used therefor
CN201410424720.0A CN104422861A (en) 2013-08-28 2014-08-26 GIS withstand voltage testing method and transformer for gas insulation instrument using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177148A JP5527469B1 (en) 2013-08-28 2013-08-28 Dielectric strength test method for gas insulated switchgear and gas insulated instrument transformer used therefor

Publications (2)

Publication Number Publication Date
JP5527469B1 JP5527469B1 (en) 2014-06-18
JP2015047018A true JP2015047018A (en) 2015-03-12

Family

ID=51175760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177148A Active JP5527469B1 (en) 2013-08-28 2013-08-28 Dielectric strength test method for gas insulated switchgear and gas insulated instrument transformer used therefor

Country Status (2)

Country Link
JP (1) JP5527469B1 (en)
CN (1) CN104422861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866579A (en) * 2021-11-24 2021-12-31 国网重庆市电力公司电力科学研究院 Voltage transformer induction voltage withstand test method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720830B (en) * 2022-06-09 2022-09-06 江苏沃尔法电气有限公司 Insulation test device of voltage transformer for high-voltage gas-filled cabinet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920111B2 (en) * 1978-06-01 1984-05-10 株式会社東芝 On-site withstand voltage test method for gas-sealed electrical equipment
JPH05153707A (en) * 1991-11-27 1993-06-18 Mitsubishi Electric Corp Gas insulated circuit breaker
JPH0757944A (en) * 1993-08-10 1995-03-03 Shinko Kagaku Kogyo Kk Insulation member for keeping interval in stationary induction machine and production thereof
JP4316124B2 (en) * 2000-09-08 2009-08-19 株式会社東芝 Gas insulated instrument transformer
CN201449879U (en) * 2009-03-13 2010-05-05 日新电机株式会社 gas-insulated voltage transformer
JP5546338B2 (en) * 2010-04-30 2014-07-09 三菱電機株式会社 Gas insulated instrument transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113866579A (en) * 2021-11-24 2021-12-31 国网重庆市电力公司电力科学研究院 Voltage transformer induction voltage withstand test method and device
CN113866579B (en) * 2021-11-24 2023-06-02 国网重庆市电力公司电力科学研究院 Voltage transformer induction withstand voltage test method and device

Also Published As

Publication number Publication date
CN104422861A (en) 2015-03-18
JP5527469B1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
RU2353994C2 (en) Combined electronic transformer with organic insulation for output of optical signals
RU2692398C1 (en) Zero-current flow transformer
RU160203U1 (en) MOBILE DEVICE FOR TESTING POWER TRANSFORMERS AND CABLES
JP2005241297A (en) Withstand voltage test method of power equipment
JP5527469B1 (en) Dielectric strength test method for gas insulated switchgear and gas insulated instrument transformer used therefor
JP2011234593A (en) Transformer for gas insulated instrument
CN202189667U (en) Wall bushing of mutual inductor
Möller et al. Development of a test bench to investigate the breakdown voltage of insulation oil in a frequency range between 1 kHz and 10 kHz
Wang et al. Mechanical characteristics analysis of defective transformer windings under short-circuit fault using 3-D FEM
JP2012080759A (en) Method for connecting inductive load, and connecting circuit for implementing the same
CN209516450U (en) Gas-insulated pipeline with insulation connection structure
AU2020273556B2 (en) High voltage transformer, method for producing a high voltage transformer and test system and test signal device comprising a high voltage transformer
CN203673727U (en) Three-dimensional visual 35-kV electromagnetic voltage transformer practical training apparatus
Hammer et al. Testing methods for 1100 kV UHVDC transformer
RU2785684C1 (en) High-voltage transformer, method for manufacturing a high-voltage transformer, test system, and test signal apparatus containing a high-voltage transformer
JP2016046843A (en) Circuit breaker for electric power
JP2015002327A (en) Transformer for gas insulated meter
JP2015031602A (en) Insulation testing device
WO2015034992A1 (en) Transformer with highly resistive core
CN103941165A (en) GIS equipment testing device and method
CN219625683U (en) Voltage transformer testing device
CN204167084U (en) A kind of current transformer
CN210778204U (en) Current transformer and power module
JP2000266802A (en) Testing method associated with d.c. current application on d.c. cable
CN202495332U (en) Zero sequence current transformer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5527469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250