JP2005241297A - Withstand voltage test method of power equipment - Google Patents

Withstand voltage test method of power equipment Download PDF

Info

Publication number
JP2005241297A
JP2005241297A JP2004048399A JP2004048399A JP2005241297A JP 2005241297 A JP2005241297 A JP 2005241297A JP 2004048399 A JP2004048399 A JP 2004048399A JP 2004048399 A JP2004048399 A JP 2004048399A JP 2005241297 A JP2005241297 A JP 2005241297A
Authority
JP
Japan
Prior art keywords
voltage
frequency
transformer
test
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048399A
Other languages
Japanese (ja)
Inventor
Tomoaki Imai
友章 今井
Noriyuki Akiyama
則行 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Power Systems Corp
Original Assignee
J Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Power Systems Corp filed Critical J Power Systems Corp
Priority to JP2004048399A priority Critical patent/JP2005241297A/en
Publication of JP2005241297A publication Critical patent/JP2005241297A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a withstand voltage test method of power equipment dispensing with test equipment comprising a large-scale exclusive test power source or the like, capable of applying a variable voltage over a rated voltage, and having high defect detection accuracy. <P>SOLUTION: In a loading test circuit wherein a signal generator 23 is connected to the primary side winding of a testing transformer 21 and a cable sensor 24 is connected to the secondary side winding, the frequency of an input signal from the signal generator 23 is set higher than a rated frequency, and an input voltage of the primary side winding and an output voltage of the secondary side winding are raised over a rated voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ケーブル線路の品質確認のために現地試験として好適に採用することができる電力系統設備を用いた電力設備の耐電圧試験方法に関する。   The present invention relates to a withstand voltage test method for a power facility using a power system facility that can be suitably employed as a field test for quality confirmation of a cable line.

架橋ポリエチレンケーブル(CVケーブル)は、架橋ポリエチレンを絶縁体としたことにより、ポリエチレンの欠点であった耐熱性を大幅に改善したものであり、優れた電気特性を有することから今では500kV系統までの電力ケーブルに採用されている。   Crosslinked polyethylene cable (CV cable) is a product that greatly improves the heat resistance, which was a drawback of polyethylene, by using crosslinked polyethylene as an insulator, and since it has excellent electrical properties, it is now up to 500 kV system. Used in power cables.

このCVケーブル本体及びその接続部品は工場において各種の性能試験を実施された後、現地で布設、組立てられ、CVケーブル線路が完成される。この完成された線路を含む電力設備を実線路として稼動運用させることができるかを最終的に確認する作業が竣工試験(現地試験)である。   The CV cable body and its connecting parts are subjected to various performance tests at the factory, and then laid and assembled on site to complete the CV cable line. The work to finally confirm whether or not the power facility including the completed track can be operated and operated as a real track is a completion test (field test).

現地試験は、現地におけるCVケーブル、接続部の欠陥検出を主眼とし、特に実運転中の破壊欠陥を未然に検出し、電力系統設備全体の健全性を確認することを目的として行われている。   The field test is performed mainly for the purpose of detecting defects in the CV cable and connection part in the field, and in particular detecting the destruction defects during actual operation and confirming the soundness of the entire power system facility.

CVケーブル線路での初期破壊欠陥の主な原因として、異物、外傷によるボイド、絶縁体内のボイド、突起、面圧不足等が挙げられる。これらの欠陥は、現地でのケーブル布設、接続部組立て工程等が加わることにより発生するものである。従って、現地試験によりこれらの欠陥が発生していないことを確認する必要があった。   The main causes of the initial failure defect in the CV cable line include foreign matters, voids due to trauma, voids in the insulator, protrusions, insufficient surface pressure, and the like. These defects are caused by the on-site cable laying, connection assembly process, and the like. Therefore, it was necessary to confirm that these defects did not occur by field tests.

これらの欠陥を検出する手段として、従来よりCVケーブル線路に電圧を印加(課電)して絶縁破壊しない事を確認する耐電圧試験方法が行われている。耐電圧試験方法としては、主として以下の4つが挙げられる(例えば、非特許文献1参照)。   As means for detecting these defects, a withstand voltage test method for confirming that dielectric breakdown does not occur by applying a voltage to a CV cable line (applying power) has been performed. As the withstand voltage test method, there are mainly the following four methods (for example, see Non-Patent Document 1).

第1には、「直流耐電圧試験方法」がある。この方法は、直流発生器を供試試料に接続して課電するもので、従来より最も頻繁に行われている試験方法である。ここで、供試試料(試料)とは、変圧器、開閉器、ケーブル線路、発電機、GIS(ガス絶縁開閉装置)などの電力設備を構成する電気機器をいう。   First, there is a “DC withstand voltage test method”. In this method, a DC generator is connected to a test sample to apply power, and is the test method that has been most frequently performed conventionally. Here, the test sample (sample) refers to an electrical device that constitutes a power facility such as a transformer, a switch, a cable line, a generator, or a GIS (gas insulated switchgear).

第2には、「課電用装置による交流課電試験方法」がある。この方法は、試験用変圧器、リアクトル等の課電用装置を試料端に設置して、その試料に交流を課電する方法である。かかる交流課電試験の場合は、課電電圧操作が容易にできるため、部分放電試験を併用した試験で主に使用される。交流電圧による部分放電測定では欠陥に対し破壊電圧レベル以下で部分放電が発生する。このため、交流耐電圧試験時に部分放電試験を併用すれば、絶縁破壊する前の低い電圧で異常を検知できる可能性が高い。従って、耐電圧試験時に部分放電試験を併用することにより欠陥検出精度を向上させることが期待できる。   Second, there is an “AC power application test method using a power application device”. This method is a method in which a power application device such as a test transformer, a reactor or the like is installed at the end of the sample, and alternating current is applied to the sample. In the case of such an AC voltage application test, the voltage application voltage can be easily manipulated, so that it is mainly used in a test using a partial discharge test. In partial discharge measurement using an AC voltage, partial discharge occurs at a breakdown voltage level or lower with respect to a defect. For this reason, if a partial discharge test is used in combination with the AC withstanding voltage test, there is a high possibility that an abnormality can be detected with a low voltage before dielectric breakdown. Therefore, it can be expected that the defect detection accuracy is improved by using the partial discharge test together in the withstand voltage test.

第3には、「電力系統設備を用いた試充電試験方法」がある。この方法は、実運用設備である電力系統設備をそのまま用いて、商用運転と同じ周波数・電圧を印加する方法である。数年前に電気設備基準が改正され、商用運転の周波数と電圧を同じくして印加できる方法に変更になったのに伴い、採用されるようになった。試験設備が不要、かつ容易に試験が実施できるため、最近の主流となりつつある。   Third, there is a “trial charge test method using power system equipment”. This method is a method of applying the same frequency and voltage as in commercial operation using power system equipment that is actual operation equipment as it is. A few years ago, the electrical equipment standards were revised and changed to a method that can apply the same frequency and voltage for commercial operation. Since testing equipment is not required and testing can be performed easily, it is becoming the mainstream recently.

第4には、「電力系統設備と課電用装置を組合せた課電試験方法」がある。この方法は、第2の方法と第3の方法とを組み合わせたものであるが、ケーブル線路と実運用設備の電力系統設備である分路リアクトルとを並列に配して、共振方式で試験するものである。この課電試験では、ケーブル線路の充電容量を、実運用設備の電力系統設備の分路リアクトルを用いてインピーダンス補償するものであり、商用周波数を用いて実施される。
電気協同研究第51巻第1号「CVケーブルおよび接続部の高電圧試験法」(pp127−133)
Fourthly, there is a “electricity testing method combining power system equipment and powering equipment”. This method is a combination of the second method and the third method, and the cable line and the shunt reactor, which is the power system facility of the actual operation facility, are arranged in parallel and tested by the resonance method. Is. In this electricity test, the impedance of the charging capacity of the cable line is compensated by using the shunt reactor of the power system equipment of the actual operation equipment, and is implemented using the commercial frequency.
Electrical Cooperative Research Vol. 51, No. 1 "High Voltage Testing Method for CV Cables and Connections" (pp127-133)

第1の「直流耐電圧試験方法」による欠陥検出法では、その電圧が高ければ検出精度が向上することが知られている(非特許文献1参照)。しかしながら、検出精度の高い直流耐電圧試験を行うには、交流よりもかなり高い試験電圧を必要とするため、「試料の寿命への影響」や、「試料に接続された電力機器が破壊しないよう切離し」を考慮する必要があった。また、欠陥の種類によっては検出精度が低いという欠点がある。   In the defect detection method according to the first “DC withstand voltage test method”, it is known that the detection accuracy is improved if the voltage is high (see Non-Patent Document 1). However, in order to perform a DC withstand voltage test with high detection accuracy, a test voltage that is considerably higher than that of AC is required, so that "effect on the life of the sample" and "the power equipment connected to the sample will not be destroyed." It was necessary to consider “separation”. In addition, there is a drawback that detection accuracy is low depending on the type of defect.

一方、交流電圧を印加する第2の「課電用装置による交流課電試験方法」による欠陥検出法では、実運用設備の他に試験用変圧器、リアクトル等からなる試験設備を準備・組立てする必要があり、購入費用や準備期間が発生することなる。更に、最近の高電圧化・ケーブル線路の長尺化により、試験設備が大型化してきており、長期の準備期間、購入費用が莫大になるという欠点がある。   On the other hand, in the defect detection method according to the second “AC power application test method using power application device” that applies AC voltage, in addition to actual operation equipment, test equipment including test transformers, reactors, etc. is prepared and assembled. It will be necessary, and will incur purchase costs and preparation periods. Furthermore, with the recent increase in voltage and the length of cable lines, the test equipment has become larger, and there is a drawback that the purchase cost is enormous for a long preparation period.

また、第3の「電力系統設備を用いた試充電試験方法」による欠陥検出法では、実運用設備の電力系統設備を直接接続して使用するため、設備の変更は実質不可能であり、商用周波数または電圧等の変更が出来ないという問題がある。また、万一、ケーブル線路の試料が破壊したときにはその実線路の系統電圧の低下を招き、停電を起こす危険性がある。   In addition, in the defect detection method based on the third “trial charging test method using power system equipment”, the power system equipment of the actual operation equipment is directly connected and used. There is a problem that the frequency or voltage cannot be changed. Also, if a cable line sample breaks down, there is a risk of causing a power failure due to a drop in the system voltage of the actual line.

第4の「電力系統設備と課電用装置を組合せた課電試験方法」による欠陥検出法では、上記の第2と第3の方法の欠点が補えるものの、依然として少なからず同様の問題が残る。   In the defect detection method according to the fourth “electricity testing method combining electric power system equipment and electric power application device”, the drawbacks of the second and third methods described above can be compensated, but there are still a few similar problems.

ところで、交流による耐電圧試験の場合も、試験電圧を上げれば欠陥検出精度が向上することが知られている(非特許文献1参照)。このため、交流電圧を用いる第2〜第4の方法において、例えば、変圧器により定格電圧以上の出力電圧を発生させて欠陥検出精度を上げるためには、変圧器の一次側巻線に定格電圧以上の電圧を印加しなければならない。しかしながら、変圧器の一次側巻線に、定格周波数において定格電圧以上の電圧を入力すると、それに相当する過大な巻線電流が流れてしまい、この過大な巻線電流は変圧器鉄心自体に磁気飽和を起こさせることから定格電圧以上の出力電圧が得られなかった。従って、この方法では、商用周波数による定格電圧以上の出力電圧を得ることは極めて困難であり、実際に、商用の変圧器を用いた試験では、試験電圧がせいぜい1.1倍程度のものであった。このため、商用運転電圧以上の電圧を得るためには、大規模な専用の試験電源セットを準備する必要があった。   By the way, also in the withstand voltage test by alternating current, it is known that if the test voltage is increased, the defect detection accuracy is improved (see Non-Patent Document 1). For this reason, in the second to fourth methods using an AC voltage, for example, in order to increase the defect detection accuracy by generating an output voltage higher than the rated voltage by the transformer, the rated voltage is applied to the primary winding of the transformer. The above voltage must be applied. However, if a voltage higher than the rated voltage at the rated frequency is input to the primary side winding of the transformer, an excessive winding current corresponding to it flows, and this excessive winding current is magnetically saturated in the transformer core itself. As a result, an output voltage higher than the rated voltage could not be obtained. Therefore, with this method, it is extremely difficult to obtain an output voltage exceeding the rated voltage at the commercial frequency. In fact, in a test using a commercial transformer, the test voltage is about 1.1 times at most. It was. For this reason, in order to obtain a voltage higher than the commercial operating voltage, it was necessary to prepare a large-scale dedicated test power supply set.

従って、本発明の目的は、大規模な専用の試験設備を必要とすることなく、定格電圧以上の電圧を印加することができる欠陥検出精度が高い電力設備の耐電圧試験方法を提供することにある。   Accordingly, an object of the present invention is to provide a withstand voltage test method for a power facility with high defect detection accuracy that can apply a voltage higher than the rated voltage without requiring a large-scale dedicated test facility. is there.

本発明者らは、上記目的を達成すべく、入力信号の周波数を定格周波数以上に高めることにより、変圧器の一次側巻線のインピーダンスを上昇させ、一次側巻線に流れる電流を制限させることにより、変圧器鉄心自体の磁気飽和を抑制できることから、一次側の入力電圧を定格以上に上昇させることができ、出力電圧が高められ欠陥検出精度を向上することができることを見出し、本発明を完成させた。   In order to achieve the above object, the inventors of the present invention increase the impedance of the primary winding of the transformer by increasing the frequency of the input signal above the rated frequency and limit the current flowing through the primary winding. Thus, it is possible to suppress the magnetic saturation of the transformer core itself, so that the input voltage on the primary side can be increased above the rating, the output voltage can be increased, and the defect detection accuracy can be improved, and the present invention is completed. I let you.

即ち、本発明の電力設備の耐電圧試験方法は、複数の電力機器からなる電力系統設備全体の健全性を確認する手段として、その電気機器自体を構成する変圧器を使用する電力設備の耐電圧試験方法において、鉄心に一次側巻線と二次側巻線を巻き付けて形成された変圧器の一次側巻線に、当該変圧器の定格よりも高い周波数の信号を入力させることにより一次側電圧を定格値よりも高め、これより得られた定格よりも高い二次側電圧を電力機器に印加して耐電圧試験を行うことを特徴とする。   That is, the withstand voltage test method for power equipment according to the present invention is a means for confirming the soundness of the entire power system equipment composed of a plurality of power equipments, and the withstand voltage of power equipment using the transformer constituting the electrical equipment itself. In the test method, the primary side voltage is input to the primary side winding of the transformer formed by winding the primary side winding and the secondary side winding around the iron core to input a signal having a frequency higher than the rated value of the transformer. Is higher than the rated value, and a withstand voltage test is performed by applying a secondary voltage higher than the rating obtained thereby to the power equipment.

前記定格よりも高い周波数は、定格周波数の1.1〜2.0倍とすることができる。   The frequency higher than the rating can be 1.1 to 2.0 times the rated frequency.

前記定格よりも高い二次側電圧は、定格出力電圧の1.1〜2.0倍とすることができる。   The secondary voltage higher than the rating can be 1.1 to 2.0 times the rated output voltage.

前記変圧器に供試試料を接続すると共に、力率改善用のリアクトルを接続し、前記供試試料の静電容量と前記リアクトルのインダクタンスによって定まる共振周波数の信号を変圧器の一次側巻線に入力することもできる。   A test sample is connected to the transformer, and a power factor improving reactor is connected, and a signal having a resonance frequency determined by the capacitance of the test sample and the inductance of the reactor is supplied to the transformer primary winding. You can also enter it.

本発明に係る電力系統設備を用いた電力設備の耐電圧試験方法によれば、定格電圧以上の可変電圧を電力設備に印加することができるようになるため、電力設備の欠陥検出を高精度で行うことが可能となる。また、実運用の電力系統設備を用いることができるため、高電圧印加のための大規模な専用の試験設備が不要となり、コストを削減でき、安価な耐電圧試験方法を提供することが可能である。   According to the withstand voltage test method for power equipment using the power system equipment according to the present invention, a variable voltage equal to or higher than the rated voltage can be applied to the power equipment. Can be done. In addition, since an actual power system facility can be used, there is no need for a large-scale dedicated test facility for applying high voltage, which can reduce costs and provide an inexpensive withstand voltage test method. is there.

以下に、本発明に係る電力設備の耐電圧試験方法の実施の形態について図面を参照しながら説明する。   Embodiments of a withstand voltage test method for power equipment according to the present invention will be described below with reference to the drawings.

図1に、本発明の一実施形態として構成される基礎実験回路の概略図を示す。この基礎実験回路では、変圧器11として、鉄心に一次側巻線(一次巻数N)及び二次側巻線(二次巻数N)を形成したもので、定格周波数が50Hz、一次側定格電圧15V、二次側定格電圧100Vのものを用いている。変圧器11の一次側巻線には、可変電圧及び可変周波数を入力できる信号発生器13が接続されている。また、オシロスコープ15が変圧器11の一次側巻線及び二次側巻線に接続され、信号発生器13により一次側巻線で発生する入力電圧V、周波数f及び、変圧器の二次側巻線で発生する出力電圧Vを測定できる。 FIG. 1 shows a schematic diagram of a basic experimental circuit configured as one embodiment of the present invention. In this basic experimental circuit, a transformer 11 is formed by forming a primary side winding (primary winding number N 1 ) and a secondary side winding (secondary winding number N 2 ) on an iron core, with a rated frequency of 50 Hz and a primary side rating. The voltage of 15V and the secondary side rated voltage of 100V are used. A signal generator 13 capable of inputting a variable voltage and a variable frequency is connected to the primary winding of the transformer 11. Further, an oscilloscope 15 is connected to the primary side winding and the secondary side winding of the transformer 11, and the input voltage V 1 generated at the primary side winding by the signal generator 13, the frequency f, and the secondary side of the transformer the output voltage V 2 generated by the windings can be measured.

この基礎実験回路では、信号発生器13から所定の入力電圧V及び周波数fの信号が変圧器11の一次側巻線に入力されると、まず一次側巻線に電流が流れる。一次側巻線に電流が流れると、一次側巻線の周囲に磁界が発生し、これにより二次側巻線に出力電圧Vが発生する。二次側巻線に発生する出力電圧Vと、一次側巻線で発生する入力電圧Vとの関係は、下式のように、各々の巻数N、Nの比(N/N>1)によって定まる。
=V・(N/N
In this basic experimental circuit, when a signal having a predetermined input voltage V 1 and frequency f is input from the signal generator 13 to the primary winding of the transformer 11, first, a current flows through the primary winding. When a current flows through the primary winding, a magnetic field is generated around the primary winding, thereby the output voltage V 2 is generated in the secondary winding. The relationship between the output voltage V 2 generated in the secondary winding and the input voltage V 1 generated in the primary winding is expressed by the ratio of the number of turns N 1 and N 2 (N 2 / N 1 > 1).
V 2 = V 1 · (N 2 / N 1 )

本基礎実験回路において、信号発生器13から電圧V、周波数fの入力信号を入力した時の変圧器の一次側巻線のインピーダンスをXとすると、X=ωL=2πfL(Ω)[ω:角速度(rad/s),L:インダクタンス(H)]の関係より、インピーダンスは周波数に比例する。このため、信号発生器13からの入力信号の周波数を定格周波数より高くすることにより、変圧器11の一次側巻線のインピーダンスを上昇させて、一次側巻線に流れる電流を制限させることができる。これより、変圧器11の鉄心が磁気飽和することがないので、一次側巻線の入力電圧Vを定格電圧以上に上昇させることができるから、上式の巻数と電圧との関係により、二次側巻線に定格電圧以上の出力電圧Vを発生させることが可能である。 In this basic experimental circuit, when the impedance of the primary winding of the transformer when an input signal of voltage V 1 and frequency f 1 is input from the signal generator 13 is X 1 , X 1 = ωL = 2πf 1 L ( Ω) [ω: angular velocity (rad / s), L: inductance (H)], the impedance is proportional to the frequency. For this reason, by making the frequency of the input signal from the signal generator 13 higher than the rated frequency, it is possible to increase the impedance of the primary winding of the transformer 11 and limit the current flowing through the primary winding. . From this, the core of the transformer 11 is not able to magnetic saturation, because the input voltage V 1 of the primary winding can be increased above the rated voltage, the relationship between the number of turns and the voltage of the above formula, the two it is possible to generate an output voltage V 2 than the rated voltage to the next winding.

本基礎実験回路においては、変圧器11の一次側巻線に入力される周波数fの下限値は、変圧器の定格周波数と同じとする。これは、上記のインピーダンスと周波数との関係式より、インピーダンスは周波数に比例するため、低周波信号を入力した場合、変圧器の一次側巻線のインピーダンスが周波数に比例して低くなり、それに相当する過大電流が流れてしまい、定格電圧よりも低い電圧であるにもかかわらず、鉄心が磁気飽和してしまうためである。いずれにせよ試料の欠陥検出精度を向上させるためには、入力する信号の周波数の下限値を定格周波数の1.1倍とすることが好ましい。   In this basic experimental circuit, the lower limit value of the frequency f input to the primary winding of the transformer 11 is the same as the rated frequency of the transformer. This is because the impedance is proportional to the frequency according to the relationship between the impedance and the frequency described above, so when a low-frequency signal is input, the impedance of the primary winding of the transformer decreases in proportion to the frequency, which corresponds to that. This is because an excessive current flows and the iron core is magnetically saturated although the voltage is lower than the rated voltage. In any case, in order to improve the defect detection accuracy of the sample, it is preferable to set the lower limit value of the frequency of the input signal to 1.1 times the rated frequency.

また、入力信号の周波数の上限値は定格周波数の10倍、好ましくは、4.0倍、最も好ましくは2.0倍とする。これは、かかる上限値を超えると、変圧器11の一次側巻線と並列接続されることになる試料の浮遊静電容量が無視できなくなり、一次側巻線が純粋なリアクトルと考えられなくなるため、周波数を高くしても巻線のインピーダンスの上昇が期待できなくなるからである。   The upper limit value of the frequency of the input signal is 10 times the rated frequency, preferably 4.0 times, and most preferably 2.0 times. If this upper limit is exceeded, the floating capacitance of the sample that is connected in parallel with the primary winding of the transformer 11 cannot be ignored, and the primary winding cannot be considered as a pure reactor. This is because an increase in the impedance of the winding cannot be expected even if the frequency is increased.

更に、コンデンサ負荷となる供試試料(試験線路)を高い周波数fで課電する場合、供試試料に流れる充電電流Iは下式のように、周波数fに比例して大きくなる。このため課電周波数が高くなるほど、変圧器11の一次側に並列挿入される補償リアクトルの容量を大きくして、インピーダンスを増加させる必要があり、経済的負担となる。このため、課電周波数の上限値は、定格の2倍程度(図1の基礎実験回路では100Hz)が最適と考えられる。
=V/X=V/(1/(2πfC))=V・2πf
Further, when voltage application test sample comprising a capacitor load (test line) at a high frequency f 3, the charging current I C flowing through the test sample, as in the following equation, increases in proportion to the frequency f 3. For this reason, as the applied frequency increases, it is necessary to increase the capacity of the compensation reactor inserted in parallel on the primary side of the transformer 11 to increase the impedance, resulting in an economic burden. For this reason, it is considered that the upper limit of the applied frequency is optimally about twice the rating (100 Hz in the basic experimental circuit of FIG. 1).
I C = V 2 / X 3 = V 2 / (1 / (2πf 3 C)) = V 2 · 2πf 3 C

出力電圧Vは、下式のように周波数fに比例するものの、出力電圧Vの制限値は実際的には変圧器11の2次側の耐電圧値で定まることになる。このため、上限値を定格出力の2.0倍とすることが好ましい。
=I・X=I・2πfL[X:変圧器の二次側巻線のインピーダンス成分(Ω),L:インダクタンス(H)]
Although the output voltage V 2 is proportional to the frequency f 2 as shown in the following equation, the limit value of the output voltage V 2 is actually determined by the withstand voltage value on the secondary side of the transformer 11. For this reason, it is preferable that the upper limit value is 2.0 times the rated output.
V 2 = I 2 · X 2 = I 2 · 2πf 2 L [X 2 : impedance component (Ω) of secondary winding of transformer, L: inductance (H)]

図2に、図1の基礎実験回路を用いて、信号発生器13の周波数を30Hz〜100Hzとした場合の、変圧器11の入力・出力電圧特性を示す。この図によれば、例えば信号発生器13より50Hzの商用周波数を発生させた場合は、入力電圧Vが約20V以上で出力電圧Vが約150V以上になると、入力・出力の関係が比例関係から徐々に外れていくようになることが分かる。また、70Hzの周波数を発生させた場合は、入力電圧Vが約40Vで出力電圧Vが約270Vになるまで、100Hzの周波数を発生させた場合は、入力電圧Vが約50Vで出力電圧Vが約350Vになっても、入力・出力の関係で比例関係が維持されていることが分かる。 FIG. 2 shows input / output voltage characteristics of the transformer 11 when the frequency of the signal generator 13 is set to 30 Hz to 100 Hz using the basic experimental circuit of FIG. According to this figure, for example the signal when that caused the commercial frequency of 50Hz from the generator 13, when the input voltage V 1 is the output voltage V 2 becomes equal to or higher than about 150V to about 20V or more, the proportional relationship of the input and output It turns out that it gradually becomes out of the relationship. In addition, when a frequency of 70 Hz is generated, when a frequency of 100 Hz is generated until the input voltage V 1 is about 40 V and the output voltage V 2 is about 270 V, the input voltage V 1 is output at about 50 V. also the voltage V 2 becomes about 350 V, it can be seen that the proportional relationship is maintained in the relationship between input and output.

図3に、商用周波数50Hzを用いて比例関係から外れた時(入力電圧V=24V、出力電圧V=170V)の入出力電圧波形を示す。この図によれば、入力信号波形に対して、出力信号波形は歪んでいる事がわかる。これは変圧器11の鉄心の磁気飽和による影響を受けたためである。この磁気飽和する電圧は、図2により、周波数に比例しており、低い周波数を入力した場合は飽和電圧も低下し、周波数が高くなると飽和電圧も上昇することが明らかである。 FIG. 3 shows input / output voltage waveforms when the commercial frequency is 50 Hz and the proportional relationship is not satisfied (input voltage V 1 = 24 V, output voltage V 2 = 170 V). This figure shows that the output signal waveform is distorted with respect to the input signal waveform. This is because it was affected by the magnetic saturation of the iron core of the transformer 11. FIG. 2 clearly shows that the magnetic saturation voltage is proportional to the frequency. When a low frequency is input, the saturation voltage also decreases, and when the frequency increases, the saturation voltage increases.

図4は、変圧器11の入力電圧Vを一定とし、周波数fを変化させたときの出力電圧Vの関係を示したものである。この結果より、入力電圧が15V以上の場合は、定格(50Hz)よりも高い周波数の信号を入力すれば、定格電圧(この場合100V)以上の電圧を発生させることが確かめられた。 4, an input voltage V 1 of the transformer 11 is constant, shows the relationship between the output voltage V 2 when changing the frequency f. From this result, it was confirmed that when the input voltage is 15 V or more, a signal having a frequency higher than the rating (50 Hz) is input, a voltage exceeding the rated voltage (100 V in this case) is generated.

次に、図5に示すように、商用周波数が50Hz、一次側電圧200V、二次側電圧100kVの試験用変圧器21を用い、その一次側巻線に信号発生器23を接続し、二次側巻線にコンデンサとしての機能を持っているケーブルサンプル24を接続して課電試験回路を構築した。また、試験用変圧器21の一次側巻線と信号発生器23との間には補償用リアクトル22を並列に挿入した。補償用リアクトル22により力率を改善させる事により信号発生器23からの出力電流を抑えることができる。更に、試験用変圧器21の二次側巻線とケーブルサンプル24との間には分圧器26を並列に挿入し、信号発生器23に接続されたコントローラ25と接続している。   Next, as shown in FIG. 5, a test transformer 21 having a commercial frequency of 50 Hz, a primary side voltage of 200 V, and a secondary side voltage of 100 kV is used, a signal generator 23 is connected to the primary side winding, and a secondary A cable sample 24 having a function as a capacitor was connected to the side winding to construct an electric charging test circuit. A compensating reactor 22 was inserted in parallel between the primary winding of the test transformer 21 and the signal generator 23. The output current from the signal generator 23 can be suppressed by improving the power factor by the compensating reactor 22. Further, a voltage divider 26 is inserted in parallel between the secondary winding of the test transformer 21 and the cable sample 24 and connected to the controller 25 connected to the signal generator 23.

図6は、この回路において信号発生器23の周波数を30Hz,50Hz,100Hzとして、試験用変圧器21の入力電圧を変化させ、その時の出力電圧及び入力電流を記録した結果を示すものである。30Hzの低周波信号を入力した場合、定格出力電圧(100kV)よりも低い電圧(約60kV)で鉄心の磁気飽和が生じた。これに対して、定格周波数の2倍の周波数にあたる100Hzを入力した場合、125kV(定格電圧の125%)の電圧まで、磁気飽和せずに動作することが確認できた。今回の実験では試験用変圧器21の二次側における耐電圧値の都合上、これ以上の昇圧は行わなかった。   FIG. 6 shows the result of recording the output voltage and the input current at this time by changing the input voltage of the test transformer 21 by setting the frequency of the signal generator 23 to 30 Hz, 50 Hz, and 100 Hz in this circuit. When a low frequency signal of 30 Hz was input, magnetic saturation of the iron core occurred at a voltage (about 60 kV) lower than the rated output voltage (100 kV). On the other hand, when 100 Hz, which is twice the rated frequency, was input, it was confirmed that the circuit operated up to 125 kV (125% of the rated voltage) without magnetic saturation. In this experiment, no further boosting was performed due to the withstand voltage value on the secondary side of the test transformer 21.

以上、説明したように、図1に説明した基礎実験回路、図5に説明した課電試験回路を用いて、信号発生器からの入力信号の周波数を定格周波数より高くすることにより、変圧器の一次側巻線のインピーダンスを上昇させて、一次側巻線に流れる電流を制限させることができる。これより、変圧器の鉄心が磁気飽和することがないので、一次側巻線の入力電圧Vを定格電圧以上に上昇させることが可能となり、二次側巻線に定格電圧以上の出力電圧Vを発生させることができる。このため、具体的に、以下の効果を奏することができる。
(1)実運用の電力機器である変圧器を用いても従来法よりも高い課電電圧を容易に得ることができ、安価な高電圧試験設備を提供できる。
(2)入力電流を低く抑えることができるので、鉄心及び巻線の発熱量が抑えられ、長時間にわたり高電圧を発生させることができる。
(3)高電圧を印加できることにより、電力設備の欠陥検出精度を向上させることができる。
(4)課電周波数を高めることにより、絶縁材料の加速劣化を促進できるので、課電試験時間の短縮化が図れる。
(5)従来は、部分放電試験を併用する場合、架空配電線などから商用電源に同期したノイズ(気中コロナ)などが測定系に侵入し、部分放電信号として誤判断する可能性があったが、本方法による課電を行った場合、商用周波と課電周波が非同期になるため、課電周波に同期した信号と、ケーブル線路などの試料周辺からの商用周波に同期したノイズとの判別が容易にできるため、判別精度が飛躍的に向上する。
(6)本方法による課電方法と、ケーブル線路の損失電流測定を組合せた場合、高周波課電のため、劣化ケーブルから顕著に検出される高調波成分もまた、課電周波数に比例して高くなる。ケーブル健全層(コンデンサ)部のインピーダンスは周波数に反比例するため、課電周波数が高くなるにつれて、電流が大きくなる。このため従来法よりも高感度に損失電流が測定できることになる。
As described above, the frequency of the input signal from the signal generator is made higher than the rated frequency by using the basic experimental circuit described in FIG. 1 and the power application test circuit described in FIG. The impedance of the primary winding can be increased to limit the current flowing through the primary winding. Than this, since the transformer core is never magnetically saturated, an input voltage V 1 of the primary winding becomes possible to rise above the rated voltage, the rated voltage or the output voltage V on the secondary winding 2 can be generated. Therefore, specifically, the following effects can be achieved.
(1) Even if a transformer, which is an actually operated power device, is used, a higher applied voltage than that of the conventional method can be easily obtained, and an inexpensive high-voltage test facility can be provided.
(2) Since the input current can be kept low, the heat generation amount of the iron core and the windings can be suppressed, and a high voltage can be generated for a long time.
(3) Since the high voltage can be applied, the defect detection accuracy of the power equipment can be improved.
(4) Since the accelerated deterioration of the insulating material can be promoted by increasing the voltage application frequency, the time required for the voltage application test can be shortened.
(5) Conventionally, when a partial discharge test is used in combination, noise (air corona) synchronized with the commercial power supply from an overhead distribution line or the like may enter the measurement system and misjudgment as a partial discharge signal However, when power is applied according to this method, the commercial frequency and the charging frequency become asynchronous. Therefore, it is possible to discriminate between a signal synchronized with the applied frequency and noise synchronized with the commercial frequency from the periphery of the sample such as a cable line. Can be easily performed, and the discrimination accuracy is greatly improved.
(6) When the method of applying electricity according to this method is combined with the measurement of the loss current of the cable line, harmonic components that are prominently detected from the deteriorated cable are also higher in proportion to the applied frequency because of high-frequency electricity application. Become. Since the impedance of the cable sound layer (capacitor) part is inversely proportional to the frequency, the current increases as the applied frequency increases. For this reason, the loss current can be measured with higher sensitivity than the conventional method.

なお、本発明の他の実施形態として、図5の課電試験回路におけるコンデンサとしての機能を持っているケーブルサンプル24の静電容量Cとし、補償用リアクトル22のインダクタンスLとした場合、静電容量CとインダクタンスLによって定まる共振周波数fを入力信号として試験用変圧器21の一次側巻線に入力することができる。この場合の共振周波数fは、f=1/(2π√LC)[Hz]となる。この共振周波数fを用いることにより、供試試料のインピーダンスを最大値にすることができ、電流Iを最小限とすることができる。このため、試験用変圧器21の鉄心が磁気飽和しにくくなり、信号発生器23を小型化することが可能になる。 As another embodiment of the present invention, when the capacitance C of the cable sample 24 having a function as a capacitor in the voltage application test circuit of FIG. 5 and the inductance L of the compensating reactor 22 are used, The resonance frequency f 0 determined by the capacitance C and the inductance L can be input to the primary winding of the test transformer 21 as an input signal. The resonance frequency f 0 in this case is f 0 = 1 / (2π√LC) [Hz]. By using this resonance frequency f 0 , the impedance of the test sample can be maximized and the current I can be minimized. For this reason, the iron core of the test transformer 21 is less likely to be magnetically saturated, and the signal generator 23 can be downsized.

本発明の一実施形態として構成される基礎実験回路の概略図である。It is the schematic of the basic experiment circuit comprised as one Embodiment of this invention. 図1の基礎実験回路を用いて、信号発生器の周波数を30Hz〜100Hzとした場合の、変圧器の入力・出力電圧特性を示すグラフである。It is a graph which shows the input and output voltage characteristic of a transformer when the frequency of a signal generator is 30 Hz-100 Hz using the basic experiment circuit of FIG. 商用周波数50Hz、入力電圧24V、出力電圧170Vの時の入出力電圧波形を示す概略図である。It is the schematic which shows the input-output voltage waveform at the time of commercial frequency 50Hz, the input voltage 24V, and the output voltage 170V. 図1の基礎実験回路を用いて、変圧器の入力電圧を一定とし、周波数を変化させたときの出力電圧の関係を示すグラフである。It is a graph which shows the relationship of the output voltage when making the input voltage of a transformer constant and changing the frequency using the basic experiment circuit of FIG. 本発明の一実施形態として構成される課電試験回路の概略図である。1 is a schematic diagram of an electrical charging test circuit configured as an embodiment of the present invention. 図5の課電試験回路を用いて、信号発生器の周波数を30Hz,50Hz,100Hzとした場合の、変圧器の入力・出力電圧特性を示すグラフである。It is a graph which shows the input and output voltage characteristic of a transformer when the frequency of a signal generator is 30 Hz, 50 Hz, and 100 Hz using the electric power test circuit of FIG.

符号の説明Explanation of symbols

11 変圧器
13 信号発生器
15 オシロスコープ
21 試験用変圧器
22 補償用リアクトル
23 信号発生器
24 ケーブルサンプル
25 コントローラ
26 分圧器
11 Transformer 13 Signal Generator 15 Oscilloscope 21 Test Transformer 22 Compensation Reactor 23 Signal Generator 24 Cable Sample 25 Controller 26 Voltage Divider

Claims (4)

複数の電力機器からなる電力系統設備全体の健全性を確認する手段として、その電気機器自体を構成する変圧器を使用する電力設備の耐電圧試験方法において、鉄心に一次側巻線と二次側巻線を巻き付けて形成された変圧器の一次側巻線に、当該変圧器の定格よりも高い周波数の信号を入力させることにより一次側電圧を定格値よりも高め、これより得られた定格よりも高い二次側電圧を電力機器に印加して耐電圧試験を行うことを特徴とする電力設備の耐電圧試験方法。   As a means of confirming the soundness of the entire power system facility consisting of a plurality of power devices, in the withstand voltage test method for power facilities that use a transformer that constitutes the electrical device itself, the primary side winding and the secondary side on the iron core By making the primary winding of a transformer formed by winding a coil input a signal with a frequency higher than the rating of the transformer, the primary voltage is raised above the rated value, and the rating obtained from this A withstand voltage test method for power equipment, characterized in that a withstand voltage test is performed by applying a higher secondary side voltage to power equipment. 前記定格よりも高い周波数は、定格周波数の1.1〜2.0倍であることを特徴とする請求項1記載の電力設備の耐電圧試験方法。   The withstand voltage test method for electric power equipment according to claim 1, wherein the frequency higher than the rating is 1.1 to 2.0 times the rated frequency. 前記定格よりも高い二次側電圧は、定格出力電圧の1.1〜2.0倍であることを特徴とする請求項1記載の電力設備の耐電圧試験方法。   The withstand voltage test method for electric power equipment according to claim 1, wherein the secondary side voltage higher than the rating is 1.1 to 2.0 times the rated output voltage. 前記変圧器に供試試料を接続すると共に、力率改善用のリアクトルを接続し、前記供試試料の静電容量と前記リアクトルのインダクタンスによって定まる共振周波数の信号を変圧器の一次側巻線に入力することを特徴とする請求項1記載の電力設備の耐電圧試験方法。   A test sample is connected to the transformer, and a power factor improving reactor is connected, and a signal having a resonance frequency determined by the capacitance of the test sample and the inductance of the reactor is supplied to the primary winding of the transformer. The withstand voltage test method for electric power equipment according to claim 1, wherein the input is performed.
JP2004048399A 2004-02-24 2004-02-24 Withstand voltage test method of power equipment Pending JP2005241297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048399A JP2005241297A (en) 2004-02-24 2004-02-24 Withstand voltage test method of power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048399A JP2005241297A (en) 2004-02-24 2004-02-24 Withstand voltage test method of power equipment

Publications (1)

Publication Number Publication Date
JP2005241297A true JP2005241297A (en) 2005-09-08

Family

ID=35023194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048399A Pending JP2005241297A (en) 2004-02-24 2004-02-24 Withstand voltage test method of power equipment

Country Status (1)

Country Link
JP (1) JP2005241297A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047784A (en) * 2009-08-27 2011-03-10 Toshiba Corp Reactor for power and testing method thereof
CN102073003A (en) * 2011-02-16 2011-05-25 上海思源高压开关有限公司 Insulation test tool for gas-insulated metal-enclosed switchgear (GIS)
JP2012114165A (en) * 2010-11-22 2012-06-14 Toshiba Corp Simulation iron core, and method for checking quality of substitute winding using the same
CN102565647A (en) * 2012-02-14 2012-07-11 重庆市电力公司电力科学研究院 GIS (Global Information System) withstand voltage testing system
CN102735997A (en) * 2012-06-19 2012-10-17 扬州市双宝电力设备有限公司 Series resonance withstanding voltage tester
CN103116092A (en) * 2013-01-23 2013-05-22 国网电力科学研究院武汉南瑞有限责任公司 Intelligent distribution transformer load test method and device using the same
CN103308826A (en) * 2012-03-15 2013-09-18 辽宁省电力有限公司大连供电公司 Integrated alternating current withstand voltage testing device
CN103376392A (en) * 2012-04-28 2013-10-30 上海宝冶集团有限公司 High-voltage motor withstand voltage remote testing device
CN103576062A (en) * 2013-10-25 2014-02-12 中国一冶集团有限公司 Wireless frequency conversion resonance withstand voltage testing device and testing method thereof
CN104035013A (en) * 2014-05-30 2014-09-10 中国南方电网有限责任公司超高压输电公司检修试验中心 500 KV electromagnetic voltage transformer alternating-current frequency-doubling withstand voltage test circuit and method
CN104076314A (en) * 2014-07-10 2014-10-01 国家电网公司 Vehicle-mounted 1,000-kilovolt voltage transformer verifying device
CN104360241A (en) * 2014-09-26 2015-02-18 国家电网公司 System and method for impulse withstanding performance test of gas-insulated impulse voltage generator unit
CN106054041A (en) * 2016-07-26 2016-10-26 刘地发 High-voltage tester for testing the voltage withstanding degree at multiple points of aluminum substrate
CN106841936A (en) * 2016-11-23 2017-06-13 国家电网公司 Variable-frequency series-resonance method AC power frequency pressure test checking system and method
CN112415341A (en) * 2020-10-29 2021-02-26 国网重庆市电力公司电力科学研究院 Alternating current withstand voltage test method and system based on harmonic compensation principle
CN113064026A (en) * 2021-03-01 2021-07-02 国网甘肃省电力公司电力科学研究院 Ultra-high voltage super-large capacity transformer long-time induction voltage test device
CN113156276A (en) * 2021-02-22 2021-07-23 云南建投第二安装工程公司 Method for checking and debugging secondary voltage loop in AC withstand voltage test of switchgear bus
CN114397537A (en) * 2021-12-02 2022-04-26 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Method for optimizing portability of withstand voltage test of offshore 66kV submarine cable

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047784A (en) * 2009-08-27 2011-03-10 Toshiba Corp Reactor for power and testing method thereof
JP2012114165A (en) * 2010-11-22 2012-06-14 Toshiba Corp Simulation iron core, and method for checking quality of substitute winding using the same
CN102073003A (en) * 2011-02-16 2011-05-25 上海思源高压开关有限公司 Insulation test tool for gas-insulated metal-enclosed switchgear (GIS)
CN102073003B (en) * 2011-02-16 2012-08-08 上海思源高压开关有限公司 Insulation test tool for gas-insulated metal-enclosed switchgear (GIS)
CN102565647B (en) * 2012-02-14 2015-04-29 重庆市电力公司电力科学研究院 GIS (Global Information System) withstand voltage testing system
CN102565647A (en) * 2012-02-14 2012-07-11 重庆市电力公司电力科学研究院 GIS (Global Information System) withstand voltage testing system
CN103308826A (en) * 2012-03-15 2013-09-18 辽宁省电力有限公司大连供电公司 Integrated alternating current withstand voltage testing device
CN103376392A (en) * 2012-04-28 2013-10-30 上海宝冶集团有限公司 High-voltage motor withstand voltage remote testing device
CN102735997A (en) * 2012-06-19 2012-10-17 扬州市双宝电力设备有限公司 Series resonance withstanding voltage tester
CN103116092A (en) * 2013-01-23 2013-05-22 国网电力科学研究院武汉南瑞有限责任公司 Intelligent distribution transformer load test method and device using the same
CN103576062A (en) * 2013-10-25 2014-02-12 中国一冶集团有限公司 Wireless frequency conversion resonance withstand voltage testing device and testing method thereof
CN104035013A (en) * 2014-05-30 2014-09-10 中国南方电网有限责任公司超高压输电公司检修试验中心 500 KV electromagnetic voltage transformer alternating-current frequency-doubling withstand voltage test circuit and method
CN104076314A (en) * 2014-07-10 2014-10-01 国家电网公司 Vehicle-mounted 1,000-kilovolt voltage transformer verifying device
CN104360241A (en) * 2014-09-26 2015-02-18 国家电网公司 System and method for impulse withstanding performance test of gas-insulated impulse voltage generator unit
CN106054041A (en) * 2016-07-26 2016-10-26 刘地发 High-voltage tester for testing the voltage withstanding degree at multiple points of aluminum substrate
CN106841936A (en) * 2016-11-23 2017-06-13 国家电网公司 Variable-frequency series-resonance method AC power frequency pressure test checking system and method
CN112415341A (en) * 2020-10-29 2021-02-26 国网重庆市电力公司电力科学研究院 Alternating current withstand voltage test method and system based on harmonic compensation principle
CN112415341B (en) * 2020-10-29 2023-03-21 国网重庆市电力公司电力科学研究院 Alternating current withstand voltage test method and system based on harmonic compensation principle
CN113156276A (en) * 2021-02-22 2021-07-23 云南建投第二安装工程公司 Method for checking and debugging secondary voltage loop in AC withstand voltage test of switchgear bus
CN113156276B (en) * 2021-02-22 2024-03-29 云南建投第二安装工程公司 Method for checking and debugging secondary voltage loop of bus alternating-current withstand voltage test of switching equipment
CN113064026A (en) * 2021-03-01 2021-07-02 国网甘肃省电力公司电力科学研究院 Ultra-high voltage super-large capacity transformer long-time induction voltage test device
CN114397537A (en) * 2021-12-02 2022-04-26 中国大唐集团科学技术研究院有限公司火力发电技术研究院 Method for optimizing portability of withstand voltage test of offshore 66kV submarine cable

Similar Documents

Publication Publication Date Title
JP2005241297A (en) Withstand voltage test method of power equipment
US8816694B2 (en) Apparatus and method for detecting partial discharge at turn-to-turn insulation in motor
Eigner et al. An overview on the current status of partial discharge measurements on AC high voltage cable accessories
JP5882019B2 (en) Inverter-driven rotating electrical machine testing method and rotating electrical machine testing method
CN102156242B (en) Method for testing transformer insulation combination
RU2645715C2 (en) Method and device for controlling capacitor bushings for three-phase ac system
JP5134602B2 (en) Insulation drive motor insulation design method and manufacturing method
Hauschild Critical review of voltages applied for quality-acceptance and diagnostic field tests on high-voltage and extra-high-voltage cable systems
CN112824911A (en) Device for testing arc suppression coil
CN107861012A (en) A kind of through-flow device of high-power transformer
CN103605101B (en) Power-frequency subsection voltage stepping-up tester
Jacob et al. Online partial discharge measurement of a high-voltage direct current converter wall-bushing
Werle et al. Transformers
Okabe et al. Comprehensive evaluation of the K-factor values in the lightning impulse voltage test techniques for UHV-class electric power equipment
CN111983397A (en) Insulating medium breakdown experiment device and method
CN108375750B (en) Electromagnetic voltage transformer induction voltage withstand and partial discharge test device and method
Leelachariyakul et al. The performance of A high frequency current transducer for partial discharge measurement under testing with A power frequency converter
CN111751678A (en) Preventive test method for transformer
CN203630330U (en) Power-frequency subsection voltage stepping-up tester
Zhao et al. A test standard for winding insulation and air gaps of dry-type hv-hf transformer
Engelen et al. On-Site Dry-type Power Transformer Condition Assessment based on Partial Discharge Activity
CN219625683U (en) Voltage transformer testing device
Liu et al. Design and Development of Combined SF6 Enclosed Gas Insulated Series Resonance Testing Equipment
Kruger et al. Diagnostic testing of cast-resin transformers
Yelamanchi et al. Failure Analysis of Transformers under Impulse Test

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070918