JP2015046410A - Device of manufacturing battery electrode - Google Patents

Device of manufacturing battery electrode Download PDF

Info

Publication number
JP2015046410A
JP2015046410A JP2014249587A JP2014249587A JP2015046410A JP 2015046410 A JP2015046410 A JP 2015046410A JP 2014249587 A JP2014249587 A JP 2014249587A JP 2014249587 A JP2014249587 A JP 2014249587A JP 2015046410 A JP2015046410 A JP 2015046410A
Authority
JP
Japan
Prior art keywords
drying
current collector
solvent
electrode
collector foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014249587A
Other languages
Japanese (ja)
Other versions
JP5837672B2 (en
Inventor
陽三 内田
Yozo Uchida
陽三 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd, Toyota Motor Corp filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2014249587A priority Critical patent/JP5837672B2/en
Publication of JP2015046410A publication Critical patent/JP2015046410A/en
Application granted granted Critical
Publication of JP5837672B2 publication Critical patent/JP5837672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a device of manufacturing a battery electrode suitable for achieving a higher capacity of a battery while a mixture crack or the like is hard to occur in the electrode material after a drying process even if the electrode material is thickly coated on a current collector foil of a vehicular battery.SOLUTION: Disclosed is a device of manufacturing a battery electrode P including a drying step in which, after a slurry-like paste obtained by dissolving an electrode material into a solvent is coated on the upper surface of a web-like current collector foil S, the coated paste is dried in a drying oven 10. In the drying step, in a constant drying region (B) where the solvent linearly decreases, a curvature part PW is arranged in which the coated surface side of the current collector foil is curved upward in a feeding direction.

Description

本発明は、車両に搭載される電池用電極の製造装置に関し、特に、ウェブ状の集電箔に電極材料を溶媒に溶かしてスラリー状にしたペーストを塗布した後に、乾燥する乾燥装置に関する。   The present invention relates to a battery electrode manufacturing apparatus mounted on a vehicle, and more particularly to a drying apparatus that applies a paste obtained by dissolving an electrode material in a solvent to form a slurry on a web-shaped current collector foil.

例えば、リチウムイオン二次電池の電極(正極及び負極)は、電極材料である活物質及びバインダ樹脂や増粘剤等を溶媒に溶かしてスラリー状にしたペーストを、アルミ箔や銅箔などの集電箔上に塗布し、乾燥することによって製造される。リチウムイオン二次電池は、電気自動車(EV)やプラグインハイブリッド車(PHV)用に向けて、近年、高容量化が要求されている。その高容量化を図るため、電池用電極を厚膜電極(例えば、80〜100μm程度の膜厚)にすることが検討されている。
しかし、厚膜電極を製造するために、集電箔上に電極材料を厚く塗布し乾燥すると、乾燥時の熱収縮が大きくなり、結果として、乾燥後の電極材料にヒビ割れが入るという問題を生じやすい。このヒビ割れ防止対策として、バインダ樹脂を増加しても効果は少なく、更に乾燥炉設備費低減のために高速乾燥を行おうとすると、熱収縮が加速されて、一層ヒビ割れ等の不良が増え、製品の歩留りが低下する。
For example, an electrode (positive electrode and negative electrode) of a lithium ion secondary battery is prepared by collecting an active material, which is an electrode material, and a paste obtained by dissolving a binder resin or a thickener in a solvent into a slurry, such as an aluminum foil or a copper foil. It is manufactured by coating on an electric foil and drying. Lithium ion secondary batteries have recently been required to have higher capacities for electric vehicles (EV) and plug-in hybrid vehicles (PHV). In order to increase the capacity, it has been studied to make the battery electrode a thick film electrode (for example, a film thickness of about 80 to 100 μm).
However, if the electrode material is applied thickly on the current collector foil and dried to produce a thick film electrode, thermal shrinkage during drying increases, resulting in cracks in the electrode material after drying. Prone to occur. As an anti-cracking measure, increasing the binder resin has little effect, and if high-speed drying is attempted to reduce the drying furnace equipment cost, thermal shrinkage is accelerated, and defects such as cracking increase further. Product yield decreases.

一般に、乾燥期間には、図6に示すように、室温にあった材料が乾燥炉内の温度に加熱される材料予熱期間((A)の領域)と、溶媒が直線的に減少する定率乾燥期間((B)の領域)と、溶媒の減少が緩慢になる減率乾燥期間((C)の領域)とがあるが、特に、定率乾燥期間では、活物質やバインダ樹脂の間に存在する溶媒が急速に蒸発することによって生じる塗膜の収縮により、膜内部に引張り応力が残留しやすい。図7(a)〜(c)は、溶媒の蒸発による残留引張り応力の発生状況を模式的に説明した図である。図7(a)は、集電箔s上に電極材料である合剤g1を溶媒w1に溶かして塗布した塗工直後の状態を示す模式図であり、合剤g1は粒子状になって溶媒w1の中に分散している。材料予熱期間は、この状態である。
その後、定率乾燥期間において加熱すると、図7(b)に示すように、溶媒w2が塗膜t2表面から蒸発されて少なくなり、粒子状の合剤g2は互いに近接し、部分的に収縮した状態となる。
更に、乾燥が進み溶媒w2が蒸発されると減率乾燥期間に移行し、図7(c)に示すように、合剤g3間で収縮に伴う引張り応力fが増大する。この引張り応力fが、塗膜の内部で増大すると、電極材料である合剤g3間の空隙等からヒビ割れ(以下、「合剤割れ」とも言う)が生じやすくなる。この合剤割れがあると、充放電時にその部分にリチウムが析出して内部短絡を起こすことがある。また、合剤割れが進行すると、電極材料が集電箔sから剥離することもある。
このような問題に対応するための技術が、例えば、特許文献1や特許文献2に開示されている。
特許文献1には、集電体上に電極材料を塗布し、乾燥させる際に電極の表面上に微細なクラックを発生させずに、乾燥工程を制御して生産性を向上させる技術が開示されている。特許文献1の技術は、乾燥工程において、電極材料のほぼ全表面における電極材料中の拡散速度が自由水面からの水の蒸発速度より小さくなる時点における電極材料の含水率である限界含水率に達するまでの間を乾燥させる第1乾燥工程(「定率乾燥期間」が該当する。)と、それ以降を乾燥させる第2乾燥工程(「減率乾燥期間」が該当する。)を有し、第1乾燥工程は第2乾燥工程よりも伝熱速度が高いことを特徴とするものである。
In general, in the drying period, as shown in FIG. 6, the material preheating period (region (A)) in which the material that has been at room temperature is heated to the temperature in the drying furnace, and the constant rate drying in which the solvent decreases linearly. There is a period (region (B)) and a decreasing rate drying period (region (C)) in which the decrease in the solvent is slow. In particular, in the constant rate drying period, it exists between the active material and the binder resin. Tensile stress tends to remain inside the film due to shrinkage of the coating film caused by rapid evaporation of the solvent. FIGS. 7A to 7C are diagrams schematically illustrating the occurrence of residual tensile stress due to evaporation of the solvent. FIG. 7A is a schematic view showing a state immediately after coating in which a mixture g1 as an electrode material is dissolved in a solvent w1 and applied onto the current collector foil s. The mixture g1 is in the form of particles and is a solvent. Distributed in w1. The material preheating period is in this state.
Thereafter, when heated in a constant rate drying period, as shown in FIG. 7B, the solvent w2 is evaporated from the surface of the coating film t2 to be reduced, and the particulate mixture g2 is close to each other and partially contracted. It becomes.
Furthermore, when the drying progresses and the solvent w2 is evaporated, the process proceeds to a decreasing rate drying period, and the tensile stress f accompanying shrinkage increases between the mixture g3 as shown in FIG. 7C. When this tensile stress f increases inside the coating film, cracks (hereinafter, also referred to as “mixture cracking”) are likely to occur due to gaps between the mixture g3 that is the electrode material. If there is a crack in the mixture, lithium may deposit on the portion during charge / discharge, causing an internal short circuit. Further, when the mixture cracking progresses, the electrode material may peel from the current collector foil s.
For example, Patent Literature 1 and Patent Literature 2 disclose techniques for dealing with such a problem.
Patent Document 1 discloses a technique for improving productivity by controlling a drying process without generating fine cracks on the surface of an electrode when an electrode material is applied on a current collector and dried. ing. The technique of Patent Document 1 reaches the critical moisture content, which is the moisture content of the electrode material when the diffusion rate in the electrode material on almost the entire surface of the electrode material becomes smaller than the evaporation rate of water from the free water surface in the drying process. A first drying step (which corresponds to a “fixed rate drying period”) and a second drying step (which corresponds to a “decreasing rate drying period”) after which the first drying step is performed. The drying process is characterized in that the heat transfer rate is higher than that of the second drying process.

また、特許文献2には、長尺シート状の集電体上に粉末材料を混練してなる材料スラリ
ーを塗布、乾燥し、長尺シート状の極板を生産する工程において、シワやクラックの発生が少なく、高品質な極板を製造する技術が開示されている。特許文献2の技術は、その乾燥条件を2段以上に分けたときの後半部(「減率乾燥期間」が該当する。)において、内側から外側へ風を吹き出す構造を持つ円弧状ノズルを、塗布面側から塗布面がノズルの円弧面に沿いかつ非接触となるように風を吹きだすように設置したことを特徴とするものである。
In Patent Document 2, a material slurry obtained by kneading a powder material on a long sheet-shaped current collector is applied and dried to produce wrinkles and cracks in the process of producing a long sheet-shaped electrode plate. A technique for producing a high-quality electrode plate with less occurrence is disclosed. In the technique of Patent Document 2, an arc-shaped nozzle having a structure in which air is blown from the inside to the outside in the latter half when the drying conditions are divided into two or more stages (the “decreasing drying period” corresponds). It is characterized in that it is installed so as to blow air from the coating surface side so that the coating surface is along the arc surface of the nozzle and is in non-contact.

特開2007−227831号公報JP 2007-227831 A 特開2010−232123公報JP 2010-232123 A

しかしながら、特許文献1の技術は、定率乾燥期間において加熱速度を高めることになるので、溶媒の蒸発スピードが上昇して合剤割れや、合剤の集電箔からの剥がれが、一層増大しやすくなる問題があった。
また、特許文献1の技術では、第1乾燥工程の伝熱速度を高めると、溶媒内の熱対流により活物質とバインダ樹脂とが遊離し、バインダ樹脂が膜表面方向へ偏析するマイグレーションが生じやすくなる。バインダ樹脂の膜表面での偏析は、充放電時におけるリチウムイオンの移動を妨げ、電池性能低下の問題が新たに発生する。
特に、厚膜電極の場合、バインダ樹脂の含有量も相対的に増加するので、偏析するバインダ樹脂の層が厚くなり易い。そのため、リチウムイオンの移動を一層妨げることになり、電池の高容量化に対する要求を達成できないという問題があった。
また、特許文献2の技術では、内側から外側へ風を吹き出す構造を持つ円弧状ノズルから、近接した塗布面に風を吹きだす構造であるので、電極材料の塗膜表面に波打ち等が生じて膜厚の平滑化に支障を及ぼすおそれがある。膜厚が平滑化できなければ、セパレータとの隙間にバラつきが発生して、均一なリチウムイオンの移動を阻害し、電池性能が低下する。したがって、この場合も、電池の厚膜電極による高容量化に対する要求を達成できないという問題があった。
However, since the technique of Patent Document 1 increases the heating rate during the constant rate drying period, the evaporation speed of the solvent is increased, and cracking of the mixture and peeling of the mixture from the current collector foil are more likely to increase. There was a problem.
In the technique of Patent Document 1, when the heat transfer rate in the first drying step is increased, the active material and the binder resin are liberated by thermal convection in the solvent, and migration in which the binder resin is segregated toward the film surface tends to occur. Become. The segregation on the surface of the binder resin film hinders the movement of lithium ions during charging and discharging, and a new problem of battery performance degradation occurs.
In particular, in the case of a thick film electrode, since the binder resin content also increases relatively, the segregated binder resin layer tends to be thick. Therefore, the movement of lithium ions is further hindered, and there is a problem that the demand for increasing the capacity of the battery cannot be achieved.
Moreover, in the technique of patent document 2, since it is a structure which blows air to the coating surface which adjoined from the circular-arc-shaped nozzle which has a structure which blows | winds air from the inside to the outside, a wave etc. arise on the coating-film surface of an electrode material. There is a risk of hindering the smoothing of the film thickness. If the film thickness cannot be smoothed, variations occur in the gap with the separator, which inhibits the uniform movement of lithium ions and lowers the battery performance. Therefore, also in this case, there is a problem that the demand for high capacity by the thick film electrode of the battery cannot be achieved.

本発明は、上記問題点を解決するためになされたものであり、車両用電池の集電箔に電極材料を厚く塗布しても、乾燥後の電極材料に合剤割れ等が生じにくく、電池の高容量化に適した電池用電極の製造装置を提供することを目的とする。   The present invention has been made to solve the above problems, and even when the electrode material is thickly applied to the current collector foil of a vehicle battery, the electrode material after drying is less likely to cause cracking of the mixture, etc. An object of the present invention is to provide a battery electrode manufacturing apparatus suitable for increasing the capacity of the battery.

上記課題を解決するために、本発明の電池用電極の製造装置は、次のような構成を有している。
(1)ウェブ状の集電箔の上面に電極材料を溶媒に溶かしてスラリー状にしたペーストを塗布した後に、乾燥炉にて乾燥する乾燥工程を備える電池用電極の製造装置において、前記乾燥工程の内、前記溶媒が直線的に減少する定率乾燥領域には、前記集電箔の塗布面側が送り方向に沿って上方に湾曲する湾曲部を配置し、前記湾曲部が配置される位置には所定の間隔で樽状搬送ローラを備えることを特徴とする。
In order to solve the above problems, the battery electrode manufacturing apparatus of the present invention has the following configuration.
(1) In the battery electrode manufacturing apparatus including a drying step of drying in a drying furnace after applying a paste in which an electrode material is dissolved in a solvent to form a slurry on the upper surface of the web-shaped current collector foil, the drying step Among them, in the constant rate drying region where the solvent decreases linearly, a curved portion where the application surface side of the current collector foil curves upward along the feeding direction is disposed, and the curved portion is disposed at a position where the curved portion is disposed. A barrel-shaped transport roller is provided at a predetermined interval.

次に、本発明に係る電池用電極の製造装置の作用及び効果について説明する。
(1)ウェブ状の集電箔の上面に電極材料を溶媒に溶かしてスラリー状にしたペーストを塗布した後に、乾燥炉にて乾燥する乾燥工程を備える電池用電極の製造装置において、乾燥工程の内、溶媒が直線的に減少する定率乾燥領域には、集電箔の塗布面側が送り方向に沿って上方に湾曲する湾曲部を配置することを特徴とするので、集電箔に電極材料を厚く塗布しても、乾燥後の電極材料に合剤割れ等が生じにくく、電池の高容量化に適している。
Next, the operation and effect of the battery electrode manufacturing apparatus according to the present invention will be described.
(1) In a battery electrode manufacturing apparatus including a drying step of drying in a drying furnace after applying a paste in which an electrode material is dissolved in a solvent to form a slurry on the upper surface of a web-shaped current collector foil, Among them, in the constant rate drying region where the solvent decreases linearly, the application surface side of the current collector foil is provided with a curved portion that curves upward along the feed direction. Even if it is applied thickly, the electrode material after drying is less likely to cause cracking of the mixture and is suitable for increasing the capacity of the battery.

具体的には、乾燥工程の内、溶媒が直線的に減少する定率乾燥領域には、集電箔の塗布面側が送り方向に沿って上方に湾曲している湾曲部を配置するので、送り方向に沿って予め塗膜長さを伸長することにより、溶媒の蒸発に伴って生じる塗膜の収縮に対応することができる。つまり、溶媒が直線的に減少する定率乾燥領域において、予め塗膜長さを湾曲しながら伸長しているので、溶媒の蒸発に伴なう塗膜の収縮により発生する電極材料間の引張り応力を、乾燥後に湾曲部が平坦に戻されたときに生じる圧縮応力によってキャンセルすることができる。その結果、乾燥後の膜内部には、引張り応力が残留しにくくなる。そのため、集電箔に電極材料を厚く塗布しても、乾燥後の膜内部に引張り応力が残留しにくいので、乾燥後の電極材料に合剤割れ等が生じにくい。したがって、電池を高容量化する厚膜電極を、膜内部に合剤割れ等が生じることなく製造することができる。   Specifically, in the drying step, in the constant rate drying region where the solvent decreases linearly, a curved portion where the application surface side of the current collector foil is curved upward along the feeding direction is arranged. By extending the length of the coating in advance along the line, it is possible to cope with the shrinkage of the coating that occurs as the solvent evaporates. In other words, in the constant-rate drying region where the solvent decreases linearly, the film is stretched while curving the coating length in advance, so the tensile stress between the electrode materials generated by the contraction of the coating due to the evaporation of the solvent is reduced. It can be canceled by the compressive stress generated when the curved portion is returned to the flat state after drying. As a result, tensile stress is unlikely to remain in the dried film. Therefore, even if the electrode material is thickly applied to the current collector foil, tensile stress does not easily remain inside the dried film, so that a mixture crack or the like hardly occurs in the dried electrode material. Therefore, a thick film electrode for increasing the capacity of the battery can be produced without causing a mixture crack or the like inside the film.

また、湾曲部を乾燥工程の定率乾燥領域に配置するので、電極材料の合剤間の溶媒が蒸発して膜の収縮が発生しやすい定率乾燥期間に蓄積した内部残留引張り応力を、定率乾燥期間後の減率乾燥期間において湾曲部を平坦に戻して緩和することができる。したがって、一つの乾燥室の中で、内部残留応力の緩和を実現できる。
また、湾曲部は、集電箔の塗布面側が送り方向に沿って湾曲しているので、内部残留引張り応力を送り方向のどの部位においても同じように緩和することができる。
また、湾曲部は、定率乾燥領域で塗布面側が上方に湾曲しているので、定率乾燥期間に乾燥炉の上方に配置された熱源近傍を通過させることで、乾燥炉内の熱エネルギーを有効に活用することができる。
さらに、本発明は、湾曲部を定率乾燥領域に配置する方法であるため、特許文献1の技術で新たに問題となったバインダ樹脂の偏析が生じにくく、特許文献2の技術で問題となった膜厚の波打ちも生じにくい。そのため、厚膜電極による高容量化をより達成しやすくなるという効果も奏することができる。
よって、(1)の発明によれば、車両用電池の集電箔に電極材料を厚く塗布しても、乾燥後の電極材料に合剤割れ等が生じにくく、電池の高容量化に適した電池用電極の製造装置を提供することができる。
In addition, because the curved portion is arranged in the constant rate drying region of the drying process, the internal residual tensile stress accumulated during the constant rate drying period during which the solvent between the electrode material mixture evaporates and the film shrinks easily occurs is determined by the constant rate drying period. In the subsequent reduced rate drying period, the curved portion can be made flat and relaxed. Therefore, relaxation of internal residual stress can be realized in one drying chamber.
Moreover, since the application surface side of the current collector foil is curved along the feeding direction, the bending portion can similarly relieve the internal residual tensile stress in any part in the feeding direction.
Moreover, since the application surface side is curved upward in the constant rate drying region, the curved portion effectively passes the heat source disposed above the drying furnace during the constant rate drying period, thereby effectively making the thermal energy in the drying furnace. Can be used.
Furthermore, since the present invention is a method of arranging the curved portion in the constant rate drying region, segregation of the binder resin, which is a new problem in the technique of Patent Document 1, is unlikely to occur, which is a problem in the technique of Patent Document 2. Rippling of film thickness is also difficult to occur. Therefore, the effect that it becomes easier to achieve high capacity by the thick film electrode can be achieved.
Therefore, according to the invention of (1), even when the electrode material is thickly applied to the current collector foil of the vehicle battery, the electrode material after drying is less likely to cause cracking of the mixture, which is suitable for increasing the capacity of the battery. An apparatus for manufacturing a battery electrode can be provided.

また、湾曲部の全部又は一部は、集電箔の塗布面側が幅方向に沿ってさらに上方に湾曲するので、集電箔の幅方向に発生する内部残留引張り応力も緩和することができる。
一般に、リチウムイオン二次電池の電極を構成する集電体である金属箔への塗工においては、塗膜の幅を150〜200mm程度とし、乾燥後に必要なサイズにスリットしている。したがって、集電箔の幅方向においても、塗膜の収縮は発生する。湾曲部を幅方向に沿ってさらに上方に湾曲させることによって、幅方向の引張り応力を、送り方向の引張り応力とともに緩和させることができる。
なお、幅方向の引張り応力の大きさは、塗膜の幅寸法や厚み等によって異なる。したがって、集電箔の幅方向に沿って塗布面側が上方に湾曲する範囲は、湾曲部の送り方向における一部であってもよい。
In addition, since all or part of the curved portion is curved further upward along the width direction on the application surface side of the current collector foil, the internal residual tensile stress generated in the width direction of the current collector foil can be relaxed.
In general, in coating on a metal foil, which is a current collector constituting an electrode of a lithium ion secondary battery, the width of the coating film is about 150 to 200 mm and slit to a required size after drying. Therefore, contraction of the coating film occurs also in the width direction of the current collector foil. By bending the bending portion further upward along the width direction, the tensile stress in the width direction can be relaxed together with the tensile stress in the feed direction.
In addition, the magnitude | size of the tensile stress of the width direction changes with width dimensions, thickness, etc. of a coating film. Accordingly, the range in which the coating surface side curves upward along the width direction of the current collector foil may be a part in the feeding direction of the curved portion.

さらに、乾燥炉には、湾曲部を形成する位置に所定の間隔で樽状搬送ローラを備えることを特徴とするので、集電箔に電極材料を厚く塗布しても、乾燥後の電極材料に合剤割れ等が生じにくく、電池の高容量化に適した乾燥炉とすることができる。搬送ローラには、集電箔の下面が当接する。そのため、搬送ローラの外形形状を中央が凸状に湾曲した樽状とすることで、溶媒の蒸発に伴って生じる塗膜の収縮に対応する湾曲部を簡単に形成することができる。なお、樽状の湾曲面には、円弧曲面、楕円曲面、連続多角形曲面などが該当する。   Furthermore, since the drying furnace is provided with barrel-shaped transport rollers at predetermined intervals at the position where the curved portion is formed, even if the electrode material is thickly applied to the current collector foil, the dried electrode material It is possible to provide a drying furnace that is less susceptible to cracking of the mixture and is suitable for increasing the capacity of the battery. The lower surface of the current collector foil is in contact with the transport roller. Therefore, by forming the outer shape of the transport roller into a barrel shape whose center is convexly curved, it is possible to easily form a curved portion corresponding to the contraction of the coating film caused by the evaporation of the solvent. The barrel-shaped curved surface includes an arc curved surface, an elliptic curved surface, a continuous polygon curved surface, and the like.

本発明に係る実施形態である電池用電極の製造装置における乾燥炉の模式的横断面図である。It is a typical cross-sectional view of the drying furnace in the manufacturing apparatus of the battery electrode which is embodiment which concerns on this invention. 図1に示す乾燥炉の定率乾燥領域に使用する搬送ローラの模式的上面図であり、(a)は鍔付きを示し、(b)は鍔なしを示す。It is a typical top view of the conveyance roller used for the fixed rate drying area | region of the drying furnace shown in FIG. 1, (a) shows a wrinkle, (b) shows no wrinkle. 図1に示す乾燥炉の定率乾燥領域における湾曲部を形成する方法の説明図であり、(a)は矩形シート状に切断した集電箔に電極材料を塗工、乾燥したときのソリを示し、(b)は、ソリを延ばしたときを示し、(c)は、湾曲部の寸法関係を示す。It is explanatory drawing of the method of forming the curved part in the fixed rate drying area | region of the drying furnace shown in FIG. 1, (a) shows the curvature when the electrode material is applied to the collector foil cut | disconnected in the rectangular sheet shape, and it dries. , (B) shows when the warp is extended, and (c) shows the dimensional relationship of the curved portion. 湾曲部における電極材料の合剤の分散状態を模式的に説明する図であり、(a)は塗工直後の状態を示し、(b)は、定率乾燥期間の状態を示し、(c)は、乾燥後の状態を示す。It is a figure which illustrates typically the dispersion state of the mixture of the electrode material in a curved part, (a) shows the state immediately after coating, (b) shows the state of a fixed rate drying period, (c) is The state after drying is shown. 本発明に係る実施形態によって乾燥させた場合の電極材料の剥離強度を、従来方法と比較したグラフである。It is the graph which compared the peeling strength of the electrode material at the time of making it dry by embodiment which concerns on this invention, and the conventional method. 乾燥期間と溶媒の含有率の関係を示すグラフである。It is a graph which shows the relationship between a drying period and the content rate of a solvent. 従来方法において電極材料の合剤の分散状態を模式的に説明する図であり、(a)は塗工直後の状態を示し、(b)は、定率乾燥期間の状態を示し、(c)は、乾燥後の状態を示す。It is a figure which illustrates typically the dispersion state of the mixture of electrode material in a conventional method, (a) shows the state immediately after coating, (b) shows the state of a fixed rate drying period, (c) is The state after drying is shown.

次に、本発明に係る電池用電極の製造装置の実施形態について、図面を参照して詳細に説明する。
電池用電極の製造装置100には、ウェブ状の集電箔の上面に電極材料である活物質及びバインダ樹脂や増粘剤等が結着した合剤を溶媒に溶かしてスラリー状にしたペーストを薄膜状に塗工する塗工装置20と、電極材料が塗工された集電箔を乾燥する乾燥炉10と、乾燥された集電箔をコイル状に巻き取る巻取り装置30とを備えている(塗工装置20と巻取り装置30は図示していない)。
塗工装置20と巻取り装置30は、従来技術をそのまま利用したものであり、詳細な説明は割愛する。ここでは、本願発明の特徴である乾燥炉10に絞って説明する。
Next, an embodiment of a battery electrode manufacturing apparatus according to the present invention will be described in detail with reference to the drawings.
The battery electrode manufacturing apparatus 100 includes a paste in which an active material, which is an electrode material, and a binder resin, a thickener, and the like, which are bound to the upper surface of a web-shaped current collector foil, are dissolved in a solvent to form a slurry. A coating device 20 for coating in a thin film, a drying furnace 10 for drying the current collector foil coated with the electrode material, and a winding device 30 for winding the dried current collector foil into a coil shape. (The coating device 20 and the winding device 30 are not shown).
The coating device 20 and the winding device 30 use the prior art as they are, and a detailed description thereof is omitted. Here, the description will focus on the drying furnace 10 which is a feature of the present invention.

<乾燥炉の基本構造>
はじめに、本発明に係る電池用電極の製造装置における乾燥炉の基本構造について説明する。図1に、本発明に係る実施形態である電池用電極の製造装置における乾燥炉の模式的横断面図を示す。図2に、図1に示す乾燥炉の定率乾燥領域に使用する搬送ローラの模式的上面図であり、(a)は鍔付きを示し、(b)は鍔なしを示す。
図1に示すように、本実施形態の乾燥炉10は、所定の間隔で配置された搬送ローラ1、2、3の上を電極材料が塗工されたウェブ状の電池用電極Pが通過する乾燥室4を備えている。乾燥室4の上方には、複数の送風口7が連続的に設けられ、各送風口7から熱風が下方に向かって排出している。熱風の温度は、80〜90℃程度である。搬送ローラ1、2、3は、従動ローラである。
ウェブ状の電池用電極Pの上面に塗工された塗膜は、入口5から乾燥室4内に入ると、送風口7からの熱風により乾燥される。乾燥した電池用電極Pは、出口6から送り出されて、図示しない巻取り装置30に所定の径になるまで巻き取られる。電池用電極Pの送り
速度は、塗膜の厚み、幅、溶媒の種類等によって異なるが、例えば、数百cm〜数m/秒程度である。
<Basic structure of drying oven>
First, the basic structure of the drying furnace in the battery electrode manufacturing apparatus according to the present invention will be described. In FIG. 1, the typical cross-sectional view of the drying furnace in the manufacturing apparatus of the battery electrode which is embodiment which concerns on this invention is shown. FIG. 2 is a schematic top view of a conveying roller used in the constant rate drying region of the drying furnace shown in FIG. 1, wherein (a) shows wrinkles and (b) shows no wrinkles.
As shown in FIG. 1, in the drying furnace 10 of the present embodiment, a web-like battery electrode P coated with an electrode material passes over conveying rollers 1, 2, and 3 arranged at predetermined intervals. A drying chamber 4 is provided. Above the drying chamber 4, a plurality of air outlets 7 are continuously provided, and hot air is discharged downward from each air outlet 7. The temperature of the hot air is about 80 to 90 ° C. The transport rollers 1, 2, and 3 are driven rollers.
When the coating film applied to the upper surface of the web-like battery electrode P enters the drying chamber 4 from the inlet 5, it is dried by hot air from the blower port 7. The dried battery electrode P is fed out from the outlet 6 and wound around the winding device 30 (not shown) until a predetermined diameter is reached. The feeding speed of the battery electrode P varies depending on the thickness, width, type of solvent, etc. of the coating film, but is, for example, about several hundred cm to several m / sec.

乾燥室4内では、塗膜内の溶媒が表面から蒸発していく。一般に、溶媒の含有率は、図6に示す曲線Mに従って変化する。溶媒の含有率の変化から、室温にあった材料が乾燥炉10内の温度に加熱される材料予熱期間((A)の領域)と、溶媒が直線的に減少する定率乾燥期間((B)の領域)と、溶媒の減少が緩慢になる減率乾燥期間((C)の領域)とに分けることができる。材料予熱期間では、溶媒がほとんど減少しないし、減率乾燥期間では、溶媒の減少率が大幅に低下する。したがって、乾燥が最も効率的に行われるのは定率乾燥期間であって、溶媒の減少に伴う塗膜の収縮も、大きく進行する。   In the drying chamber 4, the solvent in the coating film evaporates from the surface. In general, the solvent content varies according to the curve M shown in FIG. From the change in the solvent content, the material preheating period (region (A)) in which the material at room temperature is heated to the temperature in the drying furnace 10 and the constant rate drying period ((B) in which the solvent decreases linearly. And a decreasing rate drying period (region (C)) in which the decrease in the solvent is slow. In the material preheating period, the solvent hardly decreases, and in the decreasing rate drying period, the decreasing rate of the solvent is greatly reduced. Therefore, the drying is performed most efficiently during the constant rate drying period, and the shrinkage of the coating film accompanying the decrease in the solvent greatly proceeds.

図1に示すように、定率乾燥期間に該当する定率乾燥領域(B)では、電池用電極Pの塗布面側が送り方向に沿って上方に湾曲する湾曲部PWが形成されている。定率乾燥領域(B)において電池用電極Pの湾曲部PWを形成するように、搬送ローラ2が湾曲部PWの下面側を支持する位置に所定の間隔で配置されている。搬送ローラ2は、側面視でアーチ状に配置されている。
電池用電極Pに塗布された電極材料は、定率乾燥領域(B)においてアーチ状に配置された搬送ローラ2によって、送り方向に湾曲して延ばされる。
一方、減率乾燥期間に該当する減率乾燥領域(C)では、湾曲部が形成されてはいない。したがって、定率乾燥領域(B)において送り方向に湾曲して延ばされた電極材料は、減率乾燥領域(C)にて元の平坦な状態に戻される。
また、定率乾燥領域(B)において電池用電極Pの湾曲部PWは、乾燥室4の上方に配置された送風口7に近接した位置を通過する。したがって、湾曲部PWには、送風口7からの熱エネルギーをより効果的に与えることができる。
なお、材料予熱領域(A)及び減率乾燥領域(C)にて電池用電極Pの下面側を支持する搬送ローラ1、3は、定率乾燥領域(B)の搬送ローラ2の延長上で斜め下方へ直線的に配置されている。そのため、材料予熱領域(A)及び減率乾燥領域(C)では、定率乾燥領域(B)に比べて送風口7からの熱エネルギー供給量が減少する。
As shown in FIG. 1, in the constant rate drying region (B) corresponding to the constant rate drying period, a curved portion PW in which the application surface side of the battery electrode P is curved upward along the feeding direction is formed. In order to form the curved portion PW of the battery electrode P in the constant rate drying region (B), the transport roller 2 is arranged at a predetermined interval at a position that supports the lower surface side of the curved portion PW. The conveyance roller 2 is arranged in an arch shape in a side view.
The electrode material applied to the battery electrode P is curved and extended in the feeding direction by the conveying roller 2 arranged in an arch shape in the constant rate drying region (B).
On the other hand, in the reduced rate drying region (C) corresponding to the reduced rate drying period, no curved portion is formed. Therefore, the electrode material curved and extended in the feeding direction in the constant rate drying region (B) is returned to the original flat state in the decreasing rate drying region (C).
Further, in the constant rate drying region (B), the curved portion PW of the battery electrode P passes through a position close to the air blowing port 7 disposed above the drying chamber 4. Therefore, the thermal energy from the blower port 7 can be more effectively given to the curved portion PW.
In addition, the conveyance rollers 1 and 3 that support the lower surface side of the battery electrode P in the material preheating region (A) and the reduction rate drying region (C) are inclined on the extension of the conveyance roller 2 in the constant rate drying region (B). It is arranged linearly downward. Therefore, in the material preheating region (A) and the reduction rate drying region (C), the amount of heat energy supplied from the blower port 7 is reduced as compared with the constant rate drying region (B).

図2に示すように、定率乾燥領域(B)の搬送ローラ2は、電池用電極Pの下面側に当接する外形形状21、23を中央が凸状に湾曲した樽状とする。樽状の湾曲面には、円弧曲面、楕円曲面、連続多角形曲面などが該当する。
また、樽状搬送ローラ2は、図2(a)に示すように、両端に平坦面22を設けた鍔付きローラとしてもよいし、図2(b)に示すように、鍔なしローラとしてもよい。鍔付きローラの場合、両端の平坦面22で、電池用電極Pの蛇行を規制する機能が有る。本実施形態では、鍔付きローラを用いている。
樽状搬送ローラ2は中央が凸状に湾曲しているので、電池用電極Pに塗布された電極材料を送り方向のみならず、幅方向にも湾曲させることができる。
しかし、材料予熱領域(A)及び減率乾燥領域(C)の搬送ローラ1、3は、電池用電極Pの下面側に当接する外形形状が円筒状となっている。したがって、減率乾燥領域(C)では電池用電極Pは平坦面に戻り、定率乾燥領域(B)にて送り方向及び幅方向に湾曲して延ばされた電極材料は、減率乾燥領域(C)にて元の平坦な状態に戻される。
As shown in FIG. 2, the conveyance roller 2 in the constant rate drying region (B) has outer shapes 21 and 23 that are in contact with the lower surface side of the battery electrode P in a barrel shape whose center is curved in a convex shape. The barrel-shaped curved surface corresponds to an arcuate curved surface, an elliptical curved surface, a continuous polygonal curved surface, or the like.
Moreover, the barrel-shaped transport roller 2 may be a roller with a hook having flat surfaces 22 at both ends as shown in FIG. 2A, or may be a roller without a hook as shown in FIG. 2B. Good. In the case of a roller with a flange, the flat surfaces 22 at both ends have a function of regulating the meandering of the battery electrode P. In the present embodiment, a roller with a hook is used.
Since the barrel-shaped transport roller 2 has a curved center, the electrode material applied to the battery electrode P can be curved not only in the feed direction but also in the width direction.
However, the outer shape of the conveying rollers 1 and 3 in the material preheating region (A) and the reduction rate drying region (C) contacting the lower surface side of the battery electrode P is cylindrical. Therefore, the battery electrode P returns to a flat surface in the rate-decreasing drying region (C), and the electrode material curved and extended in the feed direction and the width direction in the constant-rate drying region (B) In C), the original flat state is restored.

<湾曲部の形成方法>
次に、定率乾燥領域(B)において電池用電極Pの湾曲部PWを形成する形成方法について説明する。図3に、図1に示す乾燥炉の定率乾燥領域における湾曲部を形成する方法の説明図であり、(a)は矩形シートに切断した集電箔に電極材料を塗工、乾燥したときのソリを示し、(b)は、ソリを延ばしたときを示し、(c)は、湾曲部の寸法関係を示す。
まず、A4サイズ程度の矩形シートに切断した集電箔S1上に電極材料である活物質及
びバインダ樹脂や増粘剤等が結着した合剤G1を溶媒に溶かしてスラリー状にしたペーストを薄膜状に塗工し、その後、乾燥する。乾燥条件は、図1に示す乾燥炉10と同じである。
<Formation method of curved part>
Next, a forming method for forming the curved portion PW of the battery electrode P in the constant rate drying region (B) will be described. FIG. 3 is an explanatory view of a method of forming a curved portion in the constant rate drying region of the drying furnace shown in FIG. 1, and (a) shows a case where an electrode material is applied to a current collector foil cut into a rectangular sheet and dried. A warp is shown, (b) shows when the warp is extended, and (c) shows a dimensional relationship of the curved portion.
First, a thin paste is prepared by dissolving a mixture G1 in which an active material, which is an electrode material, and a binder resin, a thickener, and the like, are dissolved in a solvent on a current collecting foil S1 cut into a rectangular sheet of about A4 size in a solvent. And then dried. The drying conditions are the same as those of the drying furnace 10 shown in FIG.

図3(a)に示すように、乾燥後の矩形シートS1は、溶媒の蒸発に伴い塗膜が収縮して、塗布面側に湾曲する。湾曲状態は拘束せずに、矩形シートS1の湾曲面に対する弦R2を測定する。弦R2は、湾曲部PWの直線距離に対応する。
その後、図3(b)に示すように、湾曲した矩形シートS1を強制的に平坦にして、矩形シートS1の両端直線距離R1を測定する。直線距離R1は、湾曲部PWの周長に対応する。
次に、図1に示す乾燥炉10の定率乾燥領域(B)の位置及び直線距離を求める。定率乾燥領域(B)の位置及び直線距離は、図6に示す溶媒含有率と乾燥期間の相関曲線Mを測定して、溶媒含有率が直線的に減少する範囲から求めることができる。その結果、図3(c)に示す定率乾燥領域(B)の直線距離L1が定まる。
最後に、上述したR1、R2、L1から比例計算で、湾曲部PWの周長L2=L1×R1/R2を求める。
以上の比例計算式から明らかなように、定率乾燥領域(B)における電池用電極Pの湾曲部PWの考え方は、無拘束条件で求めた塗膜の収縮状態を比例計算で定率乾燥領域(B)に相似的に再現したものである。
As shown to Fig.3 (a), as for the rectangular sheet S1 after drying, a coating film shrink | contracts with evaporation of a solvent, and it curves to the application surface side. The string R2 with respect to the curved surface of the rectangular sheet S1 is measured without constraining the curved state. The string R2 corresponds to the linear distance of the curved portion PW.
Thereafter, as shown in FIG. 3B, the curved rectangular sheet S1 is forcibly flattened, and the linear distance R1 at both ends of the rectangular sheet S1 is measured. The straight line distance R1 corresponds to the circumferential length of the curved portion PW.
Next, the position and linear distance of the constant rate drying region (B) of the drying furnace 10 shown in FIG. 1 are obtained. The position and linear distance of the constant rate drying region (B) can be obtained from a range in which the solvent content rate decreases linearly by measuring the correlation curve M between the solvent content rate and the drying period shown in FIG. As a result, the linear distance L1 of the constant rate drying region (B) shown in FIG.
Finally, the circumference L2 = L1 × R1 / R2 of the bending portion PW is obtained by proportional calculation from the above-described R1, R2, and L1.
As apparent from the above proportional calculation formula, the idea of the curved portion PW of the battery electrode P in the constant rate drying region (B) is that the contraction state of the coating film obtained under the unconstrained condition is proportionally calculated by the proportional calculation. ) Is reproduced in a similar manner.

<引張り応力緩和のメカニズム>
次に、定率乾燥領域(B)において塗膜内に発生する引張り応力を、緩和するメカニズムについて説明する。図4に、湾曲部における電極材料の合剤の分散状態を模式的に説明する図であり、(a)は塗工直後の状態を示し、(b)は、定率乾燥期間の状態を示し、(c)は、乾燥後の状態を示す。
図4(a)に示すように、集電箔Sの上面に塗工された直後の塗膜T1は、主に活物質とバインダ樹脂とが結着した電極材料の合剤G1が溶媒W1の中に分散されている。電池用電極P1は、塗布面側が送り方向に沿って上方に湾曲する湾曲部を形成している。したがって、塗膜T1も、送り方向に延ばされて湾曲している。
図4(b)に示すように、定率乾燥領域(B)では、送風口7からの熱風により塗膜T2が加熱されて、塗膜内の溶媒W2が表面から蒸発して直線的に減少する。このとき、溶媒W2の蒸発に伴う気化熱によって、塗膜T2及び集電箔Sの温度は一定に保たれている。塗膜T2の温度が上昇しないので、表面固化はほとんど進行しない。集電箔Sの温度も上昇しないので、集電箔Sが膨張・収縮することもほとんどない。
<Tensile stress relaxation mechanism>
Next, a mechanism for relieving the tensile stress generated in the coating film in the constant rate drying region (B) will be described. FIG. 4 is a diagram schematically explaining the dispersion state of the electrode material mixture in the curved portion, (a) showing the state immediately after coating, (b) showing the state of the constant rate drying period, (C) shows the state after drying.
As shown in FIG. 4 (a), the coating film T1 immediately after being applied to the upper surface of the current collector foil S is mainly composed of an electrode material mixture G1 in which an active material and a binder resin are bound together. Distributed in. The battery electrode P <b> 1 forms a curved portion whose application surface side curves upward along the feeding direction. Accordingly, the coating film T1 is also extended and curved in the feeding direction.
As shown in FIG. 4B, in the constant rate drying region (B), the coating film T2 is heated by the hot air from the blower port 7, and the solvent W2 in the coating film evaporates from the surface and linearly decreases. . At this time, the temperature of the coating film T2 and the current collector foil S is kept constant by the heat of vaporization accompanying the evaporation of the solvent W2. Since the temperature of the coating film T2 does not increase, surface solidification hardly proceeds. Since the temperature of the current collector foil S does not increase, the current collector foil S hardly expands or contracts.

ところが、図4(b)に示すように、塗膜T2内の溶媒W2が表面から蒸発して直線的に減少するので、溶媒W2が減少した分だけ、塗膜T2は収縮する。この収縮は、塗膜T2の厚さ方向のみならず、面方向(矢印方向)でも発生する。特に、面方向の収縮は、電池用電極P2の送り方向において累積されるので大きくなる。このとき、集電箔S自身は、ほとんど膨張・収縮しないので、塗膜T2内の電極材料の合剤G2同士間や電極材料の合剤G2と集電箔Sとの間で塗膜T2の収縮に伴う引張り応力が発生する。
図4(c)に示すように、定率乾燥領域(B)の後に通過する減率乾燥領域(C)においては、電池用電極P3の湾曲部は平坦面に戻っている。電池用電極P3が平坦面に戻ることによって、塗膜は、送り方向で強制的に短縮させられる。塗膜が短縮することで、塗膜内部の合剤G3同士間や合剤G3と集電箔Sとの間には、定率乾燥領域(B)で発生した引張り応力Fと反対方向の圧縮応力Hが発生する。この圧縮応力Hは、予め無拘束条件で求めた湾曲を元に戻したときの圧縮応力であるので、圧縮応力Hと引張り応力Fの大きさは略等しい。
よって、定率乾燥領域(B)で塗膜内部に発生した引張り応力は、湾曲部PWを減率乾燥領域(C)にて元の平坦面に戻すことによって生じる圧縮応力により相殺されて、内部
残留引張り応力は略零の状態に緩和される。
なお、集電箔Pの幅方向においても、樽状搬送ローラ2を通過することで、定率乾燥領域(B)で発生した引張り応力が減率乾燥領域(C)で緩和される。
以上のように、乾燥後の塗膜内部には引張り応力が残留しにくいので、電池用電極Pに電極材料を厚く塗布しても、乾燥後の電極材料にヒビ割れ等が生じにくい。
したがって、電池を高容量化する厚膜電極を、塗膜内部にヒビ割れ等が生じることなく製造することができる。
However, as shown in FIG. 4B, since the solvent W2 in the coating film T2 evaporates from the surface and decreases linearly, the coating film T2 contracts by the amount of the decrease in the solvent W2. This shrinkage occurs not only in the thickness direction of the coating film T2 but also in the surface direction (arrow direction). In particular, the shrinkage in the surface direction is increased because it is accumulated in the feeding direction of the battery electrode P2. At this time, since the current collector foil S itself hardly expands or contracts, the electrode material mixture G2 in the coating film T2 or between the electrode material mixture G2 and the current collector foil S has a coating film T2. Tensile stress accompanying shrinkage occurs.
As shown in FIG. 4 (c), in the decreasing rate drying region (C) that passes after the constant rate drying region (B), the curved portion of the battery electrode P3 returns to a flat surface. When the battery electrode P3 returns to the flat surface, the coating film is forcibly shortened in the feed direction. By shortening the coating film, between the mixture G3 inside the coating film and between the mixture G3 and the current collector foil S, the compressive stress in the direction opposite to the tensile stress F generated in the constant rate drying region (B). H is generated. Since this compressive stress H is the compressive stress when the curvature previously obtained under the unconstrained condition is restored, the magnitudes of the compressive stress H and the tensile stress F are substantially equal.
Therefore, the tensile stress generated inside the coating film in the constant rate drying region (B) is offset by the compressive stress generated by returning the curved portion PW to the original flat surface in the decreasing rate drying region (C), and the internal residual The tensile stress is relaxed to a substantially zero state.
Even in the width direction of the current collector foil P, the tensile stress generated in the constant rate drying region (B) is relaxed in the decreasing rate drying region (C) by passing through the barrel-shaped transport roller 2.
As described above, since the tensile stress hardly remains inside the dried coating film, even if the electrode material is applied thickly to the battery electrode P, the electrode material after drying is not easily cracked.
Therefore, a thick film electrode for increasing the capacity of the battery can be produced without causing cracks or the like inside the coating film.

<剥離強度の評価>
次に、上述した乾燥炉10で乾燥した後、電極材料の剥離強度を測定した結果を説明する。図5に、本発明に係る実施形態によって乾燥させた場合の電極材料の剥離強度を、従来技術の乾燥方法と比較したグラフを示す。
剥離強度の測定には、ピール剥離試験を採用し、引張り試験機は、オートグラフを用いた。本発明の試験片は、厚み約10μmの銅泊に、平均粒子径で10〜20μm程度の合剤を溶媒含有率約45%で混練して、厚み約100μmで塗布した塗膜を、40秒間乾燥させて作製した。乾燥温度は、約90℃である。比較例の試験片は、同様の条件で塗布したものを、乾燥時間を40秒と90秒とに分けて作製した。乾燥方法は、フロート型乾燥である。乾燥温度は、約90℃である。
図5に示すように、本発明による試験片の剥離強度は、従来技術の比較例に比べて、3〜5倍程度に向上している。このように剥離強度が向上した要因は、溶媒が直線的に減少する定率乾燥領域(B)において、予め塗膜を湾曲しながら長さを延ばしているので、溶媒の蒸発に伴なう塗膜の収縮により発生する電極材料間の引張り応力等を、乾燥後に湾曲部が平坦に戻されたときに生じる圧縮応力によってキャンセルすることができたからと推定できる。
<Evaluation of peel strength>
Next, the result of measuring the peel strength of the electrode material after drying in the drying furnace 10 described above will be described. FIG. 5 shows a graph comparing the peel strength of the electrode material when dried according to an embodiment of the present invention with a drying method of the prior art.
For measurement of peel strength, a peel peel test was employed, and an autograph was used as the tensile tester. The test piece of the present invention was prepared by kneading a mixture of about 10 to 20 μm in average particle diameter with a copper stay having a thickness of about 10 μm at a solvent content of about 45% and applying a coating film having a thickness of about 100 μm for 40 seconds. Made by drying. The drying temperature is about 90 ° C. The test piece of the comparative example was prepared by dividing the drying time into 40 seconds and 90 seconds, which were applied under the same conditions. The drying method is float type drying. The drying temperature is about 90 ° C.
As shown in FIG. 5, the peel strength of the test piece according to the present invention is improved by about 3 to 5 times compared to the comparative example of the prior art. The reason why the peel strength is improved in this manner is that, in the constant rate drying region (B) where the solvent decreases linearly, the length of the coating is increased in advance while curving the coating. It can be estimated that the tensile stress between the electrode materials generated by the shrinkage of the material can be canceled by the compressive stress generated when the curved portion is returned to the flat state after drying.

<作用効果>
以上、詳細に説明したように、本実施形態に係る電池用電極の製造装置によれば、ウェブ状の集電箔Sの上面に電極材料を溶媒に溶かしてスラリー状にしたペーストを塗布した後に、乾燥炉10にて乾燥する乾燥工程を備える電池用電極Pの製造装置において、乾燥工程の内、溶媒が直線的に減少する定率乾燥領域(B)には、集電箔Sの塗布面側が送り方向に沿って上方に湾曲する湾曲部PWを配置することを特徴とするので、集電箔Sに電極材料を厚く塗布しても、乾燥後の電極材料にヒビ割れ等が生じにくく、電池の高容量化に適している。
<Effect>
As described above in detail, according to the battery electrode manufacturing apparatus according to the present embodiment, after the paste in which the electrode material is dissolved in a solvent and applied in the form of a slurry is applied to the upper surface of the web-shaped current collector foil S. In the battery electrode P manufacturing apparatus including a drying process for drying in the drying furnace 10, the application surface side of the current collector foil S is in the constant rate drying region (B) where the solvent decreases linearly in the drying process. Since the curved portion PW that curves upward along the feed direction is arranged, even if the electrode material is applied thickly on the current collector foil S, the electrode material after drying is not easily cracked and the like. Suitable for high capacity.

具体的には、乾燥工程の内、溶媒が直線的に減少する定率乾燥領域(B)には、集電箔Sの塗布面側が送り方向に沿って上方に湾曲している湾曲部PWを配置するので、送り方向に沿って予め塗膜長さを伸長することにより、溶媒の蒸発に伴って生じる塗膜の収縮に対応することができる。つまり、溶媒が直線的に減少する定率乾燥領域(B)において、予め塗膜長さを湾曲しながら伸長しているので、溶媒の蒸発に伴なう塗膜の収縮により発生する電極材料間の引張り応力を、乾燥後に湾曲部PWが平坦に戻されたときに生じる圧縮応力によってキャンセルすることができる。その結果、乾燥後の膜内部には、引張り応力が残留しにくくなる。そのため、集電箔Pに電極材料を厚く塗布しても、乾燥後の膜内部に引張り応力が残留しにくいので、乾燥後の電極材料にヒビ割れ等が生じにくい。したがって、電池を高容量化する厚膜電極を、膜内部にヒビ割れ等が生じることなく製造することができる。   Specifically, in the constant rate drying region (B) in which the solvent decreases linearly in the drying step, a curved portion PW in which the application surface side of the current collector foil S is curved upward along the feed direction is disposed. Therefore, by extending the coating film length in advance along the feeding direction, it is possible to cope with the contraction of the coating film caused by the evaporation of the solvent. In other words, in the constant rate drying region (B) where the solvent linearly decreases, the coating length is extended while curving in advance, so that the electrode material generated due to the contraction of the coating due to evaporation of the solvent is between The tensile stress can be canceled by the compressive stress generated when the curved portion PW is returned to a flat state after drying. As a result, tensile stress is unlikely to remain in the dried film. For this reason, even if the electrode material is applied thickly to the current collector foil P, tensile stress does not easily remain in the dried film, so that the electrode material after drying is not easily cracked. Therefore, a thick film electrode for increasing the capacity of the battery can be produced without causing cracks or the like inside the film.

また、本実施形態によれば、湾曲部PWを乾燥工程の定率乾燥領域(B)に配置するので、定率乾燥期間に蓄積した内部残留引張り応力を、定率乾燥期間後の減率乾燥期間において湾曲部PWの湾曲を元の平坦に戻して緩和することができる。したがって、一つの乾燥室4の中で、内部残留応力の緩和を実現できる。
また、湾曲部PWは、集電箔Sの塗布面側が送り方向に沿って湾曲しているので、内部残留引張り応力を送り方向のどの部位においても同じように緩和することができる。
また、湾曲部PWは、定率乾燥領域(B)で塗布面側が上方に湾曲しているので、定率乾燥期間に乾燥炉10の上方に配置された熱源近傍を通過させることで、乾燥炉10内の熱エネルギーを有効に活用することができる。
さらに、本実施形態によれば、湾曲部PWを定率乾燥領域(B)に配置する方法であるため、特許文献1の技術で新たに問題となったバインダ樹脂の偏析が生じにくく、特許文献2の技術で問題となった膜厚の波打ちも生じにくい。そのため、厚膜電極による高容量化をより達成しやすくなるという効果も奏することができる。
Further, according to the present embodiment, since the curved portion PW is arranged in the constant rate drying region (B) of the drying process, the internal residual tensile stress accumulated during the constant rate drying period is curved in the decreasing rate drying period after the constant rate drying period. The curve of the part PW can be relaxed by returning to the original flatness. Therefore, relaxation of internal residual stress can be realized in one drying chamber 4.
Moreover, since the application surface side of the current collector foil S is curved along the feed direction, the curved portion PW can similarly relieve the internal residual tensile stress at any part in the feed direction.
Further, since the curved portion PW is curved upward on the coating surface side in the constant rate drying region (B), the curved portion PW passes through the vicinity of the heat source disposed above the drying oven 10 during the constant rate drying period. The thermal energy of can be used effectively.
Furthermore, according to the present embodiment, since the curved portion PW is disposed in the constant rate drying region (B), segregation of the binder resin, which is a new problem in the technique of Patent Document 1, is difficult to occur. The film thickness undulation that was a problem with this technology is also unlikely to occur. Therefore, the effect that it becomes easier to achieve high capacity by the thick film electrode can be achieved.

また、本実施形態によれば、湾曲部PWの全部又は一部は、集電箔Sの塗布面側が幅方向に沿ってさらに上方に湾曲することを特徴とするので、集電箔Sの幅方向に発生する内部残留引張り応力も緩和することができる。
一般に、リチウムイオン二次電池の電極を構成する集電体である金属箔への塗工においては、塗膜の幅を150〜200mm程度とし、乾燥後に必要なサイズにスリットしている。したがって、集電箔Sの幅方向においても、塗膜の収縮は発生する。湾曲部PWを幅方向に沿ってさらに上方に湾曲させることによって、幅方向の引張り応力を、送り方向の引張り応力とともに緩和させることができる。
なお、幅方向の引張り応力の大きさは、塗膜の幅寸法や厚み等によって異なる。したがって、集電箔Sの幅方向に沿って塗布面側が上方に湾曲する範囲は、湾曲部PWの送り方向における一部であってもよい。
In addition, according to the present embodiment, all or part of the curved portion PW is characterized in that the application surface side of the current collector foil S is further curved upward along the width direction. Internal residual tensile stress generated in the direction can also be relaxed.
In general, in coating on a metal foil, which is a current collector constituting an electrode of a lithium ion secondary battery, the width of the coating film is about 150 to 200 mm and slit to a required size after drying. Therefore, the contraction of the coating film also occurs in the width direction of the current collector foil S. By bending the bending portion PW further upward along the width direction, the tensile stress in the width direction can be relaxed together with the tensile stress in the feed direction.
In addition, the magnitude | size of the tensile stress of the width direction changes with width dimensions, thickness, etc. of a coating film. Therefore, the range in which the coating surface side curves upward along the width direction of the current collector foil S may be a part in the feeding direction of the curved portion PW.

また、本実施形態によれば、乾燥炉10には、湾曲部PWを形成する位置に所定の間隔で樽状搬送ローラ2を備えることを特徴とするので、集電箔Sに電極材料を厚く塗布しても、乾燥後の電極材料にヒビ割れ等が生じにくく、電池の高容量化に適した乾燥炉10とすることができる。搬送ローラ2には、集電箔Sの下面が当接する。そのため、搬送ローラ2の外形形状を中央が凸状に湾曲した樽状とすることで、溶媒の蒸発に伴って生じる塗膜の収縮に対応する湾曲部PWを簡単に形成することができる。   Moreover, according to this embodiment, since the drying furnace 10 is provided with the barrel-shaped transport roller 2 at a predetermined interval at a position where the curved portion PW is formed, the electrode foil is made thick on the current collector foil S. Even if it is applied, the electrode material after drying is unlikely to crack, and the drying furnace 10 suitable for increasing the capacity of the battery can be obtained. The lower surface of the current collector foil S abuts on the transport roller 2. Therefore, by forming the outer shape of the transport roller 2 into a barrel shape with the center curved in a convex shape, the curved portion PW corresponding to the contraction of the coating film caused by the evaporation of the solvent can be easily formed.

<変形例>
上述した本実施形態に対する変形例を説明する。
本実施形態では、定率乾燥領域(B)に電池用電極Pの湾曲部PWを配置していたが、材料予熱乾燥領域(A)及び定率乾燥領域(B)に配置してもよい。湾曲部PWの範囲を拡張できるので、減率乾燥領域(C)で平坦に戻した時の圧縮応力が増大して、より応力緩和を効果的に行うことができるからである。
本実施形態では、搬送ローラ2をアーチ状に配置して、電池用電極Pの湾曲部PWを形成したが、搬送ローラに限らず、搬送ベルトでもよい。また、その組み合わせでもよい。搬送ベルトであれば、湾曲部PWの湾曲面をなだらかな曲面とすることができるからである。また、なだらかな曲面であれば、電極材料の合剤Gが均一に分散された状態を維持しやすいからである。
<Modification>
A modification to the above-described embodiment will be described.
In the present embodiment, the curved portion PW of the battery electrode P is disposed in the constant rate drying region (B), but may be disposed in the material preheating drying region (A) and the constant rate drying region (B). This is because the range of the curved portion PW can be expanded, so that the compressive stress when returning to the flatness in the reduction rate drying region (C) increases, and the stress relaxation can be performed more effectively.
In the present embodiment, the conveying roller 2 is arranged in an arch shape to form the curved portion PW of the battery electrode P. However, the conveying roller 2 is not limited to the conveying roller but may be a conveying belt. Moreover, the combination may be sufficient. This is because the curved surface of the curved portion PW can be a gently curved surface if it is a conveyor belt. Further, if the curved surface is gentle, it is easy to maintain a state where the mixture G of the electrode material is uniformly dispersed.

本発明は、例えば電気自動車やハイブリッド車等に用いるリチウムイオン二次電池に好適な電極の製造装置として利用できる。   The present invention can be used as an electrode manufacturing apparatus suitable for a lithium ion secondary battery used in, for example, an electric vehicle or a hybrid vehicle.

1 材料予熱乾燥領域の円筒状搬送ローラ
2 定率乾燥領域の樽状搬送ローラ
3 減率乾燥領域の円筒状搬送ローラ
4 乾燥室
5 入口
6 出口
7 送風口
10 乾燥炉
20 塗工装置
30 巻取り装置
100 電池用電極の製造装置
P 電池用電極
PW 湾曲部
S 集電箔
DESCRIPTION OF SYMBOLS 1 Cylindrical conveyance roller of material preheating drying area 2 Barrel-shaped conveyance roller of fixed rate drying area 3 Cylindrical conveyance roller of reduction rate drying area 4 Drying chamber 5 Inlet 6 Outlet 7 Blowing port 10 Drying furnace 20 Coating device 30 Winding device DESCRIPTION OF SYMBOLS 100 Battery electrode manufacturing apparatus P Battery electrode PW Curved part S Current collector foil

Claims (1)

ウェブ状の集電箔の上面に電極材料を溶媒に溶かしてスラリー状にしたペーストを塗布した後に、乾燥炉にて乾燥する乾燥工程を備える電池用電極の製造装置において、
前記乾燥工程の内、前記溶媒が直線的に減少する定率乾燥領域には、前記集電箔の塗布面側が送り方向に沿って上方に湾曲する湾曲部を配置し、
前記湾曲部が配置される位置には、所定の間隔で樽状搬送ローラを備えることを特徴とする電池用電極の製造装置。
In a battery electrode manufacturing apparatus comprising a drying step of drying in a drying furnace after applying a paste in which an electrode material is dissolved in a solvent to form a slurry on the upper surface of a web-shaped current collector foil,
In the drying step, in the constant rate drying region where the solvent linearly decreases, a curved portion in which the application surface side of the current collector foil curves upward along the feeding direction is disposed,
An apparatus for manufacturing a battery electrode, comprising a barrel-shaped transport roller at a predetermined interval at a position where the curved portion is disposed.
JP2014249587A 2014-12-10 2014-12-10 Battery electrode manufacturing equipment Active JP5837672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249587A JP5837672B2 (en) 2014-12-10 2014-12-10 Battery electrode manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249587A JP5837672B2 (en) 2014-12-10 2014-12-10 Battery electrode manufacturing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011222040A Division JP5691985B2 (en) 2011-10-06 2011-10-06 Method for manufacturing battery electrode

Publications (2)

Publication Number Publication Date
JP2015046410A true JP2015046410A (en) 2015-03-12
JP5837672B2 JP5837672B2 (en) 2015-12-24

Family

ID=52671725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249587A Active JP5837672B2 (en) 2014-12-10 2014-12-10 Battery electrode manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5837672B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057371A2 (en) 2021-03-12 2022-09-14 Prime Planet Energy & Solutions, Inc. Method of producing electrode for secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329416A (en) * 1998-05-14 1999-11-30 Toyota Central Res & Dev Lab Inc Manufacture of sheet electrode
JP2000051767A (en) * 1998-08-05 2000-02-22 Tdk Corp Coating device and coating method
JP2000215900A (en) * 1999-01-21 2000-08-04 Toyota Motor Corp Electrode sheet drying equipment
JP2002231229A (en) * 2001-01-31 2002-08-16 Toshiba Battery Co Ltd Strain correction device for secondary battery electrode web
JP2007234806A (en) * 2006-02-28 2007-09-13 Tomoegawa Paper Co Ltd Electrode manufacturing device, electrode manufacturing method, electrode, and electrochemical element
JP2008173590A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Coating apparatus and method of manufacturing electrode foil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329416A (en) * 1998-05-14 1999-11-30 Toyota Central Res & Dev Lab Inc Manufacture of sheet electrode
JP2000051767A (en) * 1998-08-05 2000-02-22 Tdk Corp Coating device and coating method
JP2000215900A (en) * 1999-01-21 2000-08-04 Toyota Motor Corp Electrode sheet drying equipment
JP2002231229A (en) * 2001-01-31 2002-08-16 Toshiba Battery Co Ltd Strain correction device for secondary battery electrode web
JP2007234806A (en) * 2006-02-28 2007-09-13 Tomoegawa Paper Co Ltd Electrode manufacturing device, electrode manufacturing method, electrode, and electrochemical element
JP2008173590A (en) * 2007-01-19 2008-07-31 Toyota Motor Corp Coating apparatus and method of manufacturing electrode foil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057371A2 (en) 2021-03-12 2022-09-14 Prime Planet Energy & Solutions, Inc. Method of producing electrode for secondary battery

Also Published As

Publication number Publication date
JP5837672B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP2012501052A5 (en)
JP5691985B2 (en) Method for manufacturing battery electrode
KR102206057B1 (en) An electrode rolling apparatus having a heating unit for heating a non-coated portion and Manufacturing system for an electrode comprising the same
JP5001867B2 (en) Battery electrode and battery electrode manufacturing method
JP5837672B2 (en) Battery electrode manufacturing equipment
JP2017098029A (en) Electrode plate manufacturing method
JP5535755B2 (en) Electrode sheet manufacturing apparatus and electrode sheet manufacturing method
JP2011048912A (en) Lithium ion secondary battery electrode, and coater for electrode mixture
JP2015041515A (en) Rolling device
US20210036356A1 (en) Electrode Sheet Rolling Apparatus, Guide Roll System Used Therein, and Method of Winding Electrode Sheet Using the Same
KR20200088533A (en) Electrode manufacturing equipment for rechargeable battery
JP7270398B2 (en) Electrode sheet manufacturing method and electrode sheet manufacturing apparatus
US11239529B2 (en) Film production method
JP2017091726A (en) Manufacturing apparatus and manufacturing method for electrode plate
JP6423267B2 (en) Horizontal type double-side coating equipment
JP2020041774A (en) Dryer
JP2014173803A (en) Dryer
JP2020187846A (en) Dryer for electrode material
JP6036358B2 (en) Electrode manufacturing apparatus and electrode manufacturing method
JP2015044132A (en) Coating film forming device
US11233227B2 (en) Manufacturing method of belt-shaped electrode plate, manufacturing method of cell, and electrode plate manufacturing apparatus
KR20210052853A (en) Electrode manufacturing apparatus comprising notching machine configured after cooling machine, and electrode manufacturing method using the same
JP2017103014A (en) Method of manufacturing electrode plate
JP6632501B2 (en) Method for producing film, separator film for battery, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7157912B2 (en) Method for drying electrode coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R151 Written notification of patent or utility model registration

Ref document number: 5837672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250