JP2015045323A - Oil-cooled air compressor and control method thereof - Google Patents

Oil-cooled air compressor and control method thereof Download PDF

Info

Publication number
JP2015045323A
JP2015045323A JP2014046639A JP2014046639A JP2015045323A JP 2015045323 A JP2015045323 A JP 2015045323A JP 2014046639 A JP2014046639 A JP 2014046639A JP 2014046639 A JP2014046639 A JP 2014046639A JP 2015045323 A JP2015045323 A JP 2015045323A
Authority
JP
Japan
Prior art keywords
oil
temperature
compressor
sensor
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014046639A
Other languages
Japanese (ja)
Other versions
JP6220291B2 (en
Inventor
元就 山口
Motonari Yamaguchi
元就 山口
吉村 省二
Seiji Yoshimura
省二 吉村
中村 元
Hajime Nakamura
中村  元
明 星川
Akira Hoshikawa
明 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014046639A priority Critical patent/JP6220291B2/en
Publication of JP2015045323A publication Critical patent/JP2015045323A/en
Application granted granted Critical
Publication of JP6220291B2 publication Critical patent/JP6220291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve performance of an oil-cooled air compressor, such as delivery air quantity, energy-saving performance and temperature deterioration prevention of lubricant.SOLUTION: An oil-cooled air compressor 1 includes a compressor body 2, an oil separation recovery device 3, an oil cooler 4, and an oil/moisture separation device 5. The oil reservoir of the oil separation recovery device 3 is connected to a suction port 2c of the compressor body 2 through a first oil supply flow passage 7. Lubricant supplied to the compressor body 2 is cooled so that the temperature of compressed air discharged from a discharge port 2d of the compressor body 2 becomes an oil supply temperature equal to or less than a dew point. The oil/moisture separation device 5 is provided in a discharge flow passage 6.

Description

本発明は、油冷式空気圧縮機及びその制御方法に関する。   The present invention relates to an oil-cooled air compressor and a control method thereof.

油冷式空気圧縮機では、圧縮機本体の潤滑のために、圧縮機本体で圧縮される空気中に潤滑油を混入させている。圧縮機本体から吐出された圧縮空気は油分離回収器に送られ、圧縮空気と潤滑油に分離される。油冷式空気圧縮機において、ロータ室への注油温度を45℃〜55℃とし、吐出温度を油分離回収器内でドレン水の析出する温度(露点以下の温度)まで低下させることが、吐出空気量の増加等による性能向上の手段として知られている。しかし、油分離回収器内で析出したドレン水は、潤滑油の性能低下と寿命短縮の原因となるので、油分離回収器内に蓄積されたドレン水を排出する作業(ドレン抜き作業)が必要となる。   In the oil-cooled air compressor, lubricating oil is mixed in the air compressed by the compressor body in order to lubricate the compressor body. The compressed air discharged from the compressor main body is sent to the oil separator / collector and separated into compressed air and lubricating oil. In an oil-cooled air compressor, the temperature of oil injection to the rotor chamber is set to 45 ° C to 55 ° C, and the discharge temperature is reduced to the temperature at which drain water is deposited (the temperature below the dew point) in the oil separator / collector. It is known as a means for improving performance by increasing the amount of air. However, the drain water deposited in the oil separator / recovery unit causes the performance of the lubricating oil to deteriorate and shorten the service life. Therefore, it is necessary to drain the drain water accumulated in the oil separator / recovery unit (drain removal operation). It becomes.

現状の油冷式空気圧縮機では、油分離回収器内の温度を意図的に露点以上の温度(例えば80℃程度)に調節し、水分を蒸発させることで油分離回収器内のドレン水蓄積を防止している。例えば、特許文献1には、圧縮機本体のロータ室の吐出口側に油冷却器を介さない潤滑油を供給することで、吐出温度を油分離回収器内が露点以上となる温度とすることが開示されている。また、特許文献2には、油冷却器を通る潤滑油の油冷却器を介さない潤滑油に対する流量比の制御によって圧縮機本体へ供給する潤滑油の温度を調整し、それによって油分離回収器内が露点以上となるように吐出温度を調節することが開示されている。   In the current oil-cooled air compressor, drain water accumulation in the oil separation and recovery unit is intentionally adjusted to a temperature above the dew point (for example, about 80 ° C.) by evaporating the water. Is preventing. For example, in Patent Document 1, by supplying lubricating oil not through an oil cooler to the discharge port side of the rotor chamber of the compressor main body, the discharge temperature is set to a temperature at which the inside of the oil separation and recovery device is equal to or higher than the dew point. Is disclosed. Further, in Patent Document 2, the temperature of the lubricating oil supplied to the compressor body is adjusted by controlling the flow rate ratio of the lubricating oil passing through the oil cooler to the lubricating oil without going through the oil cooler, and thereby the oil separator / recoverer It is disclosed that the discharge temperature is adjusted so that the inside becomes the dew point or higher.

しかし、特許文献1では油分離回収器内でドレン水が析出する程度の温度よりも吐出温度を低温とすることは考慮されていない。また、特許文献2では、油分離回収器の温度を高温に保つ必要があり、吐出温度を低下させることは困難である。さらに、特許文献2では、油冷式空気圧縮機の運転中に潤滑油を高温としているため、潤滑油の劣化につながる。以上のように、特許文献1,2に開示されたものを含め、従来の油冷式空気圧縮機には、更なる性能向上の余地がある。   However, Patent Document 1 does not take into consideration that the discharge temperature is lower than the temperature at which drain water is precipitated in the oil separation and recovery device. Moreover, in patent document 2, it is necessary to maintain the temperature of an oil separation collection | recovery device at high temperature, and it is difficult to reduce discharge temperature. Furthermore, in Patent Document 2, the lubricating oil is kept at a high temperature during the operation of the oil-cooled air compressor, which leads to deterioration of the lubricating oil. As described above, conventional oil-cooled air compressors including those disclosed in Patent Documents 1 and 2 have room for further performance improvement.

特開平7−35067号公報Japanese Unexamined Patent Publication No. 7-35067 特開2012−112268号公報JP 2012-112268 A

本発明は、吐出空気量、省エネルギ性、潤滑油の温度劣化防止等の油冷式空気圧縮機の性能向上を課題とする。   An object of the present invention is to improve the performance of an oil-cooled air compressor, such as the amount of discharged air, energy saving, and prevention of temperature deterioration of lubricating oil.

本発明の第1の態様は、吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、前記油分離回収器と前記圧縮機本体の吸込側とを接続する第1の給油流路と、前記第1の給油流路に設けられ、前記空気が前記圧縮機本体内で露点以下となる給油温度に前記潤滑油を冷却する油冷却器とを備える、油冷式空気圧縮機を提供する。これにより、前記圧縮機本体から吐出される圧縮空気の温度(以下、吐出温度という場合がある。)を露点以下とすることができる。   A first aspect of the present invention is an oil-cooled compressor main body that compresses and discharges sucked air, and an oil separation and recovery device that separates and recovers lubricating oil from the compressed air discharged from the compressor main body A first oil supply passage connecting the oil separator and the suction side of the compressor body, and the first oil supply passage, wherein the air is below a dew point in the compressor body. An oil-cooled air compressor comprising an oil cooler that cools the lubricating oil to an oil supply temperature. Thereby, the temperature of the compressed air discharged from the compressor body (hereinafter sometimes referred to as a discharge temperature) can be set to a dew point or lower.

圧縮機本体の吐出温度を露点以下とすることにより、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。また、吐出温度は露点以下であって高温としないので、潤滑油の温度劣化を防止できる。   By setting the discharge temperature of the compressor main body to a dew point or lower, it is possible to improve performance by increasing the amount of discharged air, and energy saving is improved. Further, since the discharge temperature is lower than the dew point and not high, the temperature deterioration of the lubricating oil can be prevented.

具体的には、油冷式空気圧縮機は、空気圧縮時に前記圧縮機本体内で発生させた水分を前記圧縮機本体外で前記潤滑油と分離する油水分離装置をさらに備える。   Specifically, the oil-cooled air compressor further includes an oil / water separator that separates moisture generated in the compressor body during air compression from the lubricating oil outside the compressor body.

吐出温度を露点以下としたことで圧縮空気内の水分が析出する。潤滑油内に混在する水分は潤滑油劣化の原因となる。油水分離装置を設けることで、水分が潤滑油に混ざるのを防止できる。   Moisture in the compressed air is precipitated by setting the discharge temperature below the dew point. Moisture mixed in the lubricating oil causes deterioration of the lubricating oil. By providing the oil / water separator, it is possible to prevent water from being mixed into the lubricating oil.

前記油水分離装置は、コアレッサー式の油水分離装置であってもよい。   The oil / water separator may be a coalescer oil / water separator.

前記油水分離装置は、重力水槽式の油水分離装置であってもよい。   The oil / water separator may be a gravity water tank type oil / water separator.

前記油水分離装置は、油分離回収器内の液面より上方の空間とこの空間よりも低圧の空間とを接続する開放流路と、前記開放流路に設けられた電磁弁と、前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて、前記電磁弁を開弁し、前記油分離回収器内の空間の圧縮空気を前記低圧の空間に排出させる、水分放出制御部とを備えてもよい。   The oil / water separator includes an open channel that connects a space above the liquid level in the oil separator / collector and a space lower in pressure than the space, an electromagnetic valve provided in the open channel, and the lubricating oil. The electromagnetic valve is opened in accordance with at least one of the amount of water contained in the compressor and the discharge pressure of the compressor body, and the compressed air in the space in the oil separation and recovery device is discharged into the low pressure space. And a moisture release control unit.

前記油冷却器は、前記圧縮機本体への前記潤滑油の給油温度を調節可能であってもよい。この場合、前記油水分離装置は、前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて、前記油分離回収器内の潤滑油の温度が一時的に露点を上回る前記給油温度となるように前記油冷却器を制御する、昇温制御部を備えてもよい。前記油水分離装置は、前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて、前記油分離回収器内の潤滑油の温度が一時的に露点を上回る回転数となるように、前記圧縮機本体の駆動装置を制御する、昇温制御部を備えてもよい。   The oil cooler may be capable of adjusting a supply temperature of the lubricating oil to the compressor body. In this case, the oil / water separator is configured such that the temperature of the lubricating oil in the oil separator / collector is temporarily dew point in accordance with at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor body. The oil cooler may be provided to control the oil cooler so that the oil supply temperature exceeds the oil supply temperature. The oil / water separator rotates at a temperature at which the temperature of the lubricating oil in the oil separator / collector temporarily exceeds the dew point according to at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor body. You may provide the temperature rising control part which controls the drive device of the said compressor main body so that it may become number.

本発明の第2の態様は、吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、前記給油流路に設けられ油冷却器とを備える油冷式空気圧縮機の制御方法であって、前記空気が前記圧縮機本体内で露点以下となるように、あるいは前記圧縮機本体から吐出される圧縮空気の温度である吐出温度が露点以下となるように、前記油冷却器によって前記潤滑油を冷却する、油冷式空気圧縮機の制御方法を提供する。   The second aspect of the present invention is an oil-cooled compressor main body that compresses and discharges sucked air, and an oil separation and recovery device that separates and recovers lubricating oil from the compressed air discharged from the compressor main body. And a control method of an oil-cooled air compressor comprising an oil supply passage connecting the oil separation and recovery device and a suction side of the compressor body, and an oil cooler provided in the oil supply passage, The lubricating oil is supplied by the oil cooler so that the air is below the dew point in the compressor body or the discharge temperature, which is the temperature of the compressed air discharged from the compressor body, is below the dew point. Provided is a method for controlling a cooling oil-cooled air compressor.

前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて一時的に、前記油分離回収器内の潤滑油の温度が露点を上回るように前記油冷却器によって前記潤滑油を冷却してもよい。   The oil cooler temporarily adjusts the temperature of the lubricating oil in the oil separator / collector above the dew point according to at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor body. The lubricating oil may be cooled.

圧縮機本体の吐出温度を露点以下とすることにより、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。また、吐出温度は露点以下であって高温としないので、潤滑油の温度劣化を防止できる。   By setting the discharge temperature of the compressor main body to a dew point or lower, it is possible to improve performance by increasing the amount of discharged air, and energy saving is improved. Further, since the discharge temperature is lower than the dew point and not high, the temperature deterioration of the lubricating oil can be prevented.

本発明の第1実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 8th Embodiment of this invention. 本発明の第9実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 9th Embodiment of this invention. 本発明の第10実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 10th Embodiment of this invention. 本発明の第11実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 11th Embodiment of this invention. 本発明の第12実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 12th Embodiment of this invention. 本発明の第13実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 13th Embodiment of this invention. 本発明の第14実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 14th Embodiment of this invention. 本発明の第15実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 15th Embodiment of this invention. 本発明の第16実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 16th Embodiment of this invention. 本発明の第17実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 17th Embodiment of this invention. 本発明の第18実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 18th Embodiment of this invention. 本発明の第19実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 19th Embodiment of this invention. 本発明の第20実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 20th Embodiment of this invention. 本発明の第21実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 21st Embodiment of this invention. 本発明の第22実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 22nd Embodiment of this invention. 本発明の第23実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 23rd Embodiment of this invention. 本発明の第24実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 24th Embodiment of this invention. 本発明の第25実施形態に係る油冷式空気圧縮機の全体構成を示す模式図。The schematic diagram which shows the whole structure of the oil-cooled air compressor which concerns on 25th Embodiment of this invention. 本発明の第26実施形態に係る油冷式空気圧縮機の全体構成を示す図。The figure which shows the whole structure of the oil-cooled air compressor which concerns on 26th Embodiment of this invention. 圧縮機本体の模式的な部分断面図。The typical fragmentary sectional view of a compressor main body.

(第1実施形態)
図1は本発明の第1実施形態に係る油冷式空気圧縮機1を示す。油冷式空気圧縮機1は、油冷式のスクリュー圧縮機である圧縮機本体2、油分離回収器3、油冷却器4、及び油水分離装置5(本実施形態ではコアレッサー式の油水分離装置)を備える。
(First embodiment)
FIG. 1 shows an oil-cooled air compressor 1 according to a first embodiment of the present invention. The oil-cooled air compressor 1 includes a compressor main body 2 that is an oil-cooled screw compressor, an oil separator / recoverer 3, an oil cooler 4, and an oil / water separator 5 (in this embodiment, a coalescer-type oil / water separator). Device).

図27を併せて参照すると、圧縮機本体2は、ロータ室2aに収容された雌雄一対のロータ(スクリューロータ)2b,2b(本実施形態では図示していない駆動装置により回転駆動される)を備える。また、ロータ室2aと連通する吸込口2cと吐出口2dとが設けられている。   Referring also to FIG. 27, the compressor body 2 includes a pair of male and female rotors (screw rotors) 2b and 2b (rotated by a driving device not shown in the present embodiment) housed in the rotor chamber 2a. Prepare. Further, a suction port 2c and a discharge port 2d communicating with the rotor chamber 2a are provided.

圧縮機本体2の吐出口2dは吐出流路6を介して油分離回収器3に接続されている。本実施形態では、吐出流路6に油水分離装置5が設けられている。   A discharge port 2 d of the compressor body 2 is connected to the oil separation / recovery device 3 through a discharge flow path 6. In the present embodiment, the oil / water separator 5 is provided in the discharge flow path 6.

油分離回収器3の下部の油溜りは第1の給油流路7を介して圧縮機本体2の吸込口2cに接続されている。図27において符号P1で第1の給油流路7の吸込口2cの接続位置、つまり給油位置を概念的に示す。第1の給油流路7に油冷却器4が設けられている。   The oil sump at the bottom of the oil separator / recovery unit 3 is connected to the suction port 2 c of the compressor body 2 via the first oil supply passage 7. In FIG. 27, the connection position of the suction port 2c of the first oil supply passage 7, that is, the oil supply position, is conceptually indicated by reference numeral P1. An oil cooler 4 is provided in the first oil supply passage 7.

圧縮機本体2のロータ室2a内では、ロータ2b,2bの歯溝とロータ室2aの内壁で形成される空間がロータ2b,2bの回転に伴って移動しつつ容積が減少し、それによって吸込口2cから吸引された空気が圧縮されて吐出口2dから吐出される。吐出口2dから吐出された圧縮空気は吐出流路6を通って油分離回収器3に流入する。油分離回収器3では、圧縮空気から潤滑油が分離され下部の油溜りに一時的に溜められる。潤滑油が分離された圧縮空気は油分離回収器3の出口3aから図示しない下流側へ送られる。   In the rotor chamber 2a of the compressor body 2, the space formed by the tooth spaces of the rotors 2b and 2b and the inner wall of the rotor chamber 2a is reduced as the rotor 2b and 2b rotate, and the volume is reduced thereby. The air sucked from the port 2c is compressed and discharged from the discharge port 2d. The compressed air discharged from the discharge port 2 d flows into the oil separation / recovery device 3 through the discharge flow path 6. In the oil separator / collector 3, the lubricating oil is separated from the compressed air and temporarily stored in a lower oil sump. The compressed air from which the lubricating oil has been separated is sent from the outlet 3a of the oil separator / recoverer 3 to the downstream side (not shown).

油分離回収器3の油溜りに溜められた潤滑油は、油分離回収器3と圧縮機本体2(吸込口2c)との差圧により第1の給油流路7を通って圧縮機本体2(図27の給油位置P1)へ流れる。第1の給油流路7を通って圧縮機本体2へ流れる潤滑油は、油冷却器4を通過する際に冷却される。   The lubricating oil stored in the oil sump of the oil separator / recovery unit 3 passes through the first oil supply passage 7 due to the differential pressure between the oil separation / recovery unit 3 and the compressor main body 2 (suction port 2c). It flows to (oil supply position P1 in FIG. 27). The lubricating oil flowing to the compressor body 2 through the first oil supply passage 7 is cooled when passing through the oil cooler 4.

油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出口2dから吐出される圧縮空気の温度(吐出温度)が露点(水の凝縮温度)以下となる給油温度となるように、圧縮機本体2へ給油される潤滑油を冷却する。吸込口2cから吸引された空気が圧縮機本体2内で露点以下となり、圧縮機本体2内で圧縮空気内の水分が析出することにより、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。また、吐出温度は露点以下であって高温としないので、潤滑油の温度劣化を防止できる。油冷却器4の冷却能力は、圧縮機本体2の諸元等に応じて吐出温度が露点以下となるように設定される。   The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 is configured so that the temperature of the compressed air (discharge temperature) discharged from the discharge port 2d of the compressor body 2 becomes the oil supply temperature at which the dew point (condensation temperature of water) is equal to or lower. The lubricating oil supplied to 2 is cooled. The air sucked from the suction port 2c becomes the dew point or less in the compressor body 2, and the moisture in the compressed air precipitates in the compressor body 2, so that the performance can be improved by increasing the amount of discharged air. , Energy saving is improved. Further, since the discharge temperature is lower than the dew point and not high, the temperature deterioration of the lubricating oil can be prevented. The cooling capacity of the oil cooler 4 is set so that the discharge temperature is equal to or lower than the dew point according to the specifications of the compressor body 2 and the like.

吐出温度を露点以下としたことで、圧縮機本体2の吐出口2dから吐出される圧縮空気内には析出した水分が含まれる。潤滑油内に混在する水分は潤滑油劣化の原因となる。しかし、吐出流路6に油水分離装置5が設けられているので、圧縮機本体2から油分離回収器3へ流れる圧縮空気に含まれる潤滑油から水分が分離される。つまり、油水分離装置5を設けて潤滑油と水分を分離することで、水分混在に起因する潤滑油劣化を防止できる。また、本実施形態では、吐出流路6に油水分離装置5を設けているので、油分離回収器3内において水分が析出して油溜りにドレン水として溜まるのを防止できる。   By setting the discharge temperature below the dew point, the compressed air discharged from the discharge port 2d of the compressor body 2 contains precipitated water. Moisture mixed in the lubricating oil causes deterioration of the lubricating oil. However, since the oil / water separator 5 is provided in the discharge flow path 6, moisture is separated from the lubricating oil contained in the compressed air flowing from the compressor body 2 to the oil separator / collector 3. That is, by providing the oil / water separator 5 to separate the lubricating oil and the water, it is possible to prevent the deterioration of the lubricating oil due to the mixed water. Further, in the present embodiment, since the oil / water separator 5 is provided in the discharge flow path 6, it is possible to prevent water from being deposited in the oil separator / collector 3 and accumulating as drain water in the oil reservoir.

以上のように、本実施形態の油冷式空気圧縮機では、圧縮機本体2の吐出温度を露点以下とすることで性能向上と潤滑油の温度劣化防止を実現しつつ、圧縮機本体2の吐出温度を露点以下としたことによる潤滑油中の水分混在とそれに起因する潤滑油劣化とを、油水分離装置5を設けることで防止している。また、圧縮空気は、圧縮機本体2の吐出口2dから吐出された時点ですでに露点以下となっているので、圧縮空気の流れにおいて下流側となる位置に、圧縮空気冷却器ないしは圧縮空気の水分を除去するドライヤを設置する際には、その冷却能力をより小さいものとすることができる。   As described above, in the oil-cooled air compressor of the present embodiment, the compressor main body 2 is improved in performance and prevention of temperature deterioration of the lubricating oil by setting the discharge temperature of the compressor main body 2 below the dew point. By providing the oil / water separator 5, the mixing of water in the lubricating oil and the deterioration of the lubricating oil due to the discharge temperature being set to the dew point or lower is prevented. Further, since the compressed air is already below the dew point when it is discharged from the discharge port 2d of the compressor body 2, the compressed air cooler or the compressed air is placed at a position downstream of the compressed air flow. When installing a dryer for removing moisture, the cooling capacity can be reduced.

油水分離装置5において潤滑油から水分をより容易かつ確実に分離するためには、潤滑油は疎水性を有することが好ましい。また、水より低比重の潤滑油、つまり水と比重差のある潤滑油を使用することで、油水分離装置5において潤滑油から水分をより容易かつ確実に分離できる。例えば、潤滑油の比重が0.95以下であることが好ましい。   In order to more easily and reliably separate water from the lubricating oil in the oil / water separator 5, the lubricating oil preferably has hydrophobicity. Further, by using a lubricating oil having a specific gravity lower than that of water, that is, a lubricating oil having a specific gravity difference from that of water, the oil / water separator 5 can more easily and reliably separate water from the lubricating oil. For example, the specific gravity of the lubricating oil is preferably 0.95 or less.

(第2実施形態)
図2は本発明の第2実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。潤滑油から水分を分離するための油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)は、油分離回収器3内に設けられている。油分離回収器3内に油水分離装置5を設けることで、油分離回収器3と油水分離装置5とをそれぞれ別個に設ける場合と比較して、油冷式空気圧縮機1の設置投影面積の増加の回避できる。
(Second Embodiment)
FIG. 2 shows an oil-cooled air compressor 1 according to the second embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point. An oil / water separation device 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separation device) for separating water from the lubricating oil is provided in the oil separation / recovery unit 3. By providing the oil / water separation device 5 in the oil separation / recovery device 3, compared to the case where the oil separation / recovery device 3 and the oil / water separation device 5 are provided separately, the installation projected area of the oil-cooled air compressor 1 is reduced. Increase can be avoided.

第2実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the second embodiment are the same as those of the first embodiment.

(第3実施形態)
図3は本発明の第3実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。潤滑油から水分を分離するための油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)は、第1の給油流路7に設けられている。具体的には、油水分離装置5は第1の給油流路7の油冷却器4よりも上流側に設けられている。第1の給油流路7に油水分離装置5を設けることで、ポンプによる圧送を要することなく、油水分離装置5に潤滑油を流入させることができる。なお、第1の給油流路7の油冷却器4よりも下流側に油水分離装置5を設けてもよい。
(Third embodiment)
FIG. 3 shows an oil-cooled air compressor 1 according to the third embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) for separating moisture from the lubricating oil is provided in the first oil supply passage 7. Specifically, the oil / water separator 5 is provided upstream of the oil cooler 4 in the first oil supply passage 7. By providing the oil / water separator 5 in the first oil supply flow path 7, the lubricating oil can be allowed to flow into the oil / water separator 5 without requiring pumping by a pump. Note that the oil / water separator 5 may be provided on the downstream side of the oil cooler 4 in the first oil supply passage 7.

第3実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the third embodiment are the same as those of the first embodiment.

(第4実施形態)
図4は本発明の第4実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Fourth embodiment)
FIG. 4 shows an oil-cooled air compressor 1 according to the fourth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、第1の給油流路7とは別に、油分離回収器3の油溜りと圧縮機本体2の吸込み側を接続する第2の給油流路8が設けられている。本実施形態の第2の給油流路8の圧縮機本体2への給油位置は、図27の符号P1に示すように吸込口2cである。第2の給油流路8に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。第2の給油流路8を設けて吸込口2cに給油することで圧縮機本体2への吸込空気を冷却でき、それによって吐出空気量の増加等による性能向上を図ることができる。   In the present embodiment, in addition to the first oil supply flow path 7, a second oil supply flow path 8 that connects the oil reservoir of the oil separator / collector 3 and the suction side of the compressor body 2 is provided. The oil supply position to the compressor main body 2 of the 2nd oil supply flow path 8 of this embodiment is the suction inlet 2c, as shown to the code | symbol P1 of FIG. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided in the second oil supply passage 8. By providing the second oil supply flow path 8 and supplying oil to the suction port 2c, the intake air to the compressor body 2 can be cooled, thereby improving the performance by increasing the amount of discharge air.

第4実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the fourth embodiment are the same as those of the first embodiment.

(第5実施形態)
図5は本発明の第5実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Fifth embodiment)
FIG. 5 shows an oil-cooled air compressor 1 according to the fifth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、第1の給油流路7とは別に、油分離回収器3の油溜りと圧縮機本体2の吸込み側を接続する第2の給油流路8が設けられている。本実施形態の第2の給油流路8の圧縮機本体2への給油位置は、図27の符号P3で示すようにロータ室2aの吸込口2cの直後の空間部(閉じ込み直後)に設定されている。第2の給油流路8に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。第2の給油流路8を設けて圧縮機本体2の閉じ込み直後に給油することで、圧縮開始時の空気を冷却でき、それによって吐出空気量の増加等による性能向上を図ることができる。   In the present embodiment, in addition to the first oil supply flow path 7, a second oil supply flow path 8 that connects the oil reservoir of the oil separator / collector 3 and the suction side of the compressor body 2 is provided. The oil supply position to the compressor main body 2 of the second oil supply passage 8 of the present embodiment is set in a space portion (immediately after closing) of the rotor chamber 2a immediately after the suction port 2c, as indicated by reference numeral P3 in FIG. Has been. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided in the second oil supply passage 8. By providing the second oil supply passage 8 and supplying oil immediately after the compressor body 2 is closed, the air at the start of compression can be cooled, thereby improving the performance by increasing the amount of discharged air.

第5実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the fifth embodiment are the same as those of the first embodiment.

(第6実施形態)
図6は本発明の第6実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Sixth embodiment)
FIG. 6 shows an oil-cooled air compressor 1 according to a sixth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、第1の給油流路7とは別に、油分離回収器3の油溜りと圧縮機本体2の吸込み側を接続する第2の給油流路8が設けられている。本実施形態の第2の給油流路8の圧縮機本体2への給油位置は、図27の符号P2で示すように圧縮過程にあるロータ室2aにおけるロータ2b,2bに給油するように設定されている。第2の給油流路8に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。第2の給油流路8を設けてロータ2b,2bに給油することで、圧縮により加熱された空気を冷却でき、それによって吐出空気量の増加等による性能向上を図ることができる。   In the present embodiment, in addition to the first oil supply flow path 7, a second oil supply flow path 8 that connects the oil reservoir of the oil separator / collector 3 and the suction side of the compressor body 2 is provided. The oil supply position of the second oil supply passage 8 of the present embodiment to the compressor body 2 is set so as to supply oil to the rotors 2b and 2b in the rotor chamber 2a in the compression process, as indicated by reference numeral P2 in FIG. ing. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided in the second oil supply passage 8. By providing the second oil supply passage 8 and supplying oil to the rotors 2b and 2b, the air heated by the compression can be cooled, thereby improving the performance by increasing the amount of discharged air.

第6実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the sixth embodiment are the same as those of the first embodiment.

(第7実施形態)
図7は本発明の第7実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Seventh embodiment)
FIG. 7 shows an oil-cooled air compressor 1 according to a seventh embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、第1の給油流路7とは別に、油分離回収器3の油溜りと圧縮機本体2の吸込み側を接続する第2の給油流路8が設けられている。本実施形態の第2の給油流路8の圧縮機本体2への給油位置は、図27の符号P4で示すようにロータ室2aの吐出口2dの直前の空間部(吐出直前)に設定されている。第2の給油流路8には潤滑油を圧送するためのポンプ10が設けられている。また、第2の給油流路8にはポンプ10より下流側に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。第2の給油流路8を設けて圧縮機本体2の吐出直前に給油することで、圧縮機本体2の吐出口2dからの吐出後の圧縮空気を冷却できる。   In the present embodiment, in addition to the first oil supply flow path 7, a second oil supply flow path 8 that connects the oil reservoir of the oil separator / collector 3 and the suction side of the compressor body 2 is provided. The oil supply position to the compressor main body 2 of the second oil supply flow path 8 of the present embodiment is set in a space portion (immediately before discharge) immediately before the discharge port 2d of the rotor chamber 2a as indicated by reference numeral P4 in FIG. ing. The second oil supply passage 8 is provided with a pump 10 for pumping the lubricating oil. The second oil supply passage 8 is provided with an oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) downstream of the pump 10. By providing the second oil supply passage 8 and supplying oil immediately before the discharge of the compressor body 2, the compressed air after discharge from the discharge port 2 d of the compressor body 2 can be cooled.

第7実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the seventh embodiment are the same as those of the first embodiment.

(第8実施形態)
図8は本発明の第8実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Eighth embodiment)
FIG. 8 shows an oil-cooled air compressor 1 according to the eighth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、第1の給油流路7とは別に、油分離回収器3の油溜りと圧縮機本体2の吐出口2dの直後の流路とを接続する戻し流路9が設けられている。戻し流路9の吐出口2dの直後の流路に対する合流位置を、図27において符号P5で概念的に示す。戻し流路9には油分離回収器3から合流位置P5に向けて潤滑油を圧送するポンプ11が設けられている。また、戻し流路9にはポンプ11よりも下流側に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。戻し流路9を設けて吐出口2dの直後の流路に給油することで、圧縮機本体2の吐出口2dからの吐出後の圧縮空気を冷却できる。   In the present embodiment, apart from the first oil supply flow path 7, a return flow path 9 that connects the oil reservoir of the oil separator / collector 3 and the flow path immediately after the discharge port 2 d of the compressor body 2 is provided. Yes. A joining position with respect to the flow path immediately after the discharge port 2d of the return flow path 9 is conceptually indicated by a symbol P5 in FIG. The return flow path 9 is provided with a pump 11 that pumps the lubricating oil from the oil separator / collector 3 toward the joining position P5. The return passage 9 is provided with an oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) downstream of the pump 11. By providing the return flow path 9 and supplying oil to the flow path immediately after the discharge port 2d, the compressed air discharged from the discharge port 2d of the compressor body 2 can be cooled.

第8実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the eighth embodiment are the same as those of the first embodiment.

(第9実施形態)
図9は本発明の第9実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Ninth embodiment)
FIG. 9 shows an oil-cooled air compressor 1 according to the ninth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、油分離回収器3の油溜りと油冷却器4の下流側の第1の給油流路7とを油冷却器4を迂回して接続するバイパス流路12が設けられている。バイパス流路12に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。油分離回収器3と圧縮機本体2(吸込口2c)との差圧により、潤滑油がバイパス流路12を通って油分離回収器3から第1の給油流路7との合流点へ流れる。つまり、ポンプを用いることなく、潤滑油を油水分離装置5に流入させることができる。また、いずれも潤滑油の流れに対する圧力損失である油冷却器4と油水分離装置5は異なる流路(前者が第1の給油流路7で後者がバイパス流路12)に設けられて並列的に配置されるので、油分離回収器3から圧縮機本体2までの流路全体として潤滑油の流動抵抗を低減できる。   In the present embodiment, a bypass passage 12 is provided that connects the oil reservoir of the oil separation and recovery device 3 and the first oil supply passage 7 on the downstream side of the oil cooler 4 by bypassing the oil cooler 4. . An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided in the bypass passage 12. Due to the differential pressure between the oil separator / collector 3 and the compressor main body 2 (suction port 2 c), the lubricating oil flows from the oil separator / collector 3 to the junction with the first oil supply passage 7 through the bypass passage 12. . That is, the lubricating oil can be allowed to flow into the oil / water separator 5 without using a pump. In addition, the oil cooler 4 and the oil / water separator 5 that are pressure losses with respect to the flow of the lubricating oil are provided in different flow paths (the former is the first oil supply flow path 7 and the latter is the bypass flow path 12) in parallel. Therefore, the flow resistance of the lubricating oil can be reduced as a whole flow path from the oil separator / collector 3 to the compressor body 2.

第9実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the ninth embodiment are the same as those of the first embodiment.

(第10実施形態)
図10は本発明の第10実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(10th Embodiment)
FIG. 10 shows an oil-cooled air compressor 1 according to a tenth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、第1の給油流路7の油冷却器4よりも上流側から分岐して油冷却器4よりも下流側で第1の給油流路7に合流するバイパス流路12が設けられている。油分離回収器3と圧縮機本体2との差圧により、潤滑油がバイパス流路12を通って油冷却器4を迂回して流れる。つまり、ポンプを用いることなく、潤滑油を油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)に流入させることができる。第9実施形態と同様に、油冷却器4と油水分離装置5を異なる流路に並列的に配置したことで、油分離回収器3から圧縮機本体2までの流路全体として潤滑油の流動抵抗を低減できる。   In the present embodiment, a bypass flow path 12 is provided that branches from the upstream side of the oil cooler 4 of the first oil supply flow path 7 and merges with the first oil supply flow path 7 downstream of the oil cooler 4. It has been. Due to the differential pressure between the oil separator / collector 3 and the compressor body 2, the lubricating oil flows through the bypass flow path 12 and bypasses the oil cooler 4. That is, lubricating oil can be flowed into the oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) without using a pump. As in the ninth embodiment, the oil cooler 4 and the oil / water separator 5 are arranged in parallel in different flow paths, so that the flow of the lubricating oil as a whole flow path from the oil separator / collector 3 to the compressor body 2 is achieved. Resistance can be reduced.

第10実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the tenth embodiment are the same as those of the first embodiment.

(第11実施形態)
図11に示す本発明の第11実施形態に係る油冷式空気圧縮機1は、第10実施形態と同じく、第1の給油流路7の油冷却器4よりも上流側から分岐して油冷却器4よりも下流側で第1の給油流路7に合流するバイパス流路12を備える。バイパス流路12には油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)の前後(油水分離装置5の上流側直前と下流側直後)にバイパス流路12を通る潤滑油の流れを遮断できる開閉弁13A,13Bが設けられている。これらの開閉弁13A,13Bは、手動であっても電磁弁であってもよい。開閉弁13A,13Bは、通常時は開弁状態で維持されている。開閉弁13A,13Bを閉弁すると油水分離装置5をバイパス流路12から切り離すことできる。開閉弁13A,13Bを一時的に閉弁することで、油冷式空気圧縮機1の運転中であっても油水分離装置5のメンテナンスが可能である。
(Eleventh embodiment)
The oil-cooled air compressor 1 according to the eleventh embodiment of the present invention shown in FIG. 11 is branched from the upstream side of the oil cooler 4 of the first oil supply passage 7 as in the tenth embodiment. A bypass passage 12 that joins the first oil supply passage 7 on the downstream side of the cooler 4 is provided. The bypass channel 12 passes through the bypass channel 12 before and after the oil / water separator 5 (in this embodiment, a coalescer-type or gravity water tank-type oil / water separator) (immediately before the upstream of the oil-water separator 5 and immediately after the downstream) On-off valves 13A and 13B that can block the flow of the lubricating oil are provided. These on-off valves 13A and 13B may be manual or electromagnetic valves. The on-off valves 13A and 13B are normally maintained in an open state. When the on-off valves 13A and 13B are closed, the oil / water separator 5 can be disconnected from the bypass passage 12. By temporarily closing the on-off valves 13A and 13B, the oil / water separator 5 can be maintained even while the oil-cooled air compressor 1 is in operation.

第11実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the eleventh embodiment are the same as those of the first embodiment.

図4から図9並びに後に言及する図12から図15において二点鎖線で示すように、第4から第9実施形態並びに第12から第15実施形態についても、油水分離装置5の前後に本実施形態と同様の開閉弁13A,13Bを設けもよい。   As shown by the two-dot chain line in FIGS. 4 to 9 and FIGS. 12 to 15 referred to later, the fourth to ninth embodiments and the twelfth to fifteenth embodiments are also implemented before and after the oil-water separator 5. On-off valves 13A and 13B similar to the embodiment may be provided.

(第12実施形態)
図12は本発明の第12実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Twelfth embodiment)
FIG. 12 shows an oil-cooled air compressor 1 according to a twelfth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

本実施形態では、油分離回収器3の油溜りからポンプ14を介して油分離回収器3に戻る循環流路15が設けられている。循環流路15のポンプ14より下流側に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。第1の給油流路7とは別系統の循環流路15に油水分離装置5を設けることで、油水分離装置5を設けることよって第1の給油流路7に圧力損失が生じるのを回避できる。   In the present embodiment, a circulation passage 15 is provided that returns from the oil reservoir of the oil separation and recovery unit 3 to the oil separation and recovery unit 3 via the pump 14. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided downstream of the pump 14 in the circulation channel 15. By providing the oil / water separator 5 in the circulation passage 15 of a different system from the first oil supply passage 7, it is possible to avoid the occurrence of pressure loss in the first oil supply passage 7 by providing the oil / water separator 5. .

第12実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the twelfth embodiment are the same as those of the first embodiment.

(第13実施形態)
図13に本発明の第13実施形態に係る油冷式空気圧縮機1は、圧縮機本体2から吐出される圧縮空気の温度である吐出温度が露点以下となるように圧縮機本体への給油温度を調節する機構(給油温度調節機構)を備えている。この点は後述する第14及び第15実施形態も同様である。
(13th Embodiment)
In FIG. 13, the oil-cooled air compressor 1 according to the thirteenth embodiment of the present invention supplies oil to the compressor body so that the discharge temperature, which is the temperature of the compressed air discharged from the compressor body 2, is below the dew point. A mechanism for adjusting the temperature (oil supply temperature adjusting mechanism) is provided. This also applies to the 14th and 15th embodiments described later.

第1の給油流路7とは別に、油分離回収器3の油溜りと圧縮機本体2の吸込み側(例えば、図27の符号P3)を接続する第2の給油流路8が設けられている。この第2の給油流路8に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。   In addition to the first oil supply passage 7, a second oil supply passage 8 that connects the oil reservoir of the oil separator / collector 3 and the suction side of the compressor body 2 (for example, symbol P <b> 3 in FIG. 27) is provided. Yes. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided in the second oil supply passage 8.

第1の給油流路7には油冷却器4より上流側に温度調節弁として機能する三方弁16が設けられている。この三方弁16でバイパス給油流路17が第1の給油流路7から分岐している。バイパス給油流路17は圧縮機本体2の吸込み側(例えば、図27の符号P3)に接続されている。   In the first oil supply passage 7, a three-way valve 16 that functions as a temperature control valve is provided upstream of the oil cooler 4. By this three-way valve 16, the bypass oil supply passage 17 is branched from the first oil supply passage 7. The bypass oil supply passage 17 is connected to the suction side of the compressor body 2 (for example, symbol P3 in FIG. 27).

三方弁16は、油分離回収器3の油溜りを第1の給油流路7を介し、油冷却器4を通って圧縮機本体2に連通させる状態(第1の状態)と、油分離回収器3の油溜りを油冷却器4を迂回するバイパス給油流路17を介して圧縮機本体2に連通させる状態(第2の状態)とに切り換え可能である。   The three-way valve 16 includes a state (first state) in which the oil reservoir of the oil separation / recovery unit 3 is communicated with the compressor body 2 through the first oil supply passage 7 and the oil cooler 4, and oil separation / recovery. It is possible to switch to a state (second state) in which the oil reservoir of the compressor 3 is communicated with the compressor body 2 via a bypass oil supply passage 17 that bypasses the oil cooler 4.

圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度を直接又は間接的に測定する温度センサ18が設けられている。本実施形態では、温度センサ18は油分離回収器3に設けられ、油分離回収器3の温度を測定することで、吐出温度を間接的に測定する。しかし、温度センサ18を吐出口2d又はその近傍に配置し、吐出温度を直接測定してもよい。また、油分離回収器3以外の箇所に温度センサ18を配置することで、吐出温度を間接的に測定してもよい。   A temperature sensor 18 that directly or indirectly measures the discharge temperature, which is the temperature of the compressed air discharged from the discharge port 2d of the compressor body 2, is provided. In the present embodiment, the temperature sensor 18 is provided in the oil separation / recovery unit 3 and measures the temperature of the oil separation / recovery unit 3 to indirectly measure the discharge temperature. However, the temperature sensor 18 may be disposed at or near the discharge port 2d to directly measure the discharge temperature. Further, the discharge temperature may be indirectly measured by arranging the temperature sensor 18 at a place other than the oil separator / collector 3.

コントローラ19は、圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度が露点以下なるように、温度センサ18の検出温度に応じて三方弁16を制御する。具体的には、コントローラ19は、温度センサ18により測定された温度に基づいて、吐出温度が露点以上であると判断すれば、三方弁16を第1の状態とする。この第1の状態では、油分離回収器3からの潤滑油(第2の給油流路8を通る流量は除く)は、油冷却器4を通過して第1の給油流路7を通って圧縮機本体2に供給される。一方、コントローラ19は、温度センサ18により測定された温度に基づいて、吐出温度が露点未満であると判断すれば、三方弁16を第2の状態とする。この第2の状態では、油分離回収器3からの潤滑油(第2の給油流路8を通る流量は除く)は、油冷却器4を通過することなくバイパス給油流路17を通って圧縮機本体2に供給される。   The controller 19 controls the three-way valve 16 in accordance with the temperature detected by the temperature sensor 18 so that the discharge temperature, which is the temperature of the compressed air discharged from the discharge port 2d of the compressor body 2, is equal to or lower than the dew point. Specifically, if the controller 19 determines that the discharge temperature is equal to or higher than the dew point based on the temperature measured by the temperature sensor 18, the controller 19 sets the three-way valve 16 to the first state. In this first state, the lubricating oil (excluding the flow rate through the second oil supply passage 8) from the oil separator / collector 3 passes through the oil cooler 4 and passes through the first oil supply passage 7. Supplied to the compressor body 2. On the other hand, if the controller 19 determines that the discharge temperature is lower than the dew point based on the temperature measured by the temperature sensor 18, the controller 19 sets the three-way valve 16 to the second state. In this second state, the lubricating oil from the oil separator / recoverer 3 (except for the flow rate through the second oil supply passage 8) is compressed through the bypass oil supply passage 17 without passing through the oil cooler 4. Supplied to the machine body 2.

三方弁16が第1の状態になるときに圧縮機本体2に供給される潤滑油(油冷却器4で冷却される)は、三方弁16が第2の状態になるときに圧縮機本体2に供給される潤滑油(油冷却器4で冷却されない)よりも低温である。よって、コントローラ19が温度センサ18の検出温度に応じて三方弁16を切り換えることで圧縮機本体2に供給される潤滑油の温度を調整し、それによって吐出温度を露点以下に保つことができる。なお、コントローラ19は、圧縮空気の温度が露点よりもわずかに高い第1の設定温度となったときに三方弁16を第2の状態から第1の状態に切り換え、圧縮空気の温度が露点よりもわずかに低い第2の設定温度となったとき三方弁16を第1の状態から第2の状態に切り換えてもよい。   The lubricating oil (cooled by the oil cooler 4) supplied to the compressor main body 2 when the three-way valve 16 is in the first state is the compressor main body 2 when the three-way valve 16 is in the second state. The temperature is lower than the lubricating oil supplied to the oil (not cooled by the oil cooler 4). Therefore, the controller 19 switches the three-way valve 16 according to the temperature detected by the temperature sensor 18 to adjust the temperature of the lubricating oil supplied to the compressor body 2, thereby keeping the discharge temperature below the dew point. The controller 19 switches the three-way valve 16 from the second state to the first state when the temperature of the compressed air reaches a first set temperature that is slightly higher than the dew point. Alternatively, the three-way valve 16 may be switched from the first state to the second state when the second set temperature is slightly lower.

第13実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the thirteenth embodiment are the same as those of the first embodiment.

なお、図1から図12において二点鎖線で示すように、第1から第12実施形態についても本実施形態と同様の三方弁16とバイパス給油流路17を設けてもよい。この場合、圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度を直接又は間接的に測定する温度センサに応じてコントローラ(これらの図面には図示せず)が三方弁16を切り換えることで、圧縮機本体2の吐出温度が露点以下となるように圧縮機本体2への給油温度を調節できる。   In addition, as shown with a dashed-two dotted line in FIGS. 1-12, you may provide the three-way valve 16 and the bypass oil supply flow path 17 similar to this embodiment also about 1st-12th Embodiment. In this case, a controller (not shown in these drawings) is a three-way valve in response to a temperature sensor that directly or indirectly measures the discharge temperature, which is the temperature of the compressed air discharged from the discharge port 2d of the compressor body 2. By switching 16, the oil supply temperature to the compressor main body 2 can be adjusted so that the discharge temperature of the compressor main body 2 is lower than the dew point.

(第14実施形態)
図14は本発明の第14実施形態に係る油冷式空気圧縮機1を示す。
(14th Embodiment)
FIG. 14 shows an oil-cooled air compressor 1 according to a fourteenth embodiment of the present invention.

第1の給油流路7とは別に、油分離回収器3の油溜りと圧縮機本体2の吸込み側(例えば、図27の符号P3)を接続する第2の給油流路8が設けられている。この第2の給油流路8に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。   In addition to the first oil supply passage 7, a second oil supply passage 8 that connects the oil reservoir of the oil separator / collector 3 and the suction side of the compressor body 2 (for example, symbol P <b> 3 in FIG. 27) is provided. Yes. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided in the second oil supply passage 8.

第1の給油流路7には、油冷却器4より上流側に開閉を電気的に制御可能な開閉弁としての電磁弁21が設けられている。   The first oil supply passage 7 is provided with an electromagnetic valve 21 as an on-off valve that can be electrically controlled on the upstream side of the oil cooler 4.

圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度を直接又は間接的に測定する温度センサ18が油分離回収器3に設けられている。温度センサ18の配置位置と検出する温度が限定されない点は、第13実施形態において説明した通りである。   A temperature sensor 18 that directly or indirectly measures the discharge temperature, which is the temperature of the compressed air discharged from the discharge port 2 d of the compressor body 2, is provided in the oil separation and recovery device 3. The arrangement position of the temperature sensor 18 and the temperature to be detected are not limited as described in the thirteenth embodiment.

コントローラ19は、吐出温度が露点以下となるように、温度センサ18の検出温度に応じて電磁弁21を制御する。具体的には、コントローラ19は、温度センサ18により測定された温度に基づいて吐出温度が露点以上であると判断すれば、電磁弁21を開弁状態とする。電磁弁21が開弁状態であると、油分離回収器3からの潤滑油は、すべて油冷却器4を通過して第1の給油流路7を通って圧縮機本体2に供給される。一方、コントローラ19は、温度センサ18により測定された温度に基づいて吐出温度が露点未満であると判断すれば、電磁弁21を閉弁状態とする。電磁弁21が閉弁状態であると、油分離回収器3から潤滑油は、すべて油冷却器4を通過することなく第2の給油流路8を通って圧縮機本体2に供給される。   The controller 19 controls the electromagnetic valve 21 in accordance with the temperature detected by the temperature sensor 18 so that the discharge temperature is lower than the dew point. Specifically, when the controller 19 determines that the discharge temperature is equal to or higher than the dew point based on the temperature measured by the temperature sensor 18, the controller 19 opens the solenoid valve 21. When the solenoid valve 21 is in the open state, all of the lubricating oil from the oil separator / collector 3 passes through the oil cooler 4 and is supplied to the compressor body 2 through the first oil supply passage 7. On the other hand, if the controller 19 determines that the discharge temperature is lower than the dew point based on the temperature measured by the temperature sensor 18, the controller 19 closes the electromagnetic valve 21. When the solenoid valve 21 is in the closed state, all the lubricating oil from the oil separator / collector 3 is supplied to the compressor body 2 through the second oil supply passage 8 without passing through the oil cooler 4.

電磁弁21が開弁状態になるときに圧縮機本体2に供給される潤滑油(油冷却器4で冷却される)は、電磁弁21が閉弁状態になるときに圧縮機本体2に供給される潤滑油(油冷却器4で冷却されない)よりも低温である。よって、コントローラ19が温度センサ18の検出温度に応じて電磁弁21の開閉状態を切り換えることで圧縮機本体2に供給される潤滑油の温度を調整し、それによって吐出温度を露点以下に保つことができる。なお、コントローラ19は、圧縮空気の温度が露点よりもわずかに高い第1の設定温度となったときに電磁弁21を閉弁状態から開弁状態に切り換え、圧縮空気の温度が露点よりもわずかに低い第2の設定温度となったときに電磁弁21を開弁状態から閉弁状態に切り換えてもよい。   Lubricating oil (cooled by the oil cooler 4) supplied to the compressor body 2 when the solenoid valve 21 is opened is supplied to the compressor body 2 when the solenoid valve 21 is closed. The temperature is lower than that of the lubricating oil (not cooled by the oil cooler 4). Therefore, the controller 19 adjusts the temperature of the lubricating oil supplied to the compressor body 2 by switching the open / close state of the electromagnetic valve 21 according to the temperature detected by the temperature sensor 18, thereby keeping the discharge temperature below the dew point. Can do. The controller 19 switches the solenoid valve 21 from the closed state to the open state when the temperature of the compressed air reaches a first set temperature that is slightly higher than the dew point, and the temperature of the compressed air is slightly lower than the dew point. The electromagnetic valve 21 may be switched from the open state to the closed state when the second set temperature is low.

なお、図14において破線で示すように、第2の給油流路8に電磁弁21と同様の別の電磁弁121を設けてもよい。この場合、コントローラ19は電磁弁21の開閉状態とは逆に電磁弁121の開閉状態を切り換える。   In addition, as shown by a broken line in FIG. 14, another electromagnetic valve 121 similar to the electromagnetic valve 21 may be provided in the second oil supply passage 8. In this case, the controller 19 switches the open / close state of the electromagnetic valve 121, contrary to the open / close state of the electromagnetic valve 21.

また、図4から図7、並びに図9から図11に示すように、第4から第7実施形態並びに第9から第11実施形態についても本実施形態と同様の電磁弁21を第1の給油流路7の油冷却器4よりも上流側に設けてもよい。これらの構成のうち、第4から第7実施形態(図4から図7)については、電磁弁21の開閉状態に応じて、油分離回収器3からの潤滑油が第1の給油流路7(油冷却器4を通る)又は第2の給油流路8(油冷却器4を通らない)を通って圧縮機本体2に供給される。また、第9から第11実施形態(図9から図11)については、電磁弁21の開閉状態に応じて、油分離回収器3からの潤滑油が第1の給油流路7(油冷却器4を通る)又はバイパス流路12(油冷却器4を通らない)を通って圧縮機本体2に供給される。   Further, as shown in FIGS. 4 to 7 and FIGS. 9 to 11, the same solenoid valve 21 as that of the present embodiment is used for the fourth to seventh embodiments and the ninth to eleventh embodiments. You may provide upstream of the oil cooler 4 of the flow path 7. Among these configurations, in the fourth to seventh embodiments (FIGS. 4 to 7), the lubricating oil from the oil separation / recovery unit 3 is supplied to the first oil supply passage 7 according to the open / close state of the electromagnetic valve 21. (Through the oil cooler 4) or the second oil supply passage 8 (not through the oil cooler 4) is supplied to the compressor body 2. Further, in the ninth to eleventh embodiments (FIGS. 9 to 11), the lubricating oil from the oil separation / recovery unit 3 is supplied to the first oil supply passage 7 (oil cooler) according to the open / close state of the electromagnetic valve 21. 4) or a bypass passage 12 (not through the oil cooler 4) and supplied to the compressor body 2.

第14実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the fourteenth embodiment are the same as those of the first embodiment.

(第15実施形態)
図15は本発明の第15実施形態に係る油冷式空気圧縮機1を示す。
(Fifteenth embodiment)
FIG. 15 shows an oil-cooled air compressor 1 according to the fifteenth embodiment of the present invention.

本実施形態では、第1の給油流路7の油冷却器4よりも上流側から分岐して油冷却器4よりも下流側で第1の給油流路7に合流するバイパス流路12が設けられている。バイパス流路12に油水分離装置5(本実施形態ではコアレッサー式又は重力水槽式の油水分離装置)が設けられている。   In the present embodiment, a bypass flow path 12 is provided that branches from the upstream side of the oil cooler 4 of the first oil supply flow path 7 and merges with the first oil supply flow path 7 downstream of the oil cooler 4. It has been. An oil / water separator 5 (in this embodiment, a coalescer type or gravity water tank type oil / water separator) is provided in the bypass passage 12.

第1の給油流路7には油冷却器4よりも上流側であるバイパス流路12の分岐位置に三方弁22が設けられている。三方弁22は、油分離回収器3の油溜りを油冷却器4を通って圧縮機本体2に連通させる状態(第1の状態)と、油分離回収器3の油溜りを油冷却器4を迂回してバイパス流路12を介して圧縮機本体2に連通させる状態(第2の状態)とに切り換え可能である。   The first oil supply passage 7 is provided with a three-way valve 22 at a branch position of the bypass passage 12 on the upstream side of the oil cooler 4. The three-way valve 22 has a state (first state) in which the oil reservoir of the oil separation / recovery unit 3 is communicated with the compressor body 2 through the oil cooler 4, and an oil reservoir of the oil separation / recovery unit 3. Can be switched to a state (second state) in which the compressor main body 2 is communicated via the bypass flow path 12.

圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度を直接又は間接的に測定する温度センサ18が油分離回収器3に設けられている。温度センサ18の配置位置と検出する温度が限定されない点は、第13実施形態において説明した通りである。   A temperature sensor 18 that directly or indirectly measures the discharge temperature, which is the temperature of the compressed air discharged from the discharge port 2 d of the compressor body 2, is provided in the oil separation and recovery device 3. The arrangement position of the temperature sensor 18 and the temperature to be detected are not limited as described in the thirteenth embodiment.

コントローラ19は、吐出温度が露点以下なるように、温度センサ18の検出温度に応じて三方弁22を制御する。具体的には、コントローラ19は、温度センサ18により測定された温度に基づいて圧縮空気の温度が露点以上であると判断すれば、三方弁22を第1の状態とする。この第1の状態では、油分離回収器3からの潤滑油は、すべて油冷却器4を通過して第1の給油流路7を通って圧縮機本体2に供給される。一方、コントローラ19は、温度センサ18により測定された温度に基づいて吐出温度が露点未満であると判断すれば、三方弁22を第2の状態とする。この第2の状態では、油分離回収器3からの潤滑油は、すべて油冷却器4を通過することなくバイパス流路12を通って圧縮機本体2に供給される。   The controller 19 controls the three-way valve 22 according to the temperature detected by the temperature sensor 18 so that the discharge temperature is lower than the dew point. Specifically, if the controller 19 determines that the temperature of the compressed air is equal to or higher than the dew point based on the temperature measured by the temperature sensor 18, the controller 19 sets the three-way valve 22 to the first state. In this first state, all the lubricating oil from the oil separator / collector 3 passes through the oil cooler 4 and is supplied to the compressor body 2 through the first oil supply passage 7. On the other hand, if the controller 19 determines that the discharge temperature is less than the dew point based on the temperature measured by the temperature sensor 18, the controller 19 sets the three-way valve 22 to the second state. In this second state, all the lubricating oil from the oil separator / recovery unit 3 is supplied to the compressor body 2 through the bypass channel 12 without passing through the oil cooler 4.

三方弁22が第1の状態になるときに圧縮機本体2に供給される潤滑油(油冷却器4で冷却される)は、三方弁22が第1の状態になるときに圧縮機本体2に供給される潤滑油(油冷却器4で冷却されない)よりも低温である。よって、コントローラ19が温度センサ18の検出温度に応じて三方弁22を切り換えることで圧縮機本体2に供給される潤滑油の温度を調整し、それによって吐出温度を露点以下に保つことができる。なお、コントローラ19は、圧縮空気の温度が露点よりもわずかに高い第1の設定温度となったとき三方弁22を第2の状態から第1の状態に切り換え、圧縮空気の温度が露点よりもわずかに低い第2の設定温度となったとき三方弁22を第1の状態から第2の状態に切り換えてもよい。   The lubricating oil (cooled by the oil cooler 4) supplied to the compressor main body 2 when the three-way valve 22 is in the first state is the compressor main body 2 when the three-way valve 22 is in the first state. The temperature is lower than the lubricating oil supplied to the oil (not cooled by the oil cooler 4). Therefore, the controller 19 can adjust the temperature of the lubricating oil supplied to the compressor body 2 by switching the three-way valve 22 in accordance with the temperature detected by the temperature sensor 18, thereby keeping the discharge temperature below the dew point. The controller 19 switches the three-way valve 22 from the second state to the first state when the temperature of the compressed air reaches a first set temperature that is slightly higher than the dew point, and the temperature of the compressed air is higher than the dew point. The three-way valve 22 may be switched from the first state to the second state when a slightly lower second set temperature is reached.

第15実施形態のその他構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the fifteenth embodiment are the same as those of the first embodiment.

(第16実施形態)
図16は本発明の第16実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Sixteenth embodiment)
FIG. 16 shows an oil-cooled air compressor 1 according to a sixteenth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

第1から第15実施形態の油冷式空気圧縮機1は、コアレッサー式又は重力水槽式の油水分離装置5を備える。これに対し、本実施形態では、減圧式の油水分離装置25を備える。   The oil-cooled air compressor 1 of the first to fifteenth embodiments includes a coalescer type or gravity water tank type oil / water separator 5. On the other hand, in this embodiment, the decompression type oil-water separator 25 is provided.

減圧式の油水分離装置25は、開放流路23と、電磁弁24と、水分液面センサ26と、水分放出制御部27とを備える。本実施形態では、水分放出制御部27は、コントローラ19に設けられている。   The decompression-type oil / water separator 25 includes an open channel 23, an electromagnetic valve 24, a moisture level sensor 26, and a moisture release control unit 27. In the present embodiment, the moisture release control unit 27 is provided in the controller 19.

開放流路23の一端は、油分離回収器3内の潤滑油の液面の上方に形成される空間に連通している。開放流路23の他端は、油分離回収器3の外部の大気と連通している。開放流路23の他端は、開放流路23の一端と他端との間が連通していない状態(油冷式空気圧縮機1の通常運転時)における油分離回収器3内の液面より上方の空間よりも低圧の空間に連通していればよい。そのため、開放流路23の他端は、大気に限定されず、大気圧以下の空間(例えば内圧が大気圧以下に設定されたタンク)に接続してもよい。   One end of the open channel 23 communicates with a space formed above the liquid level of the lubricating oil in the oil separator / collector 3. The other end of the open channel 23 communicates with the atmosphere outside the oil separator / collector 3. The other end of the open flow path 23 is the liquid level in the oil separator / recovery unit 3 in a state where the one end and the other end of the open flow path 23 are not in communication (during normal operation of the oil-cooled air compressor 1). What is necessary is just to communicate with the low-pressure space rather than the upper space. Therefore, the other end of the open channel 23 is not limited to the atmosphere, and may be connected to a space below atmospheric pressure (for example, a tank whose internal pressure is set below atmospheric pressure).

電磁弁24は開放流路23に設けられている。電磁弁24は、閉弁状態と開弁状態とに切り換え可能である。電磁弁24は、常閉型と常開型のいずれでもよい。通常時の電磁弁24は閉弁状態である。電磁弁24が閉弁状態であると、開放流路23を介した油分離回収器3内の空間と大気との連通は遮断される。電磁弁24が開状態であると、油分離回収器3内の空間と大気は開放流路23を介して互い連通する。   The electromagnetic valve 24 is provided in the open channel 23. The electromagnetic valve 24 can be switched between a valve closing state and a valve opening state. The solenoid valve 24 may be either a normally closed type or a normally open type. The normal solenoid valve 24 is in a closed state. When the electromagnetic valve 24 is in the closed state, the communication between the space in the oil separation / recovery unit 3 and the atmosphere via the open flow path 23 is blocked. When the electromagnetic valve 24 is in the open state, the space in the oil separation / recovery unit 3 and the atmosphere communicate with each other via the open flow path 23.

水分液面センサ26は、油分離回収器3内の水(凝縮水)と潤滑油の境界面、つまり水分の液面高さ(水分液面高さ)を検出し、検出した水分液面高さを水分放出制御部27に出力する。水分液面センサ26は、フロート式のような接触式であってもよく、静電容量式のような非接触式であってもよい。   The moisture liquid level sensor 26 detects the boundary surface between the water (condensed water) and the lubricating oil in the oil separator / collector 3, that is, the moisture level (moisture level) and detects the detected moisture level. Is output to the moisture release controller 27. The moisture liquid level sensor 26 may be a contact type such as a float type or a non-contact type such as a capacitance type.

水分液面センサ26は油冷式空気圧縮機1内(例えば、油分離回収器3内)の水分量を検出するために設けられている。油冷式空気圧縮機1内の水分量を検出は、水分液面センサ26に代えて、油分離回収器3内の潤滑油に含まれる水分量(相対水分量)を測定するように設けられた水分量センサにより行ってもよい。水分量センサとしては、公知の静電容量式のものを採用できる。水分量センサで測定された水分量は水分放出制御部27に出力される。なお、水分液面センサ26を水分量センサに置き換え可能であることは、他の実施形態においても同様である。そのため、以降の実施形態でのこの点についての説明は、特に必要な場合を除いて省略する。   The moisture liquid level sensor 26 is provided to detect the amount of moisture in the oil-cooled air compressor 1 (for example, in the oil separator / collector 3). The detection of the amount of water in the oil-cooled air compressor 1 is provided so as to measure the amount of water (relative water content) contained in the lubricating oil in the oil separator / collector 3 instead of the water level sensor 26. It may be performed by a moisture sensor. As the moisture sensor, a known capacitance type sensor can be used. The moisture amount measured by the moisture amount sensor is output to the moisture release control unit 27. In addition, it is the same also in other embodiment that the water | moisture-content liquid level sensor 26 can be substituted to a moisture content sensor. Therefore, the description of this point in the following embodiments is omitted unless particularly necessary.

水分放出制御部27は、水分液面センサ26から入力される水分液面高さに応じて電磁弁24の開閉状態を制御する。   The moisture release control unit 27 controls the open / close state of the electromagnetic valve 24 in accordance with the moisture level level input from the moisture level sensor 26.

具体的には、水分放出制御部27は、水分液面センサ26から入力される水分液面高さの測定値が、予め定められた設定値(第1の設定値)に達すると電磁弁24を一時的に閉弁状態から開弁状態に切り換える。この設定値は、油冷式空気圧縮機1内(本実施形態では油分離回収器3内)の水分量が多いと判断できる値に設定されている。   Specifically, when the measured value of the moisture level input from the moisture level sensor 26 reaches a predetermined set value (first set value), the moisture release controller 27 sets the solenoid valve 24. Is temporarily switched from the closed state to the open state. This set value is set to a value at which it can be determined that the amount of water in the oil-cooled air compressor 1 (in the present embodiment, the oil separation / recovery unit 3) is large.

電磁弁24が閉弁状態から開弁状態に切り換えられると、開放流路23を介して油分離回収器3内の空間と大気が連通する。つまり、油分離回収器3内の空間が大気開放される。この大気開放により油分離回収器3内の空間が減圧される。その結果、油分回収器3内において水分が膨張し、圧縮空気と共に大気に放出される。圧縮空気と共に大気に放出されることで、油分離回収器3内の潤滑油から水分が分離される。   When the electromagnetic valve 24 is switched from the closed state to the open state, the space in the oil separation and recovery device 3 communicates with the atmosphere via the open flow path 23. That is, the space in the oil separator / collector 3 is opened to the atmosphere. The space in the oil separator / recovery unit 3 is depressurized by opening to the atmosphere. As a result, moisture expands in the oil content collector 3 and is released to the atmosphere together with the compressed air. By being released into the atmosphere together with the compressed air, moisture is separated from the lubricating oil in the oil separator / collector 3.

電磁弁24の開弁状態は、効果的に水分を排出できる程度に継続される。例えば、水分放出制御部27は、予め定められた一定時間だけ電磁弁24の開弁状態を継続させてもよい。また、水分放出制御部27は、水分液面センサ26から入力される水分液面高さの測定値が予め設定された設定値(第1の設定値より低水位である第2の設定値)に達するまで、電磁弁24の開弁状態を継続させてもよい。   The open state of the electromagnetic valve 24 is continued to such an extent that moisture can be effectively discharged. For example, the moisture release control unit 27 may continue the open state of the electromagnetic valve 24 for a predetermined time. In addition, the moisture release control unit 27 sets a preset value (the second set value that is lower than the first set value) in which the measured value of the moisture level input from the moisture level sensor 26 is set. The valve open state of the electromagnetic valve 24 may be continued until the value is reached.

前述のように水分液面センサ26に代えて水分量センサを採用する場合、水分放出制御部27は、水分量センサにより測定される水分量(相対水分量)が予め定めた設定値(例えば10%)に達すると、電磁弁24を一時的に閉弁状態から開弁状態に切り換える。水分放出制御部27は、予め定められた一定時間だけ電磁弁24の開弁状態を継続させてもよい。また、水分量センサにより測定される水分量が予め設定された別の設定値(例えば10%より低い特定の値)に低下するまで、電磁弁24の開弁状態を継続させてもよい。   As described above, when a moisture amount sensor is used instead of the moisture liquid level sensor 26, the moisture release control unit 27 sets a predetermined amount (for example, 10) of the moisture amount (relative moisture amount) measured by the moisture amount sensor. %), The solenoid valve 24 is temporarily switched from the closed state to the open state. The moisture release control unit 27 may continue the open state of the electromagnetic valve 24 for a predetermined time. Further, the open state of the electromagnetic valve 24 may be continued until the amount of moisture measured by the moisture amount sensor decreases to another preset value (for example, a specific value lower than 10%).

第16実施形態のその他の構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the sixteenth embodiment are the same as those of the first embodiment.

(第17実施形態)
図17は本発明の第17実施形態に係る油冷式空気圧縮機1を示す。本実施形態では、第16実施形態の水分液面センサ26(図16参照)に代えて、2つの温度センサ28,29を備える。言い換えれば、本実施形態における水分放出制御部27は、第16実施形態と異なる手段で、油冷式空気圧縮機1内(例えば、油分離回収器3内)の潤滑油に含まれる水分量(相対水分量)が多いか否かを判断する。
(17th Embodiment)
FIG. 17 shows an oil-cooled air compressor 1 according to a seventeenth embodiment of the present invention. In the present embodiment, two temperature sensors 28 and 29 are provided in place of the moisture liquid level sensor 26 (see FIG. 16) of the sixteenth embodiment. In other words, the moisture release control unit 27 in the present embodiment is a means different from that in the sixteenth embodiment, and the amount of moisture contained in the lubricating oil in the oil-cooled air compressor 1 (for example, in the oil separation / recovery unit 3) ( It is determined whether the relative water content is large.

一方の温度センサ28は、圧縮機本体2の吐出口2dから吐出される圧縮空気の温度である吐出温度を直接又は間接的に測定し、測定した吐出温度を水分放出制御部27に出力する。他方の温度センサ29と、圧縮機本体2の吸込口2cから吸入される空気の温度である吸込温度を直接又は間接的に測定し、測定した吸込温度を水分放出制御部27に出力する。   One temperature sensor 28 directly or indirectly measures the discharge temperature, which is the temperature of the compressed air discharged from the discharge port 2 d of the compressor body 2, and outputs the measured discharge temperature to the moisture release control unit 27. The suction temperature, which is the temperature of the air sucked from the other temperature sensor 29 and the suction port 2 c of the compressor body 2, is measured directly or indirectly, and the measured suction temperature is output to the moisture release controller 27.

水分放出制御部27は、温度センサ28により測定された吐出温度と温度センサ29により測定された吸込温度との温度差、圧縮機本体2の吐出量、及び圧縮機本体2の運転時間(コントローラ19が備えるタイマ31により計時される)とに基づいて、油分離回収器3内の水分量(凝縮水量)を推定ないし計算する。また、水分放出制御部27は、計算された水分量が予め定めた設定値を超えると、電磁弁24を一時的に閉弁状態から開弁状態に切り換える。水分放出制御部27は、予め定められた一定時間だけ電磁弁24の開弁状態を継続させてもよい。また、水分放出制御部27は、計算される水分量が予め設定された別の設定値(例えば開弁の設定値よりも低い特定の値)に低下するまで、電磁弁24の開弁状態を継続させてもよい。   The moisture release control unit 27 includes a temperature difference between the discharge temperature measured by the temperature sensor 28 and the suction temperature measured by the temperature sensor 29, the discharge amount of the compressor body 2, and the operation time of the compressor body 2 (controller 19). The amount of water (condensed water amount) in the oil separator / recovery unit 3 is estimated or calculated on the basis of In addition, when the calculated amount of water exceeds a predetermined set value, the moisture release control unit 27 temporarily switches the electromagnetic valve 24 from the closed state to the opened state. The moisture release control unit 27 may continue the open state of the electromagnetic valve 24 for a predetermined time. In addition, the moisture release control unit 27 keeps the electromagnetic valve 24 open until the calculated amount of water drops to another preset value (for example, a specific value lower than the set value of the valve opening). It may be continued.

第17実施形態のその他の構成及び作用は、第16実施形態と同様である。   Other configurations and operations of the seventeenth embodiment are the same as those of the sixteenth embodiment.

(第18実施形態)
図18は本発明の第18実施形態に係る油冷式空気圧縮機1を示す。本実施形態では、第16実施形態の水分液面センサ26(図16参照)に代えて、電磁弁24が閉状態で維持されている時間を計時するタイマ32を備える。言い換えれば、本実施形態における水分放出制御部27は、第16実施形態と異なる手段で、油冷式空気圧縮機1内(例えば、油分離回収器3内)の油に含まれる水分量(相対水分量)が多いか否かを判断する。
(Eighteenth embodiment)
FIG. 18 shows an oil-cooled air compressor 1 according to an eighteenth embodiment of the present invention. In the present embodiment, instead of the moisture liquid level sensor 26 (see FIG. 16) of the sixteenth embodiment, a timer 32 is provided for measuring the time during which the electromagnetic valve 24 is maintained in the closed state. In other words, the moisture release control unit 27 in the present embodiment is a means different from that in the sixteenth embodiment, and the amount of water contained in the oil in the oil-cooled air compressor 1 (for example, in the oil separation and recovery unit 3) (relative Determine whether the amount of water) is large.

水分放出制御部27は、タイマ32により計時された電磁弁24が閉状態で維持されている時間が予め定められた設定時間(例えば10時間)に達すると、電磁弁24を一時的に閉弁状態から開弁状態に切り換える。水分放出制御部27は、例えば、予め定められた一定時間だけ電磁弁24の開弁状態を継続させる。   The moisture release control unit 27 temporarily closes the electromagnetic valve 24 when the time that the electromagnetic valve 24 measured by the timer 32 is maintained in a closed state reaches a predetermined set time (for example, 10 hours). Switch from state to valve open. For example, the moisture release control unit 27 continues the valve open state of the electromagnetic valve 24 for a predetermined time.

第18実施形態のその他の構成及び作用は、第16実施形態と同様である。   Other configurations and operations of the eighteenth embodiment are the same as those of the sixteenth embodiment.

(第19実施形態)
図19は本発明の第19実施形態に係る油冷式空気圧縮機1を示す。油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。
(Nineteenth embodiment)
FIG. 19 shows an oil-cooled air compressor 1 according to a nineteenth embodiment of the present invention. The oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c is equal to or lower than the dew point in the compressor body 2. In other words, the oil cooler 4 cools the lubricating oil supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point.

第16から第18実施形態(図16から図18)では、水分放出制御部27は、油冷式空気圧縮機1内(例えば、油分離回収器3内)の水分量に応じて、電磁弁24の開閉状態を制御している。これに対して、本実施形態における水分放出制御部27は、油冷式空気圧縮機1内の水分量に代えて、圧縮機本体2の吐出圧力に応じて電磁弁24の開閉状態を制御する。   In the sixteenth to eighteenth embodiments (FIGS. 16 to 18), the moisture release control unit 27 is a solenoid valve according to the amount of water in the oil-cooled air compressor 1 (for example, in the oil separation and recovery unit 3). The open / close state of 24 is controlled. On the other hand, the moisture release control unit 27 in the present embodiment controls the open / close state of the electromagnetic valve 24 according to the discharge pressure of the compressor body 2 instead of the amount of moisture in the oil-cooled air compressor 1. .

本実施形態では、圧縮機本体2の吐出口2dから吐出される圧縮空気の圧力を検出する圧力センサ33が設けられている。圧力センサ33は、検出した圧縮空気の圧力(吐出圧力)を水分放出制御部27に出力する。   In the present embodiment, a pressure sensor 33 that detects the pressure of the compressed air discharged from the discharge port 2d of the compressor body 2 is provided. The pressure sensor 33 outputs the detected pressure of compressed air (discharge pressure) to the moisture release control unit 27.

水分放出制御部27は、圧力センサ33が検出した吐出圧力が予め定められた設定値(第1の設定値)に達すると、電磁弁24を一時的に閉弁状態から開弁状態に切り換える。この設定値は、例えば、アンロード圧力や運転停止圧力に達したことを示す吐出圧力に設定される。   When the discharge pressure detected by the pressure sensor 33 reaches a predetermined set value (first set value), the moisture release control unit 27 temporarily switches the electromagnetic valve 24 from the closed state to the open state. This set value is set to, for example, a discharge pressure indicating that the unload pressure or the operation stop pressure has been reached.

電磁弁24が閉弁状態から開弁状態に切り換えられると、開放流路23を介して油分離回収器3内の空間と大気が連通。その結果、減圧された油分回収器3内において水分が膨張し、圧縮空気と共に大気に放出される。圧縮空気と共に大気に放出されることで、油分離回収器3内の水分が潤滑油から分離される。   When the electromagnetic valve 24 is switched from the closed state to the open state, the space in the oil separation and recovery device 3 communicates with the atmosphere via the open flow path 23. As a result, moisture expands in the decompressed oil content collector 3 and is released into the atmosphere together with the compressed air. The moisture in the oil separator / collector 3 is separated from the lubricating oil by being discharged into the atmosphere together with the compressed air.

電磁弁24の開弁状態は、効果的に水分を排出できる程度に継続される。例えば、水分放出制御部27は、予め定められた一定時間だけ電磁弁24の開弁状態を継続させてもよい。また、水分放出制御部27は、圧力センサ33から入力される吐出圧力の測定値が予め設定された設定値(第1の設定値より低圧である第2の設定値)に達するまで、電磁弁24の開弁状態を継続させてもよい。吐出圧力が増大したときに電磁弁24の開弁状態とすることで、減圧式の油水分離装置25での水分放出による外部負荷への影響を低減できる。   The open state of the electromagnetic valve 24 is continued to such an extent that moisture can be effectively discharged. For example, the moisture release control unit 27 may continue the open state of the electromagnetic valve 24 for a predetermined time. In addition, the moisture release control unit 27 operates until the measured value of the discharge pressure input from the pressure sensor 33 reaches a preset set value (second set value that is lower than the first set value). The 24 open states may be continued. By setting the solenoid valve 24 to the open state when the discharge pressure increases, the influence on the external load due to the release of moisture in the decompression type oil / water separator 25 can be reduced.

第19実施形態のその他の構成及び作用は、第16実施形態と同様である。   Other configurations and operations of the nineteenth embodiment are the same as those of the sixteenth embodiment.

(第20実施形態)
図20は本発明の第20実施形態に係る油冷式空気圧縮機1を示す。本実施形態における水分放出制御部27は、油冷式空気圧縮機1内(例えば、油分離回収器3内)の水分量と、圧縮機本体2の吐出圧力とに応じて電磁弁24の開閉状態を制御する。具体的には、本実施形態では、第16実施形態と同様の水分液面高さを検出する水分液面センサ26と、第19実施形態と同様の圧縮機本体2の吐出口2dから吐出される圧縮空気の圧力を検出する圧力センサ33とが設けられている。水分液面センサ26と圧力センサ33の検出値は、水分放出制御部27に出力される。
(20th embodiment)
FIG. 20 shows an oil-cooled air compressor 1 according to the twentieth embodiment of the present invention. In the present embodiment, the moisture release control unit 27 opens and closes the electromagnetic valve 24 according to the amount of moisture in the oil-cooled air compressor 1 (for example, in the oil separation and recovery unit 3) and the discharge pressure of the compressor body 2. Control the state. Specifically, in the present embodiment, the liquid is discharged from the water level sensor 26 that detects the same water level as in the 16th embodiment and the discharge port 2d of the compressor body 2 as in the 19th embodiment. And a pressure sensor 33 for detecting the pressure of the compressed air. The detection values of the moisture liquid level sensor 26 and the pressure sensor 33 are output to the moisture release control unit 27.

水分放出制御部27は、水分液面センサ26の検出値から水分量が多いと判断され、かつ圧力センサ33の検出値から圧縮機本体2の吐出圧力が増大していると判断される場合に、電磁弁24を一時的に閉弁状態から開弁状態に切り換える。電磁弁24の開弁状態は、例えば予め定められた一定時間継続される。また、水分液面センサ26と圧力センサ33の少なくとも一方の検出値に基づいて、電磁弁24の開弁状態から閉弁状態に切り換えてもよい。   The moisture release control unit 27 determines that the amount of moisture is large from the detection value of the moisture liquid level sensor 26 and determines that the discharge pressure of the compressor body 2 is increasing from the detection value of the pressure sensor 33. The solenoid valve 24 is temporarily switched from the closed state to the open state. The open state of the electromagnetic valve 24 is continued for a predetermined time, for example. Further, the solenoid valve 24 may be switched from the open state to the closed state based on the detected value of at least one of the moisture liquid level sensor 26 and the pressure sensor 33.

第17実施形態及び第18実施形態(図17,図18)も第19実施形態(図19)と組みあわせることができる。   The seventeenth and eighteenth embodiments (FIGS. 17 and 18) can also be combined with the nineteenth embodiment (FIG. 19).

第20実施形態のその他の構成及び作用は、第16実施形態と同様である。   Other configurations and operations of the twentieth embodiment are the same as those of the sixteenth embodiment.

(第21実施形態)
図21は本発明の第21実施形態に係る油冷式空気圧縮機1を示す。本実施形態は、第16実施形態の油冷式空気圧縮機1で、第1の給油流路7にコアレッサー式又は重力水槽式の油水分離装置5をさらに設けた構成である。言い換えれば、本実施形態では、コアレッサー式又は重力水槽式の油水分離装置5と減圧式の油水分離装置25が併用されている。第16実施形態と同様に、減圧式の油水分離装置25の電磁弁24の開閉状態は、水分液面センサ26からの入力等に応じて水分放出制御部27により制御される。
(21st Embodiment)
FIG. 21 shows an oil-cooled air compressor 1 according to a twenty-first embodiment of the present invention. In this embodiment, the oil-cooled air compressor 1 according to the sixteenth embodiment is configured such that a coalescer type or gravity water tank type oil / water separator 5 is further provided in the first oil supply passage 7. In other words, in this embodiment, the coalescer type or gravity water tank type oil / water separator 5 and the decompression type oil / water separator 25 are used in combination. As in the sixteenth embodiment, the open / close state of the electromagnetic valve 24 of the decompression type oil / water separator 25 is controlled by the moisture release controller 27 in accordance with the input from the moisture level sensor 26.

コアレッサー式又は重力水槽式の油水分離装置5と減圧式の油水分離装置25を併用することで、コアレッサー式や重力水槽式の油水分離装置5の容量を小さくすること、あるいはその容量は変えずに油冷式空気圧縮機1の油水分離性能を高めることができる。   By using the coalescer type or gravity tank type oil / water separator 5 and the decompression type oil / water separator 25 in combination, the capacity of the coalescer type or gravity tank type oil / water separator 5 can be reduced, or the capacity can be changed. Therefore, the oil / water separation performance of the oil-cooled air compressor 1 can be enhanced.

第17から第20実施形態の油冷式空気圧縮機1についても、減圧式の油水分離装置25に加え、コアレッサー式又は重力水槽式の油水分離装置5をさらに設けてもよい。減圧式の油水分離装置25とコアレッサー式又は重力水槽式の油水分離装置5を併用する場合、油水分離装置5の配置箇所とそれに関連する潤滑油の経路の構成は、特に限定されない。つまり、第16実施形態から第20実施形態(減圧式の油水分離装置25を備える構成)のうちのいずれかと、第1から第15実施形態(コアレッサー式又は重力水槽式の油水分離装置5)のうちのいずれかを組み合わせてもよい。   Also in the oil-cooled air compressor 1 of the seventeenth to twentieth embodiments, a coalescer type or gravity water tank type oil / water separator 5 may be further provided in addition to the reduced pressure type oil / water separator 25. When the decompression type oil / water separator 25 and the coalescer type or gravity tank type oil / water separator 5 are used in combination, the arrangement of the oil / water separator 5 and the configuration of the path of the lubricating oil related thereto are not particularly limited. That is, any one of the sixteenth to twentieth embodiments (a configuration including the decompression-type oil / water separator 25) and the first to fifteenth embodiments (the coalescer type or gravity water tank type oil / water separator 5). Any of these may be combined.

第21実施形態のその他の構成及び作用は、第16実施形態と同様である。   Other configurations and operations of the twenty-first embodiment are the same as those of the sixteenth embodiment.

(第22実施形態)
図22は本発明の第22実施形態に係る油冷式空気圧縮機1を示す。本実施形態における油冷却器4は、圧縮機本体2への潤滑油の給油温度を調整可能である。具体的には、油冷却器4は、通常運転モードと昇温運転モードで運転可能である。
(Twenty-second embodiment)
FIG. 22 shows an oil-cooled air compressor 1 according to a twenty-second embodiment of the present invention. The oil cooler 4 in the present embodiment can adjust the oil supply temperature of the lubricating oil to the compressor body 2. Specifically, the oil cooler 4 can be operated in a normal operation mode and a temperature raising operation mode.

通常運転モード時の油冷却器4は、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となる温度に潤滑油を冷却する。言い換えると、通常運転モード時の油冷却器4は、圧縮機本体2の吐出温度が露点以下となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。   In the normal operation mode, the oil cooler 4 cools the lubricating oil to a temperature at which the air sucked from the suction port 2 c becomes a dew point or less in the compressor body 2. In other words, the oil cooler 4 in the normal operation mode is lubricated to be supplied to the compressor main body 2 through the first oil supply passage 7 so that the discharge temperature of the compressor main body 2 becomes the oil supply temperature that is not more than the dew point. Cool the oil.

昇温運転モード時の油冷却器4は、油分離回収器3内の潤滑油の温度が露点以上の温度(例えば80℃)となる給油温度となるように、第1の給油流路7により圧縮機本体2へ給油される潤滑油を冷却する。   The oil cooler 4 in the temperature raising operation mode is provided by the first oil supply passage 7 so that the temperature of the lubricating oil in the oil separation / recovery device 3 becomes the oil supply temperature at which the temperature is higher than the dew point (for example, 80 ° C.). The lubricating oil supplied to the compressor body 2 is cooled.

通常運転モードから昇温運転モードへの切り換えは、油冷却器4の冷却能力を一時的に低下させることで実現できる。つまり、水冷式の油冷却器4であれば、冷却水の流路に設けた弁の開度を通常運転時よりも小さくするように制御することにより、油冷却器4の冷却能力を一時的に低下させて潤滑油の温度を一時的に高めることができる。また、ファン冷却式の油冷却器4であれば、ファンの回転数を通常運転時よりも低くするように制御することにより、油冷却器4の冷却能力を一時的に低下させて潤滑油の温度を一時的に高めることができる。   Switching from the normal operation mode to the heating operation mode can be realized by temporarily reducing the cooling capacity of the oil cooler 4. In other words, in the case of the water-cooled oil cooler 4, the cooling capacity of the oil cooler 4 is temporarily controlled by controlling the opening degree of the valve provided in the flow path of the cooling water to be smaller than that during normal operation. The temperature of the lubricating oil can be temporarily increased. Further, in the case of the fan-cooled oil cooler 4, the cooling capacity of the oil cooler 4 is temporarily reduced by controlling the fan speed to be lower than that during normal operation, so that the lubricating oil The temperature can be increased temporarily.

第1から第15実施形態の油冷式空気圧縮機1は、コアレッサー式又は重力水槽式の油水分離装置5を備える。これに対し、本実施形態では、昇温式の油水分離装置35を備える。   The oil-cooled air compressor 1 of the first to fifteenth embodiments includes a coalescer type or gravity water tank type oil / water separator 5. On the other hand, in the present embodiment, a temperature rising type oil / water separator 35 is provided.

昇温式の油水分離装置35は、前述のように通常運転モードと昇温運転モードで運転可能な油冷却器4と、第16実施形態(図16)と同様の水分液面センサ26と、第17実施形態(図17)と同様の温度センサ28と、昇温制御部34とを備える。温度センサ28は圧縮機本体2の吐出口2dから吐出される圧縮空気の温度(吐出温度)に基づいて油分離回収器3内の潤滑油の温度を間接的に測定し、昇温制御部34に出力する。水分液面センサ26は、水分量として油分離回収器3内の水分液面高さを検出し、昇温制御部34に出力する。本実施形態では、昇温制御部34は、コントローラ19に設けられている。   As described above, the temperature rising type oil / water separator 35 includes the oil cooler 4 that can be operated in the normal operation mode and the temperature increasing operation mode, the water level sensor 26 similar to that in the sixteenth embodiment (FIG. 16), A temperature sensor 28 similar to that in the seventeenth embodiment (FIG. 17) and a temperature rise control unit 34 are provided. The temperature sensor 28 indirectly measures the temperature of the lubricating oil in the oil separation / recovery unit 3 based on the temperature (discharge temperature) of the compressed air discharged from the discharge port 2d of the compressor body 2, and the temperature increase control unit 34. Output to. The moisture liquid level sensor 26 detects the moisture liquid level in the oil separator / recovery unit 3 as the amount of moisture and outputs the detected moisture level to the temperature rise control unit 34. In the present embodiment, the temperature increase control unit 34 is provided in the controller 19.

昇温制御部34は、水分液面センサ26から入力される水分液面高さと、温度センサ28から入力される吐出温度とを用いて、油冷却器4を制御する。   The temperature increase control unit 34 controls the oil cooler 4 using the moisture liquid level height input from the moisture liquid level sensor 26 and the discharge temperature input from the temperature sensor 28.

具体的には、昇温制御部34は水分液面センサ26から入力される水分液面高さの測定値が、予め定められた設定値(第1の設定値)に達した場合、つまり油冷式圧縮機1内の水分量が多いと判断される場合、油冷却器4を一時的に通常モードから昇温運転モードに切り換える。油冷却器4が昇温運転モードとなると、圧縮機本体2への給油温度が上昇し、油分離回収器3内の潤滑油の温度が露点以上の温度(例えば80℃)となる。その結果、油分離回収器3内の水分が蒸発し、油分離回収器3内で油から分離された圧縮空気と共に出口3aから下流側へ送られる。下流側には、図示しないドライヤが設けられており、このドライヤで圧縮空気から水分が除去される。   Specifically, the temperature rise control unit 34 determines that the measured value of the moisture liquid level input from the moisture liquid level sensor 26 has reached a predetermined set value (first set value), that is, oil When it is determined that the amount of water in the cold compressor 1 is large, the oil cooler 4 is temporarily switched from the normal mode to the heating operation mode. When the oil cooler 4 enters the temperature raising operation mode, the oil supply temperature to the compressor body 2 rises, and the temperature of the lubricating oil in the oil separation / recovery device 3 becomes a temperature higher than the dew point (for example, 80 ° C.). As a result, the water in the oil separator / collector 3 evaporates and is sent to the downstream side from the outlet 3a together with the compressed air separated from the oil in the oil separator / collector 3. A dryer (not shown) is provided on the downstream side, and moisture is removed from the compressed air by this dryer.

昇温制御部34は、水分量が多いと判断した際に圧縮機本体2内に供給される油の温度を一時的に高め、油冷却器4を昇温運転モードとし、油分離回収器3内の潤滑油の温度を一時的に露点以上の温度(例えば80℃)にする。しかし、昇温制御部34は、油冷式空気圧縮機1の通常運転の大部分で、油冷却器4を通常運転モードとし、圧縮機本体2の吐出温度を露点以下とする。その結果、吐出空気量の増加等による性能向上を図ることができ、省エネルギ性が向上する。   The temperature increase control unit 34 temporarily increases the temperature of the oil supplied into the compressor body 2 when it is determined that the amount of moisture is large, the oil cooler 4 is set in the temperature increase operation mode, and the oil separator / collector 3 The temperature of the lubricating oil inside is temporarily set to a temperature above the dew point (for example, 80 ° C.). However, the temperature increase control unit 34 sets the oil cooler 4 to the normal operation mode and sets the discharge temperature of the compressor body 2 to the dew point or less in most of the normal operation of the oil-cooled air compressor 1. As a result, it is possible to improve performance by increasing the amount of discharged air, and energy saving is improved.

昇温制御部34は、昇温運転モード中、温度センサ28から入力された吐出温度の測定値に基づいて油冷却器4の冷却力を調整する。具体的には、昇温制御部34は、吐出温度の測定値が上昇する程、油冷却器4の冷却力を高くする。例えば、水冷式の油冷却器4の場合、吐出温度の測定値が上昇する程、冷却水の流路に設けた弁の開度を大きく設定される。また、ファン冷却式の油冷却器4であれば、吐出温度の測定値が上昇する程、ファンの回転数を高く設定される。このようなフィードバック制御を行うことで、油分離回収器3内の潤滑油の温度が過度に上昇するのを防止できる。   The temperature increase control unit 34 adjusts the cooling power of the oil cooler 4 based on the discharge temperature measurement value input from the temperature sensor 28 during the temperature increase operation mode. Specifically, the temperature increase control unit 34 increases the cooling power of the oil cooler 4 as the measured value of the discharge temperature increases. For example, in the case of the water-cooled oil cooler 4, the degree of opening of the valve provided in the flow path of the cooling water is set larger as the measured value of the discharge temperature increases. In the case of the fan-cooled oil cooler 4, the fan rotation speed is set higher as the discharge temperature measurement value increases. By performing such feedback control, it is possible to prevent the temperature of the lubricating oil in the oil separator / collector 3 from rising excessively.

本実施形態のように昇温式の油水分離装置35を単独で使用する場合、圧縮空気の水分を除去するドライヤを設置した際に、その冷却能力をより小さいものとすることはできない。しかし、昇温式の油水分離装置35には、通常の油冷式空気圧縮機が備える既存構成を多く利用して構成できるので、簡単な構成で油水分離を実現できるという利点がある。   When the temperature rising type oil / water separator 35 is used alone as in this embodiment, when a dryer for removing moisture from the compressed air is installed, the cooling capacity cannot be reduced. However, since the temperature rising type oil / water separator 35 can be configured using many existing configurations of a normal oil-cooled air compressor, there is an advantage that oil / water separation can be realized with a simple configuration.

水分液面センサ26に代えて、油冷式空気圧縮機1内(例えば、油分離回収器3内)の潤滑油に含まれる水分量(相対水分量)を測定するように設けられた水分量センサを採用できる。この場合、水分量センサにより測定される水分量が予め定めた設定値(例えば10%)に達すると、油冷却器4が一時的に通常運転モードから昇温運転モードに切り換えられる。   Instead of the water level sensor 26, the amount of water provided to measure the amount of water (relative water content) contained in the lubricating oil in the oil-cooled air compressor 1 (for example, in the oil separator / collector 3). Sensors can be used. In this case, when the amount of moisture measured by the moisture amount sensor reaches a predetermined set value (for example, 10%), the oil cooler 4 is temporarily switched from the normal operation mode to the heating operation mode.

また、水分液面センサ26に代えて、第17実施形態(図17)のように、測定された吐出温度と測定された吸込温度との温度差、圧縮機本体2の吐出量、及び圧縮機本体2の運転時間とに基づいて、油分離回収器3内の水分量を計算してもよい。この場合、計算された水分量が予め定めた設定値(例えば10%)に達すると、油冷却器4が一時的に通常運転モードから昇温運転モードに切り換えられる。   Further, instead of the moisture liquid level sensor 26, as in the seventeenth embodiment (FIG. 17), the temperature difference between the measured discharge temperature and the measured suction temperature, the discharge amount of the compressor body 2, and the compressor Based on the operation time of the main body 2, the amount of water in the oil separation and recovery device 3 may be calculated. In this case, when the calculated water content reaches a predetermined set value (for example, 10%), the oil cooler 4 is temporarily switched from the normal operation mode to the heating operation mode.

さらに、タイマのカウントが昇温運転モードでの制御を脱した際のカウントクリア時点から予め設定された設定時間(例えば10時間)を経過したときに、水分量が多いと判断して一時的に通常運転モードから昇温運転モードに切り換えてもよい。   Further, when a preset time (for example, 10 hours) elapses from the count clearing time when the timer count is removed from the temperature rising operation mode, it is temporarily determined that the amount of moisture is large. The normal operation mode may be switched to the temperature raising operation mode.

昇温制御部34は、圧縮機本体2の吐出圧力が増大した際に、油水分離装置35を一時的に通常運転モードから昇温運転モードに切り換えてもよい。また、昇温制御部34は、油冷式空気圧縮機1内(例えば、油分離回収器3内)の水分量が多いと判断され、かつ圧縮機本体2の吐出圧力が増大していると判断される際に、油水分離装置4を一時的に通常運転モードから昇温運転モードに切り換えてもよい。   The temperature increase control unit 34 may temporarily switch the oil / water separator 35 from the normal operation mode to the temperature increase operation mode when the discharge pressure of the compressor body 2 increases. Further, the temperature rise control unit 34 determines that the amount of water in the oil-cooled air compressor 1 (for example, in the oil separation / recovery unit 3) is large and the discharge pressure of the compressor body 2 is increased. When the determination is made, the oil / water separator 4 may be temporarily switched from the normal operation mode to the temperature raising operation mode.

第22実施形態のその他の構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the twenty-second embodiment are the same as those of the first embodiment.

(第23実施形態)
図23は本発明の第23実施形態に係る油冷式空気圧縮機1を示す。本実施形態では、第22実施形態の温度センサ28(吐出温度を検出)に代えて、油分離回収器3内の潤滑油の温度(油温)を測定する油温度センサ36を備える。
(23rd Embodiment)
FIG. 23 shows an oil-cooled air compressor 1 according to a twenty-third embodiment of the present invention. In the present embodiment, an oil temperature sensor 36 that measures the temperature (oil temperature) of the lubricating oil in the oil separator / collector 3 is provided instead of the temperature sensor 28 (detecting the discharge temperature) of the twenty-second embodiment.

昇温制御部34は、昇温運転モード中、油温度センサ36から入力された油分離回収器3内の油温の測定値に基づいて油冷却器4の冷却力を調整する。具体的には、昇温制御部34は、油温の測定値が上昇する程、油冷却器4の冷却力を高くする。例えば、水冷式の油冷却器4の場合、油温の測定値が上昇する程、冷却水の流路に設けた弁の開度を大きく設定される。また、ファン冷却式の油冷却器4であれば、油温の測定値が上昇する程、ファンの回転数が高く設定される。このようなフィードバック制御を行うことで、油分離回収器3内の潤滑油の温度が過度に上昇するのを防止できる。   The temperature increase control unit 34 adjusts the cooling power of the oil cooler 4 based on the measured value of the oil temperature in the oil separator / collector 3 input from the oil temperature sensor 36 during the temperature increase operation mode. Specifically, the temperature increase control unit 34 increases the cooling power of the oil cooler 4 as the measured value of the oil temperature increases. For example, in the case of the water-cooled oil cooler 4, the degree of opening of the valve provided in the flow path of the cooling water is set larger as the measured value of the oil temperature increases. Further, in the case of the fan-cooled oil cooler 4, the rotational speed of the fan is set higher as the measured value of the oil temperature increases. By performing such feedback control, it is possible to prevent the temperature of the lubricating oil in the oil separator / collector 3 from rising excessively.

第23実施形態のその他の構成及び作用は、第22実施形態と同様である。   Other configurations and operations of the twenty-third embodiment are the same as those of the twenty-second embodiment.

(第24実施形態)
図24は本発明の第24実施形態に係る油冷式空気圧縮機1を示す。本実施形態は、第22実施形態の油冷式空気圧縮機1で、第1の給油流路7にコアレッサー式又は重力水槽式の油水分離装置5をさらに設けた構成である。言い換えれば、本実施形態では、コアレッサー式又は重力水槽式の油水分離装置5と昇温式の油水分離装置35が併用されている。第22実施形態と同様に、減圧式の油水分離装置35における油冷却器4の通常運転モードと昇温運転モードの切り換えは、水分液面センサ26からの入力に応じて昇温制御装置34により制御される。
(24th Embodiment)
FIG. 24 shows an oil-cooled air compressor 1 according to a twenty-fourth embodiment of the present invention. In this embodiment, the oil-cooled air compressor 1 according to the twenty-second embodiment further includes a coalescer-type or gravity water tank-type oil-water separator 5 in the first oil supply passage 7. In other words, in this embodiment, the coalescer type or gravity water tank type oil / water separator 5 and the temperature rising type oil / water separator 35 are used in combination. As in the twenty-second embodiment, switching between the normal operation mode and the temperature increase operation mode of the oil cooler 4 in the decompression-type oil / water separator 35 is performed by the temperature increase control device 34 according to the input from the moisture liquid level sensor 26. Be controlled.

コアレッサー式又は重力水槽式の油水分離装置5と昇温式の油水分離装置35を併用することで、コアレッサー式や重力水槽式の油水分離装置5の容量を小さくすること、あるいはその容量は変えずに油冷式空気圧縮機1の油水分離性能を高めることができる。   By using the coalescer type or gravity tank type oil / water separator 5 and the temperature rising type oil / water separator 35 in combination, the capacity of the coalescer type or gravity tank type oil / water separator 5 is reduced, or the capacity is The oil-water separation performance of the oil-cooled air compressor 1 can be improved without changing.

昇温式の油水分離装置35とコアレッサー式又は重力水槽式の油水分離装置5を併用する場合、油水分離装置5の配置箇所とそれに関連する潤滑油の経路の構成は、特に限定されない。つまり、第22及び第23実施形態(昇温式の油水分離装置35を備える構成)のうちのいずれかと、第1から第15実施形態(コアレッサー式又は重力水槽式の油水分離装置5)のうちのいずれかを組み合わせてもよい。   When the temperature rising type oil / water separator 35 and the coalescer type / gravity water tank type oil / water separator 5 are used in combination, the arrangement of the oil / water separator 5 and the configuration of the lubricating oil path related thereto are not particularly limited. That is, according to any of the 22nd and 23rd embodiments (configuration including the temperature rising type oil / water separator 35) and the first to 15th embodiments (the coalescer type or gravity water tank type oil / water separator 5). Any one of them may be combined.

第24実施形態のその他の構成及び作用は、第22実施形態と同様である。   Other configurations and operations of the twenty-fourth embodiment are the same as those of the twenty-second embodiment.

(第25実施形態)
図25は本発明の第25実施形態に係る油冷式空気圧縮機1を示す。本実施形態は、第22実施形態の油冷機空気圧縮機1に、さらに減圧式の油水分離装置25(例えば図16参照)をさらに設けた構成である。言い換えれば、減圧式の油水分離装置25と昇温式の油水分離装置35が併用されている。第19実施形態と同様に、水分放出制御部27は圧力センサ33(圧縮機本体2の吐出圧力を検出)からの入力に応じて減圧式の油水分離装置25の電磁弁24の開閉状態を制御する。また、昇温式の油水分離装置35における油冷却器4の通常運転モードと昇温運転モードの切り換えは、圧力センサ28からの入力に応じて昇温制御部34により制御される。
(25th Embodiment)
FIG. 25 shows an oil-cooled air compressor 1 according to a twenty-fifth embodiment of the present invention. In the present embodiment, the oil-cooled air compressor 1 according to the twenty-second embodiment is further provided with a reduced-pressure oil-water separator 25 (see, for example, FIG. 16). In other words, the decompression type oil / water separator 25 and the temperature rising type oil / water separator 35 are used in combination. As in the nineteenth embodiment, the moisture release control unit 27 controls the open / close state of the electromagnetic valve 24 of the pressure-reducing oil / water separator 25 in accordance with an input from the pressure sensor 33 (detecting the discharge pressure of the compressor body 2). To do. In addition, switching between the normal operation mode and the temperature increase operation mode of the oil cooler 4 in the temperature increase type oil / water separator 35 is controlled by the temperature increase control unit 34 in accordance with an input from the pressure sensor 28.

減圧式の油水分離装置25を昇温式の油水分離装置35と併用することで、ドライヤの冷却能力をより小さいものとしながら、あるいはドライヤを不要としつつ、比較的に簡単な構成で油水分離性能を高めることができる。具体的には、減圧式の油水分離装置25と併用する際、外部負荷が低下して圧縮機本体2の吐出圧力(油分離回収器3内の圧力)が増大し、圧力センサ33が検出した圧力が予め定めた設定値に達した際(例えば、圧力センサでアンロード圧力や運転停止圧力に達したことを検出した際)に、昇温制御部34が、油冷却器4を一時的に高める昇温運転モードとして水分の蒸発を促進すると共に、水分放出制御部27が、電磁弁24を一時的に開弁することで水分の蒸発を促進することにより、油水分離性能を高めることができる。また、そのようにして蒸発した水分を、ドライヤの有無に関係なく油分離回収器3内から開放流路23を介して大気圧以下の空間へ開放(外部へ放出)することができる。   By using the decompression type oil / water separator 25 together with the temperature rising type oil / water separator 35, the oil / water separation performance can be achieved with a relatively simple configuration while reducing the cooling capacity of the dryer or eliminating the need for a dryer. Can be increased. Specifically, when used in combination with the pressure-reducing oil / water separator 25, the external load is reduced and the discharge pressure of the compressor body 2 (pressure in the oil separator / recoverer 3) is increased, which is detected by the pressure sensor 33. When the pressure reaches a predetermined set value (for example, when the pressure sensor detects that the unload pressure or the operation stop pressure has been reached), the temperature increase control unit 34 temporarily turns the oil cooler 4 on. As the temperature raising operation mode to be enhanced, the evaporation of moisture is promoted, and the moisture release control unit 27 temporarily opens the electromagnetic valve 24 to promote the evaporation of moisture, thereby improving the oil / water separation performance. . Further, the water thus evaporated can be released (released to the outside) from the oil separator / collector 3 to the space below the atmospheric pressure via the open flow path 23 regardless of the presence or absence of the dryer.

コントローラ19に、水分放出制御部27と昇温制御部34を設けると共に、電磁弁24を設けた開放流路23を備えることで、既存の油冷式空気圧縮機から本実施形態の油冷式空気圧縮機1を構成できる。この点で、油冷式空気圧縮機1は構成が比較的に簡単である。   The controller 19 is provided with the moisture release control unit 27 and the temperature increase control unit 34, and is provided with the open flow path 23 provided with the electromagnetic valve 24, so that the oil-cooled type of the present embodiment can be used from the existing oil-cooled air compressor. The air compressor 1 can be configured. In this respect, the oil-cooled air compressor 1 has a relatively simple configuration.

第25実施形態は、圧力センサ33からの入力に応じて電磁弁24の開閉状態を制御するように構成している。しかし、第16、第17、第18、及び第20実施形態と同様の態様で減圧式の油水分離装置25の電磁弁24の開閉状態を制御してもよい。   In the twenty-fifth embodiment, the open / close state of the electromagnetic valve 24 is controlled in accordance with an input from the pressure sensor 33. However, the open / close state of the electromagnetic valve 24 of the decompression type oil / water separator 25 may be controlled in the same manner as in the sixteenth, seventeenth, eighteenth and twentieth embodiments.

本実施形態において、コアレッサー式又は重力水槽式の油水分離装置5(例えば図1参照)をさらに設けてもよい。つまり、昇温式と減圧式の油水分離装置に、さらにコアレッサー式又は重力水槽式の油水分離装置を併用してもよい。例えば、図25において二点鎖線で、第1の給油経路7に油水分離装置5を設けた場合を示す。言い換えれば、図25において二点鎖線で示す油水分離装置5は、本実施形態と第3実施形態(図3)を組み合わせた場合を示す。本実施形態においてコアレッサー式又は重力水槽式の油水分離装置5をさらに設ける場合、油水分離装置5の配置箇所とそれに関連する潤滑油の経路に関する構成は、特に限定されない。つまり、本実施形態と第1実施形態(図1)、第2実施形態(図2)、及び第4から第15実施形態(図4から図15)のうちのいずれかを組み合わせてもよい。   In the present embodiment, a coalescer type or gravity water tank type oil / water separator 5 (see, for example, FIG. 1) may be further provided. That is, a coalescer type or gravity water tank type oil / water separator may be used in combination with the temperature rising type and pressure reducing type oil / water separators. For example, the case where the oil-water separator 5 is provided in the 1st oil supply path | route 7 is shown with a dashed-two dotted line in FIG. In other words, the oil-water separator 5 indicated by a two-dot chain line in FIG. 25 shows a case where the present embodiment and the third embodiment (FIG. 3) are combined. In the present embodiment, when a coalescer-type or gravity water tank-type oil / water separator 5 is further provided, the configuration relating to the location of the oil / water separator 5 and the route of the lubricating oil related thereto is not particularly limited. In other words, this embodiment may be combined with any of the first embodiment (FIG. 1), the second embodiment (FIG. 2), and the fourth to fifteenth embodiments (FIGS. 4 to 15).

第25実施形態のその他の構成及び作用は、第22実施形態と同様である。   Other configurations and operations of the twenty-fifth embodiment are the same as those of the twenty-second embodiment.

(第26実施形態)
図26は本発明の第26実施形態に係る油冷式空気圧縮機1を示す。上述の第22から第25実施形態では、昇温式の油水分離装置35は、通常運転モードと昇温運転モードで運転可能な油冷却器4と、水分液面センサ26と、温度センサ28又は36と、昇温制御部34とを備える。これに対して本実施形態では、圧縮機本体2のロータ(図27の符号2b参照)の駆動装置37の回転数をコントローラ19の昇温制御部34が制御することで、昇温式の油水分離装置35を構成している。本実施形態は、駆動装置37を制御対象とした点以外の構成及び作用については、第22から第25実施形態の何れかと同様とすることができる。そこで、本実施形態では、第22実施形態の制御対象を駆動装置37に置き換えたものを一例として説明する。
(26th Embodiment)
FIG. 26 shows an oil-cooled air compressor 1 according to a twenty-sixth embodiment of the present invention. In the twenty-second to twenty-fifth embodiments described above, the temperature rising type oil / water separator 35 includes the oil cooler 4 that can be operated in the normal operation mode and the temperature increasing operation mode, the moisture level sensor 26, the temperature sensor 28 or 36 and a temperature rise control unit 34. On the other hand, in the present embodiment, the temperature rise control unit 34 of the controller 19 controls the rotation speed of the drive device 37 of the rotor (see reference numeral 2b in FIG. A separation device 35 is configured. The present embodiment can be configured in the same manner as any of the twenty-second to twenty-fifth embodiments, except for the configuration in which the drive device 37 is a control target. Therefore, in the present embodiment, an example in which the control target of the twenty-second embodiment is replaced with the drive device 37 will be described.

駆動装置37(例えば電動モータ)は、通常運転モードと昇温運転モードとに運転状態を切り換え可能である。通常運転モードと昇温運転モードとの切り換えは、昇温制御部34によってインバータを介して駆動装置37の回転数を一時的に増加させることで実現できる。具体的には、つまり、駆動装置37は、圧縮機本体2のロータを回転駆動可能であり、昇温運転モードでは通常運転モードよりロータの回転数が高くなるよう制御される。   The drive device 37 (for example, an electric motor) can switch the operation state between a normal operation mode and a temperature raising operation mode. Switching between the normal operation mode and the temperature increase operation mode can be realized by temporarily increasing the rotational speed of the drive device 37 via the inverter by the temperature increase control unit 34. Specifically, in other words, the drive device 37 can rotate the rotor of the compressor body 2 and is controlled so that the rotational speed of the rotor is higher in the temperature raising operation mode than in the normal operation mode.

通常運転モードでは、駆動装置37の回転数は、油冷却器4で冷却された潤滑油によって、吸込口2cから吸引された空気が圧縮機本体2内で露点以下となるように設定される。   In the normal operation mode, the rotational speed of the drive device 37 is set so that the air sucked from the suction port 2c is below the dew point in the compressor body 2 by the lubricating oil cooled by the oil cooler 4.

運転状態が昇温運転モードであると、ロータの回転数を上昇することで圧縮機本体2の圧縮仕事量が増加し、圧縮機本体2の吐出温度が上昇する。この吐出温度の上昇により、油分離回収器3内の潤滑油の温度を一時的に露点以上の温度(例えば80℃)に高めることができる。その結果、油分離回収器3内の水分が蒸発し、油分離回収器3内で油から分離された圧縮空気と共に出口3aから下流側へ送られる。下流側には、図示しないドライヤが設けられており、このドライヤで圧縮空気から水分が除去される。言い換えれば、昇温モードでは、昇温制御部34は油分離回収器3内の潤滑油の温度が一時的に露点を上回る前記駆動装置の回転数となるように駆動装置37を制御する。   When the operation state is the temperature raising operation mode, the compression work of the compressor body 2 is increased by increasing the rotational speed of the rotor, and the discharge temperature of the compressor body 2 is increased. By this increase in the discharge temperature, the temperature of the lubricating oil in the oil separator / collector 3 can be temporarily raised to a temperature above the dew point (for example, 80 ° C.). As a result, the water in the oil separator / collector 3 evaporates and is sent to the downstream side from the outlet 3a together with the compressed air separated from the oil in the oil separator / collector 3. A dryer (not shown) is provided on the downstream side, and moisture is removed from the compressed air by this dryer. In other words, in the temperature raising mode, the temperature raising control unit 34 controls the driving device 37 so that the temperature of the lubricating oil in the oil separator / collector 3 temporarily becomes the rotational speed of the driving device above the dew point.

本実施形態では、コントローラ19の昇温制御部34は、第22実施形態と同様に、水分液面センサ26からの入力に応じて駆動装置37の通常運転モードと昇温運転モードの切り換えを制御している。具体的には、昇温制御部34は、水分液面センサ26から入力される水分液面高さの測定値が、予め定められた設定値(第1の設定値)に達した場合、つまり油冷式圧縮機1内の水分量が多いと判断される場合、駆動装置37を一時的に通常モードから昇温運転モードに切り換える。本実施形態においても、水分液面センサ26を水分量センサに置き換え可能である。   In the present embodiment, the temperature increase control unit 34 of the controller 19 controls switching between the normal operation mode and the temperature increase operation mode of the drive device 37 in accordance with the input from the moisture liquid level sensor 26 as in the twenty-second embodiment. doing. Specifically, the temperature increase control unit 34, when the measured value of the moisture liquid level input from the moisture liquid level sensor 26 reaches a predetermined set value (first set value), that is, When it is determined that the amount of moisture in the oil-cooled compressor 1 is large, the drive device 37 is temporarily switched from the normal mode to the temperature raising operation mode. Also in the present embodiment, the moisture liquid level sensor 26 can be replaced with a moisture amount sensor.

水分液面センサ26に代えて、第17実施形態(図17)のように、測定された吐出温度と測定された吸込温度との温度差、圧縮機本体2の吐出量、及び圧縮機本体2の運転時間とに基づいて、油分離回収器3内の水分量を計算してもよい。この場合、計算された水分量が予め定めた設定値(例えば10%)に達すると、駆動装置37が一時的に通常運転モードから昇温運転モードに切り換えられる。   Instead of the moisture liquid level sensor 26, as in the seventeenth embodiment (FIG. 17), the temperature difference between the measured discharge temperature and the measured suction temperature, the discharge amount of the compressor body 2, and the compressor body 2 The amount of water in the oil separator / recoverer 3 may be calculated based on the operation time of In this case, when the calculated water content reaches a predetermined set value (for example, 10%), the drive device 37 is temporarily switched from the normal operation mode to the temperature raising operation mode.

タイマのカウントが昇温運転モードでの制御を脱した際のカウントクリア時点から予め設定された設定時間(例えば10時間)を経過したときに、水分量が多いと判断して駆動装置37を一時的に通常運転モードから昇温運転モードに切り換えてもよい。   When a preset time (for example, 10 hours) elapses from the count clearing point when the timer count is removed from the temperature rising operation mode, it is determined that the amount of moisture is large, and the drive device 37 is temporarily Therefore, the normal operation mode may be switched to the temperature raising operation mode.

昇温制御部34は、圧縮機本体2の吐出口2dから吐出される圧縮空気の圧力を検出する圧力センサ(例えば図19の符号33参照)からの入力に応じて駆動装置37の通常運転モードと昇温運転モードの切り換えを制御してもよい。この場合、昇温数制御部34は、圧力センサ33が検出した吐出圧力が予め定められた設定値に達すると、駆動装置37を一時的に通常モードから昇温運転モードに切り換える。回転制御部38は、水分液面センサ26等の手段で検出した水分量と、圧力センサと両方からの入力に基づいて駆動装置37の通常運転モードと昇温運転モードの切り換えを制御してもよい。   The temperature increase control unit 34 is a normal operation mode of the drive device 37 in accordance with an input from a pressure sensor (for example, reference numeral 33 in FIG. 19) that detects the pressure of the compressed air discharged from the discharge port 2d of the compressor body 2. And switching of the heating operation mode may be controlled. In this case, when the discharge pressure detected by the pressure sensor 33 reaches a predetermined set value, the temperature increase number control unit 34 temporarily switches the drive device 37 from the normal mode to the temperature increase operation mode. The rotation control unit 38 controls the switching between the normal operation mode and the temperature raising operation mode of the drive device 37 based on the amount of moisture detected by means such as the moisture level sensor 26 and the input from both pressure sensors. Good.

なお、上述の実施形態の説明では説明を省略しているが、圧縮機本体2から吐出される圧縮空気の温度が露点以上であるか否かの判断に必要な露点の求め方については、特に限定されない。例えば、吐出直前あるいは直後における圧縮空気の圧力測定値及び温度測定値から求めても良く、油分離回収器内の圧縮空気の圧力測定値及び油分離回収器内の圧縮空気あるいは油の温度測定値から求めても良い。後者の場合、吐出口2dから油分離回収器までの圧損が実質的に無視できないときは、露点の算出に必要な圧力の値は油分離回収器内の圧力測定値に上記圧損を考慮して求めることができる。また、後者の場合、吐出口2dから油分離回収器までに生じる温度降下を踏まえ、露点の算出に必要な温度は、油分離回収器内の圧縮空気あるいは油の温度測定値に吐出後の放熱量(吐出流路を構成する配管類と油分離回収器からの放熱量)を考慮して求めることができる。   In addition, although description is abbreviate | omitted in description of the above-mentioned embodiment, especially about the method of calculating | requiring the dew point required for judgment whether the temperature of the compressed air discharged from the compressor main body 2 is more than a dew point. It is not limited. For example, the pressure measurement value and the temperature measurement value of the compressed air immediately before or immediately after the discharge may be obtained. The pressure measurement value of the compressed air in the oil separation and recovery unit and the temperature measurement value of the compressed air or oil in the oil separation and recovery unit You may ask for it. In the latter case, when the pressure loss from the discharge port 2d to the oil separation / recovery device is not substantially negligible, the pressure value necessary for calculating the dew point is determined by taking the pressure loss into consideration in the pressure measurement value in the oil separation / recovery device. Can be sought. In the latter case, based on the temperature drop that occurs from the discharge port 2d to the oil separator / recoverer, the temperature required for calculating the dew point depends on the measured temperature of the compressed air or oil in the oil separator / recoverer. It can be determined in consideration of the amount of heat (the amount of heat released from the pipes and oil separator / collector constituting the discharge flow path).

また、上述の実施形態の説明では説明を省略しているが、油分離回収器の底面に配管を接続する場合、油分離回収器の底部を球面状に形成して最下部に配管を接続することが望ましい。こうすることで水の混入の多い油を抜き出すことができる。   Moreover, although description is abbreviate | omitted in description of the above-mentioned embodiment, when connecting piping to the bottom face of an oil separation recovery device, the bottom part of an oil separation recovery device is formed in spherical shape, and piping is connected to the lowest part. It is desirable. By doing so, oil with much water contamination can be extracted.

また、上述の実施形態を説明する模式図においては、ロータ2b,2bを支持する軸受や、その軸受に対して油を供給する軸受給油ラインのような周知の構造は図示を省略されている。   Moreover, in the schematic diagram explaining the above-mentioned embodiment, illustration is abbreviate | omitted in the well-known structure like the bearing which supports rotor 2b, 2b and the bearing oil supply line which supplies oil with respect to the bearing.

また、開放流路は、大気圧以下の空間に連通することができるものが好ましい。開放通路を大気開放するものは、装置構成を複雑化しない点で特に好ましい。   The open channel is preferably one that can communicate with a space below atmospheric pressure. What opens an open channel | path to air | atmosphere is especially preferable at the point which does not complicate apparatus structure.

また、水分放出制御部と昇温制御部は、油冷式空気圧縮機1内の水分量が多いと判断した際に、電磁弁24を自動的に開放する乃至は自動的に昇温運転モードで油冷式空気圧縮機1の制御を開始するものに限定されない。例えば、油冷式空気圧縮機1内の水分量が多いと判断した際に、表示等でアラームを出すとともに、人の操作に基く電気信号を受けて、電磁弁24を開放させ乃至は昇温運転モードに切り換えて制御を開始するようにしてもよい。   In addition, when the moisture release control unit and the temperature increase control unit determine that the amount of water in the oil-cooled air compressor 1 is large, the solenoid valve 24 is automatically opened or the temperature increase operation mode is automatically set. However, the present invention is not limited to the one that starts the control of the oil-cooled air compressor 1. For example, when it is determined that the amount of water in the oil-cooled air compressor 1 is large, an alarm is given by a display or the like, and an electric signal based on a human operation is received to open the solenoid valve 24 or raise the temperature. Control may be started by switching to the operation mode.

また、上述の実施形態では、昇温式の油水分離装置35(昇温制御部)として、油分離回収器3内の潤滑油の温度を一時的に露点以上に制御するために、油冷却器4の冷却能力を一時的に低下させるものと、圧縮機本体2の圧縮仕事量を一時的に増加させるものとを例示した。しかし、昇温式の油水分離装置35(昇温制御部)はこれらに限定されない。例えば、油水分離装置は、油冷却器4の冷却能力及び圧縮機本体2の圧縮仕事量を適宜組み合わせて制御することで、油分離回収器3内の潤滑油の温度を一時的に露点以上に制御するよう構成されていてもよい。   Further, in the above-described embodiment, as the temperature rising type oil / water separation device 35 (temperature rising control unit), in order to temporarily control the temperature of the lubricating oil in the oil separation / recovery unit 3 to a dew point or higher, an oil cooler The one that temporarily decreases the cooling capacity of 4 and the one that temporarily increases the compression work of the compressor body 2 are exemplified. However, the temperature rising type oil / water separator 35 (temperature rising control unit) is not limited to these. For example, the oil / water separation device temporarily controls the temperature of the lubricating oil in the oil separation / recovery unit 3 to be above the dew point by appropriately combining and controlling the cooling capacity of the oil cooler 4 and the compression work of the compressor body 2. It may be configured to control.

1 油冷式空気圧縮機
2 圧縮機本体
2a ロータ室
2b ロータ
2c 吸込口
2d 吐出口
3 油分離回収器
3a 出口
4 油冷却器
5,25,35 油水分離装置
6 吐出流路
7 第1の給油流路
8 第2の給油流路
9 戻し流路
10,11,14 ポンプ
12 バイパス流路
13A,13B 開閉弁
15 循環流路
16,22 三方弁
17 バイパス給油流路
18 温度センサ
19 コントローラ
21,121 電磁弁
23 開放流路
24 電磁弁
26 水分液面センサ
27 水分放出制御部
28 温度センサ
29 温度センサ
31,32 タイマ
33 圧力センサ
34 昇温制御部
36 油温センサ
37 駆動装置
DESCRIPTION OF SYMBOLS 1 Oil-cooled air compressor 2 Compressor body 2a Rotor chamber 2b Rotor 2c Suction port 2d Discharge port 3 Oil separator / collector 3a Outlet 4 Oil cooler 5, 25, 35 Oil / water separator 6 Discharge flow path 7 First oil supply Flow path 8 Second oil supply flow path 9 Return flow path 10, 11, 14 Pump 12 Bypass flow path 13A, 13B On-off valve 15 Circulation flow path 16, 22 Three-way valve 17 Bypass oil supply flow path 18 Temperature sensor 19 Controller 21, 121 Solenoid valve 23 Open flow path 24 Solenoid valve 26 Water level sensor 27 Water release controller 28 Temperature sensor 29 Temperature sensor 31, 32 Timer 33 Pressure sensor 34 Temperature controller 36 Oil temperature sensor 37 Drive device

Claims (42)

吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、
前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、
前記油分離回収器と前記圧縮機本体の吸込側とを接続する第1の給油流路と、
前記第1の給油流路に設けられ、前記空気が前記圧縮機本体内で露点以下となる給油温度に前記潤滑油を冷却する油冷却器と
を備える、油冷式空気圧縮機。
An oil-cooled compressor body that compresses and discharges the sucked air; and
An oil separation and recovery device for separating and recovering the lubricating oil from the compressed air discharged from the compressor body;
A first oil supply passage that connects the oil separator and the suction side of the compressor body;
An oil-cooled air compressor, comprising: an oil cooler that is provided in the first oil supply passage and that cools the lubricating oil to an oil supply temperature at which the air is equal to or lower than a dew point in the compressor body.
空気圧縮時に前記圧縮機本体内で発生させた水分を前記圧縮機本体外で前記潤滑油と分離する油水分離装置をさらに備える、請求項1に記載の油冷式空気圧縮機。   2. The oil-cooled air compressor according to claim 1, further comprising an oil-water separator that separates moisture generated in the compressor body during air compression from the lubricating oil outside the compressor body. 前記油水分離装置は、コアレッサー式の油水分離装置である、請求項2に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to claim 2, wherein the oil-water separator is a coalescer oil-water separator. 前記油水分離装置は、重力水槽式の油水分離装置である、請求項2に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to claim 2, wherein the oil-water separator is a gravity water tank type oil-water separator. 前記油水分離装置は、前記圧縮機本体の吐出口と前記油分離回収器とを接続する吐出流路に設けられている、請求項2に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to claim 2, wherein the oil / water separator is provided in a discharge passage that connects a discharge port of the compressor body and the oil separator / collector. 前記油水分離装置は、前記油分離回収器内に設けられている、請求項2に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to claim 2, wherein the oil / water separator is provided in the oil separator / recovery unit. 前記油水分離装置は、前記第1の給油流路に設けられている、請求項2に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to claim 2, wherein the oil / water separator is provided in the first oil supply passage. 前記第1の給油流路とは別に前記油分離回収器と前記圧縮機本体とを接続する第2の給油流路を備え、
前記油水分離装置は、前記第2の給油流路に設けられている、請求項2に記載の油冷式空気圧縮機。
In addition to the first oil supply flow path, a second oil supply flow path for connecting the oil separator / collector and the compressor body is provided,
The oil-cooled air compressor according to claim 2, wherein the oil-water separator is provided in the second oil supply passage.
前記油水分離装置が設けられた前記第2の給油流路は、前記油分離回収器から前記圧縮機本体の吸込口に給油する流路である、請求項8に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to claim 8, wherein the second oil supply passage provided with the oil / water separator is a passage for supplying oil from the oil separation / recovery device to a suction port of the compressor body. . 前記油水分離装置が設けられた前記第2の給油流路は、前記油分離回収器から前記圧縮機本体のロータ室の閉じ込み直後の空間部に給油する流路である、請求項8に記載の油冷式空気圧縮機。   The said 2nd oil supply flow path in which the said oil-water separation apparatus was provided is a flow path which supplies oil to the space part immediately after closure of the rotor chamber of the said compressor main body from the said oil separation collection | recovery device. Oil-cooled air compressor. 前記油水分離装置が設けられた前記第2の給油流路は、前記油分離回収器から前記圧縮機本体のロータに給油する流路である、請求項8に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to claim 8, wherein the second oil supply passage provided with the oil / water separator is a passage for supplying oil from the oil separation / recovery device to a rotor of the compressor body. 前記油水分離装置が設けられた前記第2の給油流路は、前記油分離回収器から前記圧縮機本体のロータ室の吐出口直前の空間部に給油する流路である、請求項8に記載の油冷式空気圧縮機。   The said 2nd oil supply flow path in which the said oil-water separation apparatus was provided is a flow path which supplies oil to the space part just before the discharge outlet of the rotor chamber of the said compressor main body from the said oil separation collection | recovery device. Oil-cooled air compressor. 前記第1の給油流路とは別に前記油分離回収器と前記圧縮機本体の吐出口の直後の流路とを接続する戻し流路と、
前記戻し流路に設けられ、前記油分離回収器から前記圧縮機本体の吐出口の直後の流路に向けて前記潤滑油を圧送するポンプと
を備え、
前記油水分離装置は、前記戻し流路に設けられている、請求項2に記載の油冷式空気圧縮機。
In addition to the first oil supply flow path, a return flow path that connects the oil separation and recovery device and a flow path immediately after the discharge port of the compressor body;
A pump that is provided in the return flow path and pumps the lubricating oil from the oil separation and recovery device toward the flow path immediately after the discharge port of the compressor body,
The oil-cooled air compressor according to claim 2, wherein the oil-water separator is provided in the return flow path.
前記油分離回収器側から前記油冷却器を迂回して前記第1の給油流路に合流するバイパス流路を備え、
前記油水分離装置は、前記バイパス流路に設けられている、請求項2に記載の油冷式空気圧縮機。
A bypass flow path that bypasses the oil cooler from the oil separation and recovery side and joins the first oil supply flow path;
The oil-cooled air compressor according to claim 2, wherein the oil / water separator is provided in the bypass flow path.
前記油水分離装置が設けられた前記バイパス流路は、前記油分離回収器と前記油冷却器より下流側の前記第1の給油流路とを接続する、請求項14に記載の油冷式空気圧縮機。   The oil-cooled air according to claim 14, wherein the bypass flow path provided with the oil / water separator connects the oil separation / recovery unit and the first oil supply flow path on the downstream side of the oil cooler. Compressor. 前記油水分離装置が設けられた前記バイパス流路は、前記油冷却器より上流側の前記第1の給油流路と前記油冷却器より下流側の前記第1の給油流路とを接続する、請求項14に記載の油冷式空気圧縮機。   The bypass channel provided with the oil / water separator connects the first oil supply channel upstream of the oil cooler and the first oil supply channel downstream of the oil cooler, The oil-cooled air compressor according to claim 14. 前記油分離回収器からポンプを経て油分離回収器に戻る循環流路を備え、
前記油水分離装置は、前記循環流路に設けられている、請求項2に記載の油冷式空気圧縮機。
A circulation channel that returns from the oil separation and recovery device to the oil separation and recovery device via a pump,
The oil-cooled air compressor according to claim 2, wherein the oil-water separator is provided in the circulation channel.
前記油水分離装置の前後に流路を遮断可能な開閉弁がそれぞれ設けられている、請求項8から請求項17のいずれか1項に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to any one of claims 8 to 17, wherein an on-off valve capable of shutting off the flow path is provided before and after the oil-water separator. 前記圧縮機本体から吐出される圧縮空気の温度が露点以下の所定温度となるように、圧縮機本体への給油温度を調節する給油温度調整機構を備える、請求項1から請求項18のいずれか1項に記載の油冷式空気圧縮機。   19. The oil supply temperature adjustment mechanism for adjusting the oil supply temperature to the compressor main body so that the temperature of the compressed air discharged from the compressor main body becomes a predetermined temperature equal to or lower than a dew point. The oil-cooled air compressor according to item 1. 前記第1の給油流路の前記油冷却器より上流側に設けられた三方弁と、
前記三方弁から前記圧縮機本体の吸込側に接続されたバイパス給油流路と、
前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する温度センサと、
前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点以上であると判断すれば、前記油冷却器を通過して前記第1の給油流路から前記圧縮機本体へ潤滑油が供給されるように前記三方弁を切り換え、前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点未満であると判断すれば、前記油冷却器を通過することなく前記バイパス給油流路から前記圧縮機本体へ潤滑油が供給されるように前記三方弁を切り換える、コントローラと
を備える、請求項1から請求項18のいずれか1項に記載の油冷式空気圧縮機。
A three-way valve provided upstream of the oil cooler in the first oil supply passage;
A bypass oil supply passage connected from the three-way valve to the suction side of the compressor body;
A temperature sensor that directly or indirectly measures the temperature of the compressed air discharged from the compressor body;
If it is determined that the temperature of the compressed air discharged from the compressor main body is equal to or higher than the dew point based on the temperature measured by the temperature sensor, it passes through the oil cooler and passes through the first oil supply passage. The three-way valve is switched so that lubricating oil is supplied to the compressor body, and the temperature of the compressed air discharged from the compressor body is determined to be less than the dew point based on the temperature measured by the temperature sensor. And a controller for switching the three-way valve so that lubricating oil is supplied from the bypass oil supply passage to the compressor body without passing through the oil cooler. The oil-cooled air compressor according to any one of the above.
前記第1の給油流路の前記油冷却器より上流に設けられた開閉弁と、
前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する温度センサと、
前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点以上であると判断すれば、前記開閉弁を開弁して前記油冷却器を通過して前記第1の給油流路から前記圧縮機本体へ潤滑油を供給し、前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点未満であると判断すれば、前記開閉弁を閉弁して前記油冷却器を通過することなく前記第2の給油流路から前記圧縮機本体へ潤滑油が供給する、コントローラと
を備える、請求項8から請求項12のいずれか1項に記載の油冷式空気圧縮機。
An on-off valve provided upstream of the oil cooler in the first oil supply passage;
A temperature sensor that directly or indirectly measures the temperature of the compressed air discharged from the compressor body;
If it is determined that the temperature of the compressed air discharged from the compressor body is equal to or higher than the dew point based on the temperature measured by the temperature sensor, the on-off valve is opened and the oil cooler is passed through. Lubricating oil is supplied from the first oil supply passage to the compressor main body, and it is determined that the temperature of the compressed air discharged from the compressor main body is lower than the dew point based on the temperature measured by the temperature sensor. And a controller for supplying lubricating oil from the second oil supply passage to the compressor main body without closing the on-off valve and passing through the oil cooler. The oil-cooled air compressor according to any one of 12.
前記第1の給油流路の前記油冷却器より上流に設けられた開閉弁と、
前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する温度センサと、
前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点以上であると判断すれば、前記開閉弁を開弁して前記油冷却器を通過して前記第1の給油流路から前記圧縮機本体へ潤滑油を供給し、前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点未満であると判断すれば、前記開閉弁を閉弁して前記油冷却器を通過することなく前記バイパス流路から前記圧縮機本体へ潤滑油を供給する、コントローラと
を備える、請求項14から請求項16のいずれか1項に記載の油冷式空気圧縮機。
An on-off valve provided upstream of the oil cooler in the first oil supply passage;
A temperature sensor that directly or indirectly measures the temperature of the compressed air discharged from the compressor body;
If it is determined that the temperature of the compressed air discharged from the compressor body is equal to or higher than the dew point based on the temperature measured by the temperature sensor, the on-off valve is opened and the oil cooler is passed through. Lubricating oil is supplied from the first oil supply passage to the compressor main body, and it is determined that the temperature of the compressed air discharged from the compressor main body is lower than the dew point based on the temperature measured by the temperature sensor. And a controller that supplies the lubricating oil from the bypass flow path to the compressor main body without closing the on-off valve and passing through the oil cooler. The oil-cooled air compressor according to claim 1.
前記バイパス流路の前記第1の給油流路からの分岐点に設けられた三方弁と、
前記圧縮機本体から吐出される前記圧縮空気の温度を直接又は間接的に測定する温度センサと、
前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点以上であると判断すれば、前記油冷却器を通過して前記第1の給油流路から前記圧縮機本体へ潤滑油が供給されるように前記三方弁を切り換え、前記温度センサにより測定された温度に基づいて前記圧縮機本体から吐出される前記圧縮空気の温度が露点未満であると判断すれば、前記油冷却器を通過することなく前記バイパス流路から前記圧縮機本体へ潤滑油が供給されるように前記三方弁を切り換える、コントローラと
を備える、請求項16に記載の油冷式空気圧縮機。
A three-way valve provided at a branch point from the first oil supply passage of the bypass passage;
A temperature sensor that directly or indirectly measures the temperature of the compressed air discharged from the compressor body;
If it is determined that the temperature of the compressed air discharged from the compressor main body is equal to or higher than the dew point based on the temperature measured by the temperature sensor, it passes through the oil cooler and passes through the first oil supply passage. The three-way valve is switched so that lubricating oil is supplied to the compressor body, and the temperature of the compressed air discharged from the compressor body is determined to be less than the dew point based on the temperature measured by the temperature sensor. The oil-cooled type according to claim 16, further comprising a controller that switches the three-way valve so that lubricating oil is supplied from the bypass flow path to the compressor body without passing through the oil cooler. air compressor.
前記潤滑油は疎水性を有する、請求項2から請求項23のいずれか1項に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to any one of claims 2 to 23, wherein the lubricating oil has hydrophobicity. 前記潤滑油の比重が0.95以下である、請求項2から請求項24のいずれか1項に記載の油冷式空気圧縮機。   The oil-cooled air compressor according to any one of claims 2 to 24, wherein a specific gravity of the lubricating oil is 0.95 or less. 前記油水分離装置は、
油分離回収器内の液面より上方の空間とこの空間よりも低圧の空間とを接続する開放流路と、
前記開放流路に設けられた電磁弁と、
前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて、前記電磁弁を開弁し、前記油分離回収器内の空間の圧縮空気を前記低圧の空間に排出させる、水分放出制御部と
を備える、請求項2に記載の油冷式空気圧縮機。
The oil-water separator is
An open flow path that connects a space above the liquid level in the oil separation and recovery unit and a space lower in pressure than this space;
A solenoid valve provided in the open flow path;
The electromagnetic valve is opened in accordance with at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor body, and the compressed air in the space in the oil separation / recovery device is changed to the low pressure space. The oil-cooled air compressor according to claim 2, further comprising: a moisture release control unit that is discharged.
前記潤滑油に含まれる水分量を直接又は間接的に検出する第1のセンサを備え、
前記水分放出制御部は、前記第1のセンサで検出された水分量が設定値を超えると前記電磁弁を一時的に開弁する、請求項26に記載の油冷式空気圧縮機。
A first sensor that directly or indirectly detects the amount of water contained in the lubricating oil;
27. The oil-cooled air compressor according to claim 26, wherein the moisture release controller temporarily opens the electromagnetic valve when the amount of moisture detected by the first sensor exceeds a set value.
前記第1のセンサは、前記油分離回収器内の水分液面高さを検出するセンサである、請求項27に記載の油冷式空気圧縮機。   28. The oil-cooled air compressor according to claim 27, wherein the first sensor is a sensor that detects a water liquid level height in the oil separator / recovery unit. 前記第1のセンサは、前記油分離回収器内の前記潤滑液に含有される水分量を検出するセンサである、請求項27に記載の油冷式空気圧縮機。   28. The oil-cooled air compressor according to claim 27, wherein the first sensor is a sensor that detects a moisture content contained in the lubricating liquid in the oil separator / recovery unit. 前記圧縮機本体から吐出される前記圧縮空気の温度である吐出温度を直接又は間接的に測定する第2のセンサと、
前記圧縮機本体に吸入される空気の温度である吸込温度を直接又は間接的に測定する第3のセンサと
を備え、
前記水分放出制御部は、前記第2のセンサにより測定された前記吐出温度と前記第3のセンサにより測定された前記吸込温度との温度差に基づいて前記油分離回収器内の凝縮水量を計算し、計算した前記凝縮水量が設定値を超えると前記電磁弁を一時的に開弁する、請求項26に記載の油冷式圧縮機。
A second sensor that directly or indirectly measures a discharge temperature that is a temperature of the compressed air discharged from the compressor body;
A third sensor for directly or indirectly measuring a suction temperature that is a temperature of air sucked into the compressor body,
The moisture release control unit calculates the amount of condensed water in the oil separation and recovery unit based on a temperature difference between the discharge temperature measured by the second sensor and the suction temperature measured by the third sensor. The oil-cooled compressor according to claim 26, wherein when the calculated amount of condensed water exceeds a set value, the solenoid valve is temporarily opened.
前記圧縮機本体から吐出され前記圧縮空気の圧力を検出する第4のセンサを備え、
前記水分放出制御部は、前記第4のセンサで検出された前記圧縮空気の圧力が設定値を超えると前記電磁弁を一時的に開弁する、請求項26に記載の油冷式圧縮機。
A fourth sensor for detecting the pressure of the compressed air discharged from the compressor body;
27. The oil-cooled compressor according to claim 26, wherein the moisture release controller temporarily opens the electromagnetic valve when a pressure of the compressed air detected by the fourth sensor exceeds a set value.
前記油冷却器は、前記圧縮機本体への前記潤滑油の給油温度を調節可能であり、
前記油水分離装置は、前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて、前記油分離回収器内の潤滑油の温度が一時的に露点を上回る前記給油温度となるように前記油冷却器を制御する、昇温制御部を備える、請求項2に記載の油圧空気式圧縮機。
The oil cooler is capable of adjusting a supply temperature of the lubricating oil to the compressor body,
In the oil / water separator, the temperature of the lubricating oil in the oil separator / collector temporarily exceeds the dew point according to at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor body. The hydraulic-pneumatic compressor according to claim 2, further comprising a temperature rise control unit that controls the oil cooler so as to reach an oil supply temperature.
前記圧縮機本体のロータは、駆動装置により回転駆動可能であり、
前記油水分離装置は、前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて、前記油分離回収器内の潤滑油の温度が一時的に露点を上回る回転数となるように前記駆動装置を制御する、昇温制御部を備える、請求項2に記載の油圧空気式圧縮機。
The rotor of the compressor body can be rotationally driven by a driving device,
The oil / water separator rotates at a temperature at which the temperature of the lubricating oil in the oil separator / collector temporarily exceeds the dew point according to at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor body. The hydraulic-pneumatic compressor according to claim 2, further comprising a temperature rise control unit that controls the driving device so as to be a number.
前記潤滑油に含まれる水分量を直接又は間接的に検出する第1のセンサを備え、
前記昇温制御部は、前記第1のセンサで検出された水分量が設定値を超えると、
前記油分離回収器内の潤滑油の温度の温度が一時的に露点を上回るように前記油冷却器又は前記駆動装置を制御する、請求項32又は請求項33に記載の油冷式空気圧縮機。
A first sensor that directly or indirectly detects the amount of water contained in the lubricating oil;
When the water content detected by the first sensor exceeds a set value, the temperature rise control unit
The oil-cooled air compressor according to claim 32 or 33, wherein the oil cooler or the drive device is controlled such that the temperature of the lubricating oil in the oil separator / collector temporarily exceeds a dew point. .
前記第1のセンサは、前記油分離回収器内の水分液面高さを検出するセンサである、請求項34に記載の油冷式空気圧縮機。   35. The oil-cooled air compressor according to claim 34, wherein the first sensor is a sensor that detects a liquid level of water in the oil separator / recovery unit. 前記第1のセンサは、前記油分離回収器内の前記潤滑液に含有される水分量を検出するセンサである、請求項34に記載の油冷式空気圧縮機。   35. The oil-cooled air compressor according to claim 34, wherein the first sensor is a sensor that detects the amount of water contained in the lubricating liquid in the oil separation and recovery device. 前記圧縮機本体から吐出される前記圧縮空気の温度である吐出温度を直接又は間接的に測定する第2のセンサと、
前記圧縮機本体に吸入される空気の温度である吸込温度を直接又は間接的に測定する第3のセンサと
を備え、
前記昇温制御部は、前記第2のセンサにより測定された前記吐出温度と前記第3のセンサにより測定された前記吸込温度との温度差に基づいて前記油分離回収器内の凝縮水量を計算し、計算した前記凝縮水量が設定値を超えると、前記油分離回収器内の潤滑油の温度が一時的に露点を上回るように前記油冷却器又は前記駆動装置を制御する、請求項32又は請求項33に記載の油冷式圧縮機。
A second sensor that directly or indirectly measures a discharge temperature that is a temperature of the compressed air discharged from the compressor body;
A third sensor for directly or indirectly measuring a suction temperature that is a temperature of air sucked into the compressor body,
The temperature increase control unit calculates the amount of condensed water in the oil separation and recovery unit based on a temperature difference between the discharge temperature measured by the second sensor and the suction temperature measured by the third sensor. When the calculated amount of condensed water exceeds a set value, the oil cooler or the drive device is controlled so that the temperature of the lubricating oil in the oil separation and recovery device temporarily exceeds the dew point. The oil-cooled compressor according to claim 33.
前記圧縮機本体から吐出され前記圧縮空気の圧力を検出する第4のセンサを備え、
前記昇温制御部は、前記第4のセンサで検出された前記圧縮空気の圧力が設定値を超えると、前記油分離回収器内の潤滑油の温度が一時的に露点を上回るように前記油冷却器又は前記駆動装置を制御する、請求項32又は請求項33に記載の油冷式圧縮機。
A fourth sensor for detecting the pressure of the compressed air discharged from the compressor body;
When the pressure of the compressed air detected by the fourth sensor exceeds a set value, the temperature rise control unit is configured so that the temperature of the lubricating oil in the oil separator / collector temporarily exceeds the dew point. The oil-cooled compressor according to claim 32 or 33, which controls a cooler or the driving device.
吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、
前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、
前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、
前記給油流路に設けられ油冷却器と
を備える油冷式空気圧縮機の制御方法であって、
前記空気が圧縮機本体内で露点以下となるように、前記油冷却器によって前記潤滑油を冷却する、油冷式空気圧縮機の制御方法。
An oil-cooled compressor body that compresses and discharges the sucked air; and
An oil separation and recovery device for separating and recovering the lubricating oil from the compressed air discharged from the compressor body;
An oil supply passage connecting the oil separator and the suction side of the compressor body;
An oil-cooled air compressor control method comprising an oil cooler provided in the oil supply flow path,
A control method for an oil-cooled air compressor, wherein the lubricating oil is cooled by the oil cooler so that the air is below a dew point in the compressor body.
吸引した空気を圧縮して吐出する油冷式の圧縮機本体と、
前記圧縮機本体から吐出された圧縮空気から潤滑油を分離して回収する油分離回収器と、
前記油分離回収器と前記圧縮機本体の吸込側とを接続する給油流路と、
前記給油流路に設けられ油冷却器と
を備える油冷式空気圧縮機の制御方法であって、
前記圧縮機本体から吐出される圧縮空気の温度が露点以下となるように、前記油冷却器によって前記潤滑油を冷却する、油冷式空気圧縮機の制御方法。
An oil-cooled compressor body that compresses and discharges the sucked air; and
An oil separation and recovery device for separating and recovering the lubricating oil from the compressed air discharged from the compressor body;
An oil supply passage connecting the oil separator and the suction side of the compressor body;
An oil-cooled air compressor control method comprising an oil cooler provided in the oil supply flow path,
A control method for an oil-cooled air compressor, wherein the lubricating oil is cooled by the oil cooler so that the temperature of compressed air discharged from the compressor body is equal to or lower than a dew point.
前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて一時的に、前記油分離回収器内の潤滑油の温度が露点を上回るように前記油冷却器によって前記潤滑油を冷却する、請求項38又は請求項39に記載の油圧空気式圧縮機の制御方法。   The oil cooler temporarily adjusts the temperature of the lubricating oil in the oil separator / collector above the dew point according to at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor body. 40. The method of controlling a hydraulic pneumatic compressor according to claim 38 or 39, wherein the lubricating oil is cooled. 前記潤滑油に含まれる水分量と前記圧縮機本体の吐出圧力の少なくともいずれか一方に応じて一時的に、前記油分離回収器内の潤滑油の温度が露点を上回るように前記圧縮機本体のロータを回転駆動する駆動装置の回転数を上昇させる、請求項39又は請求項40に記載の油圧空気式圧縮機の制御方法。   In accordance with at least one of the amount of water contained in the lubricating oil and the discharge pressure of the compressor main body, the temperature of the lubricating oil in the oil separation / recovery unit is temporarily adjusted so that the temperature of the lubricating oil in the oil separating / collecting device exceeds the dew point. 41. The method of controlling a hydraulic pneumatic compressor according to claim 39 or claim 40, wherein the rotational speed of a drive device that rotationally drives the rotor is increased.
JP2014046639A 2013-07-31 2014-03-10 Oil-cooled air compressor and control method thereof Active JP6220291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046639A JP6220291B2 (en) 2013-07-31 2014-03-10 Oil-cooled air compressor and control method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013158736 2013-07-31
JP2013158736 2013-07-31
JP2014046639A JP6220291B2 (en) 2013-07-31 2014-03-10 Oil-cooled air compressor and control method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017158766A Division JP6412992B2 (en) 2013-07-31 2017-08-21 Oil-cooled air compressor

Publications (2)

Publication Number Publication Date
JP2015045323A true JP2015045323A (en) 2015-03-12
JP6220291B2 JP6220291B2 (en) 2017-10-25

Family

ID=52670990

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014046639A Active JP6220291B2 (en) 2013-07-31 2014-03-10 Oil-cooled air compressor and control method thereof
JP2017158766A Active JP6412992B2 (en) 2013-07-31 2017-08-21 Oil-cooled air compressor

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017158766A Active JP6412992B2 (en) 2013-07-31 2017-08-21 Oil-cooled air compressor

Country Status (1)

Country Link
JP (2) JP6220291B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036719A (en) * 2015-08-14 2017-02-16 株式会社神戸製鋼所 Oil injection type screw compressor and control method thereof
CN113939654A (en) * 2019-05-23 2022-01-14 神钢压缩机株式会社 Oil-cooled screw compressor
CN114198280A (en) * 2021-12-11 2022-03-18 河南中烟工业有限责任公司 Water collecting tank and compressed air water delivery system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102294990B1 (en) * 2019-12-23 2021-08-31 김헌목 screw air compressor system with Low-temperature lubricant
KR102346161B1 (en) * 2021-03-15 2022-01-03 (주)대하 Gas tank leak test device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494812A (en) * 1972-05-08 1974-01-17
JPS534258A (en) * 1976-07-01 1978-01-14 Nitsukou Puranto Kk Oil and water separator
JPS6054792U (en) * 1983-09-20 1985-04-17 トキコ株式会社 oil cooled compressor
JPH0658189U (en) * 1993-01-19 1994-08-12 フジ産業株式会社 Air compressor
JPH0667885U (en) * 1993-03-01 1994-09-22 フジ産業株式会社 Oil purifier in air compressor
JPH0735067A (en) * 1993-07-13 1995-02-03 Kobe Steel Ltd Oil-cooled screw compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383388C (en) * 2003-07-30 2008-04-23 株式会社神户制钢所 Compressor
JP4418321B2 (en) * 2003-07-30 2010-02-17 株式会社神戸製鋼所 Compressor and operation method thereof
JP5132514B2 (en) * 2008-10-21 2013-01-30 株式会社神戸製鋼所 Air compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494812A (en) * 1972-05-08 1974-01-17
JPS534258A (en) * 1976-07-01 1978-01-14 Nitsukou Puranto Kk Oil and water separator
JPS6054792U (en) * 1983-09-20 1985-04-17 トキコ株式会社 oil cooled compressor
JPH0658189U (en) * 1993-01-19 1994-08-12 フジ産業株式会社 Air compressor
JPH0667885U (en) * 1993-03-01 1994-09-22 フジ産業株式会社 Oil purifier in air compressor
JPH0735067A (en) * 1993-07-13 1995-02-03 Kobe Steel Ltd Oil-cooled screw compressor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017036719A (en) * 2015-08-14 2017-02-16 株式会社神戸製鋼所 Oil injection type screw compressor and control method thereof
WO2017029937A1 (en) * 2015-08-14 2017-02-23 株式会社神戸製鋼所 Oil-cooled screw compressor and control method therefor
TWI622704B (en) * 2015-08-14 2018-05-01 神戶製鋼所股份有限公司 Oil-cooled screw compressor and control method thereof
US10788039B2 (en) 2015-08-14 2020-09-29 Kobe Steel, Ltd. Oil-cooled screw compressor and control method therefor
CN113939654A (en) * 2019-05-23 2022-01-14 神钢压缩机株式会社 Oil-cooled screw compressor
CN113939654B (en) * 2019-05-23 2024-03-19 神钢压缩机株式会社 Oil-cooled screw compressor
CN114198280A (en) * 2021-12-11 2022-03-18 河南中烟工业有限责任公司 Water collecting tank and compressed air water delivery system

Also Published As

Publication number Publication date
JP2017223235A (en) 2017-12-21
JP6220291B2 (en) 2017-10-25
JP6412992B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6412992B2 (en) Oil-cooled air compressor
JP5966364B2 (en) Refrigeration equipment
CN104343683B (en) Oil-cooled air compressor and control method thereof
US11105537B2 (en) Refrigeration cycle apparatus
JP2015038407A (en) Refrigerating device
JP5084460B2 (en) Oil-cooled air compressor
WO2015025515A1 (en) Refrigeration device
US8276400B2 (en) Refrigeration apparatus
CN103486028A (en) Oil-free helical-lobe compressor
JP2018025322A (en) Heat recovery system
CN103175346B (en) Oil injection type split-compressor and heat pump
JP4792383B2 (en) Operation method of screw compressor
JP6053026B2 (en) Oil-cooled air compressor
JPH08319976A (en) Oil-cooled type air compressor
JP5980754B2 (en) Oil-cooled air compressor and control method thereof
JP6742509B2 (en) Liquid supply type gas compressor
JP4214013B2 (en) Oil-cooled air compressor
JP3897751B2 (en) Refrigeration equipment
JP2009287844A (en) Refrigeration device
WO2020235338A1 (en) Oil-cooled screw compressor
JP5997670B2 (en) Oil-cooled air compressor
JP6000108B2 (en) Oil return circuit and air compression apparatus provided with the same
JP6634590B2 (en) Air conditioner
JP6811933B2 (en) Air compression system
WO2022044863A1 (en) Oil feed type air compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170929

R150 Certificate of patent or registration of utility model

Ref document number: 6220291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350