JP2015044893A - Fired pencil lead - Google Patents

Fired pencil lead Download PDF

Info

Publication number
JP2015044893A
JP2015044893A JP2013175218A JP2013175218A JP2015044893A JP 2015044893 A JP2015044893 A JP 2015044893A JP 2013175218 A JP2013175218 A JP 2013175218A JP 2013175218 A JP2013175218 A JP 2013175218A JP 2015044893 A JP2015044893 A JP 2015044893A
Authority
JP
Japan
Prior art keywords
core
pencil lead
melting point
kinematic viscosity
surface tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013175218A
Other languages
Japanese (ja)
Inventor
祖 坂田
Hajime Sakata
祖 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP2013175218A priority Critical patent/JP2015044893A/en
Publication of JP2015044893A publication Critical patent/JP2015044893A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fired pencil lead capable of suppressing contamination of a paper surface (scattering of abrasion powders) while acquiring high writing density for improving performance of the fired pencil lead, and capable of breaking conventional inverse correlation of fixability of the abrasion powders to a paper surface and writing density, because when writing density is improved, an amount of the abrasion powders increases, so that the paper surface is easily contaminated due to scratch by hand.SOLUTION: Provided is the fired pencil lead comprising at least graphite and synthetic resin, and the mixture of graphite and synthetic resin N is mixed and subjected to extrusion molding into a filament state, and then the mixture is subjected to heat treatment to firing temperature, for obtaining the fired pencil lead. In a fine hole of the fired pencil lead, a substance whose melting point is 30-45°C, whose surface tension at 50°C is 21 mN/m or lower and whose dynamic viscosity is 230 mm/s or lower is disposed.

Description

本発明は、少なくとも黒鉛と合成樹脂とを配合し、混練、細線状に押出成形後、焼成温度まで熱処理を施して得られる焼成鉛筆芯に関する。   The present invention relates to a fired pencil lead obtained by blending at least graphite and a synthetic resin, kneading and extruding into a fine wire, and then heat-treating to a firing temperature.

一般的な焼成鉛筆芯は、黒鉛と、塩化ビニル樹脂などの合成樹脂とを主材とし、フタル酸エステルなどの可塑剤、メチルエチルケトンや水などの溶剤、更にステアリン酸塩、ステアリン酸、カーボンブラック等も必要に応じて使用し、これら材料を分散混合および混練して、細線状に押出成形した後、焼成温度まで熱処理を施し、焼成によって形成された細孔内に、シリコーン油、流動パラフィン、スピンドル油、スクワラン、α−オレフィンオリゴマー等の油状物やワックス類などを適宜含浸させて製造している。   General fired pencil lead is mainly composed of graphite and synthetic resin such as vinyl chloride resin, plasticizer such as phthalate ester, solvent such as methyl ethyl ketone and water, stearate, stearic acid, carbon black, etc. If necessary, these materials are dispersed, mixed and kneaded, extruded into fine wires, and then heat treated up to the firing temperature. Silicone oil, liquid paraffin, spindles are formed in the pores formed by firing. It is manufactured by appropriately impregnating oils such as oil, squalane and α-olefin oligomer, and waxes.

芯体細孔内に配置する物質によっては高い濃度の筆記線を得ることができることが知られている。しかし、筆記線の濃度が高くなればなるほど、紙面に配置される摩耗粉の数が多くなり、手などによる擦過によって筆記線の摩耗粉が手などに付着して紙面に広がり、汚れが目立ちやすくなる。逆に、手などの擦過汚れによる汚れを目立たなくしようとすれば、紙面に配置される摩耗粉の数が減少させなければならず、十分な濃度の筆記線を得ることはできない。   It is known that a high concentration of writing lines can be obtained depending on the substance disposed in the core pores. However, the higher the writing line concentration, the greater the number of abrasion powders placed on the paper surface. Become. On the other hand, if the stains due to scratches such as hands are made inconspicuous, the number of abrasion powders arranged on the paper surface must be reduced, and a writing line having a sufficient density cannot be obtained.

これを改善させようと、芯体細孔内に配置させる含浸成分を工夫することにより筆記線の定着性を向上させる方法として、高粘度の物質や、紙面との化学的親和性が高い物質を含浸剤に用いることが知られている。例えば、特許文献1では極圧添加剤を用いた例が、特許文献2には水溶性高分子の有機溶剤溶液を用いた例がそれぞれ報告されている。   In order to improve this, as a method of improving the fixability of the writing line by devising the impregnating component arranged in the core pores, a highly viscous substance or a substance having high chemical affinity with the paper surface is used. It is known to be used for impregnating agents. For example, Patent Document 1 reports an example using an extreme pressure additive, and Patent Document 2 reports an example using a water-soluble polymer organic solvent solution.

特開2001−207103号公報JP 2001-207103 A 特許第4815794号Japanese Patent No. 4815794

極圧添加剤や水溶性高分子の有機溶剤溶液は、分子間で、親水性官能基の電気的な相互作用が強く働くため動粘度や表面張力が高くなり、芯体の細孔内の微細な隙間へ侵入し難い。
また、極圧添加剤や水溶性高分子の有機溶剤溶液は、水酸基やエステル基、スルホン基等の親水性の官能基を分子内に持っているため、疎水性である黒鉛粒子や樹脂炭化物といった芯体の構成物質と化学的に反発し、微細な空間への浸透が抑制されてしまう。
また、極圧添加剤や水溶性高分子の親水性官能基は、紙面の水酸基とは強く相互作用するが、疎水性である摩耗粉とは化学的に反発する。そのため、手などで擦過すると、極圧添加剤や水溶性高分子から、摩耗粉が離れやすくなり、摩耗粉が紙面に広がってしまうため、摩耗粉の紙面への定着性も満足できるものではなかった。
そこで、芯体細孔内に十分に浸透し、高い筆記濃度と、摩耗粉の高い定着性とを両立できる成分を含浸させた焼成鉛筆芯が求められていた。
Extreme pressure additives and organic solvent solutions of water-soluble polymers increase the kinematic viscosity and surface tension due to the strong electrical interaction of hydrophilic functional groups between molecules, resulting in fine particles in the core pores. It is difficult to enter a gap.
In addition, organic solvent solutions of extreme pressure additives and water-soluble polymers have hydrophilic functional groups such as hydroxyl groups, ester groups, and sulfone groups in their molecules, so hydrophobic graphite particles, resin carbides, etc. Chemical repulsion with the constituent material of the core body, and penetration into fine spaces will be suppressed.
In addition, the extreme pressure additive and the hydrophilic functional group of the water-soluble polymer interact strongly with the hydroxyl group on the paper surface, but chemically repel the hydrophobic abrasive powder. For this reason, rubbing with a hand or the like makes it easy for the wear powder to separate from the extreme pressure additive and the water-soluble polymer, and the wear powder spreads on the paper surface. Therefore, the fixability of the wear powder on the paper surface is not satisfactory. It was.
Accordingly, there has been a need for a fired pencil lead that is sufficiently impregnated into the core pores and impregnated with a component that can achieve both a high writing concentration and a high fixability of the wear powder.

本発明は、少なくとも黒鉛と合成樹脂とを配合し、混練、細線状に押出成形後、焼成温度まで熱処理を施して得られる焼成鉛筆芯の細孔内に、融点が30〜45℃、50℃での表面張力が21mN/m以下、50℃での動粘度が230mm/s以下である物質を配置させた焼成鉛筆芯。 In the present invention, at least graphite and a synthetic resin are blended, kneaded, extruded into a fine wire, and then subjected to heat treatment up to the firing temperature. A fired pencil lead in which a substance having a surface tension of 21 mN / m or less and a kinematic viscosity at 50 ° C. of 230 mm 2 / s or less is disposed.

本発明で使用する、融点が30〜45℃、50℃での表面張力が21mN/m以下、動粘度が230mm/s以下である物質(以下、本発明の含浸成分と称する)は、融点が30〜45℃であるため、筆記時に芯体と紙面との間で発生する摩擦熱により液体化する。さらに、50℃(液体状態)での表面張力が21mN/m以下であるため、細孔内に浸透しやすく、同時に、50℃(液体状態)での動粘度が230mm/s以下であるため、外力により容易に変形して移動しやすいので、芯体構成物間(樹脂炭化物の構造体間、樹脂炭化物と黒鉛粒子表面との間等)に浸透し、芯体構成物同士の表面官能基による電気的な相互作用を弱め、筆記時に芯体にかかる応力により、芯体からの黒鉛粒子等の構成物質を容易に脱離させることができ、紙面に配置される摩耗粉の数を増加させることができる。また、脱離された黒鉛粒子の表面が当該物質で濡れた状態となるので、黒鉛粒子ベーサル面特有の鉛色の光沢を、反射光を乱すことによって低減することができ、摩耗粉をより黒く見せることができるため、筆記線の濃度が向上する。 A substance used in the present invention having a melting point of 30 to 45 ° C., a surface tension at 50 ° C. of 21 mN / m or less and a kinematic viscosity of 230 mm 2 / s or less (hereinafter referred to as an impregnation component of the present invention) Since it is 30-45 degreeC, it liquefies by the frictional heat which generate | occur | produces between a core and a paper surface at the time of writing. Furthermore, since the surface tension at 50 ° C. (liquid state) is 21 mN / m or less, it easily penetrates into the pores, and at the same time, the kinematic viscosity at 50 ° C. (liquid state) is 230 mm 2 / s or less. Since it is easily deformed and moved by external force, it penetrates between core structures (between resin carbide structures, between resin carbide and graphite particle surfaces, etc.), and surface functional groups between core structures Weakens the electrical interaction due to the stress, and the stress applied to the core during writing can easily desorb constituents such as graphite particles from the core, increasing the number of wear powders placed on the paper. be able to. In addition, since the surface of the detached graphite particles becomes wet with the substance, the lead color luster peculiar to the graphite particle basal surface can be reduced by disturbing the reflected light, and the wear powder becomes blacker. Since it can be shown, the writing line density is improved.

さらに、本発明の含浸成分は、紙面に浸透しつつ温度が下がるため、固体化し、摩耗粉が紙面に固定されるので、摩耗粉が紙面に広がって、紙面を汚すことが極力抑制された定着性の良い筆記線が得られる。   Furthermore, since the impregnating component of the present invention penetrates into the paper surface and falls in temperature, it solidifies and the abrasion powder is fixed on the paper surface, so that the abrasion powder spreads on the paper surface and the fixing is suppressed as much as possible. A good writing line is obtained.

以下、本発明について詳述する。
本発明の焼成鉛筆芯において、本発明の含浸成分を細孔内に配置させる前の芯体は、少なくとも黒鉛と合成樹脂とを混練・成形したものを焼成して得ることができる。
黒鉛は、鱗状黒鉛、鱗片状黒鉛、土状黒鉛、人造黒鉛などが挙げられるが、これらの黒鉛は1種類単独で用いても、2種以上の黒鉛を混合して用いても構わない。また、黒鉛の配合量は特に限定されないが、配合物全体の40重量%以上とすることで、熱処理後の芯体に十分な黒鉛粒子が存在し、十分な筆記線の濃度となる。尚、黒鉛を配合量全体の80%を超えて配合しても、本発明の効果発現に問題は無いが、芯体中で黒鉛粒子を結合させる樹脂炭化物の割合が少なくなり、脆い構造の芯体となってしまうため、筆記困難な芯体となり、実使用上の問題がある。
Hereinafter, the present invention will be described in detail.
In the fired pencil lead of the present invention, the core body before the impregnation component of the present invention is disposed in the pores can be obtained by firing a kneaded and molded product of at least graphite and a synthetic resin.
Examples of graphite include scaly graphite, scaly graphite, earthy graphite, and artificial graphite. These graphites may be used alone or in combination of two or more. Moreover, the compounding quantity of graphite is not particularly limited, but by setting it to 40% by weight or more of the entire composition, sufficient graphite particles are present in the core after the heat treatment, and a sufficient writing line concentration is obtained. In addition, even if graphite is added in an amount exceeding 80% of the total amount, there is no problem in the effect of the present invention, but the ratio of the resin carbide that binds the graphite particles in the core is reduced, and the core has a brittle structure. Since it becomes a body, it becomes a core which is difficult to write, and there is a problem in practical use.

また、芯体の作成に用いることのできる合成樹脂は、市販されている合成樹脂であれば、すべての合成樹脂を用いることができる。例えば、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、塩素化ポリエチレン樹脂、ポリビニルアルコール樹脂、ポリアクリルアミド樹脂、塩素化パラフィン樹脂、フラン樹脂、尿素樹脂、ブチルゴムなどが挙げられる。これらの合成樹脂は1種類単独で用いても、2種以上の合成樹脂を混合して用いても構わない。また、合成樹脂の配合量は特に限定されないが、熱処理の際に気化する成分が抜けることによって芯体に細孔が形成されるため、配合物全体の20重量%以上とすることで、十分な量の細孔が芯体内に形成され、本発明の含浸成分をより多く芯体内に浸透させて十分に芯体構成物質の表面を濡らすことができ、芯体構成物同士の表面官能基による電気的な相互作用を十分に弱め、かつ、摩耗粉を十分に被覆することができるため、本発明の効果がよく得られやすい。尚、合成樹脂を配合物全体の70%を超えて配合すると、本発明の効果発現に問題は無いが、芯体中の細孔量が多くなり過ぎ、また、黒鉛粒子の配合比率も下がるため、芯体中の黒鉛粒子の存在割合が低下し、密度の低い芯体となるため、筆記困難な芯体となり、実使用上の問題がある。   Moreover, as long as the synthetic resin which can be used for preparation of a core is a commercially available synthetic resin, all the synthetic resins can be used. Examples thereof include polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, chlorinated polyethylene resin, polyvinyl alcohol resin, polyacrylamide resin, chlorinated paraffin resin, furan resin, urea resin, and butyl rubber. These synthetic resins may be used alone or as a mixture of two or more synthetic resins. In addition, the blending amount of the synthetic resin is not particularly limited, but pores are formed in the core body due to removal of components that vaporize during the heat treatment. An amount of pores are formed in the core body, and the surface of the core body constituent material can be sufficiently wetted by allowing more impregnated components of the present invention to penetrate into the core body. The interaction of the present invention can be sufficiently weakened and the wear powder can be sufficiently coated, so that the effects of the present invention are easily obtained. If the synthetic resin exceeds 70% of the total formulation, there is no problem in the effect of the present invention, but the amount of pores in the core increases too much, and the mixing ratio of the graphite particles also decreases. Since the existence ratio of the graphite particles in the core body is reduced and the core body has a low density, the core body is difficult to write, and there is a problem in practical use.

上記の黒鉛や合成樹脂以外の使用材料としては、従来公知の材料を使用できる。例えば、フタル酸ジオクチル、フタル酸ジブチル、リン酸トリクレジル、ジプロピレングリコールジベンゾエート、アジピン酸ジオクチル、プロピオンカーボネート等の可塑剤や、メチルエチルケトン、水などの溶剤を配合すると、合成樹脂の配合量が少ない場合でも、それら物質が熱処理の際に気化して芯体に細孔がより多く形成されるため、本発明の含浸成分をより多く芯体内に浸透させて十分に芯体構成物質の表面を濡らすことができ、芯体構成物同士の表面官能基による電気的な相互作用を十分に弱め、かつ、摩耗粉を十分に被覆することができるため、本発明の効果が得られやすい。ただし、上記可塑剤や溶剤を配合量全体の40重量%を超えて配合すると、本発明の効果発現に問題は無いが、芯体中の細孔量が多くなり過ぎ、また、黒鉛粒子の配合比率も下がるため、芯体中の黒鉛粒子の存在割合が低下し、密度の低い芯体となるため、筆記困難な芯体となり、実使用上の問題がある。   Conventionally known materials can be used as materials other than the above graphite and synthetic resin. For example, if a plasticizer such as dioctyl phthalate, dibutyl phthalate, tricresyl phosphate, dipropylene glycol dibenzoate, dioctyl adipate, propion carbonate, or a solvent such as methyl ethyl ketone or water is used, the amount of synthetic resin is small However, since these substances are vaporized during heat treatment and more cores are formed, more impregnating components of the present invention are permeated into the core to sufficiently wet the surface of the core constituent material. Since the electrical interaction by the surface functional groups between the core components can be sufficiently weakened and the wear powder can be sufficiently covered, the effects of the present invention can be easily obtained. However, if the above plasticizer or solvent is added in an amount exceeding 40% by weight of the total amount, there is no problem in the effect of the present invention, but the amount of pores in the core is excessive, and the addition of graphite particles Since the ratio is also lowered, the existence ratio of the graphite particles in the core body is reduced, and the core body has a low density, so that the core body is difficult to write and there is a problem in practical use.

また、製造工程中での合成樹脂の熱劣化を防止するためにステアリン酸塩などの安定剤や、成形性や離形性を高めるためにステアリン酸、ベヘニン酸などの脂肪酸類や脂肪酸アマイド類等の滑材等も配合することができる。さらに、芯体の直径真円度等の芯体外観品質やシャープペンシルのチャック耐圧を高めるためにケイ素、鉄、アルミニウム、チタン、亜鉛等の金属酸化物や窒化物、雲母、タルク等の粘土鉱物、フラーレン、カーボンナノチューブ、カーボンブラック、炭素繊維などの無機添加物なども併用することができる。   Also, stabilizers such as stearate to prevent thermal degradation of synthetic resin during the manufacturing process, fatty acids such as stearic acid and behenic acid and fatty acid amides to improve moldability and releasability A lubricating material or the like can also be blended. Furthermore, clay minerals such as metal oxides and nitrides such as silicon, iron, aluminum, titanium, and zinc, mica, and talc in order to improve the core appearance quality such as the diameter roundness of the core and the chuck pressure resistance of the mechanical pencil. Further, inorganic additives such as fullerene, carbon nanotube, carbon black, and carbon fiber can be used in combination.

これらの原材料をヘンシェルミキサーなどによる分散混合、ニーダー、3本ロールなどによる混練の後、細線状に押出成形し、空気中で室温から300℃前後までの熱処理を施して鉛筆芯体を製造する。   These raw materials are dispersed and mixed with a Henschel mixer or the like, kneaded with a kneader, three rolls, etc., then extruded into a thin wire shape, and subjected to heat treatment from room temperature to around 300 ° C. in air to produce a pencil core.

本発明の含浸成分は、融点が30〜45℃、50℃での表面張力が21mN/m以下、動粘度が230mm/s以下である必要がある。それらは単一物質でも、2種以上の物質を混合して得られるものでも構わないが、融点、表面張力、動粘度の値は、単一物質の場合はそのものの固有物性値を指すが、複数の物質の混合物の場合、含浸成分全体としての値を指す。
尚、50℃での表面張力は、細孔の細部にまで浸透するためには低いことが好ましいが、あまりに低いと摩耗粉と共に紙面に配置した際、含浸成分の分子同士の電気的な相互作用が無くなり、揮発性が高くなって紙面に摩耗粉を固定できにくくなるため10mN/m以上であると好ましい。同様に、50℃での動粘度も、細孔の細部にまで浸透するためには低いことが好ましいが、あまりに低いと、含浸成分が黒鉛粒子を被覆せずに、重力により紙面へ移動しやすくなってしまうため100mm/s以上であると好ましい。一例をあげると、ジメチルシリコーンオイルの一部のメチル基を炭素数15〜30の直鎖または分岐鎖アルキル基に変換したシリコンアルキルコポリマーなどがある。市販されているものとしては、例えば、SF1632(モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:30℃、動粘度(50℃):212mm/s、表面張力:20.3mN/m)、XF42−B1183(モメンティブ・パフォーマンス・マテリアルズ社製、融点:30℃、動粘度(50℃):202mm/s、表面張力:20.5mN/m)、XF42−C4696(モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)等が挙げられる。
The impregnation component of the present invention needs to have a melting point of 30 to 45 ° C., a surface tension at 50 ° C. of 21 mN / m or less, and a kinematic viscosity of 230 mm 2 / s or less. They may be obtained from a single substance or a mixture of two or more substances, but the melting point, surface tension, and kinematic viscosity values represent the intrinsic physical properties of a single substance, In the case of a mixture of a plurality of substances, it refers to the value of the impregnated component as a whole.
The surface tension at 50 ° C. is preferably low in order to penetrate into the fine pores, but if it is too low, the electrical interaction between the molecules of the impregnating component when placed on the paper with the wear powder. Is less than 10 mN / m, and the volatility becomes high and it becomes difficult to fix the abrasion powder on the paper surface. Similarly, the kinematic viscosity at 50 ° C. is preferably low in order to penetrate into the fine pores, but if it is too low, the impregnated component does not cover the graphite particles and easily moves to the paper by gravity. Therefore, it is preferably 100 mm 2 / s or more. As an example, there is a silicon alkyl copolymer obtained by converting a part of methyl groups of dimethyl silicone oil into a linear or branched alkyl group having 15 to 30 carbon atoms. Examples of commercially available products include SF1632 (manufactured by Momentive Performance Materials, USA, melting point: 30 ° C., kinematic viscosity (50 ° C.): 212 mm 2 / s, surface tension: 20.3 mN / m), XF42-B1183 (Momentive Performance Materials, melting point: 30 ° C., kinematic viscosity (50 ° C.): 202 mm 2 / s, surface tension: 20.5 mN / m), XF42-C4696 (Momentive Performance Materials) Manufactured by the United States, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20.6 mN / m), and the like.

上記含浸成分に混合できる物質は、含浸成分全体として融点が30〜45℃、50℃での表面張力が21mN/m以下、動粘度が230mm/s以下となることを満足すればあらゆる物質を使用することができる。例えば、流動パラフィンやα−オレフィンオリゴマー等の炭化水素系オイル、合成ワックスや植物系ワックス等の各種ワックス、リノレン酸やアラキジン酸等の各種脂肪酸、ポリオキシエチレンアルキルエーテルやポリグリセリン脂肪酸エステル等の非イオン系界面活性剤、ジメチルシリコーンオイル等の各種変性シリコーンオイル等が挙げられる。これらの物質は1種単独で混合しても、2種以上の物質を選定して混合しても構わない。 Any substance that can be mixed with the impregnation component can be any substance as long as the impregnation component as a whole has a melting point of 30 to 45 ° C., a surface tension at 50 ° C. of 21 mN / m or less, and a kinematic viscosity of 230 mm 2 / s or less. Can be used. For example, hydrocarbon oils such as liquid paraffin and α-olefin oligomers, various waxes such as synthetic waxes and plant waxes, various fatty acids such as linolenic acid and arachidic acid, non-polyoxyethylene alkyl ethers and polyglycerin fatty acid esters, etc. Examples thereof include ionic surfactants and various modified silicone oils such as dimethyl silicone oil. These substances may be mixed alone, or two or more substances may be selected and mixed.

尚、融点は示差走査熱量測定(DSC)等により求めることができる。例えば、XDSC−7000((株)日立ハイテクサイエンス製)や、DSC−60Plusシリーズ((株)島津製作所製)を用いて測定できる。また、表面張力はWilhelmy法(プレート法、垂直板法)を用いて求めることができる。例えば、DY−300、DY−500、DY−700(協和界面化学(株)製)を用いて測定することができる。さらに、動粘度については自動動粘度測定装置PVS VAS(ラウダ社製)を用いて測定できるが、絶対粘度を密度(比重)で割ることにより動粘度を算出しても良い。   The melting point can be determined by differential scanning calorimetry (DSC) or the like. For example, it can be measured using XDSC-7000 (manufactured by Hitachi High-Tech Science Co., Ltd.) or DSC-60Plus series (manufactured by Shimadzu Corporation). Further, the surface tension can be determined using the Wilhelmy method (plate method, vertical plate method). For example, it can be measured using DY-300, DY-500, DY-700 (manufactured by Kyowa Interface Chemical Co., Ltd.). Furthermore, the kinematic viscosity can be measured using an automatic kinematic viscosity measuring device PVS VAS (manufactured by Lauda), but the kinematic viscosity may be calculated by dividing the absolute viscosity by the density (specific gravity).

本発明の含浸成分を芯体の気孔内に配置させる方法は、浸漬による含浸法や加圧含浸法、真空含浸法等が挙げられるが特に限定されない。   Examples of the method for disposing the impregnation component of the present invention in the pores of the core include, but are not particularly limited to, an impregnation method by dipping, a pressure impregnation method, and a vacuum impregnation method.

本発明の含浸成分の芯体中の体積含浸率は特に限定されないが、1%以上であることが好ましい。本発明の含浸成分の芯体中の体積含浸率が1%以上であると、本発明の含浸成分が芯体構成物同士の表面官能基による電気的な相互作用を十分に弱め、かつ、摩耗粉を十分に被覆することができるため、本発明の効果がよく得られやすい。
また、焼成鉛筆芯の細孔は1μm以下のマイクロポアより小さな領域に分布しているため、細孔内に侵入した含浸成分は、薄膜化してかつ、細孔壁(芯体内壁面)に接した状態で細孔内に配置されている。よって、細孔内に配置された含浸成分が接する芯体内表面積は、含浸成分の侵入体積で代替して考えることができる。
尚、本発明の含浸成分の芯体の体積含浸率とは、芯体細孔内に含浸された物質の25℃での体積を芯体の全細孔容積で除した値を百分率に換算したものである。尚、芯体の細孔容積は芯体の細孔分布は水銀圧入法を用いて求めることができ、ポアカイザー9320(島津製作所(株))を用いて測定することができる。
Although the volume impregnation rate in the core of the impregnation component of the present invention is not particularly limited, it is preferably 1% or more. When the volume impregnation ratio of the impregnating component of the present invention in the core is 1% or more, the impregnating component of the present invention sufficiently weakens the electrical interaction due to the surface functional groups of the core components, and wear Since the powder can be sufficiently covered, the effects of the present invention are easily obtained.
In addition, since the pores of the fired pencil core are distributed in a region smaller than the micropores of 1 μm or less, the impregnated component that has entered the pores is made into a thin film and is in contact with the pore wall (wall surface in the core). It arrange | positions in a pore in the state. Therefore, the surface area in the core with which the impregnating component disposed in the pores contacts can be considered by substituting the intruding volume of the impregnating component.
The volume impregnation rate of the core of the impregnation component of the present invention is a percentage obtained by dividing the volume at 25 ° C. of the substance impregnated in the core pores by the total pore volume of the core. Is. The pore volume of the core can be determined by using a mercury intrusion method and the pore distribution of the core can be measured using Pore Kaiser 9320 (Shimadzu Corporation).

次に実施例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further, this invention is not limited to these Examples.

<実施例1>
塩化ビニル樹脂 30重量部
黒鉛 50重量部
ジオクチルフタレート 10重量部
ステアリン酸 2重量部
メチルエチルケトン 8重量部
上記材料を配合物として、ニーダー及び3本ロールにより十分に混練後、細線状に押し出し、空気中で300℃まで加熱し、更に、不活性雰囲気中で1100℃まで加熱し、呼び径0.5mmの焼成芯体を得た。これを100℃に加熱したXF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)の中に10時間浸漬し、芯体表面に付着した余分な当該含浸成分を除去して、当該含浸成分の体積含浸率は、芯体内の全細孔中の44.5体積%含浸された焼成鉛筆芯を得た。
<Example 1>
Vinyl chloride resin 30 parts by weight Graphite 50 parts by weight Dioctyl phthalate 10 parts by weight Stearic acid 2 parts by weight Methyl ethyl ketone 8 parts by weight The above materials are blended sufficiently with a kneader and three rolls, then extruded into a thin line, and in air The mixture was heated to 300 ° C. and further heated to 1100 ° C. in an inert atmosphere to obtain a fired core having a nominal diameter of 0.5 mm. XF42-C4696 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20.6 mN / m heated to 100 ° C. ) For 10 hours to remove the excess impregnated component adhering to the core surface, and the volume impregnation rate of the impregnated component was impregnated with 44.5% by volume of all pores in the core. A fired pencil lead was obtained.

<実施例2>
実施例1において、100℃に加熱したXF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)の中での焼成芯体の浸漬時間を1時間に変更した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の10.2体積%であった。
<Example 2>
In Example 1, XF42-C4696 heated to 100 ° C. (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20. 6 mN / m) A fired pencil lead was obtained in the same manner as in Example 1 except that the immersion time of the fired core was changed to 1 hour. The volume impregnation rate of the impregnation component was 10.2% by volume in all pores in the core.

<実施例3>
実施例1において、100℃に加熱したXF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)の中での焼成芯体の浸漬時間を0.5時間に変更した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の1.0体積%であった。
<Example 3>
In Example 1, XF42-C4696 heated to 100 ° C. (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20. A fired pencil lead was obtained in the same manner as in Example 1 except that the immersion time of the fired core in 6 mN / m) was changed to 0.5 hour. The volume impregnation rate of the impregnation component was 1.0% by volume in all pores in the core.

<実施例4>
実施例1において、100℃に加熱したXF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)の中での焼成芯体の浸漬時間を0.4時間に変更した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の0.9体積%であった。
<Example 4>
In Example 1, XF42-C4696 heated to 100 ° C. (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20. A fired pencil lead was obtained in the same manner as in Example 1 except that the immersion time of the fired core in 6 mN / m) was changed to 0.4 hour. The volume impregnation rate of the impregnation component was 0.9% by volume in all pores in the core.

<実施例5>
実施例1において、XF42−C4696に代えてXF42−B1183(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:30℃、動粘度(50℃):202mm/s、表面張力:20.5mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の46.7体積%であった。
<Example 5>
In Example 1, instead of XF42-C4696, XF42-B1183 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 30 ° C., kinematic viscosity (50 ° C.): 202 mm 2 / s, surface tension: 20 0.5 mN / m) was used to obtain a fired pencil lead in the same manner as in Example 1. The volume impregnation rate of the impregnation component was 46.7% by volume in all pores in the core.

<実施例6>
実施例1において、XF42−C4696に代えてSF1632(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:30℃、動粘度(50℃):212mm/s、表面張力:20.3mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の47.5体積%であった。
<Example 6>
In Example 1, instead of XF42-C4696, SF1632 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 30 ° C., kinematic viscosity (50 ° C.): 212 mm 2 / s, surface tension: 20.3 mN / M) was used to obtain a fired pencil lead in the same manner as in Example 1. The volume impregnation rate of the impregnation component was 47.5% by volume in all pores in the core.

<実施例7>
実施例1において、XF42−C4696に代えて、XF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)70重量部と、XF42−B1183(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:30℃、動粘度(50℃):202mm/s、表面張力:20.5mN/m)30重量部との混合物(融点:40℃、動粘度(50℃):221mm/s、表面張力:20.6mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の45.6体積%であった。
<Example 7>
In Example 1, instead of XF42-C4696, XF42-C4696 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20.6 mN / m) 70 parts by weight, XF42-B1183 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 30 ° C., kinematic viscosity (50 ° C.): 202 mm 2 / s, surface tension: 20 0.5 mN / m) Same as Example 1 except that a mixture with 30 parts by weight (melting point: 40 ° C., kinematic viscosity (50 ° C.): 221 mm 2 / s, surface tension: 20.6 mN / m) was used. A fired pencil lead was obtained. The volume impregnation ratio of the impregnation component was 45.6% by volume in all pores in the core.

<実施例8>
実施例1において、XF42−C4696に代えて、XF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)95重量部と、流動パラフィン(炭化水素油、融点:−50℃以下、動粘度(50℃):25mm/s、表面張力:26.4mN/m)5重量部との混合物(融点:43℃、動粘度(50℃):220mm/s、表面張力:20.6mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の44.7体積%であった。
<Example 8>
In Example 1, instead of XF42-C4696, XF42-C4696 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20.6 mN / m) 95 parts by weight and liquid paraffin (hydrocarbon oil, melting point: −50 ° C. or less, kinematic viscosity (50 ° C.): 25 mm 2 / s, surface tension: 26.4 mN / m) 5 parts by weight A sintered pencil lead was obtained in the same manner as in Example 1 except that a mixture (melting point: 43 ° C., kinematic viscosity (50 ° C.): 220 mm 2 / s, surface tension: 20.6 mN / m) was used. The volume impregnation rate of the impregnation component was 44.7% by volume in all pores in the core.

<実施例9>
実施例1において、XF42−C4696に代えて、XF42−B1183(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:30℃、動粘度(50℃):202mm/s、表面張力:20.5mN/m)95重量部と、Loxiol G22(パラフィンワックス、Henkel社製、独国、融点:55〜62℃、動粘度(100℃):4.1mm/s、表面張力(100℃):28.5mN/m)5重量部との混合物(融点:38℃、動粘度(50℃):208mm/s、表面張力:20.5mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の45.9体積%であった。
<Example 9>
In Example 1, instead of XF42-C4696, XF42-B1183 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 30 ° C., kinematic viscosity (50 ° C.): 202 mm 2 / s, surface tension: 20.5 mN / m) 95 parts by weight, Loxiol G22 (paraffin wax, manufactured by Henkel, Germany, melting point: 55-62 ° C., kinematic viscosity (100 ° C.): 4.1 mm 2 / s, surface tension (100 ° C. ): 28.5 mN / m) Example 1 except that a mixture with 5 parts by weight (melting point: 38 ° C., kinematic viscosity (50 ° C.): 208 mm 2 / s, surface tension: 20.5 mN / m) was used. In the same manner, a fired pencil lead was obtained. The volume impregnation rate of the impregnation component was 45.9% by volume in all pores in the core.

<比較例1>
実施例1において、XF42−C4696に代えて、TSF451−10(シリコーンオイル、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:−60℃以下、動粘度(50℃):8mm/s、表面張力:20.5mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の52.1体積%であった。
<Comparative Example 1>
In Example 1, instead of XF42-C4696, TSF451-10 (silicone oil, manufactured by Momentive Performance Materials, USA, melting point: −60 ° C. or lower, kinematic viscosity (50 ° C.): 8 mm 2 / s, surface A fired pencil lead was obtained in the same manner as in Example 1 except that the tension was 20.5 mN / m. The volume impregnation ratio of the impregnation component was 52.1% by volume in all pores in the core.

<比較例2>
実施例1において、XF42−C4696に代えて、TSF451−300(シリコーンオイル、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:−50℃以下、動粘度(50℃):205mm/s、表面張力:20.5mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の43.2体積%であった。
<Comparative example 2>
In Example 1, instead of XF42-C4696, TSF451-300 (silicone oil, manufactured by Momentive Performance Materials, USA, melting point: −50 ° C. or less, kinematic viscosity (50 ° C.): 205 mm 2 / s, surface A fired pencil lead was obtained in the same manner as in Example 1 except that the tension was 20.5 mN / m. The volume impregnation ratio of the impregnation component was 43.2% by volume in all pores in the core.

<比較例3>
実施例1において、XF42−C4696に代えて、XF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)85重量部と、Loxiol G22(パラフィンワックス、Henkel社製、独国、融点:55〜62℃、動粘度(100℃):4.1mm/s、表面張力(100℃):28.5mN/m)15重量部との混合物(融点:45℃、動粘度(50℃):232mm/s、表面張力:20.8mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の41.5体積%であった。
<Comparative Example 3>
In Example 1, instead of XF42-C4696, XF42-C4696 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20.6 mN / m) 85 parts by weight, Loxiol G22 (paraffin wax, manufactured by Henkel, Germany, melting point: 55-62 ° C., kinematic viscosity (100 ° C.): 4.1 mm 2 / s, surface tension (100 ° C. ): 28.5 mN / m) Example 1 except that a mixture with 15 parts by weight (melting point: 45 ° C., kinematic viscosity (50 ° C.): 232 mm 2 / s, surface tension: 20.8 mN / m) was used. In the same manner, a fired pencil lead was obtained. The volume impregnation rate of the impregnation component was 41.5% by volume in all pores in the core.

<比較例4>
実施例1において、XF42−C4696に代えて、XF42−C4696(シリコーンワックス、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:45℃、動粘度(50℃):230mm/s、表面張力:20.6mN/m)90重量部と、流動パラフィン(炭化水素油、融点:−50℃以下、動粘度(50℃):25mm/s、表面張力:26.4mN/m)5重量部との混合物(融点:43℃、動粘度(50℃):220mm/s、表面張力:20.6mN/m)10重量部との混合物(融点:41℃、動粘度(50℃):208mm/s、表面張力:22.3mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の40.2体積%であった。
<Comparative Example 4>
In Example 1, instead of XF42-C4696, XF42-C4696 (silicone wax, manufactured by Momentive Performance Materials, USA, melting point: 45 ° C., kinematic viscosity (50 ° C.): 230 mm 2 / s, surface tension: 20.6 mN / m) 90 parts by weight, liquid paraffin (hydrocarbon oil, melting point: −50 ° C. or less, kinematic viscosity (50 ° C.): 25 mm 2 / s, surface tension: 26.4 mN / m) 5 parts by weight (Melting point: 43 ° C., kinematic viscosity (50 ° C.): 220 mm 2 / s, surface tension: 20.6 mN / m) and 10 parts by weight (melting point: 41 ° C., kinematic viscosity (50 ° C.): 208 mm 2 / S, surface tension: 22.3 mN / m) was used in the same manner as in Example 1 to obtain a fired pencil lead. The volume impregnation rate of the impregnation component was 40.2% by volume in all pores in the core.

<比較例5>
実施例1において、XF42−C4696に代えて、TSF451−500(シリコーンオイル、モメンティブ・パフォーマンス・マテリアルズ社製、米国、融点:−50℃以下、動粘度(50℃):350mm/s、表面張力:20.8mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の38.9体積%であった。
<Comparative Example 5>
In Example 1, instead of XF42-C4696, TSF451-500 (silicone oil, manufactured by Momentive Performance Materials, USA, melting point: −50 ° C. or lower, kinematic viscosity (50 ° C.): 350 mm 2 / s, surface A fired pencil lead was obtained in the same manner as in Example 1 except that the tension was 20.8 mN / m. The volume impregnation ratio of the impregnation component was 38.9% by volume in all pores in the core.

<比較例6>
実施例1において、XF42−C4696に代えて、流動パラフィン(炭化水素油、融点:−50℃以下、動粘度(50℃):25mm/s、表面張力:26.4mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の45.8体積%であった。
<Comparative Example 6>
In Example 1, instead of XF42-C4696, liquid paraffin (hydrocarbon oil, melting point: −50 ° C. or lower, kinematic viscosity (50 ° C.): 25 mm 2 / s, surface tension: 26.4 mN / m) was used. Except for the above, a fired pencil lead was obtained in the same manner as in Example 1. The volume impregnation rate of the impregnation component was 45.8% by volume in all pores in the core.

<比較例7>
実施例1において、XF42−C4696に代えて、Hexaglyn PR−15(ポリグリセリン脂肪酸絵エステル、日光ケミカルズ(株)製、融点:30℃、動粘度(50℃):285mm/s、表面張力:49.6mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の35.8体積%であった。
<Comparative Example 7>
In Example 1, instead of XF42-C4696, Hexaglyn PR-15 (polyglycerin fatty acid picture ester, manufactured by Nikko Chemicals Co., Ltd., melting point: 30 ° C., kinematic viscosity (50 ° C.): 285 mm 2 / s, surface tension: A fired pencil lead was obtained in the same manner as in Example 1 except that 49.6 mN / m) was used. The volume impregnation rate of the impregnation component was 35.8% by volume in all pores in the core.

<比較例8>
実施例1において、XF42−C4696に代えて、Loxiol G22(パラフィンワックス、Henkel社製、独国、融点:55〜62℃、動粘度(100℃):4.1mm/s、表面張力(100℃):28.5mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の25.6体積%であった。
<Comparative Example 8>
In Example 1, instead of XF42-C4696, Loxiol G22 (paraffin wax, manufactured by Henkel, Germany, melting point: 55-62 ° C., kinematic viscosity (100 ° C.): 4.1 mm 2 / s, surface tension (100 ° C): A fired pencil lead was obtained in the same manner as in Example 1 except that 28.5 mN / m) was used. The volume impregnation rate of the impregnation component was 25.6% by volume in all pores in the core.

<比較例9>
実施例1において、XF42−C4696に代えて、和光一級エチレングリコール(エチレングリコール、和光純薬工業(株)製)95重量部と、PVA UMR−10M (ポリビニルアルコール、ユニチカ(株)製)5重量部との混合物(融点:−10℃以下、動粘度(50℃):9.8mm/s、表面張力:35.9mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の9.8体積%であった。
<Comparative Example 9>
In Example 1, in place of XF42-C4696, 95 parts by weight of Wako primary ethylene glycol (ethylene glycol, manufactured by Wako Pure Chemical Industries, Ltd.) and 5 weights of PVA UMR-10M (polyvinyl alcohol, manufactured by Unitika) A calcined pencil in the same manner as in Example 1 except that a mixture with a part (melting point: −10 ° C. or lower, kinematic viscosity (50 ° C.): 9.8 mm 2 / s, surface tension: 35.9 mN / m) was used. I got a wick. The volume impregnation rate of the impregnation component was 9.8% by volume in all pores in the core.

<比較例10>
実施例1において、XF42−C4696に代えて、和光一級エチレングリコール(エチレングリコール、和光純薬工業(株)製)90重量部とPVA UMR−10M(ポリビニルアルコール、ユニチカ(株)製)10重量部との混合物(融点:−10℃以下、動粘度(50℃):25.6mm/s、表面張力:39.6mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の6.9体積%であった。
<Comparative Example 10>
In Example 1, instead of XF42-C4696, 90 parts by weight of Wako primary ethylene glycol (ethylene glycol, manufactured by Wako Pure Chemical Industries, Ltd.) and 10 parts by weight of PVA UMR-10M (polyvinyl alcohol, manufactured by Unitika Ltd.) A baked pencil lead in the same manner as in Example 1 except that a mixture (melting point: −10 ° C. or lower, kinematic viscosity (50 ° C.): 25.6 mm 2 / s, surface tension: 39.6 mN / m) is used. Got. The volume impregnation rate of the impregnation component was 6.9% by volume in all pores in the core.

<比較例11>
実施例1において、100℃に加熱したXF42−C4696に代えて、260℃に加熱したMolyvan A(ジチオカルバミン酸モリブデン、Vanderbilt社製、米国、融点:258℃)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得たが、当該含浸成分は、芯体内の細孔中に全く含浸されていなかった。
<Comparative Example 11>
In Example 1, instead of XF42-C4696 heated to 100 ° C., Polyvan A (molybdenum dithiocarbamate, manufactured by Vanderbilt, USA, melting point: 258 ° C.) heated to 260 ° C. was used. A fired pencil lead was obtained in the same manner, but the impregnating component was not impregnated at all in the pores in the core.

<比較例12>
実施例1において、XF42−C4696に代えて、Molyvan A(ジチオカルバミン酸モリブデン、Vanderbilt社製、米国、融点:258℃)10重量部と、スピンドル油(炭化水素油、融点:−40℃以下、動粘度(50℃):25mm/s、表面張力:26.9mN/m)との混合物(融点:−20℃以下、動粘度:6.6mm/s、表面張力:29.7mN/m)を使用した以外は、実施例1と同様にして焼成鉛筆芯を得た。当該含浸成分の体積含浸率は、芯体内の全細孔中の42.8体積%であった。
<Comparative Example 12>
In Example 1, instead of XF42-C4696, 10 parts by weight of Polyvan A (molybdenum dithiocarbamate, manufactured by Vanderbilt, USA, melting point: 258 ° C.) and spindle oil (hydrocarbon oil, melting point: −40 ° C. or less, dynamic Viscosity (50 ° C.): 25 mm 2 / s, surface tension: 26.9 mN / m) (melting point: −20 ° C. or less, kinematic viscosity: 6.6 mm 2 / s, surface tension: 29.7 mN / m) A fired pencil lead was obtained in the same manner as in Example 1 except that was used. The volume impregnation ratio of the impregnation component was 42.8% by volume in all pores in the core.

上記各例により得られた焼成鉛筆芯についてJIS S 6005に準じて曲げ強さを、JIS S 6005に準じて濃度を測定した。また、定着性は濃度測定で画線して筆記された部分の濃度をα、この筆記した部分にティッシュペーパーを重ねて垂直荷重500gにて当該筆記部分をティッシュペーパーで10往復する一定条件で擦り、濃度αを測定した部分と同一部分の擦過後の濃度をβとしたとき、β/αを百分率で求めた。値が大きいほど定着性が良いことを示す。   About the baked pencil lead obtained by each said example, the bending strength was measured according to JIS S6005, and the density | concentration was measured according to JIS S6005. In addition, the fixing property is α, where the density of the part written and drawn by density measurement is superimposed on the written part and tissue paper is superimposed on the written part, and the written part is rubbed under a certain condition of reciprocating 10 times with tissue paper at a vertical load of 500 g. Β / α was obtained as a percentage, where β was the concentration after rubbing of the same portion as the portion where the concentration α was measured. Larger values indicate better fixability.

Figure 2015044893
Figure 2015044893

実施例では、少なくとも黒鉛と合成樹脂とを配合し、混練、細線状に押出成形後、焼成温度まで熱処理を施して得られる焼成鉛筆芯の芯体内細孔に対して、融点が30〜45℃、50℃での表面張力が21mN/m以下、動粘度が230mm/s以下である物質を配置することにより、比較例10〜13にある従来の含浸剤を含浸させた場合よりも、高い濃度、かつ、紙面を汚すことが極力抑制された筆記線が得られている。
また、実施例1〜4において、本発明で用いる含浸成分の芯体内への体積含浸率を変化させたところ、芯体内に含浸成分が1体積%以上存在するときは、高い濃度の筆記が得られ、かつ、紙面を汚すことが極力抑制されている。
さらに、実施例1と実施例5、実施例6では、融点が30〜45℃であり、50℃での表面張力が21mN/m以下かつ動粘度が230mm/s以下である3種の含浸成分を芯体内に配置させている。それぞれの含浸成分で、融点と動粘度の差により筆記線の定着性に若干の差があるが、比較例10〜13にある従来の含浸剤を含浸させた場合よりも、高い濃度、かつ、紙面を汚すことが極力抑制された筆記線が得られている。
また、実施例7〜10では2種類の含浸成分の混合物を芯体内に配置させている。混合物を芯体内に配置させても、その混合物の特性が、融点が30〜45℃であり、50℃での表面張力が21mN/m以下かつ動粘度が230mm/s以下であるため、本発明の効果が得られ、比較例10〜13にある従来の含浸剤を含浸させた場合よりも、高い濃度、かつ、紙面を汚すことが極力抑制された筆記線が得られている。
さらに、実施例9のように、融点が50〜60℃程度のものを微量混合すると、紙面上での含浸成分の固体化が促進され、より紙面を汚すことが抑制された筆記線を得ることができる。
比較例1、比較例2の含浸成分では、融点が30℃以下であるため紙面上で固化しないため、筆記線の定着性が低い。また、比較例8の含浸成分では50℃における動粘度が230mm/s以上であり、比較例9の含浸成分では50℃における表面張力が21mN/mであるため、それぞれの含浸成分の芯体構成物間への浸透が不十分であるため、高い濃度の筆記線が得られていない。さらに、従来の含浸成分で用いられていた、比較例10の含浸成分は表面張力が高いため芯体構成物質間に十分浸透しなかったため、高い濃度の筆記線が得られなかったものと推察される。また、比較例12の含浸成分は芯体内に浸透しなかったため、筆記線の濃度向上効果や定着性向上効果が得られず、比較例13の含浸成分では、極圧添加剤をスピンドル油に溶解させた時点で、極圧添加剤の構造が壊れ、時間が経過しても、極圧添加剤の構造がもとに戻らず、含浸成分の固体化(または半固体化)が起こらなかったため、筆記線の紙面への定着性が不十分なものになったと推察される。
In Examples, at least graphite and a synthetic resin are blended, kneaded, extruded into a thin wire, and then subjected to heat treatment up to the firing temperature. By placing a substance having a surface tension at 50 ° C. of 21 mN / m or less and a kinematic viscosity of 230 mm 2 / s or less, higher than when impregnated with the conventional impregnating agent in Comparative Examples 10 to 13 A writing line is obtained in which the concentration and the contamination of the paper surface are suppressed as much as possible.
In Examples 1 to 4, when the volume impregnation ratio of the impregnation component used in the present invention into the core was changed, when the impregnation component was present in the core in an amount of 1% by volume or more, high concentration writing was obtained. And soiling the paper surface is suppressed as much as possible.
Further, in Examples 1, 5 and 6, three kinds of impregnation having a melting point of 30 to 45 ° C., a surface tension at 50 ° C. of 21 mN / m or less and a kinematic viscosity of 230 mm 2 / s or less. Ingredients are placed in the core. With each impregnation component, there is a slight difference in the fixability of the writing line due to the difference between the melting point and the kinematic viscosity, but a higher concentration than when impregnating the conventional impregnating agent in Comparative Examples 10 to 13, and A writing line in which the contamination of the paper surface is suppressed as much as possible is obtained.
In Examples 7 to 10, a mixture of two types of impregnation components is disposed in the core. Even when the mixture is placed in the core, the characteristics of the mixture are that the melting point is 30 to 45 ° C., the surface tension at 50 ° C. is 21 mN / m or less and the kinematic viscosity is 230 mm 2 / s or less. The effect of the invention is obtained, and a writing line that has a higher concentration and that suppresses the soiling of the paper as much as possible is obtained as compared with the case where the conventional impregnating agent in Comparative Examples 10 to 13 is impregnated.
Furthermore, as in Example 9, when a slight amount of a material having a melting point of about 50 to 60 ° C. is mixed, solidification of the impregnated component on the paper surface is promoted, and a writing line in which the paper surface is further prevented from being stained is obtained. Can do.
The impregnated components of Comparative Example 1 and Comparative Example 2 have a melting point of 30 ° C. or lower and are not solidified on the paper surface. Further, the impregnation component of Comparative Example 8 has a kinematic viscosity at 50 ° C. of 230 mm 2 / s or more, and the impregnation component of Comparative Example 9 has a surface tension at 50 ° C. of 21 mN / m. Since the penetration between the constituents is insufficient, a high-concentration writing line is not obtained. Furthermore, since the impregnation component of Comparative Example 10 used in the conventional impregnation component has a high surface tension and does not sufficiently penetrate between the core constituent materials, it is presumed that a high-concentration writing line was not obtained. The Further, since the impregnation component of Comparative Example 12 did not penetrate into the core, the writing line concentration improvement effect and the fixability improvement effect could not be obtained. In the impregnation component of Comparative Example 13, the extreme pressure additive was dissolved in the spindle oil. At that time, the structure of the extreme pressure additive was broken, and the structure of the extreme pressure additive did not return to its original state even after time passed, and solidification (or semi-solidification) of the impregnation component did not occur. It seems that the fixability of the writing lines on the paper is insufficient.

Claims (1)

少なくとも黒鉛と合成樹脂とを配合し、混練、細線状に押出成形後、焼成温度まで熱処理を施して得られる焼成鉛筆芯の細孔内に、融点が30〜45℃であり、50℃での表面張力が21mN/m以下かつ動粘度が230mm/s以下である物質を配置させることにより得られる焼成鉛筆芯。 At least graphite and a synthetic resin are blended, kneaded, extruded into a fine wire, and then subjected to heat treatment up to the firing temperature. The melting point is 30 to 45 ° C., and the melting point is 50 to 50 ° C. A fired pencil lead obtained by disposing a substance having a surface tension of 21 mN / m or less and a kinematic viscosity of 230 mm 2 / s or less.
JP2013175218A 2013-08-27 2013-08-27 Fired pencil lead Pending JP2015044893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013175218A JP2015044893A (en) 2013-08-27 2013-08-27 Fired pencil lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175218A JP2015044893A (en) 2013-08-27 2013-08-27 Fired pencil lead

Publications (1)

Publication Number Publication Date
JP2015044893A true JP2015044893A (en) 2015-03-12

Family

ID=52670677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175218A Pending JP2015044893A (en) 2013-08-27 2013-08-27 Fired pencil lead

Country Status (1)

Country Link
JP (1) JP2015044893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022049A1 (en) * 2021-08-16 2023-02-23 三菱鉛筆株式会社 Pencil lead

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022049A1 (en) * 2021-08-16 2023-02-23 三菱鉛筆株式会社 Pencil lead

Similar Documents

Publication Publication Date Title
UA84038C2 (en) composition for thermal insulating layer, method of its production and method of production of thermal insulating layer on the backing
JP5017813B2 (en) Pencil lead
JP7071990B2 (en) Pencil lead
JP2015044893A (en) Fired pencil lead
JP2008031372A (en) Fired pencil lead
JP6594766B2 (en) Pencil lead
JP2008266486A (en) Polyacetal resin composition for sliding member and sliding member
JP4806921B2 (en) Pencil lead
JP6525650B2 (en) Sliding member
JP2010126686A (en) Fired lead for pencil
JP4815794B2 (en) Pencil lead
JP5181903B2 (en) Pencil lead
JP4517639B2 (en) Solid lubricant and sliding member
JP7092666B2 (en) Pencil lead
JP2012116946A (en) Fired pencil lead
JP5621480B2 (en) Firing pencil lead
JP2017014304A (en) Polyacetal resin composition, molded body and digital device component
CN112513206B (en) Pencil lead
JP2009161626A (en) Pencil lead
JP2013082920A (en) Fired lead for pencil
JP6405835B2 (en) Firing pencil lead
JP2010100501A (en) Polymer compound-covered silicon carbide heating element and method for producing the same
JP2005314620A (en) Pencil lead
JPS63135469A (en) Lead for mechanical pencil
JP5589747B2 (en) Firing pencil lead