JP2015044769A - Method for producing silylamine - Google Patents

Method for producing silylamine Download PDF

Info

Publication number
JP2015044769A
JP2015044769A JP2013177212A JP2013177212A JP2015044769A JP 2015044769 A JP2015044769 A JP 2015044769A JP 2013177212 A JP2013177212 A JP 2013177212A JP 2013177212 A JP2013177212 A JP 2013177212A JP 2015044769 A JP2015044769 A JP 2015044769A
Authority
JP
Japan
Prior art keywords
carbon atoms
reaction
mol
silylamine
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013177212A
Other languages
Japanese (ja)
Inventor
明彦 白幡
Akihiko Shirahata
明彦 白幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase and Co Ltd
Original Assignee
Nagase and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase and Co Ltd filed Critical Nagase and Co Ltd
Priority to JP2013177212A priority Critical patent/JP2015044769A/en
Publication of JP2015044769A publication Critical patent/JP2015044769A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silylamine with higher efficiency and at lower cost than a conventional method.SOLUTION: There is provided a method for producing a silylamine in which RRRSiNRRis obtained by reacting a disilazane represented by RRRSiNHSiRRR(provided that R, Rand Reach independently represent an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 2 to 3 carbon atoms) and an amine represented by RRNH (provided that Rand Reach independently represent an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms or a phenyl group) in the presence of a non-protonic highly polar solvent and a strong acid or an ammonium salt thereof.

Description

本発明は、ケイ素化合物、特にはSi−N結合を有する有機ケイ素化合物であるシリルアミンの製造方法に関する。   The present invention relates to a method for producing a silicon compound, particularly silylamine, which is an organosilicon compound having a Si—N bond.

一般式RSiNR’で示されるシリルアミン化合物は、CVDによる窒化ケイ素膜生成の前駆体や、特殊シリル化剤として有用である。シリルアミン化合物を合成する一般的製法として、非特許文献1に開示されるように、例えばトリメチルクロロシランのようなトリアルキルクロロシランとジメチルアミンやジブチルアミンといったジアルキルアミンとを反応させることが知られている。 The silylamine compound represented by the general formula R 3 SiNR ′ 2 is useful as a precursor for forming a silicon nitride film by CVD or as a special silylating agent. As a general production method for synthesizing a silylamine compound, as disclosed in Non-Patent Document 1, it is known to react a trialkylchlorosilane such as trimethylchlorosilane with a dialkylamine such as dimethylamine or dibutylamine.

Szabo, Katalin; Le Ha, Ngoc; Schneider, Phillippe; Zeltner, Peter; sz. Kovacs,Ervin, Helvetica Chimica Acta, 1984, vol.67, p.2128-2142Szabo, Katalin; Le Ha, Ngoc; Schneider, Phillippe; Zeltner, Peter; sz. Kovacs, Ervin, Helvetica Chimica Acta, 1984, vol. 67, p. 2128-2142

しかしながら、トリアルキルクロロシランとジアルキルアミンとの反応でシリルアミンを製造する場合には、ジアルキルアミンをクロロシランに対して2倍当量以上用い、トルエンやヘキサンなどの無水の非プロトン性有機溶媒中で反応させ、反応によって生成する塩化水素を当該アミンの塩酸塩としてトラップし、副生するアミンの塩酸塩を濾過で除去してから蒸留で溶媒と生成するシリルアミンを分離精製するといった手法が必要となる。この方法では、目的とするシリルアミンと等モルのアミン塩酸塩が生成するため、原料となるジアルキルアミンが化学両論上クロロシランに対して2倍モル必要であり、かつ反応をスムーズに行わせるための攪拌のために相当量の溶媒が必要であるためその生成効率が制限され、さらにアミン塩酸塩の濾過の工程が必要で工程が複雑となっていた。   However, when silylamine is produced by reaction of trialkylchlorosilane and dialkylamine, dialkylamine is used in an equivalent amount of chlorosilane more than twice, and reacted in an anhydrous aprotic organic solvent such as toluene or hexane, A technique is required in which hydrogen chloride produced by the reaction is trapped as the hydrochloride of the amine, and the hydrochloride of the amine produced as a by-product is removed by filtration, and then the solvent and the silylamine produced are separated and purified by distillation. In this method, an amine hydrochloride equivalent to the target silylamine is produced, so that the dialkylamine used as a raw material is required to be twice as much mole as chlorosilane with respect to chlorosilane, and stirring for smooth reaction. For this reason, a considerable amount of solvent is required, so that the production efficiency is limited, and further, the process of filtration of amine hydrochloride is necessary and the process is complicated.

本発明は、このような従来技術の現状に鑑みてなされたものであり、従来の方法に比べて高効率かつ低コストにシリルアミンを製造する手法を提供することを目的とする。   The present invention has been made in view of such a state of the art, and an object of the present invention is to provide a method for producing silylamine more efficiently and at a lower cost than conventional methods.

本発明に係るシリルアミンの製造方法は、RSiNHSiRで示されるジシラザン(ただし、R、R及びRは、それぞれ独立に、炭素数1〜3のアルキル基、又は、炭素数2〜3のアルケニル基を示す。)と、
NHで示されるアミン(ただし、R及びRは、それぞれ独立に、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、または、フェニル基を示す。)とを、
非プロトン性強極性溶媒、及び、強酸またはそのアンモニウム塩、の存在下で反応させてRSiNRを得る工程を備える。
The method for producing silylamine according to the present invention is a disilazane represented by R 1 R 2 R 3 SiNHSiR 1 R 2 R 3 (where R 1 , R 2 and R 3 are each independently an alkyl having 1 to 3 carbon atoms). Group or an alkenyl group having 2 to 3 carbon atoms).
An amine represented by R 4 R 5 NH (wherein R 4 and R 5 each independently represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a phenyl group); The
Reacting in the presence of an aprotic strong polar solvent and a strong acid or its ammonium salt to obtain R 1 R 2 R 3 SiNR 4 R 5 .

ここで、ジシラザン100モルに対して0.1モル以上の、強酸またはそのアンモニウム塩を存在させることが好ましい。   Here, it is preferable that 0.1 mol or more of a strong acid or its ammonium salt is present with respect to 100 mol of disilazane.

また、ジシラザン100質量部に対して5質量部以上の非プロトン性強極性溶媒を存在させることが好ましい。   Further, it is preferable that 5 parts by mass or more of an aprotic strong polar solvent is present with respect to 100 parts by mass of disilazane.

本発明の製造方法によれば、高効率かつ低コストなシリルアミンの合成法が提供される。   According to the production method of the present invention, a highly efficient and low cost synthesis method of silylamine is provided.

本発明に係るシリルアミンの製造方法は、RSiNHSiRで示されるジシラザンと、RNHで示されるアミンとを、非プロトン性強極性溶媒、及び、強酸またはそのアンモニウム塩、の存在下で反応させてシリルアミンRSiNRを得る。 The method for producing silylamine according to the present invention comprises a disilazan represented by R 1 R 2 R 3 SiNHSiR 1 R 2 R 3 , an amine represented by R 4 R 5 NH, an aprotic strong polar solvent, and a strong acid. Alternatively, the reaction is carried out in the presence of an ammonium salt thereof to obtain silylamine R 1 R 2 R 3 SiNR 4 R 5 .

(ジシラザン)
ジシラザンRSiNHSiRの式中のR、R及びRは、それぞれ独立に、炭素数1〜3のアルキル基、又は、炭素数2〜3のアルケニル基を示す。
(Disilazan)
Disilazane R 1 R 2 R 3 SiNHSiR 1 R 2 R R 1 in the formula 3, R 2 and R 3 are independently an alkyl group having 1 to 3 carbon atoms or an alkenyl group having 2 to 3 carbon atoms Indicates.

、R、及びRはすべて互いに同一でも良いし、R、R、及びR中のいずれか2つのみが互いに同一でも良いし、R、R及びRがいずれも互いに異なっても良い。 R 1 , R 2 , and R 3 may all be the same as each other, only two of R 1 , R 2 , and R 3 may be the same, or any of R 1 , R 2, and R 3 may be May be different from each other.

、R、及びRの具体例は、メチル基、エチル基、プロピル基、ビニル基、アリル基などである。最も一般的なジシラザンとしてはR、R、Rがすべてメチル基のヘキサメチルジシラザンがあげられるが、反応はこのものに限定されるものではない。 Specific examples of R 1 , R 2 , and R 3 include a methyl group, an ethyl group, a propyl group, a vinyl group, and an allyl group. The most common disilazane is hexamethyldisilazane in which R 1 , R 2 and R 3 are all methyl groups, but the reaction is not limited to this.

(アミン)
アミンRNHの式中のR及びRは、それぞれ独立に、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、または、フェニル基を示す。
(Amine)
R 4 and R 5 in the formula of the amine R 4 R 5 NH represents each independently an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a phenyl group.

及びRは、互いに同一でもよいし、互いに異種でもよい。R及びRの例は、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジブチルアミン、N−メチルシクロヘキシルアミン、メチルフェニルアミン、ジアリルアミンなどである。 R 4 and R 5 may be the same as each other or different from each other. Examples of R 4 and R 5 are dimethylamine, diethylamine, diisopropylamine, dibutylamine, N-methylcyclohexylamine, methylphenylamine, diallylamine and the like.

(非プロトン性強極性溶媒)
非プロトン性強極性溶媒の例は、N,N−ジメチルフォルムアミド、N−メチルピロリドン、ジメチルエチレンウレア、ヘキサメチルリン酸トリアミド(HMPA)などのアミド系溶媒;ジメチルスルホキシド(DMSO);アセトニトリルなどがあげられる。この非プロトン性強極性溶媒は助触媒として作用し、これが存在しないと反応は進行しない。非プロトン性強極性溶媒の添加量は特に限定されないが、ジシラザン100質量部に対して5質量部以上存在することが好ましく、10質量部以上存在することが好ましい。非プロトン性強極性溶媒の添加量の上限は特にないが、例えば、反応開始時において、ジシラザン100質量部に対して200質量部以下とすることが好ましく、100質量部以下とすることがさらに好ましい。反応釜効率や反応速度を考慮してその添加量は決められる。
(Aprotic strong polar solvent)
Examples of aprotic strong polar solvents include N, N-dimethylformamide, N-methylpyrrolidone, dimethylethyleneurea, hexamethylphosphoric triamide (HMPA) and other amide solvents; dimethyl sulfoxide (DMSO); acetonitrile and the like. can give. This aprotic strong polar solvent acts as a co-catalyst and the reaction does not proceed without it. The addition amount of the aprotic strong polar solvent is not particularly limited, but it is preferably 5 parts by mass or more, and preferably 10 parts by mass or more with respect to 100 parts by mass of disilazane. There is no particular upper limit on the amount of the aprotic strong polar solvent added. For example, at the start of the reaction, the amount is preferably 200 parts by mass or less, more preferably 100 parts by mass or less with respect to 100 parts by mass of disilazane. . The amount added is determined in consideration of the reaction vessel efficiency and reaction rate.

(強酸またはそのアンモニウム塩)
強酸の例は、塩酸、硫酸、硝酸、リン酸等の無機酸、p−トルエンスルフォン酸やドデシルベンゼンスルフォン酸などの有機酸である。本反応ではアミンを添加するのでこれらの酸は反応開始時点で添加したアミンのアンモニウム塩になっていると考えられるが、実際、強酸そのものではなく、強酸のアンモニウム塩を添加しても同じ効果が得られる。アンモニウム塩はかならずしも添加するアミンの塩である必要はなく、アンモニア由来の塩化アンモニウム、硫酸アンモニウムなどのアンモニウム塩でも同じ結果が得られる。
(Strong acid or its ammonium salt)
Examples of strong acids are inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid, and organic acids such as p-toluenesulfonic acid and dodecylbenzenesulfonic acid. In this reaction, amine is added, so these acids are considered to be ammonium salts of amine added at the start of the reaction, but in fact, the same effect can be obtained by adding ammonium salt of strong acid instead of strong acid itself. can get. The ammonium salt is not necessarily an amine salt to be added, and the same results can be obtained with ammonium salts such as ammonium chloride and ammonium sulfate derived from ammonia.

本反応において、強酸またはそのアンモニウム塩は反応の触媒として作用する。強酸又はそのアンモニウム塩の添加量は特に限定されないが、ジシラザン100モルに対して0.1モル以上存在することが好ましく、0.5モル以上とすることがより好ましい。添加量の上限も特にないが、反応開始時において、ジシラザン100モルに対して10モル以下とすることが好ましく、5モル以下とすることがさらに好ましい。0.1モル未満では反応が遅くなって生産効率がやや低くなる場合があり、10モル超では触媒が無駄なだけでなく、ろ過工程での効率が悪くなる場合がある。   In this reaction, a strong acid or its ammonium salt acts as a catalyst for the reaction. The addition amount of the strong acid or its ammonium salt is not particularly limited, but it is preferably 0.1 mol or more, more preferably 0.5 mol or more with respect to 100 mol of disilazane. Although there is no particular upper limit of the amount added, it is preferably 10 mol or less, more preferably 5 mol or less with respect to 100 mol of disilazane at the start of the reaction. If the amount is less than 0.1 mol, the reaction may be delayed and the production efficiency may be slightly lowered. If the amount exceeds 10 mol, not only the catalyst is wasted but also the efficiency in the filtration step may be deteriorated.

(反応操作)
アミンと触媒系成分(非プロトン性強極性溶媒及び強酸又はそのアンモニウム塩)の混合物中にジシラザンを添加しても、ジシラザンと触媒系成分の混合物中にアミンを添加してもよく、いずれの場合でも目的とするシリルアミンを得ることができる。反応に伴って発生するアンモニアを反応系の外へ除去することが好ましい。反応系外に除去する方法としては、分留塔が挙げられる。
(Reaction operation)
Either disilazan may be added to the mixture of amine and catalyst system component (aprotic strong polar solvent and strong acid or its ammonium salt), or amine may be added to the mixture of disilazane and catalyst system component. However, the target silylamine can be obtained. It is preferable to remove ammonia generated during the reaction out of the reaction system. As a method of removing it outside the reaction system, a fractionation tower can be mentioned.

反応温度は特に限定されないが、10〜125℃が好ましい。反応圧力も特に限定されず、常圧下で行うことができる。なお、加圧下で高温にすることで反応を促進することもできるが生成するアンモニアを効率よく系外に除去するための装置的な工夫が必要となる。   Although reaction temperature is not specifically limited, 10-125 degreeC is preferable. The reaction pressure is not particularly limited, and the reaction can be performed under normal pressure. Although the reaction can be promoted by increasing the temperature under pressure, it is necessary to devise a device for efficiently removing the produced ammonia out of the system.

(効果)
本発明の製造方法によれば、強酸またはそのアンモニウム塩が触媒となり、非プロトン性強極性溶媒が助触媒となって、シラザンとジアルキルアミンが反応してシリルアミンが生成する。反応は、主として溶媒を含む液相中で起こる。反応の副生物としてアンモニアが生成するが、ガスであるアンモニアを溶媒(液体相)から除去することは、従来の方法のように副生物である塩を溶媒から濾過等により取り除くことに比べてはるかに容易である。したがって、高効率化及び低コスト化が達成され、シリルアミンを合成する工業的製法として有用である。
(effect)
According to the production method of the present invention, a strong acid or an ammonium salt thereof serves as a catalyst, and an aprotic strong polar solvent serves as a promoter to react silazane with a dialkylamine to produce silylamine. The reaction occurs mainly in a liquid phase containing a solvent. Ammonia is produced as a by-product of the reaction. However, removing ammonia, which is a gas, from a solvent (liquid phase) is much more difficult than removing salt, which is a by-product, from a solvent by filtration or the like as in the conventional method. Easy to. Therefore, high efficiency and low cost are achieved, and it is useful as an industrial process for synthesizing silylamine.

以下に、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
攪拌棒、温度計、還流管、ガス導入管を備え付けた300mlの四つ口フラスコにヘキサメチルジシラザン161g(1モル)を仕込み、川研ファインケミカル製ジメチルエチレンウレアを50g、硫酸アンモニウム1.32g(0.01モル)を加えて加熱攪拌を開始した。40℃を超えたところで、攪拌しながらジメチルアミンを、ガス導入管を通して系内に導入した。ガスクロマトグラフィーで反応の進行を確認しながらジメチルアミンの導入をさらに行い、ヘキサメチルジシラザンが完全に消費されてトリメチルシリルジメチルアミンが生成したことを確認した。その後、常圧蒸留を行い、沸点86℃のトリメチルシリルジメチルアミン200g(1.71モル)を得た。収率は85%であった。
Example 1
A 300 ml four-necked flask equipped with a stir bar, thermometer, reflux tube, and gas introduction tube was charged with 161 g (1 mol) of hexamethyldisilazane, 50 g of dimethylethyleneurea manufactured by Kawaken Fine Chemicals, and 1.32 g of ammonium sulfate (0 .01 mol) was added and heating and stirring were started. When the temperature exceeded 40 ° C., dimethylamine was introduced into the system through a gas introduction tube while stirring. Dimethylamine was further introduced while confirming the progress of the reaction by gas chromatography, and it was confirmed that hexamethyldisilazane was completely consumed and trimethylsilyldimethylamine was produced. Thereafter, atmospheric distillation was performed to obtain 200 g (1.71 mol) of trimethylsilyldimethylamine having a boiling point of 86 ° C. The yield was 85%.

実施例2
攪拌棒、温度計、還流管、滴下ロートを備え付けた500mlの四つ口フラスコにヘキサメチルジシラザン161g(1モル)を仕込み、川研ファインケミカル製ジメチルエチレンウレアを50g、濃硫酸0.98g(0.01モル)を加えて加熱攪拌を開始した。40℃を超えたところで、攪拌しながらジメチルアミンを、ガス導入管を通して系内に導入した。ガスクロマトグラフィーで反応の進行を確認しながらジメチルアミンの導入をさらに行い、ヘキサメチルジシラザンが完全に消費されてトリメチルシリルジメチルアミンが生成したことを確認した。その後、常圧蒸留を行い、沸点86℃のトリメチルシリルジメチルアミン210g(1.79モル)を得た。収率は90%であった。
Example 2
A 500 ml four-necked flask equipped with a stir bar, thermometer, reflux tube and dropping funnel was charged with 161 g (1 mol) of hexamethyldisilazane, 50 g of dimethylethyleneurea manufactured by Kawaken Fine Chemicals, and 0.98 g of concentrated sulfuric acid (0 .01 mol) was added and heating and stirring were started. When the temperature exceeded 40 ° C., dimethylamine was introduced into the system through a gas introduction tube while stirring. Dimethylamine was further introduced while confirming the progress of the reaction by gas chromatography, and it was confirmed that hexamethyldisilazane was completely consumed and trimethylsilyldimethylamine was produced. Thereafter, atmospheric distillation was performed to obtain 210 g (1.79 mol) of trimethylsilyldimethylamine having a boiling point of 86 ° C. The yield was 90%.

実施例3
攪拌棒、温度計、還流管、滴下ロートを備え付けた500mlの四つ口フラスコにヘキサメチルジシラザン161g(1モル)を仕込み、川研ファインケミカル製ジメチルエチレンウレアを50g、ドデシルベンゼンスルフォン酸3.3g(0.01モル)を加えて加熱攪拌を開始した。40℃を超えたところで、攪拌しながらジメチルアミンを、ガス導入管を通して系内に導入した。ガスクロマトグラフィーで反応の進行を確認しながらジメチルアミンの導入をさらに行い、ヘキサメチルジシラザンが完全に消費されてトリメチルシリルジメチルアミンが生成したことを確認した。その後、常圧蒸留を行い、沸点86℃のトリメチルシリルジメチルアミン220g(1.88モル)を得た。収率は94%であった。
Example 3
A 500 ml four-necked flask equipped with a stir bar, thermometer, reflux tube and dropping funnel was charged with 161 g (1 mol) of hexamethyldisilazane, 50 g of dimethylethyleneurea manufactured by Kawaken Fine Chemicals, and 3.3 g of dodecylbenzenesulfonic acid. (0.01 mol) was added and heating and stirring were started. When the temperature exceeded 40 ° C., dimethylamine was introduced into the system through a gas introduction tube while stirring. Dimethylamine was further introduced while confirming the progress of the reaction by gas chromatography, and it was confirmed that hexamethyldisilazane was completely consumed and trimethylsilyldimethylamine was produced. Thereafter, atmospheric distillation was performed to obtain 220 g (1.88 mol) of trimethylsilyldimethylamine having a boiling point of 86 ° C. The yield was 94%.

実施例4
攪拌棒、温度計、還流管、滴下ロートを備え付けた500mlの四つ口フラスコにヘキサメチルジシラザン161g(1モル)を仕込み、N-メチルピロリドンを50g、ドデシルベンゼンスルフォン酸3.3g(0.01モル)を加えて加熱攪拌を開始した。40℃を超えたところで、攪拌しながらジメチルアミンを、ガス導入管を通して系内に導入した。ガスクロマトグラフィーで反応の進行を確認しながらジメチルアミンの導入をさらに行い、ヘキサメチルジシラザンが完全に消費されてトリメチルシリルジメチルアミンが生成したことを確認した。その後、常圧蒸留を行い、沸点86℃のトリメチルシリルジメチルアミン195g(1.66モル)を得た。収率は83%であった。
Example 4
A 500 ml four-necked flask equipped with a stir bar, thermometer, reflux tube and dropping funnel was charged with 161 g (1 mol) of hexamethyldisilazane, 50 g of N-methylpyrrolidone, 3.3 g of dodecylbenzenesulfonic acid (0.3 g). 01 mol) was added and heating and stirring were started. When the temperature exceeded 40 ° C., dimethylamine was introduced into the system through a gas introduction tube while stirring. Dimethylamine was further introduced while confirming the progress of the reaction by gas chromatography, and it was confirmed that hexamethyldisilazane was completely consumed and trimethylsilyldimethylamine was produced. Thereafter, atmospheric distillation was performed to obtain 195 g (1.66 mol) of trimethylsilyldimethylamine having a boiling point of 86 ° C. The yield was 83%.

Claims (4)

SiNHSiRで示されるジシラザン(ただし、R、R及びRは、それぞれ独立に、炭素数1〜3のアルキル基、又は、炭素数2〜3のアルケニル基を示す。)と、
NHで示されるアミン(ただし、R及びRは、それぞれ独立に、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、または、フェニル基を示す。)とを、
非プロトン性強極性溶媒、及び、強酸またはそのアンモニウム塩、の存在下で反応させてRSiNRを得る、シリルアミンの製造方法。
Disilazan represented by R 1 R 2 R 3 SiNHSiR 1 R 2 R 3 (wherein R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 3 carbon atoms, or having 2 to 3 carbon atoms) An alkenyl group.)
An amine represented by R 4 R 5 NH (wherein R 4 and R 5 each independently represents an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or a phenyl group); The
A method for producing silylamine, which is reacted in the presence of an aprotic strong polar solvent and a strong acid or an ammonium salt thereof to obtain R 1 R 2 R 3 SiNR 4 R 5 .
ジシラザン100モルに対して0.1モル以上の強酸またはそのアンモニウム塩を存在させる請求項1記載の方法。   The process according to claim 1, wherein 0.1 mol or more of a strong acid or its ammonium salt is present per 100 mol of disilazane. ジシラザン100質量部に対して5質量部以上の非プロトン性強極性溶媒を存在させる請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein 5 parts by mass or more of an aprotic strong polar solvent is present with respect to 100 parts by mass of disilazane. 、R、R、R、Rがすべてメチル基である請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3 , wherein R 1 , R 2 , R 3 , R 4 and R 5 are all methyl groups.
JP2013177212A 2013-08-28 2013-08-28 Method for producing silylamine Pending JP2015044769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177212A JP2015044769A (en) 2013-08-28 2013-08-28 Method for producing silylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177212A JP2015044769A (en) 2013-08-28 2013-08-28 Method for producing silylamine

Publications (1)

Publication Number Publication Date
JP2015044769A true JP2015044769A (en) 2015-03-12

Family

ID=52670636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177212A Pending JP2015044769A (en) 2013-08-28 2013-08-28 Method for producing silylamine

Country Status (1)

Country Link
JP (1) JP2015044769A (en)

Similar Documents

Publication Publication Date Title
JP2011505246A5 (en)
TWI720966B (en) Method for producing dialkylaminosilane
JPS61287930A (en) Production of polysilazane
JP2015196674A (en) Method for producing silazane compound
JP2014510043A5 (en)
JP2020079219A (en) Method for producing tetraalkenylsilane
JP2008074804A (en) Method for producing silane compound having isocyanate group
JP2015044769A (en) Method for producing silylamine
JP6913242B2 (en) Method for producing halosiloxane
JP2018520134A5 (en)
JP6086163B2 (en) Method for producing 2'-trifluoromethyl group-substituted aromatic ketone
JP2009227596A (en) Method for producing optically active fluoroamine compounds
JP6498048B2 (en) Fluorine-containing organic compound and method for producing biaryl compound using this and Grignard reagent
EP2876111B1 (en) Composition containing nitrogen-containing organoxysilane compound and method for making the same
JP5231973B2 (en) Organosilicon compound and method for producing the same
JP5420751B2 (en) Method for synthesizing 1,3-bis (aminoalkyl) disiloxane
JP6665437B2 (en) Method for producing tertiary alkyl silane and tertiary alkyl alkoxy silane
CN103965184A (en) Synthesis method for rivaroxaban intermediate
JP4275417B2 (en) Method for producing alkoxysilane compound
JP2008503452A (en) Method for producing nitriles by elimination of water from aldehyde oximes with alkylphosphonic anhydrides
JP4915609B2 (en) Process for producing 4-chloropyridine-2-carboxylic acid chloride
JP5321414B2 (en) Method for producing dimethylvinylsilyl triflate
JP2007326841A (en) Method for producing isocyanate group-containing siloxane compound
JP4891536B2 (en) Method for producing aminoaryl group-containing organosilicon compound, and method for producing an intermediate thereof
JP6588320B2 (en) Cyclic halosilane compound and method for producing the same, and method for producing cyclic silane compound

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210