JP2015042880A - Fluid pressure cylinder - Google Patents

Fluid pressure cylinder Download PDF

Info

Publication number
JP2015042880A
JP2015042880A JP2013174134A JP2013174134A JP2015042880A JP 2015042880 A JP2015042880 A JP 2015042880A JP 2013174134 A JP2013174134 A JP 2013174134A JP 2013174134 A JP2013174134 A JP 2013174134A JP 2015042880 A JP2015042880 A JP 2015042880A
Authority
JP
Japan
Prior art keywords
fluid pressure
valve
steel ball
cylinder
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013174134A
Other languages
Japanese (ja)
Inventor
川上 孝幸
Takayuki Kawakami
孝幸 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pascal Engineering Corp
Original Assignee
Pascal Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pascal Engineering Corp filed Critical Pascal Engineering Corp
Priority to JP2013174134A priority Critical patent/JP2015042880A/en
Publication of JP2015042880A publication Critical patent/JP2015042880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Actuator (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid pressure cylinder incorporating a sequence valve mechanism to be opened under conditions that an output member is located at a prescribed position and a fluid pressure in a fluid pressure working chamber reaches a prescribed pressure.SOLUTION: A hydraulic cylinder 2 for driving a clamp device 1 is composed of a cylinder body 5, a piston member 3 mounted on the cylinder body so that it can be advanced and retracted, a hydraulic working chamber 8b for driving the piston member to an advancing side, a fluid passage 20 formed in a wall portion of the cylinder body, connected to a fluid pressure supply source at one end, and connected to an external fluid pressure apparatus at the other end, and a sequence valve mechanism 30 capable of opening and closing a midway portion of the fluid passage. The sequence valve mechanism 30 has a valve element capable of opening and closing the fluid passage, a valve closing spring 33 for biasing the valve element to a valve closing side, and a valve driving mechanism 34 for bringing the valve element into a valve opening driveable state by an oil pressure in the hydraulic working chamber 8b when the piston member is moved to a prescribed clamp position.

Description

本発明は、流体圧シリンダに関し、外部の流体圧供給源を外部のアクチュエータに接続する流体通路と、その途中部を開閉可能なシーケンス弁機構とを備え、出力部材が所定位置に移動したとき流体圧作動室の流体圧によりシーケンス弁機構を開弁するようにした流体圧シリンダに関する。   The present invention relates to a fluid pressure cylinder, and includes a fluid passage that connects an external fluid pressure supply source to an external actuator, and a sequence valve mechanism that can open and close the fluid passage when the output member moves to a predetermined position. The present invention relates to a fluid pressure cylinder in which a sequence valve mechanism is opened by fluid pressure in a pressure working chamber.

従来から、種々のクランプ対象物をクランプする流体圧シリンダを備えた種々の形式のクランプ装置が実用に供されている。これらのクランプ装置の流体圧シリンダは、シリンダ本体と、このシリンダ本体に進退可能に装備された出力部材と、この出力部材を進出側と退入側の少なくとも一方に駆動する為の流体圧作動室等を有し、加圧油や加圧エア等の加圧流体を利用して出力部材を駆動するように構成されている。   Conventionally, various types of clamping devices including a hydraulic cylinder for clamping various clamping objects have been put into practical use. The fluid pressure cylinders of these clamping devices include a cylinder body, an output member equipped to be able to advance and retract in the cylinder body, and a fluid pressure working chamber for driving the output member to at least one of the advance side and the retract side. And the output member is driven using a pressurized fluid such as pressurized oil or pressurized air.

ところで、流体圧シリンダの動作と、他の流体圧機器とを連携動作させる場合、流体圧シリンダの流体圧回路に接続されるシーケンス弁を流体圧シリンダの外部に設け、前記流体圧シリンダの動作に連動させて前記シーケンス弁を切換える技術は公知である。
また、流体圧シリンダの内部にシーケンス弁を設け、流体圧シリンダの流体圧供給ポートや流体圧作動室の流体圧が所定圧に達したときにシーケンス弁を開弁又は閉弁させる技術も公知である。
By the way, when the operation of the fluid pressure cylinder and other fluid pressure devices are operated in cooperation, a sequence valve connected to the fluid pressure circuit of the fluid pressure cylinder is provided outside the fluid pressure cylinder so that the fluid pressure cylinder operates. A technique for switching the sequence valve in conjunction with each other is known.
Also known is a technique in which a sequence valve is provided inside the fluid pressure cylinder, and the sequence valve is opened or closed when the fluid pressure supply port of the fluid pressure cylinder or the fluid pressure in the fluid pressure working chamber reaches a predetermined pressure. is there.

例えば、特許文献1の油圧式ロック装置には、ロッドを軸心方向へ移動させる油圧シリンダを設け、ケース部材内に外周側油圧室内の油を加圧する環状の増圧器を設け、ケース部材に油圧シリンダと増圧器の入力油室に油圧を供給する油圧供給ポートを設け、この油圧供給ポートから入力油室に通ずる油路に、油圧供給ポート内油圧が所定圧まで上昇後に閉弁バネのバネ力に抗して開弁するシーケンス弁を設け、このシーケンス弁を介して増圧器の動作開始を遅らせるように構成し、入力油室から油圧供給ポートに油圧を排出可能な逆止弁の内部にシーケンス弁を組み込んだ例が開示されている。   For example, the hydraulic lock device of Patent Document 1 is provided with a hydraulic cylinder that moves the rod in the axial direction, an annular pressure booster that pressurizes oil in the outer hydraulic chamber, and a hydraulic pressure on the case member. A hydraulic pressure supply port that supplies hydraulic pressure to the input oil chamber of the cylinder and pressure intensifier is provided, and the spring force of the valve closing spring after the hydraulic pressure in the hydraulic pressure supply port rises to a predetermined pressure in the oil passage that leads from the hydraulic pressure supply port to the input oil chamber A sequence valve that opens against the pressure is provided, and the operation start of the pressure intensifier is delayed via this sequence valve, and the sequence is arranged inside the check valve that can discharge hydraulic pressure from the input oil chamber to the hydraulic pressure supply port. An example incorporating a valve is disclosed.

特開2001−271809号公報JP 2001-271809 A

前記特許文献1の油圧式ロック装置では、流体圧供給ポート内の流体圧が所定圧まで上昇後にシーケンス弁が開弁位置に切り換えられる。このように、流体圧シリンダ内の所定部位の流体圧をトリガーとしてシーケンス弁を開閉させる構造を採用した場合、流体圧シリンダの出力部材の位置と関連付けてシーケンス弁を開閉させることができるとは限らない。そのため、流体圧シリンダの何らかの故障により、出力部材が正常に作動しない場合にも、シーケンス弁は流体圧により開閉作動するため、流体圧シリンダと他の流体圧機器との連携動作に支障を来す場合がある。   In the hydraulic lock device of Patent Document 1, the sequence valve is switched to the valve open position after the fluid pressure in the fluid pressure supply port rises to a predetermined pressure. As described above, when the structure in which the sequence valve is opened / closed by using the fluid pressure at a predetermined portion in the fluid pressure cylinder as a trigger, the sequence valve may not be able to be opened / closed in association with the position of the output member of the fluid pressure cylinder. Absent. Therefore, even if the output member does not operate normally due to some failure of the fluid pressure cylinder, the sequence valve opens and closes due to the fluid pressure, which hinders the cooperative operation between the fluid pressure cylinder and other fluid pressure devices. There is a case.

本発明の目的は、出力部材が所定位置に位置し且つ流体圧作動室内の流体圧が所定圧に達したことを条件として開弁動作するシーケンス弁機構を組み込んだ流体圧シリンダを提供することである。   An object of the present invention is to provide a fluid pressure cylinder incorporating a sequence valve mechanism that opens on condition that the output member is located at a predetermined position and the fluid pressure in the fluid pressure working chamber reaches a predetermined pressure. is there.

請求項1の流体圧シリンダは、シリンダ本体と、このシリンダ本体に進退可能に装備された出力部材と、この出力部材を進出側と退入側の少なくとも一方に駆動する為の流体圧作動室とを備えた流体圧シリンダにおいて、前記シリンダ本体の壁部内に形成された流体通路であって、一端が流体圧供給源に接続され且つ他端が外部の流体圧機器に接続された流体通路と、この流体通路の途中部を開閉可能なシーケンス弁機構とを備え、前記シーケンス弁機構は、前記流体通路を開閉可能な弁体と、この弁体を閉弁側に付勢する閉弁バネと、前記出力部材が所定位置に移動したときに前記流体圧作動室の流体圧によって前記弁体を開弁駆動可能な状態になる弁駆動機構とを有することを特徴としている。   The fluid pressure cylinder according to claim 1 is a cylinder main body, an output member mounted on the cylinder main body so as to be able to advance and retract, and a fluid pressure working chamber for driving the output member to at least one of the advancing side and the retracting side. A fluid passage formed in the wall of the cylinder body, wherein one end is connected to a fluid pressure supply source and the other end is connected to an external fluid pressure device; A sequence valve mechanism capable of opening and closing a middle portion of the fluid passage, and the sequence valve mechanism includes a valve body capable of opening and closing the fluid passage, and a valve closing spring for biasing the valve body toward a valve closing side, And a valve drive mechanism that enables the valve body to be driven to open by the fluid pressure in the fluid pressure working chamber when the output member moves to a predetermined position.

請求項2の流体圧シリンダは、請求項1の発明において、前記弁駆動機構は、前記流体圧作動室内の流体圧が所定圧まで上昇後に、前記閉弁バネのバネ力に抗して前記弁体を開弁位置に切り換えるように構成されたことを特徴としている。   According to a second aspect of the present invention, there is provided the fluid pressure cylinder according to the first aspect of the invention, wherein the valve driving mechanism is configured to prevent the valve from resisting a spring force of the valve closing spring after the fluid pressure in the fluid pressure working chamber has increased to a predetermined pressure. It is characterized by being configured to switch the body to the valve open position.

請求項3の流体圧シリンダは、請求項2の発明において、前記弁駆動機構は、前記シリンダ本体の壁部に形成された装着孔と、前記装着孔に軸心方向へ可動に装着され且つ前記弁体を開弁可能な弁駆動部材と、前記弁駆動部材に形成され且つ前記流体圧作動室の流体圧を受圧する受圧部と、前記出力部材のカム部に当接する鋼球を介して前記出力部材と前記弁駆動部材とを協働させる協働機構とを有することを特徴としている。   A fluid pressure cylinder according to a third aspect is the invention according to the second aspect, wherein the valve driving mechanism is mounted in a mounting hole formed in a wall portion of the cylinder body, and is movably mounted in the mounting hole in the axial direction. Via a valve driving member capable of opening a valve body, a pressure receiving portion that is formed in the valve driving member and receives the fluid pressure of the fluid pressure working chamber, and a steel ball that contacts the cam portion of the output member It has the cooperation mechanism which cooperates an output member and the said valve drive member, It is characterized by the above-mentioned.

請求項4の流体圧シリンダは、請求項3の発明において、前記協働機構は、前記シリンダ本体に形成された保持孔と、この保持孔に径方向へ可動に保持された鋼球と、前記弁駆動部材に形成され且つ前記鋼球が部分的に係合可能な環状係合凹部と、前記出力部材に形成されたカム部とを備え、前記カム部は、前記鋼球を前記環状係合凹部側へ押動する鋼球押動部と、前記鋼球を部分的に収容可能な鋼球受容部とを備え、前記鋼球押動部で前記鋼球を前記環状係合凹部側へ押動することにより前記弁駆動部材の移動を規制し、前記出力部材が所定位置に移動したときに、前記鋼球が前記鋼球受容部に収容され、前記弁駆動部材が前記弁体を開弁駆動可能な状態になることを特徴としている。   According to a fourth aspect of the present invention, there is provided the fluid pressure cylinder according to the third aspect, wherein the cooperating mechanism includes a holding hole formed in the cylinder body, a steel ball held movably in the radial direction in the holding hole, and the An annular engagement recess formed in the valve drive member and partially engageable with the steel ball, and a cam portion formed in the output member, the cam portion engaging the steel ball with the annular engagement A steel ball pushing portion that pushes toward the concave portion; and a steel ball receiving portion that can partially accommodate the steel ball. The steel ball pushing portion pushes the steel ball toward the annular engagement concave portion. When the output member moves to a predetermined position, the steel ball is accommodated in the steel ball receiving portion, and the valve drive member opens the valve body. It is characterized by being in a drivable state.

請求項5の流体圧シリンダは、請求項1の発明において、前記閉弁バネのバネ力を調整可能なバネ力調整部材が設けられたことを特徴としている。   The fluid pressure cylinder of claim 5 is characterized in that, in the invention of claim 1, a spring force adjusting member capable of adjusting a spring force of the valve closing spring is provided.

請求項6の流体圧シリンダは、請求項1の発明において、前記流体通路における前記シーケンス弁機構より上流側が前記流体圧作動室と連通することを特徴としている。   The fluid pressure cylinder of claim 6 is characterized in that, in the invention of claim 1, an upstream side of the sequence valve mechanism in the fluid passage communicates with the fluid pressure working chamber.

請求項7の流体圧シリンダは、請求項1の発明において、前記弁体の内部に流体圧の排出方向への流れを許容する逆止弁が組み込まれたことを特徴としている。   A fluid pressure cylinder according to a seventh aspect is characterized in that, in the invention according to the first aspect, a check valve for allowing a flow of fluid pressure in a discharge direction is incorporated in the valve body.

請求項8の流体圧シリンダは、請求項1の発明において、前記流体通路に前記シーケンス弁機構をバイパスするバイパス通路が設けられ、前記バイパス通路に流体圧の排出方向への流れを許容する逆止弁が設けられたことを特徴としている。   A fluid pressure cylinder according to an eighth aspect is the check according to the first aspect, wherein a bypass passage that bypasses the sequence valve mechanism is provided in the fluid passage, and the flow in the discharge direction of the fluid pressure is allowed in the bypass passage. It is characterized by the provision of a valve.

請求項9の流体圧シリンダは、請求項1の発明において、前記所定位置は、クランプ装置を駆動する為の流体圧シリンダにおけるクランプ位置であることを特徴としている。   The fluid pressure cylinder according to claim 9 is characterized in that, in the invention according to claim 1, the predetermined position is a clamp position in a fluid pressure cylinder for driving a clamp device.

請求項1の発明によれば、シリンダ本体の壁部内に形成された流体通路であって、一端が流体圧供給源に接続され且つ他端が外部の流体圧機器に接続された流体通路と、この流体通路の途中部を開閉可能なシーケンス弁機構とを備え、シーケンス弁機構は、流体通路を開閉可能な弁体と、閉弁バネと、出力部材が所定位置に移動したときに流体圧作動室の流体圧によって前記弁体を開弁駆動可能な状態になる弁駆動機構とを有するので、出力部材が所定位置に移動したとき、流体圧作動室の流体圧によってシーケンス弁機構を開弁状態に切換え、流体通路を開放状態にすることができる。   According to the invention of claim 1, a fluid passage formed in the wall portion of the cylinder body, wherein one end is connected to a fluid pressure supply source and the other end is connected to an external fluid pressure device; A sequence valve mechanism capable of opening and closing a middle portion of the fluid passage, and the sequence valve mechanism is operated by a fluid pressure when the output member moves to a predetermined position, a valve body capable of opening and closing the fluid passage, a valve closing spring, A valve drive mechanism that enables the valve body to be driven to open by the fluid pressure in the chamber, so that when the output member moves to a predetermined position, the sequence valve mechanism is opened by the fluid pressure in the fluid pressure working chamber. And the fluid passage can be opened.

従って、出力部材が所定位置に移動したこと、流体圧作動室の流体圧が立ったことを条件としてシーケンス弁機構を開弁可能であるので、流体圧シリンダと他の流体圧機器との連携動作の作動確実性を高めることができる。   Therefore, the sequence valve mechanism can be opened on the condition that the output member has moved to a predetermined position and the fluid pressure in the fluid pressure working chamber has risen, so the cooperative operation between the fluid pressure cylinder and another fluid pressure device is possible. The operational certainty of the can be improved.

請求項2の発明によれば、前記弁駆動機構は、流体圧作動室内の流体圧が所定圧まで上昇後に、弁駆動機構によって閉弁バネのバネ力に抗して弁体を開弁位置に切り換えるように構成したので、請求項1と同様の効果が得られる。   According to the second aspect of the present invention, the valve drive mechanism moves the valve body to the valve open position against the spring force of the valve closing spring by the valve drive mechanism after the fluid pressure in the fluid pressure working chamber rises to a predetermined pressure. Since it is configured to switch, the same effect as in claim 1 can be obtained.

請求項3の発明によれば、弁駆動機構は、シリンダ本体の壁部に形成された装着孔と、装着孔に軸心方向へ可動に装着され且つ弁体を開弁可能な弁駆動部材と、弁駆動部材に形成され且つ流体圧作動室の流体圧を受圧する受圧部と、出力部材のカム部に当接する鋼球を介して出力部材と弁駆動部材とを協働させる協働機構とを有するので、出力部材と弁駆動部材とを確実に連携動作させることができる。   According to the invention of claim 3, the valve drive mechanism includes a mounting hole formed in the wall portion of the cylinder body, a valve driving member that is movably mounted in the mounting hole in the axial direction and that can open the valve body. A pressure receiving portion that is formed in the valve drive member and receives the fluid pressure of the fluid pressure working chamber, and a cooperating mechanism that causes the output member and the valve drive member to cooperate via a steel ball that contacts the cam portion of the output member; Therefore, the output member and the valve driving member can be reliably operated in a coordinated manner.

請求項4の発明によれば、鋼球押動部で鋼球を環状係合凹部側へ押動することにより弁駆動部材の移動を規制し、出力部材が所定位置に移動したときに、鋼球が鋼球受容部に収容され、弁駆動部材が弁体を開弁駆動可能な状態になるので、簡単な機構により、出力部材と弁体を連携動作させることができる   According to the invention of claim 4, when the steel ball is pushed by the steel ball pushing portion toward the annular engagement concave portion, the movement of the valve drive member is restricted, and when the output member moves to a predetermined position, Since the ball is accommodated in the steel ball receiving portion and the valve driving member is in a state in which the valve body can be driven to open, the output member and the valve body can be operated in cooperation by a simple mechanism

請求項5の発明によれば、閉弁バネのバネ力を調整可能なバネ力調整部材が設けられたので、弁駆動機構の汎用性を高めることができる。   According to the invention of claim 5, since the spring force adjusting member capable of adjusting the spring force of the valve closing spring is provided, the versatility of the valve drive mechanism can be enhanced.

請求項6の発明によれば、流体通路におけるシーケンス弁機構より上流側が流体圧作動室と連通するので、流体通路と流体圧作動室に流体圧を供給する流体圧供給系が簡単になる。   According to the sixth aspect of the present invention, since the upstream side of the sequence valve mechanism in the fluid passage communicates with the fluid pressure working chamber, the fluid pressure supply system for supplying fluid pressure to the fluid passage and the fluid pressure working chamber is simplified.

請求項7の発明によれば、弁体の内部に流体圧の排出方向への流れを許容する逆止弁が組み込まれたので、出力部材の位置が所定位置から変動した状態でも、排出方向へ流体圧を流すことができる。   According to the seventh aspect of the present invention, since the check valve that allows the flow of the fluid pressure in the discharge direction is incorporated in the valve body, the output member moves in the discharge direction even when the position of the output member fluctuates from the predetermined position. Fluid pressure can flow.

請求項8の発明によれば、流体通路にシーケンス弁機構をバイパスするバイパス通路が設けられ、バイパス通路に流体圧の排出方向への流れを許容する逆止弁が設けられたので、請求項7同様に、出力部材の位置が所定位置から変動した状態でも、排出方向へ流体圧を流すことができる。   According to the eighth aspect of the present invention, the bypass passage for bypassing the sequence valve mechanism is provided in the fluid passage, and the check valve for allowing the flow of the fluid pressure in the discharge direction is provided in the bypass passage. Similarly, even when the position of the output member varies from the predetermined position, the fluid pressure can flow in the discharge direction.

請求項9の発明によれば、所定位置は、クランプ装置を駆動する為の流体圧シリンダにおけるクランプ位置であるので、出力部材がクランプ位置に達したときに確実にシーケンス弁機構を開弁することができる。   According to the invention of claim 9, since the predetermined position is a clamp position in the fluid pressure cylinder for driving the clamp device, the sequence valve mechanism is reliably opened when the output member reaches the clamp position. Can do.

本発明の実施例1に係るクランプ装置(アンクランプ状態)の断面図である。It is sectional drawing of the clamp apparatus (unclamped state) which concerns on Example 1 of this invention. 図1のA部の拡大図である。It is an enlarged view of the A section of FIG. クランプ装置(クランプ開始状態)の断面図である。It is sectional drawing of a clamp apparatus (clamp start state). 図3のB部の拡大図である。It is an enlarged view of the B section of FIG. クランプ装置(クランプ状態)の断面図である。It is sectional drawing of a clamp apparatus (clamp state). 図5のC部の拡大図である。It is an enlarged view of the C section of FIG. 図1のクランプ装置と外部流体圧機器の流体圧回路図である。FIG. 2 is a fluid pressure circuit diagram of the clamp device of FIG. 1 and an external fluid pressure device. 実施例2に係るクランプ装置(アンクランプ状態)の断面図である。It is sectional drawing of the clamp apparatus (unclamped state) which concerns on Example 2. FIG. 図8のD部の拡大図である。It is an enlarged view of the D section of FIG. 図8のクランプ装置の油圧回路図である。FIG. 9 is a hydraulic circuit diagram of the clamping device of FIG. 8. 実施例3に係るクランプ装置(アンクランプ状態)の断面図である。It is sectional drawing of the clamp apparatus (unclamped state) which concerns on Example 3. FIG. 図11のクランプ装置の油圧回路図である。FIG. 12 is a hydraulic circuit diagram of the clamping device of FIG. 11. 実施例4に係るクランプ装置(アンクランプ状態)の断面図である。It is sectional drawing of the clamp apparatus (unclamped state) which concerns on Example 4. FIG. 図13のE部の拡大図である。It is an enlarged view of the E section of FIG. クランプ装置(クランプ状態)の断面図である。It is sectional drawing of a clamp apparatus (clamp state). 図15のF部の拡大図である。It is an enlarged view of the F section of FIG.

以下、本発明を実施するための形態について実施例に基づいて説明する。
尚、以下の実施例において「油圧」は圧縮油(加圧油)を意味する場合がある。
Hereinafter, modes for carrying out the present invention will be described based on examples.
In the following embodiments, “hydraulic pressure” may mean compressed oil (pressurized oil).

本実施例のリンク式クランプ装置について、図1〜図7に基づいて説明する。
このクランプ装置1は、油圧シリンダ2(流体圧シリンダに相当する)と、この油圧シリンダ2のピストン部材3(出力部材に相当する)の出力ロッド3bに一端部がヒンジ結合されたクランプアーム4と、このクランプアーム4の途中部をクランプ本体5の枢支部5aに連結するリンク部材6を備えたリンク式クランプ装置である。リンク部材6の両端部はピン部材7a,7bを介してピン結合されている。枢支部5aは、シリンダ本体5の一端部の上端部から上方へ突出状に形成されている。
The link type clamp device of the present embodiment will be described with reference to FIGS.
The clamp device 1 includes a hydraulic cylinder 2 (corresponding to a fluid pressure cylinder), a clamp arm 4 whose one end is hinged to an output rod 3b of a piston member 3 (corresponding to an output member) of the hydraulic cylinder 2, and The link-type clamp device includes a link member 6 that connects a middle portion of the clamp arm 4 to the pivot portion 5a of the clamp body 5. Both ends of the link member 6 are pin-coupled via pin members 7a and 7b. The pivot portion 5 a is formed so as to protrude upward from the upper end portion of one end portion of the cylinder body 5.

このクランプ装置1は、ピストン部材3がアンクランプ状態(図1参照)から所定ストローク以上進出した状態で、クランプアーム4によりクランプ対象物W(ワーク)を下方に押圧するクランプ状態(図5参照)になる。アンクランプ状態から図3に示すクランプ開始位置を経てクランプ状態に移行する際に、クランプアーム4が正面視にて反時計回り方向へ約70度揺動する。クランプ状態からアンクランプ状態に移動する際にはクランプアーム4が時計回り方向へ約70度揺動する。   The clamp device 1 is a clamped state in which the clamp member 4 presses a workpiece W (workpiece) downward by the clamp arm 4 in a state where the piston member 3 has advanced a predetermined stroke or more from the unclamped state (see FIG. 1) (see FIG. 5). become. When shifting from the unclamped state to the clamped state via the clamp start position shown in FIG. 3, the clamp arm 4 swings about 70 degrees counterclockwise in a front view. When moving from the clamped state to the unclamped state, the clamp arm 4 swings about 70 degrees in the clockwise direction.

最初に、油圧シリンダ2について説明する。
図1、図3、図5に示すように、この油圧シリンダ2は、シリンダ本体5と、ピストン部材3と、アンクランプ用の油圧作動室8aと、クランプ用の油圧作動室8bと、流体通路20と、シーケンス弁機構30などを備えている。
First, the hydraulic cylinder 2 will be described.
As shown in FIGS. 1, 3, and 5, the hydraulic cylinder 2 includes a cylinder body 5, a piston member 3, an unclamping hydraulic operating chamber 8a, a clamping hydraulic operating chamber 8b, and a fluid passage. 20 and a sequence valve mechanism 30 and the like.

シリンダ本体5は、主シリンダ本体5Aと、ヘッド側端壁部材5Bとを有する。
主シリンダ本体5Aは、上部シリンダ本体部5uと、この上部シリンダ本体部5uの下端から下方へ延びる筒形の筒形シリンダ本体部5cとを有する。上部シリンダ本体部5uの下端にベース部材9の上面に据え付けるための水平な取付面5sが形成されている。シリンダ本体5の筒形シリンダ本体部5cがベース部材9の装着穴9aに挿入され、シリンダ本体5は複数のボルトでベース部材9に固定されている。
The cylinder body 5 includes a main cylinder body 5A and a head side end wall member 5B.
The main cylinder body 5A includes an upper cylinder body 5u and a cylindrical cylinder body 5c that extends downward from the lower end of the upper cylinder body 5u. A horizontal mounting surface 5s for installation on the upper surface of the base member 9 is formed at the lower end of the upper cylinder body 5u. A cylindrical cylinder body 5c of the cylinder body 5 is inserted into the mounting hole 9a of the base member 9, and the cylinder body 5 is fixed to the base member 9 with a plurality of bolts.

シリンダ本体5には、鉛直軸心を有するロッド挿通孔10と、このロッド挿通孔10の下端に連通したシリンダ孔11が形成されている。このシリンダ孔11の下端側は、ヘッド側端壁部材5Bで閉塞されている。ロッド挿通孔10の内周部にはシール部材10aとダストシール10bが装着されている。ピストン部材3は、シリンダ孔11に上下方向へ摺動自在に装着されたピストン部3aと、このピストン部3aから上方へ延びてロッド挿通孔10からシリンダ本体5外へ突出する出力ロッド3bを備えている。ピストン部3aにはシール部材aが装着されている。   The cylinder body 5 is formed with a rod insertion hole 10 having a vertical axis and a cylinder hole 11 communicating with the lower end of the rod insertion hole 10. The lower end side of the cylinder hole 11 is closed by the head side end wall member 5B. A seal member 10 a and a dust seal 10 b are attached to the inner peripheral portion of the rod insertion hole 10. The piston member 3 includes a piston portion 3 a that is slidably mounted in the cylinder hole 11 in the vertical direction, and an output rod 3 b that extends upward from the piston portion 3 a and projects out of the cylinder body 5 from the rod insertion hole 10. ing. A seal member a is attached to the piston portion 3a.

ヘッド側端壁部材5Bの上端部はシリンダ孔11に連なる嵌合孔に嵌合されてシール部材bでシールされている。ヘッド側端壁部材5Bは、複数のボルトで筒状シリンダ本体部5cに固定されている。ヘッド側端壁部材5Bの中心部分には、上方へシリンダ孔11内へシリンダ孔11の上端近傍まで突出する補助ロッド12が一体形成されている。補助ロッド12の外径はシリンダ孔11の直径の約1/4〜1/3である。尚、補助ロッド12は、ヘッド側端壁部材5Bと別部材に形成して固定的に取り付けてもよい。   The upper end portion of the head-side end wall member 5B is fitted into a fitting hole that is continuous with the cylinder hole 11 and sealed with a seal member b. The head side end wall member 5B is fixed to the cylindrical cylinder body 5c with a plurality of bolts. An auxiliary rod 12 that protrudes upward into the cylinder hole 11 to the vicinity of the upper end of the cylinder hole 11 is integrally formed at the central portion of the head-side end wall member 5B. The outer diameter of the auxiliary rod 12 is about 1/4 to 1/3 of the diameter of the cylinder hole 11. The auxiliary rod 12 may be formed as a separate member from the head side end wall member 5B and fixedly attached thereto.

次に、ピストン部材3について説明する。
図1〜図6に示すように、ピストン部材3は、ピストン部3aと、出力ロッド3bと、ピストン部材3の下部の中心部分に基端(下端)開放状に形成されたロッド挿入穴13であって、ピストン部材3が下限位置(アンクランプ位置)になったときにも補助ロッド12が挿入可能なロッド挿入穴13とを備えている。ロッド挿入穴13の内周面と補助ロッド12の外周面の間には油圧作動室8bの油圧がロッド挿入穴13内へ導入する円筒隙間14が形成されている。
Next, the piston member 3 will be described.
As shown in FIGS. 1 to 6, the piston member 3 is composed of a piston portion 3 a, an output rod 3 b, and a rod insertion hole 13 formed in the central portion of the lower portion of the piston member 3 so as to be open at the base end (lower end). The rod insertion hole 13 into which the auxiliary rod 12 can be inserted even when the piston member 3 reaches the lower limit position (unclamping position) is provided. A cylindrical gap 14 is formed between the inner peripheral surface of the rod insertion hole 13 and the outer peripheral surface of the auxiliary rod 12 so that the hydraulic pressure of the hydraulic operation chamber 8 b is introduced into the rod insertion hole 13.

シリンダ孔11はピストン部3aで上下に仕切られ、ピストン部3aの上側にアンクランプ用の油圧作動室8aが形成され、ピストン部3aの下側にクランプ用の油圧作動室8bが形成されている。尚、下側の油圧作動室8bが本発明の「流体圧作動室」に相当する。上部シリンダ本体部5uには、第1,第2油圧供給ポート15,16が形成され、第1油圧供給ポート15はシリンダ本体5の壁部内に形成した油圧通路15aにより油圧作動室8aに接続され、第2油圧供給ポート16はシリンダ本体5の壁部内に形成した油圧通路16aにより油圧作動室8bに連通され、第1,第2油圧供給ポート15,16は油圧ホース等で油圧供給源(図示略)に接続されている。   The cylinder hole 11 is vertically divided by a piston portion 3a, a hydraulic working chamber 8a for unclamping is formed above the piston portion 3a, and a hydraulic working chamber 8b for clamping is formed below the piston portion 3a. . The lower hydraulic working chamber 8b corresponds to the “fluid pressure working chamber” of the present invention. First and second hydraulic pressure supply ports 15 and 16 are formed in the upper cylinder body 5u, and the first hydraulic pressure supply port 15 is connected to the hydraulic working chamber 8a by a hydraulic passage 15a formed in the wall of the cylinder body 5. The second hydraulic pressure supply port 16 communicates with the hydraulic working chamber 8b through a hydraulic passage 16a formed in the wall of the cylinder body 5, and the first and second hydraulic pressure supply ports 15 and 16 are hydraulic supply sources (not shown) such as hydraulic hoses. Abbreviation).

図1〜図6に示すように、このクランプ装置1は、シリンダ本体5の壁部内に形成された流体通路20(これが「流体通路」に相当する)であって、一端が外部の流体圧供給源に接続され且つ他端が外部の流体圧機器に接続された流体通路20と、この流体通路20の途中部を開閉可能なシーケンス弁機構30とを備えている。   As shown in FIGS. 1 to 6, the clamping device 1 is a fluid passage 20 (which corresponds to a “fluid passage”) formed in a wall portion of a cylinder body 5, one end of which supplies an external fluid pressure. A fluid passage 20 is connected to the source and the other end is connected to an external fluid pressure device, and a sequence valve mechanism 30 capable of opening and closing a middle portion of the fluid passage 20 is provided.

シーケンス弁機構30は、ヘッド側端壁部材5Bに組み込まれているが、シーケンス弁機構30の大部分はヘッド側端壁部材5Bの補助ロッド12に組み込まれている。シーケンス弁機構30は、流体通路20の途中部を開閉可能であり、ピストン部材3がクランプ可能な位置に達し、油圧作動室8b内の油圧が所定圧以上になったときだけ開弁される。   The sequence valve mechanism 30 is incorporated in the head side end wall member 5B, but most of the sequence valve mechanism 30 is incorporated in the auxiliary rod 12 of the head side end wall member 5B. The sequence valve mechanism 30 can open and close the middle portion of the fluid passage 20 and is opened only when the piston member 3 reaches a position where it can be clamped and the hydraulic pressure in the hydraulic working chamber 8b becomes equal to or higher than a predetermined pressure.

次に、流体通路20とシーケンス弁機構30について説明する。
図1、図2に示すように、シーケンス弁機構30は、弁ケース31と、流体通路20を開閉可能な弁体32と、この弁体32を閉弁側に付勢する閉弁バネ33と、ピストン部材3が所定位置(図3に示すクランプ開始位置)に達したときに油圧作動室8bの油圧により弁体32を開弁駆動可能となる弁駆動機構34と、閉弁バネ33のバネ力を調整可能なバネ力調整部材35とを有する。
Next, the fluid passage 20 and the sequence valve mechanism 30 will be described.
As shown in FIGS. 1 and 2, the sequence valve mechanism 30 includes a valve case 31, a valve body 32 that can open and close the fluid passage 20, and a valve closing spring 33 that biases the valve body 32 toward the valve closing side. When the piston member 3 reaches a predetermined position (clamp start position shown in FIG. 3), a valve drive mechanism 34 that can drive the valve body 32 to open by the hydraulic pressure of the hydraulic operation chamber 8b, and a spring of the valve closing spring 33 And a spring force adjusting member 35 capable of adjusting the force.

弁ケース31は、上半部の円筒部31aと、中段部の中径部31bと、下部の大径部31cとを有する。ヘッド側端壁部材5Bには、円筒状の縦向きの装着孔36aであって大部分が補助ロッド12内に形成された装着孔36aと、中径穴36bと、大径穴36cとが形成されている。円筒部31aは装着孔36aの下半部に挿入されている。中径部31bは中径穴36bに装着され、大径部31cは大径穴36cに螺合にて固定されている。
中径部31bの外周部にはシール部材cが装着されている。装着孔36aは補助ロッド12と同心状の円筒状の孔である。
The valve case 31 has an upper half cylindrical portion 31a, an intermediate diameter portion 31b, and a lower large diameter portion 31c. The head-side end wall member 5B is formed with a mounting hole 36a that is a cylindrical vertical mounting hole 36a, most of which is formed in the auxiliary rod 12, a medium-diameter hole 36b, and a large-diameter hole 36c. Has been. The cylindrical portion 31a is inserted into the lower half of the mounting hole 36a. The medium diameter portion 31b is mounted in the medium diameter hole 36b, and the large diameter portion 31c is fixed to the large diameter hole 36c by screwing.
A seal member c is attached to the outer peripheral portion of the medium diameter portion 31b. The mounting hole 36 a is a cylindrical hole concentric with the auxiliary rod 12.

弁ケース31には、その上端壁に形成された通路孔37と、この通路孔37の下端に連なり且つ通路孔37よりも大径の弁孔38と、弁孔38の下端に連なるネジ穴39が形成されている。弁孔38の上端部に弁体32が可動に装着され、ネジ穴39にバネ力調整部材35が螺合にて位置調整可能に装着されている。弁体32とバネ力調整部材35の間に圧縮状態の閉弁バネ33が装着されている。バネ力調整部材35の上下方向位置を調整することにより閉弁バネ33のバネ力を調整可能に構成してある。
弁ケース31の上端壁31uの下面には通路孔37の外周側に位置する環状弁座31vが形成され、弁体32の上面には環状弁座31vに密着可能な環状弁面32aが形成されている。尚、弁体32の外周部には複数の縦溝32bが形成されている。
The valve case 31 has a passage hole 37 formed in the upper end wall thereof, a valve hole 38 that is continuous with the lower end of the passage hole 37 and has a larger diameter than the passage hole 37, and a screw hole 39 that is continuous with the lower end of the valve hole 38. Is formed. A valve body 32 is movably attached to an upper end portion of the valve hole 38, and a spring force adjusting member 35 is attached to the screw hole 39 so that the position thereof can be adjusted by screwing. A compressed valve closing spring 33 is mounted between the valve body 32 and the spring force adjusting member 35. The spring force of the valve closing spring 33 can be adjusted by adjusting the vertical position of the spring force adjusting member 35.
An annular valve seat 31v located on the outer peripheral side of the passage hole 37 is formed on the lower surface of the upper end wall 31u of the valve case 31, and an annular valve surface 32a that can be in close contact with the annular valve seat 31v is formed on the upper surface of the valve body 32. ing. A plurality of vertical grooves 32 b are formed on the outer periphery of the valve body 32.

流体通路20は、ヘッド側端壁部材5Bの壁部内に形成されている。流体通路20の上流端の入力ポート40には、外部流体通路40bに接続された接続金具40aが接続され、外部流体通路40bは外部の流体圧供給源40s(本実施例では、加圧エア供給源)に接続されている。流体通路20の下流端の出力ポート41には、外部流体通路41bに接続された接続金具41aが接続され、外部流体通路41bは外部の流体圧機器に接続されている(図7参照)。   The fluid passage 20 is formed in the wall portion of the head-side end wall member 5B. A connection fitting 40a connected to the external fluid passage 40b is connected to the input port 40 at the upstream end of the fluid passage 20, and the external fluid passage 40b is connected to an external fluid pressure supply source 40s (in this embodiment, pressurized air supply). Source). A connection fitting 41a connected to the external fluid passage 41b is connected to the output port 41 at the downstream end of the fluid passage 20, and the external fluid passage 41b is connected to an external fluid pressure device (see FIG. 7).

流体通路20は、入力ポート40に連通した水平通路20aと、中径部31bに形成した横断通路20bと、ネジ穴39の上端に連なる環状通路20cと、弁孔38と、通路孔37と、装着孔36aの内周面と円筒部31aの外周面間の円筒通路20dと、 中径穴36bの上端の環状通路20eと、出力ポート41に連通した傾斜通路20f等を備えている。   The fluid passage 20 includes a horizontal passage 20a communicating with the input port 40, a transverse passage 20b formed in the medium diameter portion 31b, an annular passage 20c connected to the upper end of the screw hole 39, a valve hole 38, a passage hole 37, A cylindrical passage 20d between the inner peripheral surface of the mounting hole 36a and the outer peripheral surface of the cylindrical portion 31a, an annular passage 20e at the upper end of the medium diameter hole 36b, an inclined passage 20f communicating with the output port 41, and the like are provided.

図1、図2に示すように、弁駆動機構34は、補助ロッド12内の装着孔36aと、装着孔36aに軸心方向へ可動に装着され且つ弁体32を開弁可能な弁駆動部材42と、弁駆動部材42に形成され且つ油圧作動室8bの油圧を受圧する受圧部42aと、ピストン部材3のカム部43に当接する鋼球44を介してピストン部材3と弁駆動部材42とを協働させる協働機構45とを有する   As shown in FIGS. 1 and 2, the valve drive mechanism 34 includes a mounting hole 36 a in the auxiliary rod 12, and a valve driving member that is movably mounted in the mounting hole 36 a in the axial direction and can open the valve body 32. 42, a pressure receiving portion 42a that is formed in the valve drive member 42 and receives the hydraulic pressure of the hydraulic working chamber 8b, and the piston member 3 and the valve drive member 42 via a steel ball 44 that contacts the cam portion 43 of the piston member 3. And a cooperating mechanism 45 for cooperating

協働機構45は、補助ロッド12の上端近傍部に形成された保持孔12aと、この保持孔12aに径方向へ可動に保持された複数の鋼球44と、弁駆動部材42に形成され且つ鋼球44が部分的に係合可能な環状係合凹部42bと、ピストン部材3に形成されたカム部43とを備えている。弁駆動部材42は、大径部42cと、この大径部42cの下端から延びて通路孔37に挿入された小径ロッド部42dと、環状係合凹部42bとを有する。大径部42cの外周部にはシール部材dが装着され、大径部42cの上端近傍部には環状係合凹部42bが形成され、大径部42cの上端部には油圧作動室8bの油圧、つまりロッド挿入穴13内の油圧を受圧する受圧部42aが形成されている。   The cooperative mechanism 45 is formed in a holding hole 12a formed in the vicinity of the upper end of the auxiliary rod 12, a plurality of steel balls 44 held movably in the radial direction in the holding hole 12a, and the valve drive member 42. An annular engagement recess 42 b in which the steel ball 44 can be partially engaged and a cam portion 43 formed in the piston member 3 are provided. The valve drive member 42 includes a large diameter portion 42c, a small diameter rod portion 42d extending from the lower end of the large diameter portion 42c and inserted into the passage hole 37, and an annular engagement recess 42b. A seal member d is attached to the outer peripheral portion of the large diameter portion 42c, an annular engagement recess 42b is formed in the vicinity of the upper end of the large diameter portion 42c, and the hydraulic pressure of the hydraulic working chamber 8b is formed at the upper end portion of the large diameter portion 42c. That is, a pressure receiving portion 42a for receiving the hydraulic pressure in the rod insertion hole 13 is formed.

上記のロッド挿入穴13の内周壁部にはカム部43が形成されている。カム部43は、鋼球44を環状係合凹部42b側へ押動する内周壁面である鋼球押動部43aと、この鋼球押動部43aの下端に連なり且つ鋼球44を部分的に収容可能な環状の鋼球受容部43bとを備えている。鋼球押動部43aは、ロッド挿入穴13の全高の例えば約70〜80%の長さを有する。鋼球受容部43bは、ピストン部材3がクランプ開始位置(図3参照)に位置した時に鋼球44に対応する位置に形成されている。   A cam portion 43 is formed on the inner peripheral wall portion of the rod insertion hole 13. The cam portion 43 is connected to a steel ball pushing portion 43a that is an inner peripheral wall surface that pushes the steel ball 44 toward the annular engagement recess 42b, and a lower end of the steel ball pushing portion 43a. And an annular steel ball receiving portion 43b that can be accommodated in the housing. The steel ball pushing portion 43a has a length of about 70 to 80% of the total height of the rod insertion hole 13, for example. The steel ball receiving portion 43b is formed at a position corresponding to the steel ball 44 when the piston member 3 is positioned at the clamp start position (see FIG. 3).

鋼球押動部43aで鋼球44を環状係合凹部42b側へ押動することにより弁駆動部材42の移動を規制し、ピストン部材3が所定位置(クランプ開始位置)に移動したときに、鋼球44が鋼球受容部43bに収容され、弁駆動部材42が弁体32を開弁駆動可能な状態になる。弁駆動機構34は、油圧作動室8b内の油圧が所定圧まで上昇後に、閉弁バネ33のバネ力に抗して弁体32を開弁位置に切り換えるように構成されている。   When the movement of the valve drive member 42 is restricted by pushing the steel ball 44 toward the annular engagement recess 42b by the steel ball pushing portion 43a, and the piston member 3 moves to a predetermined position (clamp start position), The steel ball 44 is accommodated in the steel ball receiving portion 43b, and the valve driving member 42 is in a state in which the valve body 32 can be driven to open. The valve drive mechanism 34 is configured to switch the valve body 32 to the valve opening position against the spring force of the valve closing spring 33 after the hydraulic pressure in the hydraulic working chamber 8b rises to a predetermined pressure.

次に、上記のクランプ装置1の作用、効果について説明する。
図1、図2に示すアンクランプ状態のとき、ピストン部材3が下限位置に位置し、複数の鋼球44は、カム部43の鋼球押動部43aで弁駆動部材42の軸心側へ押されて、環状係合凹部42bに係合し、弁駆動部材42を上限位置に保持している。
Next, the operation and effect of the clamp device 1 will be described.
In the unclamped state shown in FIGS. 1 and 2, the piston member 3 is located at the lower limit position, and the plurality of steel balls 44 are moved to the axial center side of the valve drive member 42 by the steel ball pushing portion 43 a of the cam portion 43. It is pushed and engages with the annular engagement recess 42b to hold the valve drive member 42 at the upper limit position.

そのため、弁駆動部材42の小径ロッド42dが弁体32の上面から小距離離隔しているため、弁体32は閉弁バネ33の付勢力で閉弁状態になっている。それゆえ、入力ポート40に供給される流体圧が出力ポート41に出力されない。   Therefore, since the small diameter rod 42 d of the valve drive member 42 is separated from the upper surface of the valve body 32 by a small distance, the valve body 32 is closed by the urging force of the valve closing spring 33. Therefore, the fluid pressure supplied to the input port 40 is not output to the output port 41.

油圧作動室8aの油圧を排出しながら油圧作動室8bに油圧を供給していくと、図3、図4に示すように、ピストン部材3が上昇し、クランプアーム4が水平姿勢になったクランプ開始位置になると、カム部43の鋼球受容部43bに複数の鋼球44が部分的に係合して、複数の鋼球44が環状係合凹部42bから外側へ離隔した状態になる。そのため、弁駆動部材42は、下方へ移動可能な開弁駆動可能な状態になる。   When the hydraulic pressure is supplied to the hydraulic working chamber 8b while discharging the hydraulic pressure of the hydraulic working chamber 8a, the piston member 3 is raised and the clamp arm 4 is in the horizontal posture as shown in FIGS. When the start position is reached, the plurality of steel balls 44 are partially engaged with the steel ball receiving portion 43b of the cam portion 43, and the plurality of steel balls 44 are separated from the annular engagement recess 42b to the outside. Therefore, the valve drive member 42 is in a state in which the valve can be driven to move downward.

図5、図6に示すように、このとき弁駆動部材42はロッド挿入穴13の油圧を受圧部42aに受圧しており、クランプアーム4がクランプ対象物を押圧したクランプ状態になって、油圧作動室8bの油圧(つまり、ロッド挿入穴13の油圧)が所定圧以上になると、弁駆動部材42の小径ロッド42dが弁体32を下方へ駆動して開弁させる。その結果、入力ポート40に供給した流体圧が出力ポート41に出力される。   As shown in FIGS. 5 and 6, at this time, the valve drive member 42 receives the hydraulic pressure of the rod insertion hole 13 in the pressure receiving portion 42a, and the clamp arm 4 is in a clamped state in which the object to be clamped is pressed. When the hydraulic pressure in the working chamber 8b (that is, the hydraulic pressure in the rod insertion hole 13) becomes equal to or higher than a predetermined pressure, the small-diameter rod 42d of the valve drive member 42 drives the valve body 32 downward to open the valve. As a result, the fluid pressure supplied to the input port 40 is output to the output port 41.

このように、このクランプ装置1の油圧シリンダ2においては、ピストン部材3が所定位置(クランプ開始位置)に移動し且つクランプ用油圧作動室8bの油圧が所定圧以上の油圧になったことを条件として、シーケンス弁機構30が開弁するため、誤作動することのない、信頼性と作動確実性に優れるシーケンス弁機構30を実現することができる。
しかも、シリンダ孔11の内部空間とピストン部材3の内部空間を有効活用して流体通路20とシーケンス弁機構30を配置するため、油圧シリンダ2を大型化させることなく、流体通路20とシーケンス弁機構30を組み込むことができる。
As described above, in the hydraulic cylinder 2 of the clamping device 1, the piston member 3 is moved to a predetermined position (clamp start position), and the hydraulic pressure in the clamping hydraulic operating chamber 8b is higher than the predetermined pressure. Since the sequence valve mechanism 30 is opened, it is possible to realize the sequence valve mechanism 30 that does not malfunction and is excellent in reliability and operational reliability.
Moreover, since the fluid passage 20 and the sequence valve mechanism 30 are arranged by effectively utilizing the internal space of the cylinder hole 11 and the piston member 3, the fluid passage 20 and the sequence valve mechanism are not increased in size. 30 can be incorporated.

図7は、上記の油圧シリンダ2と、そのシーケンス弁機構30と、外部流体圧機器の為の流体圧回路の一例を示すものである。油圧供給源21から電磁方向切換弁22を介してクランプ装置1の油圧シリンダ2に対して油圧が供給・排出され、流体通路20の入力ポート40へは流体圧供給源23から流体圧(本実施例の場合、加圧エア)が供給され、流体通路20の出力ポート41は、流体圧シリンダ24へ流体圧を供給・排出するパイロット式方向切換弁25のパイロットポート25aに接続されている。尚、流体圧シリンダ24とパイロット式方向切換弁25が外部流体圧機器に相当する。   FIG. 7 shows an example of the fluid pressure circuit for the hydraulic cylinder 2, the sequence valve mechanism 30, and the external fluid pressure device. Hydraulic pressure is supplied to and discharged from the hydraulic cylinder 2 of the clamping device 1 from the hydraulic supply source 21 via the electromagnetic direction switching valve 22, and fluid pressure (this embodiment) is supplied from the fluid pressure supply source 23 to the input port 40 of the fluid passage 20. In the example, pressurized air) is supplied, and the output port 41 of the fluid passage 20 is connected to a pilot port 25 a of a pilot-type directional switching valve 25 that supplies and discharges fluid pressure to and from the fluid pressure cylinder 24. The fluid pressure cylinder 24 and the pilot-type direction switching valve 25 correspond to an external fluid pressure device.

クランプ装置2のピストン部材3がクランプ可能な位置に移動し且つ油圧作動室8b内の油圧が所定圧以上になったことを条件としてシーケンス弁機構30が開弁して、流体圧供給源23からパイロットポート25aに流体圧(加圧エア)が供給され、パイロット式方向切換弁25が切換えられ、流体圧シリンダ24のヘッド側流体圧作動室から流体圧(油圧)が排出され、ロッド側流体圧作動室へ流体圧が供給される状態に切換えられる。このように、流体通路20とシーケンス弁機構30により、油圧シリンダ2と流体圧シリンダ24とを確実に連携動作させることができる。   The sequence valve mechanism 30 is opened on the condition that the piston member 3 of the clamping device 2 moves to a position where it can be clamped and the hydraulic pressure in the hydraulic working chamber 8b becomes equal to or higher than a predetermined pressure. Fluid pressure (pressurized air) is supplied to the pilot port 25a, the pilot-type directional control valve 25 is switched, fluid pressure (hydraulic pressure) is discharged from the head-side fluid pressure working chamber of the fluid pressure cylinder 24, and rod-side fluid pressure. It is switched to a state where fluid pressure is supplied to the working chamber. Thus, the hydraulic passage 2 and the fluid pressure cylinder 24 can be reliably operated by the fluid passage 20 and the sequence valve mechanism 30.

次に、実施例2に係るクランプ装置1Aと油圧シリンダ2Aとシーケンス弁機構30Aについて図8〜図10に基づいて説明する。但し、実施例1と同様の構成要素に同様の符号を付して説明を省略し、異なる構成についてのみ説明する。
このシーケンス弁機構30Aにおいては、油圧作動室8bに接続された油圧通路16aが入力ポート40A側の水平通路20aに接続され、弁体32Aに排出方向への流体圧の流れ(通路孔37から弁孔38へ向う方向の流れ)を許容する逆止弁50が組み込まれている。
Next, a clamp device 1A, a hydraulic cylinder 2A, and a sequence valve mechanism 30A according to the second embodiment will be described with reference to FIGS. However, the same components as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted, and only different configurations will be described.
In this sequence valve mechanism 30A, the hydraulic passage 16a connected to the hydraulic working chamber 8b is connected to the horizontal passage 20a on the input port 40A side, and the flow of fluid pressure in the discharge direction (from the passage hole 37 to the valve body 32A) A check valve 50 that allows a flow in the direction toward the hole 38) is incorporated.

弁体32Aは、鋼球51と、閉弁バネ52と、鋼球51と閉弁バネ52を収容する収容孔53と、この収容孔53の上端壁に形成した小径孔54と、この小径孔54の下端の外周側の環状弁座とを有する。弁体32Aの上半部の外周部には複数の縦溝32gが形成されている。弁体32Aは閉弁バネ33で閉弁方向(上方)へ付勢されている。   The valve body 32A includes a steel ball 51, a valve closing spring 52, a housing hole 53 for housing the steel ball 51 and the valve closing spring 52, a small diameter hole 54 formed in the upper end wall of the housing hole 53, and the small diameter hole. 54 and an annular valve seat on the outer peripheral side of the lower end. A plurality of vertical grooves 32g are formed on the outer periphery of the upper half of the valve body 32A. The valve body 32A is urged by the valve closing spring 33 in the valve closing direction (upward).

弁駆動部材42の小径ロッド42dは小径孔54よりも大径であるため、実施例1と同様に、油圧シリンダ2Aのピストン部材3がクランプ可能な位置に達し且つ油圧作動室8b内の油圧が所定圧以上になると、シーケンス弁機構30Aが開弁する。但し、ピストン部材3がクランプ状態以外の位置にある場合に、逆止弁50を介して流体圧の排出方向への流れは許容されるため、ピストン部材3の位置に制約されることなく、流体圧を排出方向へ流すことができる。   Since the small-diameter rod 42d of the valve drive member 42 has a larger diameter than the small-diameter hole 54, the hydraulic pressure in the hydraulic working chamber 8b reaches the position where the piston member 3 of the hydraulic cylinder 2A can be clamped, as in the first embodiment. When the pressure exceeds the predetermined pressure, the sequence valve mechanism 30A opens. However, when the piston member 3 is in a position other than the clamped state, the fluid pressure is allowed to flow through the check valve 50 in the discharge direction, so that the fluid is not restricted by the position of the piston member 3. The pressure can flow in the discharge direction.

図10は、上記の油圧シリンダ2Aと、そのシーケンス弁機構30Aと、外部流体圧機器の為の流体圧回路の一例を示すものである。流体通路20Aの入力ポートに、油圧作動室8bに接続された油圧通路16aから流体圧(油圧)が供給されると共に、シーケンス弁30Aには逆止弁50が組み込まれている。尚、流体圧シリンダ24Aとパイロット式方向切換弁25Aが外部流体圧機器に相当する。   FIG. 10 shows an example of the hydraulic cylinder 2A, its sequence valve mechanism 30A, and a fluid pressure circuit for an external fluid pressure device. Fluid pressure (hydraulic pressure) is supplied to the input port of the fluid passage 20A from the hydraulic passage 16a connected to the hydraulic operation chamber 8b, and a check valve 50 is incorporated in the sequence valve 30A. The fluid pressure cylinder 24A and the pilot-type direction switching valve 25A correspond to an external fluid pressure device.

クランプ装置1Aがクランプ状態になったことを条件としてシーケンス弁機構30Aが開弁して、パイロットポート25bに流体圧(油圧)が供給され、パイロット式方向切換弁25Aが切換えられ、流体圧シリンダ24Aのロッド側流体圧作動室から流体圧(油圧)が排出され、ヘッド側流体圧作動室へ流体圧(油圧)が供給される。   The sequence valve mechanism 30A is opened on condition that the clamp device 1A is in a clamped state, fluid pressure (hydraulic pressure) is supplied to the pilot port 25b, the pilot-type directional control valve 25A is switched, and the fluid pressure cylinder 24A The fluid pressure (hydraulic pressure) is discharged from the rod side fluid pressure working chamber, and the fluid pressure (hydraulic pressure) is supplied to the head side fluid pressure working chamber.

また、電磁方向切換弁22が図示の位置に切換えられて、クランプ装置1Aがアンクランプ側へ切換えられると、油圧作動室8b内の油圧が低下するため、シーケンス弁機構30Aは閉弁状態になるが、パイロットポート25bの流体圧が逆止弁50を介して排出されるため、パイロット式方向切換弁25Aが図示の位置に切換えられ、流体圧シリンダ24Aのピストン部材は退入方向へ駆動されるようになる。このように、流体通路20Aとシーケンス弁機構30Aにより、油圧シリンダ2Aと流体圧シリンダ24Aとを確実に連携動作させることができる。   Further, when the electromagnetic direction switching valve 22 is switched to the illustrated position and the clamping device 1A is switched to the unclamping side, the hydraulic pressure in the hydraulic working chamber 8b decreases, and therefore the sequence valve mechanism 30A is closed. However, since the fluid pressure in the pilot port 25b is discharged through the check valve 50, the pilot-type direction switching valve 25A is switched to the position shown in the figure, and the piston member of the fluid pressure cylinder 24A is driven in the retracted direction. It becomes like this. Thus, the hydraulic cylinder 2A and the fluid pressure cylinder 24A can be reliably linked by the fluid passage 20A and the sequence valve mechanism 30A.

次に、実施例3に係るクランプ装置1Bと油圧シリンダ2Bとシーケンス弁機構30について図11、図12に基づいて説明する。但し、実施例1と同様の構成要素に同様の符号を付して説明を省略し、異なる構成についてのみ説明する。   Next, a clamp device 1B, a hydraulic cylinder 2B, and a sequence valve mechanism 30 according to the third embodiment will be described with reference to FIGS. However, the same components as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted, and only different configurations will be described.

この油圧シリンダ2Bにおいては、油圧作動室8bに接続された油圧通路16aが入力ポート40B側の水平通路20aに接続され、流体通路20aにバイパス流体通路20pが設けられ、このバイパス流体通路20pに排出方向へ油圧の流れのみを許す逆止弁50Bが装着されている。バイパス流体通路20pは水平通路20aと環状通路20cを接続するように設けられ、このバイパス流体通路20pに形成した収容穴に、鋼球51Bと圧縮バネ52Bが装着され、鋼球51Bは圧縮バネ52Bにより収容穴の端部の環状弁座に押圧され、環状通路20cから水平通路20aへ向う油圧の流れのみが許容されている。   In this hydraulic cylinder 2B, a hydraulic passage 16a connected to the hydraulic working chamber 8b is connected to a horizontal passage 20a on the input port 40B side, and a bypass fluid passage 20p is provided in the fluid passage 20a and discharged to the bypass fluid passage 20p. A check valve 50B that allows only the flow of hydraulic pressure in the direction is mounted. The bypass fluid passage 20p is provided so as to connect the horizontal passage 20a and the annular passage 20c, and a steel ball 51B and a compression spring 52B are mounted in a receiving hole formed in the bypass fluid passage 20p, and the steel ball 51B is a compression spring 52B. Thus, only the hydraulic flow from the annular passage 20c toward the horizontal passage 20a is allowed by being pressed against the annular valve seat at the end of the accommodation hole.

図12は、上記の油圧シリンダ2Bと、そのシーケンス弁機構30と、外部流体圧機器の為の流体圧回路の一例を示すものである。油圧供給源21から電磁方向切換弁22を介してクランプ装置1Bの油圧シリンダ2Bに対して油圧が供給・排出され、流体通路20Bの入力ポートへは油圧作動室8bに接続された油圧通路16aから流体圧(油圧)が供給され、流体通路20Bの出力ポートは、流体圧シリンダ24Bのヘッド側流体圧作動室に接続され、流体圧シリンダ24Bのロッド側流体圧作動室は油圧シリンダ2Bのロッド側油圧作動室8aに接続された油圧通路16bに接続されている。尚、流体圧シリンダ24Bが外部流体圧機器に相当する。   FIG. 12 shows an example of the hydraulic cylinder 2B, its sequence valve mechanism 30, and a fluid pressure circuit for an external fluid pressure device. Hydraulic pressure is supplied / discharged from the hydraulic supply source 21 to the hydraulic cylinder 2B of the clamping device 1B via the electromagnetic direction switching valve 22, and the input port of the fluid passage 20B is connected to the hydraulic passage 16a connected to the hydraulic operation chamber 8b. Fluid pressure (hydraulic pressure) is supplied, the output port of the fluid passage 20B is connected to the head side fluid pressure working chamber of the fluid pressure cylinder 24B, and the rod side fluid pressure working chamber of the fluid pressure cylinder 24B is connected to the rod side of the hydraulic cylinder 2B. The hydraulic passage 16b is connected to the hydraulic working chamber 8a. The fluid pressure cylinder 24B corresponds to an external fluid pressure device.

油圧シリンダ2Bのピストン部材3がクランプ可能な位置に達し且つ油圧作動室8b内の油圧が所定圧以上になったことを条件としてシーケンス弁機構30が開弁して、流体圧シリンダ24Bがピストン部材を進出させる方向へ駆動する。そして、電磁方向切換弁22が図示の位置に切換えられると、流体圧シリンダ24Bのロッド側流体圧作動室ヘ流体圧が供給される一方、入力ポート側の水平通路20aの流体圧(油圧)が低下するためシーケンス弁機構30は閉弁するけれども、流体圧シリンダ24Bのヘッド側流体圧作動室の流体圧(油圧)が逆止弁50Bを通って排出される。   The sequence valve mechanism 30 is opened on the condition that the piston member 3 of the hydraulic cylinder 2B reaches a position where clamping is possible and the hydraulic pressure in the hydraulic working chamber 8b becomes equal to or higher than a predetermined pressure, and the fluid pressure cylinder 24B becomes the piston member. Drive in the direction to advance. When the electromagnetic direction switching valve 22 is switched to the illustrated position, the fluid pressure is supplied to the rod side fluid pressure working chamber of the fluid pressure cylinder 24B, while the fluid pressure (hydraulic pressure) of the horizontal passage 20a on the input port side is increased. Although the sequence valve mechanism 30 is closed to decrease, the fluid pressure (hydraulic pressure) in the head side fluid pressure working chamber of the fluid pressure cylinder 24B is discharged through the check valve 50B.

次に、実施例4に係るクランプ装置1Cと、その油圧シリンダ2Cについて図13〜図16に基づいて説明する。油圧シリンダ2Cは、シリンダ本体5Cと、このシリンダ本体5Cに進退自在に装備されたピストン部材3C(出力部材)と、シリンダ本体5Cの壁部内に形成した流体通路20Cと、この流体通路20Cの途中部を開閉可能なシーケンス弁機構30Cとを備えている。   Next, a clamp device 1C according to a fourth embodiment and its hydraulic cylinder 2C will be described with reference to FIGS. The hydraulic cylinder 2C includes a cylinder body 5C, a piston member 3C (output member) that is movably mounted on the cylinder body 5C, a fluid passage 20C formed in a wall portion of the cylinder body 5C, and a middle of the fluid passage 20C. And a sequence valve mechanism 30C that can be opened and closed.

このクランプ装置1Cは、ピストン部材3Cの昇降動作と連動してピストン部材3Cをその軸心を中心として90°旋回させる旋回機構60を備えている。ピストン部材3Cの上端部には、水平姿勢のクランプアーム4Cがナット3nを介して取り外し可能に装着されている。図13はピストン部材3Cがアンクランプ位置にある状態を示し、クランプアーム4Cは紙面直交方向の後方へ延びている。図15はピストン部材3Cがクランプ位置にある状態を示し、クランプアーム4Cが左方に延びている。   The clamp device 1C includes a turning mechanism 60 that turns the piston member 3C by 90 ° about its axis in conjunction with the lifting and lowering operation of the piston member 3C. A clamp arm 4C in a horizontal posture is detachably mounted on the upper end portion of the piston member 3C via a nut 3n. FIG. 13 shows a state where the piston member 3C is in the unclamping position, and the clamp arm 4C extends rearward in the direction perpendicular to the paper surface. FIG. 15 shows a state in which the piston member 3C is in the clamp position, and the clamp arm 4C extends to the left.

ピストン部材3Cは、ピストン部3pと、このピストン部3pから上方へ延びる出力ロッド3qと、ピストン部3pから下方へ延びる補助ロッド3sとを有する。ヘッド側端壁部材5Lには、補助ロッド3sを挿入可能なロッド挿入穴13Cが形成されている。
旋回機構60は、ロッド挿入穴13Cの上部の内周壁部に保持された3つの鋼球60aと、補助ロッド3sの外周部に鋼球60aが部分的に係合するように形成された3つのガイド溝60bとを有する周知の旋回機構である。
The piston member 3C includes a piston portion 3p, an output rod 3q extending upward from the piston portion 3p, and an auxiliary rod 3s extending downward from the piston portion 3p. A rod insertion hole 13C into which the auxiliary rod 3s can be inserted is formed in the head side end wall member 5L.
The turning mechanism 60 includes three steel balls 60a held on the inner peripheral wall portion at the top of the rod insertion hole 13C, and three steel balls 60a formed so that the steel balls 60a are partially engaged with the outer peripheral portion of the auxiliary rod 3s. This is a known turning mechanism having a guide groove 60b.

シリンダ本体5Cには、ロッド孔10Cと、このロッド孔10Cの下端に連なるシリンダ孔11Cとが形成され、シリンダ孔11Cの下端側がヘッド側端壁部材5Lで閉塞されている。ロッド孔10Cの内周部にはシール部材10aとダストシール10bとが装着されている。シリンダ孔11Cのうちピストン部3pの上側にはクランプ用の油圧作動室8cが形成され、ピストン部3pの下側にはアンクランプ用の油圧作動室8dが形成されている。ヘッド側端壁部材5Lはシリンダ本体5Cの下半部とほぼ等しい厚さを有し、ヘッド側端壁部材5Lの上部約3/4部分は、シリンダ孔11Cの下方へ延びる嵌合孔11aに嵌合され、ヘッド側端壁部材5Lの下端部の外周側に環状溝5mが形成され、この環状溝5mに装着したリング部材5nをシリンダ本体5Cの下端部のネジ穴11bに螺合することにより、ヘッド側端壁部材5Lが固定されている。   A rod hole 10C and a cylinder hole 11C connected to the lower end of the rod hole 10C are formed in the cylinder body 5C, and the lower end side of the cylinder hole 11C is closed by the head side end wall member 5L. A seal member 10a and a dust seal 10b are mounted on the inner periphery of the rod hole 10C. A hydraulic working chamber 8c for clamping is formed above the piston portion 3p in the cylinder hole 11C, and an hydraulic working chamber 8d for unclamping is formed below the piston portion 3p. The head side end wall member 5L has substantially the same thickness as the lower half portion of the cylinder body 5C, and an upper portion of about 3/4 of the head side end wall member 5L is formed in a fitting hole 11a extending downward from the cylinder hole 11C. The annular groove 5m is formed on the outer peripheral side of the lower end portion of the head side end wall member 5L, and the ring member 5n attached to the annular groove 5m is screwed into the screw hole 11b at the lower end portion of the cylinder body 5C. Thus, the head side end wall member 5L is fixed.

嵌合孔11aの中段部には環状溝20hが形成され、この環状溝20hの上下両側において嵌合孔11aの内周部にはシール部材d,eが装着されている。
シリンダ本体5Cには、第1油圧供給ポート61と第2油圧供給ポート(図示略)が形成され、第1油圧供給ポート61から延びる油圧通路61aがクランプ用の油圧作動室8cに接続され、第2油圧供給ポートから延びる油圧通路が油圧作動室8dに接続されている。シリンダ本体5Cの壁部内には流体通路20Cが形成され、この流体通路20Cの一端の入力ポート40Cが油圧通路61aに接続され、流体通路20Cの他端が外部の流体圧機器に接続されている。
An annular groove 20h is formed in the middle portion of the fitting hole 11a, and seal members d and e are mounted on the inner peripheral part of the fitting hole 11a on both upper and lower sides of the annular groove 20h.
A first hydraulic pressure supply port 61 and a second hydraulic pressure supply port (not shown) are formed in the cylinder body 5C, and a hydraulic passage 61a extending from the first hydraulic pressure supply port 61 is connected to the hydraulic pressure working chamber 8c for clamping. 2 A hydraulic passage extending from the hydraulic pressure supply port is connected to the hydraulic working chamber 8d. A fluid passage 20C is formed in the wall of the cylinder body 5C, an input port 40C at one end of the fluid passage 20C is connected to the hydraulic passage 61a, and the other end of the fluid passage 20C is connected to an external fluid pressure device. .

前記流体通路20Cの途中部を開閉可能なシーケンス弁機構30Cが設けられている。
シーケンス弁機構30Cは、流体通路20Cを開閉可能な弁体32Cと、この弁体32Cを閉弁側に付勢する閉弁バネ33Cと、ピストン部材3Cが所定位置(図15に示すクランプ開始位置)に移動したときに油圧作動室8cの流体圧(油圧)によって弁体32Cを開弁駆動可能な状態になる弁駆動機構34Cとを有する。
A sequence valve mechanism 30C capable of opening and closing a middle portion of the fluid passage 20C is provided.
The sequence valve mechanism 30C includes a valve body 32C that can open and close the fluid passage 20C, a valve closing spring 33C that urges the valve body 32C toward the valve closing side, and a piston member 3C at a predetermined position (clamp start position shown in FIG. 15). And a valve drive mechanism 34C that enables the valve body 32C to be driven to open by the fluid pressure (hydraulic pressure) in the hydraulic working chamber 8c.

弁駆動機構34Cは、油圧作動室8c内の流体圧(油圧)が所定圧まで上昇後に、弁体32Cを開弁位置に切り換えるように構成されている。
弁駆動機構34Cは、ロッド挿入穴13Cの外側においてヘッド側端壁部材5Lの壁部に形成された装着孔36dと、装着孔36dに軸心方向へ可動に装着され且つ弁体32Cを開弁可能な弁駆動部材42Cと、弁駆動部材42Cに形成され且つ油圧作動室8cの流体圧(油圧)を受圧する環状の受圧部42mと、ピストン部材3Cのカム部43Cに当接する鋼球44を介してピストン部材3Cと弁駆動部材42Cとを協働させる協働機構45Cとを有する。
The valve drive mechanism 34C is configured to switch the valve body 32C to the valve opening position after the fluid pressure (hydraulic pressure) in the hydraulic working chamber 8c has increased to a predetermined pressure.
The valve drive mechanism 34C is mounted to the mounting hole 36d formed in the wall portion of the head side end wall member 5L outside the rod insertion hole 13C, and is mounted to be movable in the axial direction in the mounting hole 36d and opens the valve body 32C A possible valve drive member 42C, an annular pressure receiving portion 42m formed on the valve drive member 42C and receiving the fluid pressure (hydraulic pressure) of the hydraulic working chamber 8c, and a steel ball 44 that contacts the cam portion 43C of the piston member 3C. And a cooperating mechanism 45C for cooperating the piston member 3C and the valve driving member 42C.

流体通路20Cは、油圧通路61aに接続され且つ環状溝20hに接続された横流体通路20gと、環状溝20hと、装着孔36dの側壁に形成された貫通通路20iと、装着孔36dと、装着孔36dの下端に接続された出力通路20jと、出力通路20jに接続された出力ポート41Cなどを備えている。装着孔36dの下端壁部の上面には、出力通路20iの外周側に位置する環状弁座62が形成されている。弁体32Cは、頭部32dと、軸部32eと、軸部32eの下端に形成された弁部32fとを有し、弁駆動部材34Cの下端部に昇降可能に装着されている。   The fluid passage 20C includes a lateral fluid passage 20g connected to the hydraulic passage 61a and connected to the annular groove 20h, an annular groove 20h, a through passage 20i formed on the side wall of the attachment hole 36d, an attachment hole 36d, and an attachment. An output passage 20j connected to the lower end of the hole 36d, an output port 41C connected to the output passage 20j, and the like are provided. An annular valve seat 62 positioned on the outer peripheral side of the output passage 20i is formed on the upper surface of the lower end wall portion of the mounting hole 36d. The valve body 32C has a head portion 32d, a shaft portion 32e, and a valve portion 32f formed at the lower end of the shaft portion 32e, and is mounted on the lower end portion of the valve drive member 34C so as to be movable up and down.

弁駆動部材34Cの下端部に保持穴64と、この保持穴64の下端に連なる小径孔65とが形成されている。弁体32Cの頭部32dが保持穴64に昇降可能に保持され、軸部32eが小径孔65を通って下方へ延び、弁部32fが装着孔36dの下端近傍に位置し、弁駆動部材34Cの下端と弁部32fの間において軸部32eに外装された閉弁バネ33Cにより弁体32Cは閉弁側(下方へ)へ付勢されている。弁部32fの下面の外周部には、環状弁座62に密着可能な環状弁面63が形成されている。   A holding hole 64 and a small diameter hole 65 connected to the lower end of the holding hole 64 are formed in the lower end portion of the valve drive member 34C. The head 32d of the valve body 32C is held in the holding hole 64 so as to be movable up and down, the shaft part 32e extends downward through the small diameter hole 65, the valve part 32f is positioned near the lower end of the mounting hole 36d, and the valve drive member 34C. The valve body 32C is biased toward the valve closing side (downward) by a valve closing spring 33C externally mounted on the shaft portion 32e between the lower end of the valve 32f and the valve portion 32f. An annular valve surface 63 that can be in close contact with the annular valve seat 62 is formed on the outer peripheral portion of the lower surface of the valve portion 32f.

協働機構45Cは、ヘッド側端壁部材5Lのうちのロッド挿入穴13Cと装着孔36dの間の壁部に形成された保持孔45hと、この保持孔45hに径方向へ可動に保持された1つの鋼球44と、弁駆動部材34Cに形成され且つ鋼球44が部分的に係合可能な環状係合凹部42bと、ピストン部材3Cの補助ロッド3sの外周部に形成されたカム部43Cとを備えている。   The cooperative mechanism 45C has a holding hole 45h formed in a wall portion between the rod insertion hole 13C and the mounting hole 36d in the head side end wall member 5L, and is held movably in the radial direction by the holding hole 45h. One steel ball 44, an annular engagement recess 42b formed in the valve drive member 34C and partially engageable with the steel ball 44, and a cam portion 43C formed in the outer peripheral portion of the auxiliary rod 3s of the piston member 3C. And.

カム部43Cは、鋼球44を環状係合凹部42b側へ押動する鋼球押動部43dと、鋼球44を部分的に収容可能な鋼球受容部43eとを備えている。鋼球受容部43eは、ピストン部材3Cがクランプ対象物Wをクランプ可能な状態のとき鋼球44に対向するように補助ロッド3sの外周部に形成された縦溝で構成されている。この鋼球受容部43eの上下長はピストン部材3Cの移動可能ストロークの約半分である。鋼球押動部43dは、補助ロッド3sの外周部のうち上記の鋼球受容部43eよりも下側部位に形成された深さの小さな螺旋溝で構成されている。尚、鋼球押動部43dは縦溝で構成する必要はなく、補助ロッド3sの外周面の一部で構成してもよい。   The cam portion 43C includes a steel ball pushing portion 43d that pushes the steel ball 44 toward the annular engagement recess 42b, and a steel ball receiving portion 43e that can partially accommodate the steel ball 44. The steel ball receiving portion 43e is configured by a vertical groove formed in the outer peripheral portion of the auxiliary rod 3s so as to face the steel ball 44 when the piston member 3C is in a state in which the clamping object W can be clamped. The vertical length of the steel ball receiving portion 43e is about half of the movable stroke of the piston member 3C. The steel ball pushing portion 43d is formed of a spiral groove having a small depth formed in a lower portion of the outer peripheral portion of the auxiliary rod 3s than the steel ball receiving portion 43e. Note that the steel ball pushing portion 43d does not need to be constituted by a vertical groove, and may be constituted by a part of the outer peripheral surface of the auxiliary rod 3s.

鋼球押動部43dで鋼球44を環状係合凹部42b側へ押動することにより弁駆動部材34Cの移動を規制し、ピストン部材3Cが所定位置(本実施例の場合、クランプ可能位置)に移動したときに、鋼球44が鋼球受容部43eに部分的に収容され、弁駆動部材34Cが弁体32Cを開弁駆動可能な状態になる。その後、クランプ用油圧作動室8cの油圧が環状受圧部42mに作用して、弁駆動部材34Cを上方へ移動させるため、弁体32Cが環状弁座62から離隔して開弁し、油圧作動室8cの油圧と同圧の油圧が、出力ポート41Cに出力される。   The movement of the valve drive member 34C is restricted by pushing the steel ball 44 toward the annular engagement recess 42b by the steel ball pushing portion 43d, and the piston member 3C is in a predetermined position (clampable position in this embodiment). When the steel ball 44 is moved to the position, the steel ball 44 is partially accommodated in the steel ball receiving portion 43e, and the valve driving member 34C can drive the valve body 32C to open. Thereafter, the hydraulic pressure of the clamping hydraulic operating chamber 8c acts on the annular pressure receiving portion 42m to move the valve drive member 34C upward, so that the valve body 32C is opened away from the annular valve seat 62, and the hydraulic operating chamber is opened. A hydraulic pressure equal to the hydraulic pressure of 8c is output to the output port 41C.

そのため、出力ポート41Cから外部の流体圧機器に流体圧(油圧)を供給することにより、油圧シリンダ2Cと外部の流体圧機器とを連携動作させることができる。   Therefore, by supplying fluid pressure (hydraulic pressure) from the output port 41C to the external fluid pressure device, the hydraulic cylinder 2C and the external fluid pressure device can be operated in a coordinated manner.

次に、前記実施例を部分的に変更した変形例について説明する。
(1)前記実施例においては、流体圧シリンダとしての油圧シリンダを例にして説明したが、流体圧シリンダとしてのエアシリンダにも本発明を同様に適用することができる。
(2)前記シリンダ本体の構造、前記ピストン部材の構造等は、1,2の例を示すものであり、これらの構造以外の種々のシリンダ本体やピストン部材を有する流体圧シリンダにも本発明を同様に適用することができる。
Next, a modification in which the above embodiment is partially changed will be described.
(1) In the above embodiment, the hydraulic cylinder as a fluid pressure cylinder has been described as an example. However, the present invention can be similarly applied to an air cylinder as a fluid pressure cylinder.
(2) The structure of the cylinder body, the structure of the piston member, and the like show examples of 1 and 2, and the present invention can be applied to a hydraulic cylinder having various cylinder bodies and piston members other than these structures. The same can be applied.

(3)シーケンス弁機構の構造も例示にすぎず、種々のシーケンス弁機構を備えた流体圧シリンダに本発明を同様に適用することができる。
(4)本発明に係る流体圧シリンダは、種々のクランプ装置の流体圧シリンダに適用できる他、種々の装置に装備される流体圧シリンダにも適用可能である。
(5)当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態も包含するものである。
(3) The structure of the sequence valve mechanism is merely an example, and the present invention can be similarly applied to a fluid pressure cylinder having various sequence valve mechanisms.
(4) The fluid pressure cylinder according to the present invention can be applied not only to fluid pressure cylinders of various clamping devices but also to fluid pressure cylinders equipped in various devices.
(5) Those skilled in the art can implement the present invention in various forms with various modifications without departing from the spirit of the present invention, and the present invention includes such modifications. .

2,2A〜2C 油圧シリンダ
3,3C ピストン部材
5,5C シリンダ本体
8b,8c 油圧作動室
12a 保持孔
20,20A〜20C 流体圧通路
20p バイパス通路
21 油圧供給源
23 加圧エア供給源
30,30A〜30C シーケンス弁機構
32,32A〜32C 弁体
33,33C 閉弁バネ
34,34C 弁駆動機構
35 バネ力調整部材
36a,36d 装着孔
42,42C 弁駆動部材
42a 受圧部
42b 環状係合凹部
43,43C カム部
43a,43d 鋼球押動部
43b,43e 鋼球受容部
44 鋼球
45,45C 協働機構
45h 保持孔
50,50B 逆止弁
2, 2A to 2C Hydraulic cylinder 3, 3C Piston member 5, 5C Cylinder body 8b, 8c Hydraulic working chamber 12a Holding hole 20, 20A-20C Fluid pressure passage 20p Bypass passage 21 Hydraulic supply source 23 Pressurized air supply source 30, 30A -30C Sequence valve mechanism 32, 32A-32C Valve bodies 33, 33C Valve closing springs 34, 34C Valve drive mechanism 35 Spring force adjusting members 36a, 36d Mounting holes 42, 42C Valve drive member 42a Pressure receiving portion 42b Annular engagement recess 43, 43C Cam part 43a, 43d Steel ball pushing part 43b, 43e Steel ball receiving part 44 Steel ball 45, 45C Cooperation mechanism 45h Holding hole 50, 50B Check valve

Claims (9)

シリンダ本体と、このシリンダ本体に進退可能に装備された出力部材と、この出力部材を進出側と退入側の少なくとも一方に駆動する為の流体圧作動室とを備えた流体圧シリンダにおいて、
前記シリンダ本体の壁部内に形成された流体通路であって、一端が流体圧供給源に接続され且つ他端が外部の流体圧機器に接続された流体通路と、
この流体通路の途中部を開閉可能なシーケンス弁機構とを備え、
前記シーケンス弁機構は、前記流体通路を開閉可能な弁体と、この弁体を閉弁側に付勢する閉弁バネと、前記出力部材が所定位置に移動したときに前記流体圧作動室の流体圧によって前記弁体を開弁駆動可能な状態になる弁駆動機構とを有することを特徴とする流体圧シリンダ。
In a fluid pressure cylinder comprising a cylinder body, an output member equipped to be able to advance and retreat in the cylinder body, and a fluid pressure working chamber for driving the output member to at least one of the advance side and the retract side,
A fluid passage formed in the wall of the cylinder body, one end connected to a fluid pressure supply source and the other end connected to an external fluid pressure device;
A sequence valve mechanism capable of opening and closing the middle part of the fluid passage,
The sequence valve mechanism includes a valve body that can open and close the fluid passage, a valve closing spring that urges the valve body toward a valve closing side, and a fluid pressure working chamber that moves when the output member moves to a predetermined position. A fluid pressure cylinder comprising: a valve drive mechanism that enables the valve body to be driven to open by the fluid pressure.
前記弁駆動機構は、前記流体圧作動室内の流体圧が所定圧まで上昇後に、前記閉弁バネのバネ力に抗して前記弁体を開弁位置に切り換えるように構成されたことを特徴とする請求項1に記載の流体圧シリンダ。   The valve drive mechanism is configured to switch the valve body to a valve opening position against a spring force of the valve closing spring after the fluid pressure in the fluid pressure working chamber rises to a predetermined pressure. The fluid pressure cylinder according to claim 1. 前記弁駆動機構は、
前記シリンダ本体の壁部に形成された装着孔と、
前記装着孔に軸心方向へ可動に装着され且つ前記弁体を開弁可能な弁駆動部材と、
前記弁駆動部材に形成され且つ前記流体圧作動室の流体圧を受圧する受圧部と、
前記出力部材のカム部に当接する鋼球を介して前記出力部材と前記弁駆動部材とを協働させる協働機構とを有することを特徴とする請求項2に記載の流体圧シリンダ。
The valve drive mechanism is
A mounting hole formed in the wall of the cylinder body;
A valve drive member that is movably mounted in the mounting hole in the axial direction and capable of opening the valve body;
A pressure receiving portion formed on the valve drive member and receiving the fluid pressure of the fluid pressure working chamber;
3. The fluid pressure cylinder according to claim 2, further comprising: a cooperating mechanism that cooperates the output member and the valve driving member via a steel ball that abuts on a cam portion of the output member.
前記協働機構は、前記シリンダ本体に形成された保持孔と、この保持孔に径方向へ可動に保持された鋼球と、前記弁駆動部材に形成され且つ前記鋼球が部分的に係合可能な環状係合凹部と、前記出力部材に形成されたカム部とを備え、
前記カム部は、前記鋼球を前記環状係合凹部側へ押動する鋼球押動部と、前記鋼球を部分的に収容可能な鋼球受容部とを備え、前記鋼球押動部で前記鋼球を前記環状係合凹部側へ押動することにより前記弁駆動部材の移動を規制し、前記出力部材が所定位置に移動したときに、前記鋼球が前記鋼球受容部に収容され、前記弁駆動部材が前記弁体を開弁駆動可能な状態になることを特徴とする請求項3に記載の流体圧シリンダ。
The cooperating mechanism includes a holding hole formed in the cylinder body, a steel ball held movably in the radial direction in the holding hole, a valve driving member, and the steel ball partially engaged A possible annular engagement recess and a cam portion formed in the output member;
The cam portion includes a steel ball pushing portion that pushes the steel ball toward the annular engagement concave portion, and a steel ball receiving portion that can partially accommodate the steel ball, and the steel ball pushing portion. The movement of the valve drive member is restricted by pushing the steel ball toward the annular engagement recess, and the steel ball is accommodated in the steel ball receiving portion when the output member moves to a predetermined position. The fluid pressure cylinder according to claim 3, wherein the valve driving member is in a state in which the valve body can be driven to open.
前記閉弁バネのバネ力を調整可能なバネ力調整部材が設けられたことを特徴とする請求項1に記載の流体圧シリンダ。   The fluid pressure cylinder according to claim 1, wherein a spring force adjusting member capable of adjusting a spring force of the valve closing spring is provided. 前記流体通路における前記シーケンス弁機構より上流側が前記流体圧作動室と連通することを特徴とする請求項1に記載の流体圧シリンダ。   2. The fluid pressure cylinder according to claim 1, wherein an upstream side of the sequence valve mechanism in the fluid passage communicates with the fluid pressure working chamber. 前記弁体の内部に流体圧の排出方向への流れを許容する逆止弁が組み込まれたことを特徴とする請求項1に記載の流体圧シリンダ。   The fluid pressure cylinder according to claim 1, wherein a check valve that allows a flow of fluid pressure in a discharge direction is incorporated in the valve body. 前記流体通路に前記シーケンス弁機構をバイパスするバイパス通路が設けられ、前記バイパス通路に流体圧の排出方向への流れを許容する逆止弁が設けられたことを特徴とする請求項1に記載の流体圧シリンダ。   The bypass passage for bypassing the sequence valve mechanism is provided in the fluid passage, and a check valve for allowing the flow of fluid pressure in the discharge direction is provided in the bypass passage. Fluid pressure cylinder. 前記所定位置は、クランプ装置を駆動する為の流体圧シリンダにおけるクランプ位置であることを特徴とする請求項1に記載の流体圧シリンダ。   The fluid pressure cylinder according to claim 1, wherein the predetermined position is a clamp position in a fluid pressure cylinder for driving a clamp device.
JP2013174134A 2013-08-26 2013-08-26 Fluid pressure cylinder Pending JP2015042880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013174134A JP2015042880A (en) 2013-08-26 2013-08-26 Fluid pressure cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013174134A JP2015042880A (en) 2013-08-26 2013-08-26 Fluid pressure cylinder

Publications (1)

Publication Number Publication Date
JP2015042880A true JP2015042880A (en) 2015-03-05

Family

ID=52696482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013174134A Pending JP2015042880A (en) 2013-08-26 2013-08-26 Fluid pressure cylinder

Country Status (1)

Country Link
JP (1) JP2015042880A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016167169A1 (en) * 2015-04-13 2018-02-08 株式会社コスメック Cylinder device
CN108953288A (en) * 2018-09-30 2018-12-07 中国船舶重工集团公司第七〇九研究所 Pin-lift arrangement for Double Acting Telescopic Hydraulic Cylinder
CN108999837A (en) * 2018-09-30 2018-12-14 中国船舶重工集团公司第七〇九研究所 Cylinder body oil inlet Double Acting Telescopic Hydraulic Cylinder
CN114375239A (en) * 2019-09-15 2022-04-19 克斯美库股份有限公司 Workpiece support

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016167169A1 (en) * 2015-04-13 2018-02-08 株式会社コスメック Cylinder device
EP3284958A1 (en) * 2015-04-13 2018-02-21 Kosmek Ltd. Cylinder device
EP3284958A4 (en) * 2015-04-13 2019-08-21 Kosmek Ltd. Cylinder device
US10508665B2 (en) 2015-04-13 2019-12-17 Kosmek Ltd. Cylinder device
CN108953288A (en) * 2018-09-30 2018-12-07 中国船舶重工集团公司第七〇九研究所 Pin-lift arrangement for Double Acting Telescopic Hydraulic Cylinder
CN108999837A (en) * 2018-09-30 2018-12-14 中国船舶重工集团公司第七〇九研究所 Cylinder body oil inlet Double Acting Telescopic Hydraulic Cylinder
CN114375239A (en) * 2019-09-15 2022-04-19 克斯美库股份有限公司 Workpiece support

Similar Documents

Publication Publication Date Title
JP4440215B2 (en) Flow control valve and cylinder device with flow control valve
WO2014087756A1 (en) Fluid pressure cylinder
KR102088546B1 (en) Cylinder device
JP6641358B2 (en) Cylinder device
JP6669949B2 (en) Pull type clamping device
JP2016223473A5 (en)
JP2015042880A (en) Fluid pressure cylinder
KR20170013874A (en) Hydraulic cylinder and clamp device
JP6076735B2 (en) Cylinder device
JP6298294B2 (en) Cylinder device
KR102158175B1 (en) Swivel clamp
KR101641452B1 (en) Clamp device
US9115728B2 (en) Directional control valve device
JP6285655B2 (en) Clamping device
JP5841152B2 (en) Actuator and clamping device using the same
JP5534451B2 (en) Work support
JP2016070471A (en) Cylinder device
JP6202705B2 (en) Fluid pressure cylinder
JP5048696B2 (en) Air cylinder
KR101235923B1 (en) Two stroke cylinder
JP2002205240A (en) Cover device of machine tool
JP2019190565A (en) Cylinder device
JP2004243520A (en) Link-type clamping device
JPH0555434U (en) Stacked pressure switch
PL215507B1 (en) Three-function valve of mining stand