JP2015042847A - Screw compressor - Google Patents
Screw compressor Download PDFInfo
- Publication number
- JP2015042847A JP2015042847A JP2013174076A JP2013174076A JP2015042847A JP 2015042847 A JP2015042847 A JP 2015042847A JP 2013174076 A JP2013174076 A JP 2013174076A JP 2013174076 A JP2013174076 A JP 2013174076A JP 2015042847 A JP2015042847 A JP 2015042847A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- casing
- motor
- refrigerant
- screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 49
- 239000011810 insulating material Substances 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims 1
- 230000006835 compression Effects 0.000 abstract description 13
- 238000007906 compression Methods 0.000 abstract description 13
- 238000001816 cooling Methods 0.000 abstract description 5
- 238000007599 discharging Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 230000006837 decompression Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
本発明は、空調機や冷凍機などの冷凍装置に用いられるスクリュー圧縮機に関する。 The present invention relates to a screw compressor used in a refrigeration apparatus such as an air conditioner or a refrigerator.
従来のスクリュー圧縮機として、空調機や冷凍機などの冷凍装置にスクリュー圧縮機を用いる場合に、冷凍サイクル内を循環する液冷媒をバイパスし、液冷媒と圧縮機内を循環する油とを熱交換し、油を冷却するものがある(例えば、特許文献1参照)。 When a screw compressor is used as a conventional screw compressor in a refrigerating apparatus such as an air conditioner or a refrigerator, the liquid refrigerant circulating in the refrigeration cycle is bypassed, and heat exchange is performed between the liquid refrigerant and oil circulating in the compressor. However, there are some which cool oil (for example, refer to patent documents 1).
特許文献1に記載の冷凍装置は、スクリュー圧縮機、油分離器、凝縮器、減圧装置及び蒸発器が冷媒配管を介して接続された冷媒の循環サイクルと、油分離器から油冷却器を経て、圧縮機内の軸受部、スクリューロータに至る油供給流路と、減圧装置出口の冷媒配管から液冷媒を一部バイパスし、膨張弁、冷却菅を経てスクリューロータに至る冷媒の分岐流路を備える。油冷却器にて、油分離器からの高温の油と分岐流路からバイパスした冷たい冷媒とを熱交換させて高温の油を冷却し、冷却された油をスクリューロータと軸受部に導く。 The refrigeration apparatus described in Patent Document 1 includes a refrigerant circulation cycle in which a screw compressor, an oil separator, a condenser, a decompression device, and an evaporator are connected via a refrigerant pipe, and an oil cooler from the oil separator. , An oil supply passage leading to the bearing portion in the compressor, the screw rotor, and a refrigerant branch passage that bypasses the liquid refrigerant partially from the refrigerant pipe at the outlet of the decompression device and reaches the screw rotor via the expansion valve and the cooling rod . In the oil cooler, the high-temperature oil from the oil separator and the cold refrigerant bypassed from the branch flow path are heat-exchanged to cool the high-temperature oil, and the cooled oil is guided to the screw rotor and the bearing portion.
特許文献1のスクリュー圧縮機では、油分離器からの高温の油と減圧装置出口の冷媒配管からバイパスした液冷媒とを別途設けた油冷却器に導き熱交換させる。しかしながら、高温の油を冷却するために液冷媒をバイパスするように構成すると、液冷媒を減圧する膨張弁、冷却管を収納する熱交換器が必要となりサイクルの構成が複雑になる。更に、低温となる冷媒と熱交換させるため、油の過冷却による性能低下の可能性もある。 In the screw compressor of Patent Document 1, high-temperature oil from the oil separator and liquid refrigerant bypassed from the refrigerant pipe at the outlet of the decompression device are led to an oil cooler provided separately for heat exchange. However, when the liquid refrigerant is bypassed in order to cool the high-temperature oil, an expansion valve that depressurizes the liquid refrigerant and a heat exchanger that houses the cooling pipe are required, and the cycle configuration becomes complicated. Furthermore, since heat exchange is performed with a refrigerant having a low temperature, there is a possibility of performance degradation due to oil supercooling.
本発明は、簡易な構造で軸受や圧縮作動室に供給される油を冷却し、高効率、高信頼性のスクリュー圧縮機を提供すことを課題とする。 An object of the present invention is to provide a highly efficient and highly reliable screw compressor by cooling oil supplied to a bearing and a compression working chamber with a simple structure.
本発明のスクリュー圧縮機は、冷媒を圧縮するスクリューロータと、スクリューロータを駆動するモータと、スクリューロータを支持する軸受と、スクリューロータ、モータ、及び、軸受を収納するケーシングと、スクリューロータから吐出した冷媒を冷媒ガスと油に分離する油分離器と、ケーシングに一体で形成された熱交換器と、を備え、油分離器で分離された油は熱交換器内の油流路を経由して軸受に供給される。 The screw compressor of the present invention includes a screw rotor that compresses a refrigerant, a motor that drives the screw rotor, a bearing that supports the screw rotor, a screw rotor, a motor, a casing that houses the bearing, and a discharge from the screw rotor. An oil separator that separates the refrigerant into refrigerant gas and oil, and a heat exchanger that is formed integrally with the casing, and the oil separated by the oil separator passes through an oil passage in the heat exchanger. Supplied to the bearing.
本発明によれば、簡易な構造で軸受や圧縮作動室に供給される油を冷却し、高効率、高信頼性のスクリュー圧縮機を提供すことができる。 ADVANTAGE OF THE INVENTION According to this invention, the oil supplied to a bearing or a compression working chamber can be cooled with a simple structure, and a highly efficient and highly reliable screw compressor can be provided.
本実施例のスクリュー圧縮機は、冷媒を圧縮するスクリューロータと、スクリューロータを駆動するモータと、スクリューロータを支持する軸受と、スクリューロータ、モータ、及び、軸受を収納するケーシングと、スクリューロータから吐出した冷媒を冷媒ガスと油に分離する油分離器と、ケーシングに一体で形成された熱交換器と、を備え、油分離器で分離された油は熱交換器内の油流路を経由して軸受に供給される。油分離器で分離された油はケーシングに形成された熱交換器内の油流路を経由して軸受に供給されるので、簡易な構造で軸受や圧縮作動室に供給される油を冷却でき、高効率、高信頼性のスクリュー圧縮機を提供すことができる。 The screw compressor of this embodiment includes a screw rotor that compresses a refrigerant, a motor that drives the screw rotor, a bearing that supports the screw rotor, a screw rotor, a motor, a casing that houses the bearing, and a screw rotor. An oil separator that separates the discharged refrigerant into refrigerant gas and oil, and a heat exchanger that is formed integrally with the casing, and the oil separated by the oil separator passes through an oil passage in the heat exchanger And supplied to the bearing. Since the oil separated by the oil separator is supplied to the bearing via the oil flow path in the heat exchanger formed in the casing, the oil supplied to the bearing and the compression working chamber can be cooled with a simple structure. A highly efficient and reliable screw compressor can be provided.
以下、本発明の一実施形態を、図面を参照して説明する。図1はスクリュー圧縮機の外観を表す図である。図2は図1中の縦断面図である。図3は図1中の横断面図である。図4は図3中のIII-III矢視断面図である。図5は油の流れを表す油系統図である。図6は本実施例の変形例であり、図3に相当する図である。図7は図5中のIV-IV矢視断面図である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the appearance of a screw compressor. FIG. 2 is a longitudinal sectional view in FIG. FIG. 3 is a cross-sectional view in FIG. 4 is a cross-sectional view taken along the line III-III in FIG. FIG. 5 is an oil system diagram showing the flow of oil. FIG. 6 shows a modification of the present embodiment and corresponds to FIG. 7 is a cross-sectional view taken along the line IV-IV in FIG.
これら図1〜図5において、スクリュー圧縮機は、圧縮機本体70と、圧縮機本体70を駆動するモータ(電動機)7,8と、モータ7,8を収納するモータケーシング1とを備える。モータケーシング1は、モータ7,8の外側に冷媒流路11を形成しており、吸込口5からストレーナ30を経て吸込室(低圧室)10を介して冷媒流路11内にガスが流入する。 1 to 5, the screw compressor includes a compressor main body 70, motors (electric motors) 7 and 8 that drive the compressor main body 70, and a motor casing 1 that houses the motors 7 and 8. The motor casing 1 has a refrigerant flow path 11 formed outside the motors 7 and 8, and gas flows into the refrigerant flow path 11 from the suction port 5 through the strainer 30 and the suction chamber (low pressure chamber) 10. .
圧縮機本体70で圧縮された冷媒ガスは、吐出ポート14を介して吐出ケーシング3に形成された吐出室(高圧室)13内に流出する。吐出室13は、圧縮機本体70に一体で形成された油分離器4に接続される。吐出室13から油分離機4に流入した冷媒ガスは、圧縮機本体70で圧縮された冷媒ガスと油とを分離する。分離されたガスは圧縮機本体70の吐出口6から外部(例えば冷凍サイクルを構成する凝縮器)へ供給される。一方、分離された油は、油分離器下部に設けられた油溜め10に溜められ、メインケーシング2に配設された軸受20、21及び吐出ケーシング3に配設された軸受22、23、24、25へ供給される。メインケーシング2に配設された軸受20、21へ供給された油は、軸受20、21を潤滑しメインケーシングに形成された吸込ポート12に排出される。吐出ケーシング3に配設された軸受22、23、24、25へ供給された油は、雄ロータ9A及び雌ロータ9Bで形成される圧縮作動室に排出される。 The refrigerant gas compressed by the compressor main body 70 flows into the discharge chamber (high pressure chamber) 13 formed in the discharge casing 3 through the discharge port 14. The discharge chamber 13 is connected to the oil separator 4 formed integrally with the compressor body 70. The refrigerant gas flowing into the oil separator 4 from the discharge chamber 13 separates the refrigerant gas compressed by the compressor body 70 and the oil. The separated gas is supplied from the discharge port 6 of the compressor body 70 to the outside (for example, a condenser constituting a refrigeration cycle). On the other hand, the separated oil is stored in an oil sump 10 provided at the lower part of the oil separator, and bearings 20 and 21 provided in the main casing 2 and bearings 22, 23 and 24 provided in the discharge casing 3. , 25. The oil supplied to the bearings 20 and 21 disposed in the main casing 2 lubricates the bearings 20 and 21 and is discharged to the suction port 12 formed in the main casing. The oil supplied to the bearings 22, 23, 24, and 25 disposed in the discharge casing 3 is discharged into a compression working chamber formed by the male rotor 9A and the female rotor 9B.
モータ7、8は、雄ロータ9Aの吸込側軸部に取り付けられた回転子8と、回転子8の外周側に配設された固定子7と、これら回転子8及び固定子7を収納するモータケーシング1とを備える。 The motors 7 and 8 house the rotor 8 attached to the suction side shaft portion of the male rotor 9A, the stator 7 disposed on the outer peripheral side of the rotor 8, and the rotor 8 and the stator 7. A motor casing 1.
圧縮機本体70は、回転軸が平行で互いに噛み合いながら回転する雄ロータ9A及び雌ロータ9Bと、これら雄ロータ9A及び雌ロータ9Bの歯部を収納するメインケーシング2と、メインケーシング2のロータ軸方向吐出側(図2中右側)に接続された吐出ケーシング3とを備える。 The compressor main body 70 includes a male rotor 9A and a female rotor 9B that rotate while being parallel to each other with their rotation axes parallel to each other, a main casing 2 that houses the teeth of the male rotor 9A and the female rotor 9B, and a rotor shaft of the main casing 2 And a discharge casing 3 connected to the direction discharge side (right side in FIG. 2).
メインケーシング2のロータ軸方向吸込側(図2中左側)にはモータケーシング1が接続されており、モータケーシング1の内部には、吸込室10からメインケーシング2への冷媒流路11が形成される。 A motor casing 1 is connected to the suction side (left side in FIG. 2) of the main casing 2 in the rotor axial direction, and a refrigerant flow path 11 from the suction chamber 10 to the main casing 2 is formed inside the motor casing 1. The
雄ロータ9Aの吸込側軸部はメインケーシング2に配設されたころ軸受20で支持され、吐出側軸部は吐出ケーシング3に配設されたころ軸受22及び玉軸受24で支持される。同様に、雌ロータ9Bの吸込側軸部はメインケーシング2に配設されたころ軸受21で支持され、吐出側軸部は吐出ケーシング3に配設されたころ軸受23及び玉軸受25で支持される。また、雄ロータ9Aの吸込側軸部はモータ7、8の回転軸と直結する。モータ7、8の駆動によって雄ロータ9Aが回転し、これに伴い、雌ロータ9Bが雄ロータ9Aと噛み合いながら回転する。 The suction side shaft portion of the male rotor 9 </ b> A is supported by a roller bearing 20 disposed in the main casing 2, and the discharge side shaft portion is supported by a roller bearing 22 and a ball bearing 24 disposed in the discharge casing 3. Similarly, the suction side shaft portion of the female rotor 9B is supported by a roller bearing 21 disposed in the main casing 2, and the discharge side shaft portion is supported by a roller bearing 23 and a ball bearing 25 disposed in the discharge casing 3. The Further, the suction side shaft portion of the male rotor 9 </ b> A is directly connected to the rotation shafts of the motors 7 and 8. The male rotor 9A is rotated by driving the motors 7 and 8, and the female rotor 9B is rotated while meshing with the male rotor 9A.
メインケーシング2は、雄ロータ9A及び雌ロータ9Bの歯部を収納する円筒状のボア15、16を有する。雄ロータ9A及び雌ロータ9Bの歯溝には圧縮作動室が形成される。メインケーシング2には、モータケーシング1の内部と吸気行程の圧縮作動室とを連通する吸込ポート12が形成される。メインケーシング2には、吐気行程の圧縮作動室に対してロータ径方向外側(図2中上側)に位置する雄ロータ9A側の吐出ポート14及び雌ロータ9B側の吐出ポートが形成される。 The main casing 2 has cylindrical bores 15 and 16 that house the teeth of the male rotor 9A and the female rotor 9B. Compression working chambers are formed in the tooth grooves of the male rotor 9A and the female rotor 9B. The main casing 2 is formed with a suction port 12 that communicates the inside of the motor casing 1 with the compression working chamber of the intake stroke. The main casing 2 is formed with a discharge port 14 on the male rotor 9A side and a discharge port on the female rotor 9B side which are located on the outer side in the rotor radial direction (upper side in FIG. 2) with respect to the compression working chamber of the exhaust stroke.
吐出ケーシング3は、メインケーシング2の端面に当接してボア15、16の開口を覆う吐出側端面と、吐出側端面に形成された雄ロータ9A側の吐出ポート及び雌ロータ9B側の吐出ポートと、圧縮作動室からの圧縮ガスが吐出ポート14を介して吐出される吐出室13とを有する。 The discharge casing 3 is in contact with the end surface of the main casing 2 and covers the openings of the bores 15 and 16, the discharge port on the male rotor 9A side and the discharge port on the female rotor 9B side formed on the discharge side end surface. And a discharge chamber 13 through which compressed gas from the compression working chamber is discharged through the discharge port 14.
このようなスクリュー圧縮機においては、冷媒ガスが吸込口5から吸込室10に流入し、モータケーシング1の冷媒流路11を経由して(回転子8及び固定子7を冷却しつつ)メインケーシング2の吸込ポート12に流入する。雄ロータ9A及び雌ロータ9Bの回転に伴い、圧縮作動室がロータ軸方向に移動しつつ容積が縮小されて、冷媒ガスを圧縮する。圧縮機作動室で圧縮された冷媒ガスは、吐出ポート14、吐出室13を介して油分離機4に流入し、油分離機4で油と分離された後、吐出口6から外部へ供給される。 In such a screw compressor, the refrigerant gas flows into the suction chamber 10 from the suction port 5 and passes through the refrigerant flow path 11 of the motor casing 1 (while cooling the rotor 8 and the stator 7). Flows into the second suction port 12. Along with the rotation of the male rotor 9A and the female rotor 9B, the volume of the compression working chamber is reduced while moving in the rotor axial direction, and the refrigerant gas is compressed. The refrigerant gas compressed in the compressor working chamber flows into the oil separator 4 through the discharge port 14 and the discharge chamber 13, is separated from the oil by the oil separator 4, and then is supplied to the outside from the discharge port 6. The
ここで、本実施例のスクリュー圧縮機のモータケーシング1には熱交換器41が一体で形成される。熱交換器41は、モータケーシング1とモータステータ7との接触位置(モータケーシング1がモータステータ7を支持する位置)の径方向外側のモータケーシング1に配置される(つまり、モータケーシング1とモータステータ7との間には冷媒流路11が位置しない。)。また、熱交換器41の外面には、複数のフィン40が形成される。 Here, the heat exchanger 41 is integrally formed in the motor casing 1 of the screw compressor of the present embodiment. The heat exchanger 41 is disposed in the motor casing 1 radially outside the contact position between the motor casing 1 and the motor stator 7 (position where the motor casing 1 supports the motor stator 7) (that is, the motor casing 1 and the motor The refrigerant flow path 11 is not located between the stator 7). A plurality of fins 40 are formed on the outer surface of the heat exchanger 41.
熱交換器41の内部には油の流路52が形成され、油流路52には油配管50、51が接続される。油配管50は、カバー31を介して油溜め10に接続されており、油溜め10から熱交換器41に油を供給する。油配管51は、メインケーシング2に形成された油流路70に接続されており、熱交換器41で冷却された油は、軸受21、20を潤滑後、吸入ポート12に排出される。また、油配管51は、吐出ケーシング3に形成された油流路71にも接続されており、軸受22、23、24、25を潤滑後、雄ロータ9A及び雌ロータ9Bの歯溝とボア15、16とで形成される圧縮作動室内に排出される。 An oil passage 52 is formed inside the heat exchanger 41, and oil pipes 50 and 51 are connected to the oil passage 52. The oil pipe 50 is connected to the oil sump 10 via the cover 31 and supplies oil from the oil sump 10 to the heat exchanger 41. The oil pipe 51 is connected to an oil passage 70 formed in the main casing 2, and the oil cooled by the heat exchanger 41 is discharged to the suction port 12 after lubricating the bearings 21 and 20. The oil pipe 51 is also connected to an oil passage 71 formed in the discharge casing 3, and after lubricating the bearings 22, 23, 24, 25, the tooth grooves and the bores 15 of the male rotor 9 </ b> A and the female rotor 9 </ b> B. , 16 are discharged into a compression working chamber.
このように構成されたスクリュー圧縮機は、以下のように作用する。つまり、油溜め10内の高温の油は、モータケーシング1に一体で設けた熱交換器41に流入する。熱交換器41に流入した油は、熱交換器41内に油流路52内を流れる。この過程で、モータケーシング1内に形成された熱交換器41の油流路52と外部の空気とが熱交換する(つまり、モータケーシング1が油流路52内を流れる油と外部の空気との熱交換する熱交換器としても機能する。)。特に、本実施例においては、熱交換器41の外表面に複数の放熱フィンがモータケーシングと一体に形成されており、この放熱フィンを介して放熱が促進される。外気と接触する表面積を増すことができるから、油を効率的に冷やすことができる。このように、空気の温度に対して油温が高い場合には、熱交換により油温が低下して、冷却された油と冷媒ガスとが熱交換することにより吸入ガス温度が低下し、ガス密度が増えるため冷媒循環量が増加し性能向上する。 The screw compressor configured as described above operates as follows. That is, the hot oil in the oil sump 10 flows into the heat exchanger 41 provided integrally with the motor casing 1. The oil that has flowed into the heat exchanger 41 flows through the oil flow path 52 into the heat exchanger 41. In this process, heat exchange is performed between the oil flow path 52 of the heat exchanger 41 formed in the motor casing 1 and the external air (that is, the oil flowing through the oil flow path 52 and the external air between the motor casing 1 and the external air). It also functions as a heat exchanger for exchanging heat.) In particular, in this embodiment, a plurality of radiating fins are formed integrally with the motor casing on the outer surface of the heat exchanger 41, and heat dissipation is promoted through the radiating fins. Since the surface area in contact with the outside air can be increased, the oil can be cooled efficiently. Thus, when the oil temperature is higher than the air temperature, the oil temperature decreases due to heat exchange, and the intake oil temperature decreases due to heat exchange between the cooled oil and the refrigerant gas. Since the density increases, the refrigerant circulation rate increases and the performance improves.
更に、冷却された油を圧縮作動室に供給することで動力が軽減する。また、スクリューロータ9A、9Bの熱変形が軽減されることで、雄ロータ9Aと雌ロータ9Bの噛み合わせ部の隙間からの漏れが軽減する。かつ、油の粘度が増加するため圧縮作動室の隙間からの漏れを低減できる。これらの作用により、スクリュー圧縮機の性能が向上する。 Furthermore, power is reduced by supplying cooled oil to the compression working chamber. Further, since the thermal deformation of the screw rotors 9A and 9B is reduced, leakage from the gap between the meshing portions of the male rotor 9A and the female rotor 9B is reduced. And since the viscosity of oil increases, the leak from the clearance gap between compression working chambers can be reduced. These effects improve the performance of the screw compressor.
また、空気の温度に対して油温が低い場合には、空気との熱交換により油温が上昇するため、油の粘度が低減し、軸受内部の油の攪拌損失が低減するので、性能が向上する。 In addition, when the oil temperature is lower than the air temperature, the oil temperature rises due to heat exchange with the air, so the viscosity of the oil is reduced and the oil stirring loss inside the bearing is reduced. improves.
ここで、熱交換器41の位置は、モータケーシング1とモータステータ7が接触する位置の径方向外側のモータケーシング1に形成されるので(モータケーシング1とモータステータ7との間には冷媒流路11が位置しないので)、熱交換器41内の油流路52と冷媒流路11との距離を離すことができる。従って、油流路52を流れる油の熱による冷媒流路11を流れる冷媒ガスの過熱を抑制することができる。 Here, the position of the heat exchanger 41 is formed in the motor casing 1 radially outside the position where the motor casing 1 and the motor stator 7 are in contact (the refrigerant flow between the motor casing 1 and the motor stator 7). Since the path 11 is not located), the distance between the oil flow path 52 and the refrigerant flow path 11 in the heat exchanger 41 can be increased. Therefore, overheating of the refrigerant gas flowing through the refrigerant flow path 11 due to the heat of the oil flowing through the oil flow path 52 can be suppressed.
ここで、熱交換器41内部に設けられた油流路52を複数に分岐する(多パスにする)ことで、熱交換器41内の流路52表面積を拡大でき、かつ、流路52内を流動する油が流路52表面に接触しやすくなるため、熱交換器41を小型化することができる。 Here, the surface area of the flow path 52 in the heat exchanger 41 can be increased by branching the oil flow path 52 provided in the heat exchanger 41 into a plurality of (multipath), and the flow path 52 Therefore, the heat exchanger 41 can be downsized.
尚、本実施例においては、熱交換器41をモータケーシング1とモータステータ7との接触位置の径方向外側のモータケーシング1に配置したが、これに限られない。すなわち、例えば図6及び図7で示すように、モータケーシング1に設けた冷媒流路11とモータケーシング1内部の油流路52との間に断熱材60を配置してもよい。冷媒流路11とモータケーシング1内部の油流路52との間に断熱材60を配置することにより、油流路52の熱は、断熱材60に阻まれ、冷媒流路11を流れるガスに熱伝達し難くなる。 In addition, in the present Example, although the heat exchanger 41 was arrange | positioned in the motor casing 1 of the radial direction outer side of the contact position of the motor casing 1 and the motor stator 7, it is not restricted to this. That is, for example, as shown in FIGS. 6 and 7, a heat insulating material 60 may be disposed between the refrigerant flow path 11 provided in the motor casing 1 and the oil flow path 52 inside the motor casing 1. By disposing the heat insulating material 60 between the refrigerant flow path 11 and the oil flow path 52 inside the motor casing 1, the heat of the oil flow path 52 is blocked by the heat insulating material 60, and the gas flowing through the refrigerant flow path 11 is converted into gas. It becomes difficult to transfer heat.
1:モータケーシング
2:メインケーシング
3:吐出ケーシング
4:油分離器
5:吸入口
6:吐出口
31:カバー
40:フィン
41:熱交換器
50:油配管
51:油配管
70:圧縮機本体
1: Motor casing 2: Main casing 3: Discharge casing 4: Oil separator 5: Suction port 6: Discharge port 31: Cover 40: Fin 41: Heat exchanger 50: Oil piping 51: Oil piping 70: Compressor body
Claims (5)
前記スクリューロータを駆動するモータと、
前記スクリューロータを支持する軸受と、
前記スクリューロータ、前記モータ、及び、前記軸受を収納するケーシングと、
前記スクリューロータから吐出した冷媒を冷媒ガスと油に分離する油分離器と、
前記ケーシングに一体で形成された熱交換器と、
を備え、
前記油分離器で分離された油は前記熱交換器内の油流路を経由して前記軸受に供給されるスクリュー圧縮機。 A screw rotor for compressing the refrigerant;
A motor for driving the screw rotor;
A bearing for supporting the screw rotor;
A casing for housing the screw rotor, the motor, and the bearing;
An oil separator that separates refrigerant discharged from the screw rotor into refrigerant gas and oil;
A heat exchanger formed integrally with the casing;
With
A screw compressor in which oil separated by the oil separator is supplied to the bearing via an oil flow path in the heat exchanger.
前記ケーシングが前記モータを支持する位置の径方向外側に前記熱交換器が形成されるスクリュー圧縮機。 In Claim 1, the motor is supported by the casing, and a refrigerant flow path that guides the refrigerant sucked into the casing to the screw rotor is formed between the casing and the motor.
A screw compressor in which the heat exchanger is formed on a radially outer side of a position where the casing supports the motor.
前記冷媒流路の径方向外側に前記熱交換器が形成され、
前記冷媒流路と前記油流路との間に断熱材が配置されるスクリュー圧縮機。 In Claim 1, the motor is supported by the casing, and a refrigerant flow path that guides the refrigerant sucked into the casing to the screw rotor is formed between the casing and the motor.
The heat exchanger is formed radially outside the refrigerant flow path;
A screw compressor in which a heat insulating material is disposed between the refrigerant channel and the oil channel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013174076A JP6125375B2 (en) | 2013-08-26 | 2013-08-26 | Screw compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013174076A JP6125375B2 (en) | 2013-08-26 | 2013-08-26 | Screw compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015042847A true JP2015042847A (en) | 2015-03-05 |
JP6125375B2 JP6125375B2 (en) | 2017-05-10 |
Family
ID=52696462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013174076A Active JP6125375B2 (en) | 2013-08-26 | 2013-08-26 | Screw compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6125375B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173362A1 (en) * | 2017-03-24 | 2018-09-27 | 日立ジョンソンコントロールズ空調株式会社 | Screw type fluid machine |
CN109268272A (en) * | 2017-07-18 | 2019-01-25 | 日立江森自控空调有限公司 | Screw fluid equipment |
CN111237192A (en) * | 2020-03-20 | 2020-06-05 | 福州市虚谷技术有限公司 | Oil circuit structure for lubricating internal bearing of screw compressor |
CN111255695A (en) * | 2020-02-10 | 2020-06-09 | 嘉兴学院 | Screw air compressor |
CN114072298A (en) * | 2019-09-17 | 2022-02-18 | 翰昂汽车零部件有限公司 | Compressor module |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI704098B (en) | 2019-08-20 | 2020-09-11 | 國立臺北商業大學 | Clamp type cleaning device for escalator handrail |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54129022U (en) * | 1978-03-01 | 1979-09-07 | ||
JPH02144687U (en) * | 1989-05-09 | 1990-12-07 | ||
JPH03124990A (en) * | 1989-10-09 | 1991-05-28 | Kobe Steel Ltd | Sealed oil-cooled compressor |
JPH0365869U (en) * | 1989-10-30 | 1991-06-26 | ||
JPH05133334A (en) * | 1991-11-12 | 1993-05-28 | Daikin Ind Ltd | Semiclosed type compressor |
JP2011214432A (en) * | 2010-03-31 | 2011-10-27 | Denso Corp | Electric compressor |
-
2013
- 2013-08-26 JP JP2013174076A patent/JP6125375B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54129022U (en) * | 1978-03-01 | 1979-09-07 | ||
JPH02144687U (en) * | 1989-05-09 | 1990-12-07 | ||
JPH03124990A (en) * | 1989-10-09 | 1991-05-28 | Kobe Steel Ltd | Sealed oil-cooled compressor |
JPH0365869U (en) * | 1989-10-30 | 1991-06-26 | ||
JPH05133334A (en) * | 1991-11-12 | 1993-05-28 | Daikin Ind Ltd | Semiclosed type compressor |
JP2011214432A (en) * | 2010-03-31 | 2011-10-27 | Denso Corp | Electric compressor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173362A1 (en) * | 2017-03-24 | 2018-09-27 | 日立ジョンソンコントロールズ空調株式会社 | Screw type fluid machine |
JP2018162694A (en) * | 2017-03-24 | 2018-10-18 | 日立ジョンソンコントロールズ空調株式会社 | Screw fluid machine |
CN108934174A (en) * | 2017-03-24 | 2018-12-04 | 日立江森自控空调有限公司 | Screw fluid machine |
CN109268272A (en) * | 2017-07-18 | 2019-01-25 | 日立江森自控空调有限公司 | Screw fluid equipment |
CN114072298A (en) * | 2019-09-17 | 2022-02-18 | 翰昂汽车零部件有限公司 | Compressor module |
CN111255695A (en) * | 2020-02-10 | 2020-06-09 | 嘉兴学院 | Screw air compressor |
CN111237192A (en) * | 2020-03-20 | 2020-06-05 | 福州市虚谷技术有限公司 | Oil circuit structure for lubricating internal bearing of screw compressor |
CN111237192B (en) * | 2020-03-20 | 2024-02-20 | 福建雪人压缩机有限公司 | Oil circuit structure of internal bearing of lubrication screw compressor |
Also Published As
Publication number | Publication date |
---|---|
JP6125375B2 (en) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6125375B2 (en) | Screw compressor | |
KR101410438B1 (en) | Motor cooling applications | |
EP3112691B1 (en) | Compressor and refrigerating cycle apparatus | |
WO2016136482A1 (en) | Oilless compressor | |
EP2093374A1 (en) | Fluid machine and refrigeration cycle device | |
EP3372835B1 (en) | Compressor module for compressing gas and compressor equipped therewith | |
JP2015165575A (en) | Heat exchange type cooling apparatus for transformer | |
CN110382863B (en) | Compressor module for compressing a gas and compressor equipped with said compressor module | |
JP6070224B2 (en) | Power generator | |
WO2014083901A1 (en) | Compressor, refrigeration cycle device, and heat pump hot-water supply device | |
KR20170013345A (en) | Compression refrigeration machine having a spindle compressor | |
JP5506953B2 (en) | Refrigerant compressor | |
JP6607960B2 (en) | Gas compressor | |
CN110926060A (en) | A kind of compressor | |
JP6511321B2 (en) | Refueling displacement compressor | |
EP2826998B1 (en) | Air compression system and cooling structure thereof | |
JP2008008165A (en) | Compressor | |
CN105829715B (en) | Compressor assembly and lubricating system for movable part | |
CN112436653A (en) | Motor assembly, thermal management device and thermal management system | |
JP6102292B2 (en) | Trochoid pump | |
JP2004044606A (en) | Oil-free screw compressor | |
GB2503516A (en) | A refrigeration compressor for a vehicles HVAC device with a water cooling jacket connected to the vehicles engine coolant circuit. | |
CN217401092U (en) | Oil-free lubrication air compressor | |
CN211204504U (en) | A kind of compressor | |
KR20010088583A (en) | the self circulation cooling system vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150629 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150629 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150820 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150903 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170307 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170405 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6125375 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |