JP2015041496A - Lead storage battery, and negative electrode plate for lead storage batteries - Google Patents

Lead storage battery, and negative electrode plate for lead storage batteries Download PDF

Info

Publication number
JP2015041496A
JP2015041496A JP2013171849A JP2013171849A JP2015041496A JP 2015041496 A JP2015041496 A JP 2015041496A JP 2013171849 A JP2013171849 A JP 2013171849A JP 2013171849 A JP2013171849 A JP 2013171849A JP 2015041496 A JP2015041496 A JP 2015041496A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
lignin
functional group
conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013171849A
Other languages
Japanese (ja)
Other versions
JP6172452B2 (en
JP2015041496A5 (en
Inventor
賢 稲垣
Masaru Inagaki
賢 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2013171849A priority Critical patent/JP6172452B2/en
Publication of JP2015041496A publication Critical patent/JP2015041496A/en
Publication of JP2015041496A5 publication Critical patent/JP2015041496A5/ja
Application granted granted Critical
Publication of JP6172452B2 publication Critical patent/JP6172452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead storage battery superior in charge-accepting performance and life performance and a negative electrode plate of such a lead storage battery.SOLUTION: A negative electrode plate for lead storage batteries comprises a negative electrode active material including an organic shrink-proofing agent. In ultraviolet absorption spectra measured on an aqueous solution obtained by extracting the organic shrink-proofing agent from the negative electrode plate by an alkaline aqueous solution, the ratio of the absorption by a non-conjugated functional group at a wavelength of 300 nm to the absorbance by a conjugated functional group at a wavelength of 350 nm is 1.7-1.4. Thus, the superior regenerative charge acceptability can be achieved and the shrinkage of a negative electrode active material can be suppressed.

Description

この発明は、鉛蓄電池及びその負極板に関する。   The present invention relates to a lead storage battery and a negative electrode plate thereof.

鉛蓄電池の負極活物質に添加するリグニンは、負極活物質の収縮を防止し、充放電時にPb2+イオンを一時的に捕捉し、低温高率放電性能を改善するが、充電受入性を低下させることが知られている。さらにリグニンは鉛蓄電池の使用中に徐々に分解されることが知られている。なお負極活物質に添加されるリグニンはスルホン化リグニンで、化学構造が異なる多くの種類があり、以下スルホン化リグニンを単にリグニンと呼ぶ。 Lignin added to the negative electrode active material of lead-acid batteries prevents the negative electrode active material from shrinking, temporarily traps Pb 2+ ions during charge and discharge, improves low-temperature high-rate discharge performance, but decreases charge acceptance It is known to let Furthermore, lignin is known to be gradually degraded during use of lead acid batteries. The lignin added to the negative electrode active material is a sulfonated lignin, and there are many types having different chemical structures. Hereinafter, the sulfonated lignin is simply referred to as a lignin.

特許文献1(特開H09−147871)は、フェノール性水酸基を有する芳香族6員環を含む官能基の、α位の炭素とβ位の炭素との結合を2重結合とし、β位の炭素にスルホン基が結合しているリグニンを用いることを提案している。そしてこのようなリグニンを用いると、多量のリグニンを含有させても、充電効率の低下が目立たず、かつ低温高率放電容量を高めて、鉛蓄電池の寿命を延ばすことができるとしている。なお、フェノール性水酸基を有する芳香族6員環を含む官能基を、フェノール性水酸基を有する官能基と略称することがある。   Patent Document 1 (Japanese Patent Laid-Open No. H09-147871) discloses that a functional group containing an aromatic 6-membered ring having a phenolic hydroxyl group has a double bond between the α-position carbon and the β-position carbon, and the β-position carbon. It is proposed to use lignin having a sulfone group bonded thereto. And if such lignin is used, even if it contains a lot of lignin, the fall of charge efficiency is not conspicuous, and it is supposed that the low temperature high rate discharge capacity can be raised and the lifetime of a lead acid battery can be extended. A functional group containing an aromatic 6-membered ring having a phenolic hydroxyl group may be abbreviated as a functional group having a phenolic hydroxyl group.

特許文献2(特開H08−190911)は、例えば70℃の希硫酸中で1時間放置したリグニンを負極活物質に添加することにより、トリクル充電時の熱逸走を防止できるとしている。   Patent Document 2 (Japanese Patent Laid-Open No. H08-190911) states that, for example, by adding lignin left for 1 hour in 70 ° C. dilute sulfuric acid to the negative electrode active material, thermal escape during trickle charging can be prevented.

特開H09−147871JP H09-147871 特開H08−190911JP H08-190911

発明者は、リグニン等の有機防縮剤の化学構造を最適化することを検討した。即ち、Pb2+イオンへの捕捉力を最適化すること等により充電受入性を改善し、また化学的安定性を高めること等により有機防縮剤の分解を遅らせ、負極活物質の収縮を遅らせることを検討した。充電受入性を改善し、負極活物質の収縮を遅らせることができれば、低温高率放電性能を高めるとの有機防縮剤本来の性質と相俟って、PSOC(充電が不充分な状態)下等での、鉛蓄電池の寿命性能を向上させることが出来る。 The inventor studied to optimize the chemical structure of an organic shrinking agent such as lignin. In other words, the charge acceptability is improved by optimizing the trapping power for Pb 2+ ions, etc., and the decomposition of the organic shrinkage agent is delayed by increasing the chemical stability, etc., and the contraction of the negative electrode active material is delayed. It was investigated. If the charge acceptability can be improved and the shrinkage of the negative electrode active material can be delayed, combined with the original properties of the organic shrunk agent that enhances the low-temperature, high-rate discharge performance, etc., under PSOC (insufficient charge) Thus, the life performance of the lead storage battery can be improved.

この発明の課題は、充電受入性能と寿命性能とに優れる、鉛蓄電池とその負極板とを提供することにある。   The subject of this invention is providing the lead storage battery and its negative electrode plate which are excellent in charge acceptance performance and lifetime performance.

この発明は、有機防縮剤を含有する負極活物質を備える負極板と、正極板と、電解液とを有する鉛蓄電池において、
前記有機防縮剤を負極板からアルカリ性の水溶液により抽出した際の、前記水溶液の紫外吸収スペクトルにおいて、波長300nmの非共役型の官能基による吸収と、波長350nmの共役型の官能基による吸収との吸光度比が1.7以下でかつ1.4以上であることを特徴とする。
The present invention relates to a lead-acid battery having a negative electrode plate including a negative electrode active material containing an organic shrinking agent, a positive electrode plate, and an electrolyte solution.
In the ultraviolet absorption spectrum of the aqueous solution when the organic shrunk agent is extracted from the negative electrode plate with an alkaline aqueous solution, absorption by a non-conjugated functional group having a wavelength of 300 nm and absorption by a conjugated functional group having a wavelength of 350 nm The absorbance ratio is 1.7 or less and 1.4 or more.

有機防縮剤は、亜硫酸パルプ排液等から抽出したリグニン(天然リグニン)、あるいはこれに化学的な修飾を施したリグニン(合成リグニン)、もしくはビスフェノール系縮合物等の合成防縮剤等である。この明細書では、天然リグニンと合成リグニンを併せてリグニンと呼ぶ。   The organic shrinking agent is a lignin extracted from sulfite pulp drainage or the like (natural lignin), or a lignin obtained by chemically modifying it (synthetic lignin), or a synthetic shrinking agent such as a bisphenol-based condensate. In this specification, natural lignin and synthetic lignin are collectively referred to as lignin.

前記有機防縮剤は好ましくは、フェノール性水酸基を有する芳香族6員環を含む官能基を有し、前記官能基には、前記芳香族6員環に対するα位の炭素がスルホン基を有する非共役型の官能基と、前記芳香族6員環に対するα位の炭素がカルボニル基を有する共役型の官能基とがある。   The organic shrinkage agent preferably has a functional group containing an aromatic 6-membered ring having a phenolic hydroxyl group, and the functional group has a non-conjugated carbon in the α-position with respect to the aromatic 6-membered ring. Type functional groups and conjugated functional groups in which the carbon at the α-position to the aromatic 6-membered ring has a carbonyl group.

好ましくは、有機防縮剤はリグニンである。
またこの発明の鉛蓄電池は、PSOC(充電不足な状態)で使用される鉛蓄電池に適し、特にアイドリングストップ車用の鉛蓄電池に適している。
Preferably, the organic shrinking agent is lignin.
The lead storage battery of the present invention is suitable for a lead storage battery used in PSOC (undercharged state), and particularly suitable for a lead storage battery for an idling stop vehicle.

またこの発明は、上記の有機防縮剤を含有する負極活物質を備える、鉛蓄電池用の負極板にある。   Moreover, this invention exists in the negative electrode plate for lead acid batteries provided with the negative electrode active material containing said organic pre-shrink agent.

有機防縮剤は好ましくは、フェノール性水酸基を有する芳香族6員環を含んでいる。このような官能基の例を、図3,図4に示す。芳香族6員環に隣接する炭素がα位の炭素で、図3,図4の左側の例ではα位の炭素にスルホン基が結合している。これに対して、図3,図4の右側に示すように、α位にカルボニル基を配置することができる。α位の炭素にスルホン基が結合している場合、スルホン基と芳香族6員環との間に共役は生じないので、非共役型と呼ぶ。α位の炭素がカルボニル基の炭素である場合、カルボニル基と芳香族6員環との間に共役が生じるので、共役型と呼ぶ。共役型は非共役型に比べ安定で、紫外吸収スペクトルにおいて、非共役型で300nm付近に、例えば300nm± 20nmに、共役型で350nm付近に、例えば350nm±30nmに吸収を生じ、共役型は非共役型に比べて共役π電子系が長くなるので吸収が長波長側にシフトしている。共役π電子系が長くなることで、分子全体のエネルギーが下がるため、共役型は非共役型に比べて化学的に安定となる。なお有機防縮剤の1分子が、上記のフェノール性水酸基を有する芳香族6員環を含む官能基を複数有し、スルホン基とカルボニル基の双方を備えている場合もある。共役/非共役は正確には上記のフェノール性水酸基を有する芳香族6員環を含む官能基についての概念である。   The organic shrinking agent preferably contains an aromatic 6-membered ring having a phenolic hydroxyl group. Examples of such functional groups are shown in FIGS. The carbon adjacent to the aromatic 6-membered ring is the α-position carbon, and in the examples on the left side of FIGS. 3 and 4, a sulfone group is bonded to the α-position carbon. On the other hand, as shown on the right side of FIGS. 3 and 4, a carbonyl group can be arranged at the α-position. When a sulfone group is bonded to the α-position carbon, conjugation does not occur between the sulfone group and the aromatic 6-membered ring. When the α-position carbon is a carbon of a carbonyl group, conjugation occurs between the carbonyl group and the aromatic 6-membered ring, and therefore this is called a conjugated type. The conjugated type is more stable than the non-conjugated type, and in the ultraviolet absorption spectrum, the non-conjugated type absorbs near 300 nm, for example, 300 nm ± 20 nm, and the conjugated type absorbs near 350 nm, for example, 350 nm ± 30 nm. Since the conjugated π-electron system is longer than that of the conjugated type, the absorption is shifted to the longer wavelength side. As the conjugated π-electron system becomes longer, the energy of the whole molecule decreases, so that the conjugated type is chemically more stable than the non-conjugated type. In addition, one molecule of the organic shrinkage agent may have a plurality of functional groups containing an aromatic 6-membered ring having a phenolic hydroxyl group and have both a sulfone group and a carbonyl group. Conjugation / non-conjugation is precisely the concept of a functional group containing an aromatic 6-membered ring having a phenolic hydroxyl group.

スルホン基は強酸性の官能基で、Pb2+イオンを強く吸着し、有機防縮剤の主たる作用はPb2+イオンを吸着により捕捉することによると考えられる。このため充放電時にPbあるいはPbSO4粒子を間隔を置いて負極活物質中に析出させることができ、負極活物質の収縮を防止しているものと考えられる。しかしながらスルホン基がPb2+イオンに強く吸着することは、Pb2+イオンへ電子が結合してPb2+イオンを金属へ還元することを妨害し、充電受入性を低下させているものと考えられる。また非共役型の有機防縮剤は鉛蓄電池の充放電時に分解されやすく、徐々に濃度が低下して、負極活物質の収縮を防止する能力が低下するものと考えられる。 The sulfone group is a strongly acidic functional group that strongly adsorbs Pb 2+ ions, and the main action of the organic shrinkage agent is thought to be by trapping Pb 2+ ions by adsorption. For this reason, Pb or PbSO 4 particles can be deposited in the negative electrode active material at intervals during charge and discharge, and it is considered that the negative electrode active material is prevented from shrinking. The sulfonic group is strongly adsorbed Pb 2+ ions, however, the Pb 2+ ions interfere with reducing the metal electrons are bound to a Pb 2+ ion, considered to have reduced the charge acceptance It is done. In addition, it is considered that the non-conjugated organic shrunk agent is likely to be decomposed during charge / discharge of the lead storage battery, and the concentration gradually decreases to reduce the ability to prevent the negative electrode active material from shrinking.

これに対してカルボニル基は電子対供与性の官能基で、Pb2+イオンに配位できるが、配位によるPb2+イオンの捕捉はスルホン基に比べ弱い。従って充電時のPb2+イオンの還元を妨害しないため、非共役型のスルホン基の場合に比べ、充電受入性を改善すると考えられる。紫外吸収スペクトルのシフトからも明らかなように、非共役型に比べ、カルボニル基を有する共役型は化学的に安定で、負極活物質の収縮を防止する効果がより長期間に渡って持続すると考えられる。 On the other hand, the carbonyl group is an electron pair donating functional group and can coordinate to the Pb 2+ ion, but the capture of the Pb 2+ ion by coordination is weaker than the sulfone group. Therefore, since it does not interfere with the reduction of Pb 2+ ions during charging, it is considered that the charge acceptability is improved as compared with the case of a non-conjugated sulfone group. As is clear from the shift of the ultraviolet absorption spectrum, the conjugated type having a carbonyl group is chemically stable compared to the non-conjugated type, and the effect of preventing the contraction of the negative electrode active material is expected to last for a longer period of time. It is done.

上記の推定は、実験結果とも一致する。例えば負極活物質中のリグニン濃度を増すと、非共役型と共役型とで、充電受入性の差が著しくなる。これは、非共役型のリグニンが充電受入性を阻害し、共役型では充電受入性の阻害が小さいことを意味する。また300nmの吸収と350nmの吸収との吸光度比が1.7以下、好ましくは1.66以下で、強度比が1.7超の従来例に比べ、軽負荷寿命性能が向上する。このことは、共役型リグニンは安定で、負極活物質の収縮防止機能が長続きすることと対応する。また上記の吸光度比が1.4未満では、軽負荷寿命性能が低下する。このことは、共役型のリグニンが過剰では、Pb2+イオンを捕捉する能力が不足し、早期に負極活物質の収縮を招くことと対応する。そしてこの発明では、同量のリグニンを含む従来例に比べて、充電受入性が高くかつ軽負荷寿命性能に優れた鉛蓄電池と、その負極板とが得られる。なお鉛蓄電池は液式でも、制御弁式等でも良く、正極板と、電解液とは任意で、負極板はリグニン等の有機防縮剤の種類を除き任意である。 The above estimation is consistent with the experimental results. For example, when the lignin concentration in the negative electrode active material is increased, the difference in charge acceptance between the non-conjugated type and the conjugated type becomes significant. This means that the non-conjugated type lignin inhibits charge acceptance, and the conjugate type has little inhibition of charge acceptance. In addition, the light load life performance is improved as compared with the conventional example in which the absorbance ratio between absorption at 300 nm and absorption at 350 nm is 1.7 or less, preferably 1.66 or less and the intensity ratio is more than 1.7. This corresponds to the fact that the conjugated lignin is stable and the anti-shrinkage function of the negative electrode active material lasts long. If the absorbance ratio is less than 1.4, the light load life performance deteriorates. This corresponds to the fact that when the conjugated lignin is excessive, the ability to capture Pb 2+ ions is insufficient and the negative electrode active material contracts early. And in this invention, compared with the prior art example containing the same amount of lignin, the lead storage battery which was high in charge acceptance and was excellent in the light load lifetime performance, and its negative electrode plate are obtained. The lead storage battery may be a liquid type or a control valve type, and the positive electrode plate and the electrolytic solution are optional, and the negative electrode plate is optional except for the type of organic shrinkage agent such as lignin.

なお芳香族6員環は、フェノール性水酸基の他に、-OCH3基等の置換基を1個あるいは複数個含んでいることがある。またリグニンは、分子量、図3,図4の官能基等の数と置換基の種類、図3,図4の官能基等を結合した骨格の構造等の点で、多様な化合物である。負極活物質中のリグニンの含有量は、0.15mass%以上0.6mass%以下が好ましく、特に0.15mass%以上0.4mass%以下が好ましく、0.2mass%以上0.4mass%以下が最も好ましい。 The aromatic 6-membered ring may contain one or more substituents such as —OCH 3 group in addition to the phenolic hydroxyl group. Lignin is a variety of compounds in terms of molecular weight, number of functional groups and the like in FIG. 3 and FIG. 4 and types of substituents, and structure of a skeleton to which the functional groups and the like in FIG. 3 and FIG. The content of lignin in the negative electrode active material is preferably from 0.15 mass% to 0.6 mass%, particularly preferably from 0.15 mass% to 0.4 mass%, and most preferably from 0.2 mass% to 0.4 mass%.

市販のリグニン(スルホン化リグニン)は、300nmの吸収と350nmの吸収との吸光度比が1.7よりも大きく、このようなリグニンを非共役型が過剰と呼ぶ。非共役型が過剰なリグニンを、共役型と非共役型を適正な割合で含むリグニンへ転換するため例えば、
・ 鉛蓄電池の化成条件を選択する、(化成によって非共役型のリグニンが一部分解する、あるいは共役型に変化することが考えられる)
・ 透析により分子量が小さい共役型のリグニンを抽出する、
・ リグニンのスルホン基を水酸基等に置換した上で、α位の炭素を酸化しカルボニル基とする、
等のことを行う。また、上記の操作等によって共役型を過剰としたリグニンを非共役型が過剰なリグニンと混合しても良い。そして非共役型のリグニンと共役型のリグニンとの含有比を操作すると、300nmの吸収と350nmの吸収との吸光度比を、1.7以下で1.4以上、好ましくは1.66以下で1.4以上にできる。
Commercially available lignin (sulfonated lignin) has an absorbance ratio between absorption at 300 nm and absorption at 350 nm of greater than 1.7, and such lignin is referred to as excess in the unconjugated form. To convert excess lignin in unconjugated form into lignin containing the right proportions of conjugated and unconjugated forms, for example:
・ Select the conversion conditions for lead-acid batteries (non-conjugated lignin may be partially decomposed or changed to a conjugated type by conversion)
・ Extract conjugated lignin with low molecular weight by dialysis,
・ After substituting the sulfo group of lignin with a hydroxyl group, etc., the α-position carbon is oxidized to a carbonyl group.
Do things like that. In addition, lignin with excess conjugated type may be mixed with lignin with excess non-conjugated type by the above operation or the like. By manipulating the content ratio of the non-conjugated lignin and the conjugated lignin, the absorbance ratio between the absorption at 300 nm and the absorption at 350 nm can be made 1.4 or more at 1.7 or less, preferably 1.4 or more at 1.66 or less.

リグニン等の有機防縮剤の紫外吸収は例えば以下のようにして測定する。既化成の負極板から、負極活物質を1g採取し、15mass%のNaOH水溶液に溶解させ、そのまま1晩40℃で静置し、遠心分離により上澄みを採取する。この上澄みに対しUV吸光光度計(例えば株式会社島津製作所製のUV-210)により吸光度を測定し、300nmと350nmの吸収の吸光度の比を求める。この比は、非共役型と共役型との割合を反映している。測定法の要旨は、強アルカリ性の水溶液により、負極活物質から有機防縮剤を抽出し、UV吸光光度計、あるいはUV-可視吸光光度計により、300nmと350nmとでの吸光度を測定することである。従ってNaOHに変えて、KOH等の他のアルカリ水酸化物、あるいは他の塩基を用いても良い。   The ultraviolet absorption of an organic shrinking agent such as lignin is measured as follows, for example. 1 g of the negative electrode active material is collected from the pre-formed negative electrode plate, dissolved in a 15 mass% NaOH aqueous solution, left to stand at 40 ° C. overnight, and the supernatant is collected by centrifugation. The supernatant is measured with a UV absorptiometer (for example, UV-210 manufactured by Shimadzu Corporation) to determine the ratio of absorbance at 300 nm and 350 nm. This ratio reflects the ratio of non-conjugated and conjugated. The gist of the measurement method is to extract an organic shrinking agent from the negative electrode active material with a strong alkaline aqueous solution, and measure the absorbance at 300 nm and 350 nm with a UV absorptiometer or UV-visible absorptiometer. . Therefore, instead of NaOH, other alkali hydroxides such as KOH or other bases may be used.

化成条件によるリグニンの吸収スペクトルの変化を示し、試料B2は比較例、試料B5は実施例である。The change of the absorption spectrum of lignin according to chemical conversion conditions is shown, sample B2 is a comparative example, and sample B5 is an example. 化成条件によるリグニンの吸収スペクトルの変化を示し、試料C2,C3は比較例、試料C4は実施例である。The change of the absorption spectrum of lignin according to chemical conversion conditions is shown. Samples C2 and C3 are comparative examples, and sample C4 is an example. フェノール性水酸基を有する芳香族6員環を含む官能基(バニリル基)を示す図で、左側はスルホン基を有する非共役型を、右側はカルボニル基を有する共役型を示す。It is a figure which shows the functional group (vanillyl group) containing the aromatic 6-membered ring which has a phenolic hydroxyl group, The left side shows the nonconjugated type which has a sulfone group, and the right side shows the conjugated type which has a carbonyl group. フェノール性水酸基を有する芳香族6員環を含む官能基の他の例を示す図で、左側はスルホン基を有する非共役型を、右側はカルボニル基を有する共役型を示す。It is a figure which shows the other example of the functional group containing the aromatic 6-membered ring which has a phenolic hydroxyl group, The left side shows the nonconjugated type which has a sulfone group, and the right side shows the conjugated type which has a carbonyl group.

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art.

Pb-Ca系合金からなる負極格子に、定法に従い、鉛粉とリグニン(日本製紙ケミカル社製の商品名「バニレックスN」)と硫酸バリウムとカーボンブラックと合成樹脂繊維とを、硫酸でペースト化した負極活物質を充填し、未化成の負極板とした。リグニン含有量は化成後の負極活物質に対して、0.2mass%,0.4mass%,0.6mass%の3種類とし、未化成の負極板に乾燥と熟成とを施した。同様にPb-Ca系合金からなる正極格子に、鉛粉と合成樹脂繊維とを硫酸でペースト化した正極活物質を充填し、未化成の正極板として、乾燥と熟成とを施した。未化成の負極板と正極板とを用い、JIS D 5301の105D31サイズの液式鉛蓄電池を組み立てた。なお液式ではなく制御弁式等でも良い。未化成の鉛蓄電池に、25℃水槽中で、化成電流と化成時間とを変えて電槽化成を施した。化成条件を変えることにより、300nmの吸収と、350nmの吸収の吸光度比が変化した。電槽化成に変えて、タンク化成を施しても良い。また周囲の温度によっても吸光度比が変化するので、吸光度比が所定の範囲に入るように、周囲の温度に合わせて化成電流と化成時間を操作しても良い。なお市販のスルホン化リグニンには多数の種類があるが、いずれも既知の条件で化成を施すと、300nmの吸収と350nmの吸収の吸光度比は、1.7よりも大きくなる。   In accordance with a conventional method, lead powder, lignin (trade name “Vanilex N” manufactured by Nippon Paper Chemical Co., Ltd.), barium sulfate, carbon black, and synthetic resin fiber were pasted into sulfuric acid on a negative electrode grid made of Pb-Ca alloy. A negative electrode active material was filled to obtain an unformed negative electrode plate. The lignin content was three types of 0.2 mass%, 0.4 mass%, and 0.6 mass% with respect to the negative electrode active material after chemical conversion, and the unformed negative electrode plate was dried and aged. Similarly, a positive electrode lattice made of a Pb—Ca alloy was filled with a positive electrode active material obtained by pasting lead powder and synthetic resin fibers with sulfuric acid, and dried and aged as an unformed positive electrode plate. An unformed negative electrode plate and positive electrode plate were used to assemble a JIS D 5301 105D31 size liquid lead acid battery. A control valve type or the like may be used instead of the liquid type. An unformed lead-acid battery was formed in a 25 ° C water bath by changing the formation current and the formation time. By changing the chemical conversion conditions, the absorbance ratio of absorption at 300 nm and absorption at 350 nm was changed. Instead of battery case formation, tank formation may be performed. In addition, since the absorbance ratio varies depending on the ambient temperature, the formation current and the formation time may be manipulated according to the ambient temperature so that the absorbance ratio falls within a predetermined range. Although there are many types of commercially available sulfonated lignins, all of them undergo chemical conversion under known conditions, the absorbance ratio of 300 nm absorption to 350 nm absorption becomes larger than 1.7.

化成後の鉛蓄電池に対し、前記のようにして紫外吸収スペクトルを測定し、300nmの吸光度と350nmの吸光度との比を求め、さらに回生充電受入性と軽負荷寿命試験とを施した。回生充電受入性の試験では、満充電状態から、25℃の雰囲気中、5時間率電流で30分間放電し、そのまま16時間静置後に、14.8Vで最大100Aの充電電流で10秒間充電し、10秒間の積算電気量を回生充電受入性とした。   The lead absorption battery after chemical conversion was measured for ultraviolet absorption spectrum as described above to determine the ratio between the absorbance at 300 nm and the absorbance at 350 nm, and further subjected to regenerative charge acceptance and a light load life test. In the regenerative charge acceptance test, the battery was discharged from a fully charged state at 25 ° C in a 5-hour rate current for 30 minutes, left standing for 16 hours, and charged at 14.8V for 10 seconds with a maximum charging current of 100A. The accumulated amount of electricity for 10 seconds was defined as regenerative charge acceptance.

軽負荷寿命試験は、JIS D 5301 9.5.5a)に従い、40℃で、満充電状態から試験を開始して、25Aで4分間の放電と、14.8Vで10分間の充電とを480回/週繰り返し、480回毎に56時間休止し、655Aで30秒間の判定放電を行い、判定放電末での端子電圧が7.2V以下で寿命とし、端子電圧が7.2V超の場合、次の週のサイクルを実施した。リグニン濃度が0.2mass%での結果を表1に、0.4mass%での結果を表2に、0.6mass%での結果を表3に示す。   The light load life test starts from a fully charged state at 40 ° C in accordance with JIS D 5301 9.5.5a), and discharges for 4 minutes at 25A and 10 minutes at 14.8V for 480 times / week. Repeatedly, pauses every 480 times for 56 hours, performs judgment discharge at 655A for 30 seconds, terminal life at the end of judgment discharge is 7.2V or less, and if terminal voltage exceeds 7.2V, cycle of next week Carried out. The results at a lignin concentration of 0.2 mass% are shown in Table 1, the results at 0.4 mass% are shown in Table 2, and the results at 0.6 mass% are shown in Table 3.

Figure 2015041496
Figure 2015041496

Figure 2015041496
Figure 2015041496

Figure 2015041496
Figure 2015041496

いずれの添加量においても、300nmの吸収の吸光度と350nmの吸収の吸光度との比が1.7以下となり、共役型のリグニンが占める割合が増すと、回生充電受入性が増した。また軽負荷寿命性能は、300nmの吸収の吸光度と350nmの吸収の吸光度との比が1.7以下1.4以上で改善し、この比が1.4未満では改善しなかった。さらに前記の吸光度比を1.7以下1.4以上とすると、この比を1.7よりも大きくした場合に比べ、回生充電受入性は、リグニン濃度が高い程、顕著に向上した。なお、300nmと350nmの吸光度比が本発明の範囲である場合、吸光度比が1.7超の従来例と比較して、低温高率放電性能は同等であった。   In any addition amount, the ratio of the absorbance at 300 nm to the absorbance at 350 nm was 1.7 or less, and as the proportion of conjugated lignin increased, the regenerative charge acceptance increased. The light load life performance was improved when the ratio of absorbance at 300 nm to absorbance at 350 nm was 1.7 or less and 1.4 or more, and was not improved when the ratio was less than 1.4. Furthermore, when the absorbance ratio was 1.7 or lower and 1.4 or higher, the regenerative charge acceptance was significantly improved as the lignin concentration was higher than when the ratio was higher than 1.7. When the absorbance ratio between 300 nm and 350 nm is within the range of the present invention, the low-temperature high-rate discharge performance was equivalent as compared with the conventional example having an absorbance ratio of more than 1.7.

図1,図2に実施例と比較例の紫外吸収スペクトルを示し、図1の比較例B2では吸光度の比は1.71、実施例のB5では吸光度の比は1.54であった。図2の比較例C2では吸光度度の比は1.75、比較例C3では1.73、実施例のC4では吸光度の比は1.70であった。   1 and 2 show the ultraviolet absorption spectra of Examples and Comparative Examples. In Comparative Example B2 of FIG. 1, the absorbance ratio was 1.71, and in B5 of Example, the absorbance ratio was 1.54. In Comparative Example C2 of FIG. 2, the absorbance ratio was 1.75, in Comparative Example C3 was 1.73, and in Example C4, the absorbance ratio was 1.70.

前記のバニレックスN(バニレックスNは商品名)を、セルロースフィルムを透析膜として透析し、低分子量の共役型を抽出した。バニレックスNをイオン交換水に溶解し、10mass%水溶液とした。この水溶液を透析内液とし、水溶液100mLに対し、10Lのイオン交換水を透析外液として、ビスキングチューブ(No.36/32)で24時間透析した。透析外液を新たなイオン交換水に置換して、透析操作を3回繰り返し、3回の透析外液の全量を50℃で真空乾燥し、得られた粉末を透析性リグニン、原材料のバニレックスNを未透析リグニンとした。透析性リグニンと未透析リグニンとの混合量を変えて、化成条件により共役型リグニンの割合を増した実施例と同様に、鉛蓄電池とその負極板とを製造した。なお化成は25℃水槽中にて化成電流27Aで13.3時間(化成電気量360Ah)行った。透析性と未透析のリグニンの合計濃度を0.2mass%とした際の結果を表4に、0.4mass%とした際の結果を表5に、0.6mass%とした際の結果を表6に示す。表1〜表3と類似の結果が得られ、共役型リグニンの濃度を増す手法によらず、類似の結果が得られることが分かった。   The vanillex N (vanillax N is a trade name) was dialyzed using a cellulose film as a dialysis membrane to extract a low molecular weight conjugated type. Vanillex N was dissolved in ion-exchanged water to obtain a 10 mass% aqueous solution. This aqueous solution was used as an internal dialysis solution, and 100 mL of the aqueous solution was dialyzed against a Visking tube (No. 36/32) for 24 hours using 10 L of ion exchange water as an external dialysis solution. Replacing the external dialysis solution with fresh ion-exchanged water, repeating the dialysis operation 3 times, and vacuum drying the total volume of the 3 external dialysis solutions at 50 ° C. The resulting powder is dialyzable lignin and raw material Vanillex N Was undialyzed lignin. A lead-acid battery and its negative electrode plate were produced in the same manner as in the example in which the mixing amount of dialyzable lignin and undialyzed lignin was changed to increase the proportion of conjugated lignin according to the chemical conversion conditions. Chemical conversion was performed in a 25 ° C. water bath at a chemical conversion current of 27 A for 13.3 hours (chemical conversion electricity: 360 Ah). The results when the total concentration of dialyzable and undialyzed lignin is 0.2 mass% are shown in Table 4, the results when 0.4 mass% are set are shown in Table 5, and the results when 0.6 mass% are set are shown in Table 6. . Results similar to those in Tables 1 to 3 were obtained, and it was found that similar results were obtained regardless of the method for increasing the concentration of conjugated lignin.

Figure 2015041496
Figure 2015041496

Figure 2015041496
Figure 2015041496

Figure 2015041496
Figure 2015041496

実施例では、回生充電受入性と軽負荷寿命性能に優れた鉛蓄電池とその負極板とが得られる。そして回生充電受入性が高く、かつリグニンの作用が長期間維持され、リグニン本来の作用である低温高率放電性能も高いので、例えばアイドリングストップ車等に適した鉛蓄電池が得られる。   In the Example, the lead acid battery excellent in regenerative charge acceptance property and light load lifetime performance, and its negative electrode plate are obtained. And since the regenerative charge acceptability is high, the action of lignin is maintained for a long time, and the low temperature high rate discharge performance that is the original action of lignin is also high, a lead storage battery suitable for, for example, an idling stop vehicle can be obtained.

Claims (5)

有機防縮剤を含有する負極活物質を備える負極板と、正極板と、電解液とを有する鉛蓄電池において、
前記有機防縮剤を負極板からアルカリ性の水溶液により抽出した際の、前記水溶液の紫外吸収スペクトルにおいて、波長300nmの非共役型の官能基による吸収と、波長350nmの共役型の官能基による吸収との吸光度比が1.7以下でかつ1.4以上であることを特徴とする、鉛蓄電池。
In a lead storage battery having a negative electrode plate comprising a negative electrode active material containing an organic shrunk agent, a positive electrode plate, and an electrolyte solution,
In the ultraviolet absorption spectrum of the aqueous solution when the organic shrunk agent is extracted from the negative electrode plate with an alkaline aqueous solution, absorption by a non-conjugated functional group having a wavelength of 300 nm and absorption by a conjugated functional group having a wavelength of 350 nm A lead-acid battery having an absorbance ratio of 1.7 or less and 1.4 or more.
前記有機防縮剤はフェノール性水酸基を有する芳香族6員環を含む官能基を有し、
前記官能基には、前記芳香族6員環に対するα位の炭素がスルホン基を有する非共役型の官能基と、前記芳香族6員環に対するα位の炭素がカルボニル基を有する共役型の官能基とがあることを特徴とする、請求項1の鉛蓄電池。
The organic shrunk agent has a functional group containing an aromatic 6-membered ring having a phenolic hydroxyl group,
The functional group includes a non-conjugated functional group in which the α-position carbon relative to the aromatic 6-membered ring has a sulfone group, and a conjugated functional group in which the α-position carbon relative to the aromatic 6-membered ring has a carbonyl group. The lead acid battery according to claim 1, wherein the lead acid battery has a base.
前記有機防縮剤はリグニンであることを特徴とする、請求項2の鉛蓄電池。   The lead acid battery according to claim 2, wherein the organic anti-shrink agent is lignin. PSOC用の鉛蓄電池あることを特徴とする、請求項1〜3のいずれかの鉛蓄電池。   The lead acid battery according to any one of claims 1 to 3, which is a lead acid battery for PSOC. 有機防縮剤を含有する負極活物質を備える、鉛蓄電池用の負極板において、
前記有機防縮剤を負極板からアルカリ性の水溶液により抽出した際の、前記水溶液の紫外吸収スペクトルにおいて、波長300nmの非共役型の官能基による吸収と、波長350nmの共役型の官能基による吸収との吸光度比が1.7以下でかつ1.4以上であることを特徴とする、鉛蓄電池用の負極板。
In a negative electrode plate for a lead-acid battery comprising a negative electrode active material containing an organic shrinkage agent,
In the ultraviolet absorption spectrum of the aqueous solution when the organic shrunk agent is extracted from the negative electrode plate with an alkaline aqueous solution, absorption by a non-conjugated functional group having a wavelength of 300 nm and absorption by a conjugated functional group having a wavelength of 350 nm A negative electrode plate for a lead-acid battery, wherein the absorbance ratio is 1.7 or less and 1.4 or more.
JP2013171849A 2013-08-22 2013-08-22 Lead acid battery Active JP6172452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013171849A JP6172452B2 (en) 2013-08-22 2013-08-22 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013171849A JP6172452B2 (en) 2013-08-22 2013-08-22 Lead acid battery

Publications (3)

Publication Number Publication Date
JP2015041496A true JP2015041496A (en) 2015-03-02
JP2015041496A5 JP2015041496A5 (en) 2016-06-09
JP6172452B2 JP6172452B2 (en) 2017-08-02

Family

ID=52695543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013171849A Active JP6172452B2 (en) 2013-08-22 2013-08-22 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6172452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194328A1 (en) * 2015-05-29 2016-12-08 株式会社Gsユアサ Lead storage battery, and process for producing lead storage battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030696A (en) * 1998-07-09 2000-01-28 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
US20040053130A1 (en) * 2000-11-09 2004-03-18 Hirofumi Umetani Negative active material, method of manufacturing its material, and lead acid battery
JP2012043594A (en) * 2010-08-18 2012-03-01 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lead acid storage battery, and lead acid storage battery using the negative electrode plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030696A (en) * 1998-07-09 2000-01-28 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
US20040053130A1 (en) * 2000-11-09 2004-03-18 Hirofumi Umetani Negative active material, method of manufacturing its material, and lead acid battery
JP2012043594A (en) * 2010-08-18 2012-03-01 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lead acid storage battery, and lead acid storage battery using the negative electrode plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194328A1 (en) * 2015-05-29 2016-12-08 株式会社Gsユアサ Lead storage battery, and process for producing lead storage battery
US10622634B2 (en) 2015-05-29 2020-04-14 Gs Yuasa International Ltd. Lead-acid battery and method for producing lead-acid battery

Also Published As

Publication number Publication date
JP6172452B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
Bai et al. High performance inverted structure perovskite solar cells based on a PCBM: polystyrene blend electron transport layer
JP6544649B2 (en) Lead storage battery
JP2016531398A (en) Elastic gel polymer binder for silicon negative electrode
JP2011528844A (en) Improved negative plate for lead acid battery
JP5194729B2 (en) Lead acid battery
US6664002B2 (en) Organic expander for lead-acid storage batteries
Tountas et al. A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO 2 cathode interlayers for highly efficient and extremely stable polymer solar cells
JP2016103422A (en) Lead storage battery and negative electrode plate thereof
WO2017138045A1 (en) Negative electrode and electrolytic solution for lead-acid battery, method for manufacturing the same, and lead-acid battery comprising said negative electrode or electrolytic solution
JP6172452B2 (en) Lead acid battery
JP2015088379A (en) Lead storage battery
Men et al. Single‐Molecule Dye Organics with Multielectron Redox Processes as Cathode Materials for Lithium Secondary Batteries
US10439219B2 (en) Ultrastable cathodes for lithium sulfur batteries
CN100401574C (en) Gel synergizing type polymer lithium ion battery and preparation method thereof
JP7447896B2 (en) lead acid battery
Guo et al. Organic solar cells based on a Cu 2 O/FBT-TH4 anode buffer layer with enhanced power conversion efficiency and ambient stability
JP7347504B2 (en) lead acid battery
JP7152833B2 (en) lead acid battery
KR20150062084A (en) Lithium sulfur battery comprising electrode protective film, and method for preparing the same
CN107017408A (en) Trigonella bean gum water-based binder and its application in negative electrode of lithium ion battery
RU2391732C2 (en) Heterogeneous electrochemical supercapacitor and method of manufacturing
JP6566193B2 (en) Lead acid battery
JP7424037B2 (en) lead acid battery
JP7015613B2 (en) Ear thinning inhibitor, method of suppressing ear thinning, and use as ear thinning inhibitor
US20240047147A1 (en) Hydrogel electrolyte for a supercapacitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R150 Certificate of patent or registration of utility model

Ref document number: 6172452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150