JP2015040801A - Measurement device and measurement method of minute heat conductivity - Google Patents

Measurement device and measurement method of minute heat conductivity Download PDF

Info

Publication number
JP2015040801A
JP2015040801A JP2013172783A JP2013172783A JP2015040801A JP 2015040801 A JP2015040801 A JP 2015040801A JP 2013172783 A JP2013172783 A JP 2013172783A JP 2013172783 A JP2013172783 A JP 2013172783A JP 2015040801 A JP2015040801 A JP 2015040801A
Authority
JP
Japan
Prior art keywords
heating
thermal conductivity
sample
thermocouple
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172783A
Other languages
Japanese (ja)
Other versions
JP6164735B2 (en
Inventor
直幸 川本
Naoyuki Kawamoto
直幸 川本
孝雄 森
Takao Mori
孝雄 森
鎌田 博稔
Hirotoshi Kamata
博稔 鎌田
デミトリ ゴルバーグ
Golberg Demitry
デミトリ ゴルバーグ
正則 三留
Masanori Mitome
正則 三留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2013172783A priority Critical patent/JP6164735B2/en
Publication of JP2015040801A publication Critical patent/JP2015040801A/en
Application granted granted Critical
Publication of JP6164735B2 publication Critical patent/JP6164735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a heat conductivity of a minute area in a nano-micro scale.SOLUTION: A minute heat conductivity measurement device: irradiates a sample whose one end is thermally isolated by a high heat-resistance material such as an epoxy resin, with a converged electron beam to apply heat; and measures a temperature rise generated at an end part opposite to the heat isolation by heat flow due to the heat, with a pair of minute thermocouples. The minute heat conductivity measurement device performs this electron beam irradiation to a plurality of irradiation points, and obtains a heat conductivity between the irradiation points or from the irradiation points to the contact point of the thermocouples, on the basis of irradiation point positions and corresponding temperature rises.

Description

本発明は、ナノ・ミクロスケールにおける温度、相対的な熱流および熱抵抗の測定装置に関し、さらに具体的にはナノ・ミクロスケールの微小領域における熱伝導率を測定する装置及び方法に関する。   The present invention relates to an apparatus for measuring temperature, relative heat flow, and thermal resistance in a nano / micro scale, and more particularly to an apparatus and method for measuring thermal conductivity in a nano / micro scale micro region.

従来、温度、熱流、および熱抵抗の測定方法については、現代社会で効率的にエネルギーを使用するための熱管理技術に直結するだけでなく、それらが基盤的な物理量であるために、評価するための装置には大きな需要がある。   Traditionally, methods for measuring temperature, heat flow, and thermal resistance are evaluated not only because they are directly linked to thermal management technology for efficient use of energy in modern society, but also because they are fundamental physical quantities. There is a great demand for equipment for this.

また、熱管理の分野においては、世界的に見て省エネルギー化がかなり進んだ我が国でも、一次供給エネルギーの約2/3が熱エネルギーとして廃棄されているのが現状である。そのような社会情勢で、本発明は、先進的な熱管理技術を開発するために欠かせない要素として注目される。また、ナノ・ミクロスケールでの評価方法がまだ不十分である。   In the field of thermal management, even in Japan, where energy conservation has advanced considerably globally, about 2/3 of the primary supply energy is discarded as thermal energy. In such a social situation, the present invention attracts attention as an indispensable element for developing advanced thermal management technology. Moreover, the evaluation method on the nano / micro scale is still insufficient.

さらに、熱管理技術に関連するものに限らず、ミクロ・ナノスケールでの温度、熱流および熱抵抗の測定方法は、近年社会生活において重要性を増している不均質材料および複合材料など幅広い構造材料や機能性材料の、熱伝導性などの詳細な解析に役立つものであり、需要が大きい。   Furthermore, not only those related to thermal management technology, but also methods for measuring temperature, heat flow, and thermal resistance at the micro and nano scales are widely used in structural materials such as heterogeneous materials and composite materials that have become increasingly important in social life in recent years. It is useful for detailed analysis of the thermal conductivity of functional materials and functional materials, and is in great demand.

例えば、樹脂中にフィラーを分散させた複合材料の熱伝導特性を評価し、最適化を図ろうとする場合、複合材料のマクロな熱伝導特性の評価では不十分であり、複合材料の微細な構造のレベルでの測定を行うことが必要となる。具体的には、フィラーと樹脂の界面や隣接するフィラー同士の熱伝導、また熱伝導率が異なる不純物や介在物の影響等も評価する必要がある。そのため、このような複合材料の評価に当たっては、その微細な構造を観察すること、並びに微細な構造を反映した熱の投入及びそれによる温度変化の測定を行うことが求められる。また、微細構造を観察するには透過電子顕微鏡(TEM)および走査透過電子顕微鏡(STEM)が多くの場合使用されるので、熱投入及び温度測定のための手段はTEMと共存できるものが望ましい。サブナノメートルスケールの電子線プローブを走査するSTEMを用いれば、熱投入箇所を走査することができ、複雑な熱伝導の経路もマッピングにより可視化できる。なお、以下では表現を簡略化するためTEMだけに言及するが、TEMだけに言及している場合でも、添付図面のTEM像に対する言及以外は、特段の事情がない違限りTEMとSTEMの両方に言及しているものと理解されたい。   For example, when evaluating the thermal conductivity of a composite material in which filler is dispersed in a resin and trying to optimize it, it is not sufficient to evaluate the macro thermal conductivity of the composite material. It is necessary to measure at the level of. Specifically, it is necessary to evaluate the heat conduction between filler and resin interface, adjacent fillers, and the influence of impurities and inclusions having different thermal conductivities. Therefore, when evaluating such a composite material, it is required to observe the fine structure, to input heat reflecting the fine structure, and to measure the temperature change caused thereby. Further, since a transmission electron microscope (TEM) and a scanning transmission electron microscope (STEM) are often used for observing the fine structure, it is desirable that the means for heat input and temperature measurement can coexist with the TEM. By using a STEM that scans a sub-nanometer scale electron beam probe, it is possible to scan a heat input location and visualize a complicated heat conduction path by mapping. In the following, only the TEM will be referred to in order to simplify the expression. However, even when only the TEM is referred to, both the TEM and the STEM are used unless otherwise specified except for the reference to the TEM image in the attached drawings. It should be understood that it is mentioned.

微小領域の温度を測定するため、以前ナノチューブを使用した温度計が報告された(非特許文献1)。しかし、この温度計は受動的なもので、能動的に熱を印加して熱物性の解析を行うことは本文献には開示がない。   In order to measure the temperature of a minute region, a thermometer using nanotubes has been reported (Non-patent Document 1). However, this thermometer is passive, and there is no disclosure in this document that active heat is applied to analyze thermophysical properties.

また、本願発明者等は以前にナノスケールの熱電対(以下、ナノ熱電対と称する)を作成し、その特性を測定した(非特許文献2)。しかし、非特許文献2ではナノ熱電対の基本的な特性を測定してそれがナノスケールの温度計として使用できることを示しただけであり、それを用いて微小領域における熱流や熱伝導率の測定を行うことについては開示がなかった。   In addition, the inventors of the present application previously created a nanoscale thermocouple (hereinafter referred to as a nanothermocouple) and measured its characteristics (Non-Patent Document 2). However, Non-Patent Document 2 only measured the basic characteristics of nanothermocouples and showed that it can be used as a nanoscale thermometer, and it was used to measure heat flow and thermal conductivity in a microscopic region. There was no disclosure about doing.

本発明は上述の従来の問題点を解消し、試料に対してナノ・ミクロスケールの位置分解能で熱伝導率を測定することを課題とする。   It is an object of the present invention to solve the above-mentioned conventional problems and to measure the thermal conductivity with respect to a sample with a nano / micro scale position resolution.

本発明の一側面によれば、試料に接触する熱電対と、前記試料上の複数の加熱点を順次加熱する加熱装置と、前記順次加熱による前記接触点の温度上昇に応答した前記熱電対の複数の出力を検出して前記複数の加熱点の加熱にそれぞれ対応する複数の温度上昇を測定する装置とを設け、前記複数の加熱点間または前記複数の加熱点から前記試料上の前記熱電対の接触点までの距離及び前記複数の加熱点に対応する前記複数の温度上昇に基づいて前記複数の加熱点の間または前記複数の加熱点と前記接触点の間の熱伝導率または前記熱伝導率間の比率を求める微小熱伝導率測定装置が与えられる。
ここで、前記加熱装置は収束された電子線を前記複数の加熱点に照射してよい。
また、前記試料が透過型電子顕微鏡(TEM)または走査透過電子顕微鏡(STEM)内に収容されてTEM像またはSTEM像を観察可能であるとともに、前記収束された電子線を前記複数の加熱点に照射する加熱装置は前記TEMまたはSTEMの電子銃であってよい。
また、前記熱電対は非磁性体の二種類の材料の針状物の接合体であってよい。
また、前記二種類の材料はクロメル及びコンスタンタンであってよい。
また、前記針状物の先端の径は100nm以下であってよい。
また、前記試料は前記熱電対よりも熱抵抗が高い材料を介して台座に取り付けられてよい。
本発明の他の側面によれば、試料に熱電対を接触させ、前記試料上の複数の加熱点を順次加熱し、前記順次加熱による前記接触点の昇温に応答した前記熱電対の複数の出力を検出して前記複数の加熱点の加熱にそれぞれ対応する複数の温度上昇を測定し、前記複数の加熱点間または前記複数の加熱点から前記試料上の前記熱電対の接触点までの距離及び前記複数の加熱点に対応する前記複数の温度上昇に基づいて前記複数の加熱点間または前記複数の加熱点と前記接触点との間の熱伝導率または前記熱伝導率間の比率を求める微小熱伝導率測定方法が与えられる。
ここで、前記加熱は収束した電子線により行ってよい。
また、前記試料をTEMまたはSTEM内に収容してそのTEM像またはSTEM像を観察できるようにし、前記電子線の照射は前記TEMまたはSTEMの電子銃により行ってよい。
また、前記試料と前記熱電対との接触を解除した状態で前記熱電対からの前記複数の加熱点の加熱に対応する複数の較正出力を検出し、前記複数の加熱点への前記電子線の照射による二次電子が前記熱電対の前記出力に与える影響を前記複数の較正出力により打ち消してよい。
また、前記熱電対は非磁性体の二種類の材料の針状物の接合体であってよい。
また、前記試料は前記熱電対よりも熱抵抗が高い材料を介して台座に取り付けられてよい。
また、前記試料上または前記試料中の点であって前記複数の加熱点以外の点を仮想加熱点として設定し、前記仮想加熱点から前記接触点までの距離と前記複数の加熱点から選択された複数個の加熱点に対応して測定された前記複数の温度上昇に基づいて前記仮想加熱点に対応する温度上昇を計算し、熱伝導率または前記熱伝導率間の比率を求めるに当たって、前記仮想加熱点を前記複数の加熱点の一部とみなしてよい。
また、前記試料上の前記加熱点は前記加熱による熱吸収量が互いに等しいものであってよい。
また、前記試料の前記熱電対が接触する位置の反対側を前記熱電対よりも熱抵抗が高い材料を介して台座に接続してよい。
また、前記試料は、前記熱抵抗が高い材料から前記接触点に向かって、第1の材料からなる第1の領域と、熱伝導率を測定すべき材料からなる第2の領域と、前記第1の材料からなる第3の領域と、熱伝導率が既知の材料からなる第4の領域と、前記第1の材料からなる第5の領域とが互いに接続されて配列され、前記加熱点は、前記第1の領域上に設けられた第1の加熱点と、前記第3の領域上に設けられた第2の加熱点と、前記第3の領域上であって前記第2の加熱点よりも前記接触点に近い位置に設けられた第3の加熱点と、前記第5の領域上に設けられた第4の加熱点とを含み、前記第1〜第4の加熱点から前記接触点までの距離及び前記第1〜第4の加熱点に対応する前記温度上昇と前記第4の領域の前記材料の熱伝導率とに基づいて前記第2の領域の材料の熱伝導率を求めてよい。
According to one aspect of the present invention, a thermocouple that contacts a sample, a heating device that sequentially heats a plurality of heating points on the sample, and the thermocouple that responds to a temperature increase at the contact point due to the sequential heating. An apparatus for detecting a plurality of outputs and measuring a plurality of temperature rises corresponding to heating of the plurality of heating points, respectively, and between the plurality of heating points or from the plurality of heating points, the thermocouple on the sample. The thermal conductivity between the plurality of heating points or between the plurality of heating points and the contact points based on the distance to the contact point and the plurality of temperature rises corresponding to the plurality of heating points. A micro thermal conductivity measuring device for determining the ratio between the rates is provided.
Here, the heating device may irradiate the plurality of heating points with converged electron beams.
The sample is accommodated in a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM) so that a TEM image or a STEM image can be observed, and the converged electron beams are used as the plurality of heating points. The heating device for irradiation may be the TEM or STEM electron gun.
Further, the thermocouple may be a joined body of needle-like objects made of two kinds of non-magnetic materials.
The two kinds of materials may be chromel and constantan.
The diameter of the tip of the needle-like object may be 100 nm or less.
The sample may be attached to the pedestal via a material having a higher thermal resistance than the thermocouple.
According to another aspect of the present invention, a thermocouple is brought into contact with a sample, a plurality of heating points on the sample are sequentially heated, and a plurality of thermocouples responding to temperature increase of the contact point by the sequential heating A plurality of temperature rises corresponding to heating of the plurality of heating points are measured by detecting an output, and a distance between the plurality of heating points or from the plurality of heating points to a contact point of the thermocouple on the sample And determining a thermal conductivity between the plurality of heating points or between the plurality of heating points and the contact point or a ratio between the thermal conductivities based on the plurality of temperature rises corresponding to the plurality of heating points. A method for measuring micro thermal conductivity is given.
Here, the heating may be performed by a converged electron beam.
The sample may be accommodated in a TEM or STEM so that the TEM image or STEM image can be observed, and the electron beam irradiation may be performed by the electron gun of the TEM or STEM.
In addition, a plurality of calibration outputs corresponding to heating of the plurality of heating points from the thermocouple are detected in a state where contact between the sample and the thermocouple is released, and the electron beam to the plurality of heating points is detected. The influence of secondary electrons by irradiation on the output of the thermocouple may be canceled by the plurality of calibration outputs.
Further, the thermocouple may be a joined body of needle-like objects made of two kinds of non-magnetic materials.
The sample may be attached to the pedestal via a material having a higher thermal resistance than the thermocouple.
Further, a point on the sample or in the sample other than the plurality of heating points is set as a virtual heating point, and is selected from a distance from the virtual heating point to the contact point and the plurality of heating points. In calculating the temperature rise corresponding to the virtual heating point based on the plurality of temperature rises measured corresponding to the plurality of heating points, in determining the thermal conductivity or the ratio between the thermal conductivity, The virtual heating point may be regarded as a part of the plurality of heating points.
The heating points on the sample may have the same amount of heat absorption by the heating.
Moreover, you may connect the opposite side of the position where the said thermocouple of the said sample contacts to a base through the material whose heat resistance is higher than the said thermocouple.
In addition, the sample includes a first region made of a first material, a second region made of a material whose thermal conductivity is to be measured, and the first region from the material having a high thermal resistance toward the contact point. A third region made of one material, a fourth region made of a material having a known thermal conductivity, and a fifth region made of the first material are connected to each other, and the heating point is A first heating point provided on the first region, a second heating point provided on the third region, and the second heating point on the third region. A third heating point provided at a position closer to the contact point than the fourth heating point, and a fourth heating point provided on the fifth region, from the first to fourth heating points to the contact Based on the distance to the point, the temperature rise corresponding to the first to fourth heating points, and the thermal conductivity of the material in the fourth region. It may determine the thermal conductivity of the material of the second region Te.

本発明によれば、ナノ・ミクロスケールにおける熱伝導率を測定できるので、これまで困難だったナノスケールレベルでの熱評価が、近年社会生活において重要性を増している不均質材料および複合材料など幅広い構造材料や機能性材料に対して可能になり、各種材料の高性能化に活用することができる。   According to the present invention, the thermal conductivity at the nano / micro scale can be measured, so that the thermal evaluation at the nano scale level, which has been difficult until now, has been increasingly important in social life in recent years. This is possible for a wide range of structural materials and functional materials, and can be used to improve the performance of various materials.

本発明の実施例に使用したナノ熱電対の接合部付近のTEM像。The TEM image near the junction part of the nano thermocouple used for the Example of this invention. ナノ熱電対のTEM像及びその電気抵抗を示すグラフ。The TEM image of a nano thermocouple and the graph which shows the electrical resistance. ナノ熱電対を電子線によって加熱したときの熱起電力を示すグラフ。The graph which shows the thermoelectromotive force when a nano thermocouple is heated with an electron beam. ナノ熱電対を取り付けたTEM用ホルダーの写真。Photo of TEM holder with nano thermocouple attached. (A)ナノ熱電対を試料に接触させた状態を示すTEM像、及び(B)この状態でナノ熱電対接合部に照射する電子線をオン/オフさせたときのナノ熱電対の出力電圧を示すグラフ。(A) TEM image showing the state where the nano thermocouple is in contact with the sample, and (B) the output voltage of the nano thermocouple when the electron beam irradiating the nano thermocouple junction in this state is turned on / off. Graph showing. (A)試料上のナノ熱電対との接触部以外の点に絞った電子線を照射する例を説明するTEM像、及び(B)試料から発生する二次電子の影響を補償するための測定を説明するためのTEM像。(A) TEM image explaining an example of irradiating an electron beam focused on a point other than the contact portion with the nano thermocouple on the sample, and (B) Measurement for compensating the influence of secondary electrons generated from the sample. The TEM image for demonstrating. 図6に示す試料上の複数個所のそれぞれに電子線を照射した場合の接触点の温度上昇の測定結果を説明する図。The figure explaining the measurement result of the temperature rise of a contact point at the time of irradiating each of the several places on the sample shown in FIG. 6 with an electron beam. 図6に示す試料上のエポキシ樹脂で接触点から熱的に切り離された複数個所のそれぞれに電子線を照射した場合の接触点の温度上昇の測定結果を説明する図。The figure explaining the measurement result of the temperature rise of a contact point at the time of irradiating each of several places thermally separated from the contact point with the epoxy resin on the sample shown in FIG. 試料上の複数個所の温度上昇から試料中の熱伝導経路の相対的な熱伝導率を求める方法を説明する図。The figure explaining the method of calculating | requiring the relative heat conductivity of the heat conduction path | route in a sample from the temperature rise of several places on a sample. 熱伝導率の相対値を求めることができる構成例をモデル化した概念図。The conceptual diagram which modeled the structural example which can obtain | require the relative value of thermal conductivity. 熱伝導率の絶対値を求めることができる構成例をモデル化した概念図。The conceptual diagram which modeled the structural example which can obtain | require the absolute value of thermal conductivity.

本発明を実施例を参照しながら以下で詳細に説明する。   The invention is explained in detail below with reference to examples.

以下で説明する実施例では、非特許文献2で開示されているタイプのナノ熱電対を使用した。より具体的には、非特許文献2において実際に使用したナノ熱電対材料の代わりに、HPO水溶液を利用した電解研磨法により作製したCu−Ni(コンスタンタン(Constantan))探針とCr−Ni(クロメル(Chromel))探針とを組み合わせたコンスタンタン−クロメルナノ熱電対を製作した。これにより、−200℃<T<800℃と稼働温度域を大幅に広げることができた。また、低い熱伝導率、大きな熱起電力、線形の応答性、10−2Kに達する計測温度の高い分解能、微小な接合部が実現した高い応答性、熱電対の材料が非磁性材料の組み合わせのため透過型電子顕微鏡内などの強磁場空間内への導入が可能になるなど、様々な点で性能を向上させることができた。また、本製造方法では、用途に応じて、他の熱電対材料を利用してナノ熱電対を作製することができる。 In the examples described below, a nano thermocouple of the type disclosed in Non-Patent Document 2 was used. More specifically, instead of the nano thermocouple material actually used in Non-Patent Document 2, a Cu—Ni (Constantan) probe prepared by electrolytic polishing using an H 3 PO 4 aqueous solution and Cr A constantan-chromel nano thermocouple combined with a Ni (Chromel) probe was fabricated. Thereby, -200 degreeC <T <800 degreeC and the operating temperature range could be expanded significantly. Also, low thermal conductivity, a large thermoelectric power, response of linear, 10-2 high resolution of measured temperatures reached K, a combination of small high responsiveness joint is realized, the material of the thermocouple nonmagnetic material Therefore, it was possible to improve the performance in various points, such as introduction into a strong magnetic field space such as a transmission electron microscope. Moreover, in this manufacturing method, a nano thermocouple can be produced using other thermocouple materials depending on the application.

[ナノ温度計の製造方法]
電解研磨法により、Cu−Ni及びCr−Niの線材を先端径を100nm以下に先鋭化した微小探針をそれぞれ作製した。具体的には、透過電子顕微鏡(TEM)内でピエゾ素子を利用した精密な微小探針の位置制御によりこれらの微小探針の先端部同士を接触させ、探針間に10μA程度の電流を通電させることで、図1に示すコンスタンタン線材とクロメル線材との接触抵抗が極めて小さい接合部を形成し、ナノ熱電対すなわちナノ温度計を製作した。図2のTEM像及びその下に挿入したグラフからわかるように、当該接合部及びその両側の線材の総抵抗値は28Ωと十分に低いことが確認できた。
[Manufacturing method of nano thermometer]
Micro-tips were prepared by sharpening the tip diameter of Cu-Ni and Cr-Ni wires to 100 nm or less by electrolytic polishing. Specifically, the tips of these microprobes are brought into contact with each other by precise position control of the microprobes using a piezo element in a transmission electron microscope (TEM), and a current of about 10 μA is passed between the probes. As a result, a junction having extremely small contact resistance between the constantan wire and the chromel wire shown in FIG. 1 was formed, and a nano thermocouple, that is, a nano thermometer was manufactured. As can be seen from the TEM image in FIG. 2 and the graph inserted therebelow, it was confirmed that the total resistance value of the joint and the wires on both sides thereof was sufficiently low, 28Ω.

収束させた電子線を対象物に照射することにより、対象物上のナノスケール領域に熱を印加し、熱の投入場所と投入量がコントロールできる。上述のようにして作製したナノ熱電対の先端の接合部近傍に対して図2のTEM像に示すように電子線を照射することで、この例では図3に挿入したグラフに示すように、熱電対先端部の約25Kの温度上昇を捉えることができた。   By irradiating the object with the converged electron beam, heat is applied to the nanoscale region on the object, and the place and amount of heat input can be controlled. By irradiating an electron beam as shown in the TEM image of FIG. 2 to the vicinity of the junction at the tip of the nano thermocouple manufactured as described above, in this example, as shown in the graph inserted in FIG. A temperature increase of about 25 K at the tip of the thermocouple could be captured.

このようにして作製したナノ熱電対を取り付けてTEM内で対象の試料上の微小領域の温度を測定するためのホルダーの写真を図4に示す。図4にはこのホルダー内のナノ熱電対に発生する熱起電力を測定するための電圧計も模式的に示されている。ここで重要なことは、TEM内の試料位置には大きな磁場(たとえば本実施例では2T)が印加されるため、このホルダー材料、就中ナノ熱電対は非磁性材料で構成する必要がある点である。本実施例ではナノ熱電対材料としてクロメル及びコンスタンタンを使用することにより、この条件を満足している。なお、実施例では複合材料のフィラーとして使用することができるα−Al(以下、単にアルミナと称する)を試料として用いるが、これ以外の各種の材料を測定対象の試料とすることも当然可能である。なお、電圧計から先には、その出力をコンピュータに接続するためのインターフェースなどの装置、またインターフェースから与えられた信号を処理して以下で説明する各種の計算、その他測定系に必要とされる制御を行うための一つまたは複数のコンピュータ及びその上で実行されるコンピュータソフトウエアが設置されている。しかし、これらは何れも当業者に周知の事項、あるいは本明細書及び図面の記載に基づいて当業者が特に創作力を発揮せずに作製できるものであるため、具体的な説明や図示は省略する。 FIG. 4 shows a photograph of a holder for attaching the nano thermocouple produced in this way and measuring the temperature of a minute region on the target sample in the TEM. FIG. 4 also schematically shows a voltmeter for measuring the thermoelectromotive force generated in the nano thermocouple in the holder. What is important here is that a large magnetic field (for example, 2T in this embodiment) is applied to the sample position in the TEM, and this holder material, especially the nano thermocouple, must be made of a nonmagnetic material. It is. In this embodiment, this condition is satisfied by using chromel and constantan as the nano thermocouple material. In the examples, α-Al 2 O 3 (hereinafter simply referred to as alumina) that can be used as a filler of the composite material is used as a sample, but various other materials may be used as a sample to be measured. Of course it is possible. In addition, the voltmeter is required for devices such as an interface for connecting the output to a computer, various calculations described below by processing signals given from the interface, and other measurement systems. One or more computers for performing control and computer software executed on the computers are installed. However, since these can be produced by those skilled in the art based on matters well known to those skilled in the art, or on the description of the present specification and drawings, specific explanations and illustrations are omitted. To do.

[ナノスケールでの熱の印加と温度計測]
上述のようにナノ熱電対を装着したホルダーをTEM内に収容し、試料に対して図5(A)に示すようにナノ熱電対の先端部(接合部)を接触させる。図5(A)には、収束した電子線を照射してナノスケールでの熱を印加してナノスケールの分解能の温度計測を行う様子も示されている。ここでは電子線を熱電対の先端部近傍に照射しており、この電子線のオン/オフに対応してナノ熱電対に発生する熱起電力が変化する様子が図5(B)のグラフに示されている。電子線を照射するための電子銃はTEM本来の電子銃をそのまま使用することができる。また、試料上にナノ熱電対を接触させる位置及び収束された電子ビームの照射位置は、TEMを使った観察により、正確に位置決めすることができる。このようにTEM像を参照して照射位置を決めることができるので、熱を印加する位置を事前に決めた上でそのために特化した試料を作製する手法に比べて自由度の高い測定を行うことができる。
[Nanoscale heat application and temperature measurement]
The holder equipped with the nano thermocouple as described above is accommodated in the TEM, and the tip (joint portion) of the nano thermocouple is brought into contact with the sample as shown in FIG. FIG. 5A also shows a state in which temperature measurement with nanoscale resolution is performed by irradiating a converged electron beam and applying heat at a nanoscale. Here, the electron beam is irradiated near the tip of the thermocouple, and the graph of FIG. 5B shows how the thermoelectromotive force generated in the nano thermocouple changes in response to the on / off of the electron beam. It is shown. The electron gun for irradiating an electron beam can use the original electron gun of TEM as it is. Further, the position where the nano thermocouple is brought into contact with the sample and the irradiation position of the focused electron beam can be accurately positioned by observation using a TEM. As described above, the irradiation position can be determined with reference to the TEM image, so that the position where heat is applied is determined in advance, and measurement with a high degree of freedom is performed as compared with a technique for producing a specialized sample for that purpose. be able to.

重要な点として、電子線により熱を印加する場所と温度計測箇所とが空間的に一致している必要がなく、試料上のナノ熱電対の接触部とは異なる任意の点に電子線を照射してよい。これにより、試料上の所望の区間の熱伝導の分析を行うことができる。例えば、図6に、タングステン(W)の台座上にエポキシ樹脂(epoxy)を介して接着されたアルミナの結晶の熱伝導率測定を行う様子を示す。図6(A)においては、ナノ熱電対をアルミナ結晶の上部中央付近に接触させるとともに、電子線をアルミナ結晶の左上隅付近(e-beamで示す円)に照射する。その測定結果を図6の下部のグラフに示す。このようにして、試料上の任意の点に電子線を照射し、ナノ熱電対の接触部の温度上昇を測定することで、電子線照射点とナノ熱電対接触点との間の熱伝導度を求めることができる。なお、電子線を用いて加熱すれば、電子線を最小1nm未満の極めて狭い領域に絞って照射することが可能となるため、微小な構造を有する材料に対する局所的な熱伝導度の測定を行うことができる。逆に、測定に要求される分解能を満たすだけの小さな領域だけを集中して加熱する方法、手段であれば、加熱は電子線に限定されない。従って、「照射点」は一般化すれば「加熱点」と呼ぶべきものであるが、本明細書では電子線による加熱を例に挙げて説明するので「照射点」と呼ぶ。   The important point is that the location where the heat is applied by the electron beam and the temperature measurement location do not need to be spatially coincident, and any point different from the nano thermocouple contact on the sample is irradiated with the electron beam. You can do it. Thereby, the analysis of the heat conduction of the desired area on a sample can be performed. For example, FIG. 6 shows a state in which the thermal conductivity measurement of an alumina crystal bonded on a tungsten (W) base via an epoxy resin (epoxy) is performed. In FIG. 6A, the nano thermocouple is brought into contact with the vicinity of the upper center of the alumina crystal, and the electron beam is irradiated near the upper left corner of the alumina crystal (circle indicated by e-beam). The measurement results are shown in the lower graph of FIG. In this way, the thermal conductivity between the electron beam irradiation point and the nano thermocouple contact point is measured by irradiating an arbitrary point on the sample with an electron beam and measuring the temperature rise at the contact portion of the nano thermocouple. Can be requested. In addition, since it becomes possible to irradiate and irradiate an electron beam to the very narrow area | region below 1 nm minimum if it heats using an electron beam, the local thermal conductivity measurement with respect to the material which has a micro structure is performed. be able to. On the other hand, heating is not limited to an electron beam as long as it is a method and means for heating only a small region that satisfies the resolution required for measurement. Therefore, the “irradiation point” should be generally referred to as a “heating point”, but in the present specification, it is referred to as an “irradiation point” because heating by an electron beam is described as an example.

なお、エポキシ樹脂を介して台座に取り付けているのは、エポキシ樹脂の熱伝導率が非常に小さいことを利用して、電子線照射により照射点に発生した熱が台座への取り付け部分を介して漏洩するという別の熱流経路の影響を可能な限り小さくすることを目的とする。従って、必要に応じてエポキシ樹脂以外の接着剤等であって熱伝導率の小さな(熱抵抗の大きな)他の任意の取付け手段を採用してもよい。また、台座にタングステンを使用することにより、電子線照射時の二次電子による帯電を防止している。   In addition, it is attached to the pedestal via the epoxy resin, because the heat conductivity of the epoxy resin is very small, the heat generated at the irradiation point by the electron beam irradiation through the attachment part to the pedestal The purpose is to minimize the influence of another heat flow path of leakage. Therefore, if necessary, any other attachment means such as an adhesive other than an epoxy resin and having a low thermal conductivity (high thermal resistance) may be employed. In addition, by using tungsten for the pedestal, charging by secondary electrons during electron beam irradiation is prevented.

試料の取り付けによる別の熱流路の形成以外の大きな測定誤差要因として、電子線照射により試料から発生する二次電子の影響がある。この試料から発生した二次電子がナノ熱電対を構成する探針に照射されることによる探針の昇温が接触点の昇温と重畳するため、測定誤差が生じる。二次電子による昇温効果(測定誤差)は、本実施例の場合、約0.05℃であった。この測定誤差を相殺するため、図6(B)に示すように、ナノ熱電対の接合部が試料から熱的にほぼ切り離されるが試料から発生する二次電子の影響は接触時とほとんど同程度となるわずかな距離だけ、熱電対を測定対象の試料から浮かせた。この状態で熱電対の出力電圧(図6の下部のグラフ中の小さい方の電圧)を測定することにより、ナノ熱電対を試料に接触させて得られる見かけの熱起電力中の二次電子の影響による出力電圧がわかるため、後者の出力電圧を前者から減算することで、熱起電力だけを得ることができた。   As a major measurement error factor other than the formation of another heat flow path by attaching the sample, there is an influence of secondary electrons generated from the sample by electron beam irradiation. Since the temperature rise of the probe due to irradiation of the secondary electrons generated from the sample to the probe constituting the nano thermocouple overlaps with the temperature rise of the contact point, a measurement error occurs. The temperature rise effect (measurement error) due to secondary electrons was about 0.05 ° C. in this example. In order to offset this measurement error, as shown in FIG. 6 (B), the junction of the nano thermocouple is almost thermally separated from the sample, but the influence of secondary electrons generated from the sample is almost the same as that at the time of contact. The thermocouple was lifted from the sample to be measured by a small distance. In this state, by measuring the output voltage of the thermocouple (the smaller voltage in the lower graph of FIG. 6), the secondary electrons in the apparent thermoelectromotive force obtained by bringing the nano thermocouple into contact with the sample are measured. Since the output voltage due to the influence is known, only the thermoelectromotive force could be obtained by subtracting the latter output voltage from the former.

[ナノスケールでの熱流、熱抵抗の解析]
上記の技術を利用して、図7及び図8に例示するように、不均質材料及び複合材料において、熱を印加する場所を変化させることで、熱流に対しての空間的に高い分解能を持った情報が得られる。
[Analysis of heat flow and thermal resistance at nano scale]
By using the above technique, as shown in FIGS. 7 and 8, in a heterogeneous material and a composite material, by changing the place where heat is applied, it has high spatial resolution for heat flow. Information is available.

図7及び図8は、図6に示す試料(アルミナ(Al))に図6と同じ位置でナノ熱電対を接触させた状態で、試料上の点A〜Hに電子線を同じ強さで順次照射し、そこで得られた熱起電力の測定結果のグラフをそれぞれ示す。電子線の照射位置Iは熱電対が直接接触している粒子上の点とした。この粒子は平板状の形状であり、照射位置A〜Dが設定された別のより大きな粒子に、照射位置Aの上部近傍に延在する粒界を介して接していた。図7はこれらの照射位置A〜D及びIに電子線を照射した場合の熱起電力測定結果のグラフを含む。なお、これらのグラフには、図6(B)を参照して上で説明したところの、二次電子の影響を相殺するためのナノ熱電対を試料からわずかに浮かせた場合の熱起電力測定結果も示す。図8は、アルミナをタングステン(W)台座上に接着するためのエポキシ樹脂上の照射位置G、H、及びこのエポキシ樹脂とタングステン台座との間に一部入り込んだアルミナ上の照射位置E、Fに電子線を照射した場合の図7と同様な測定結果を示す。図8に示されるように、ナノ熱電対との接触点と電子線照射位置との間に熱伝導率の小さなエポキシ樹脂が介在する場合には、二次電子の影響を相殺した後の接触位置の昇温はごくわずかであり、従って、電子線照射により照射位置に与えられた熱が台座側に漏洩する程度は非常に小さいことが確認できた。 7 and 8 show the same electron beam at points A to H on the sample with the sample (alumina (Al 2 O 3 )) shown in FIG. 6 in contact with the nano thermocouple at the same position as in FIG. The graph of the measurement result of the thermoelectromotive force obtained by sequentially irradiating with the intensity is shown. The electron beam irradiation position I was a point on the particle in direct contact with the thermocouple. This particle had a flat shape, and was in contact with another larger particle in which the irradiation positions A to D were set via a grain boundary extending in the vicinity of the upper portion of the irradiation position A. FIG. 7 includes a graph of thermoelectromotive force measurement results when these irradiation positions A to D and I are irradiated with an electron beam. In these graphs, the thermoelectromotive force measurement in the case where the nano thermocouple for slightly canceling the influence of the secondary electrons as described above with reference to FIG. Results are also shown. FIG. 8 shows irradiation positions G and H on an epoxy resin for bonding alumina onto a tungsten (W) pedestal, and irradiation positions E and F on alumina partially entering between the epoxy resin and the tungsten pedestal. The same measurement result as FIG. 7 at the time of irradiating with an electron beam is shown. As shown in FIG. 8, when an epoxy resin having a small thermal conductivity is interposed between the contact point with the nano thermocouple and the electron beam irradiation position, the contact position after canceling out the influence of secondary electrons Therefore, it was confirmed that the degree of leakage of heat applied to the irradiation position by electron beam irradiation to the pedestal side was very small.

このように、計測用試料の熱流を制御できる試料を作製することで、熱抵抗や熱伝導率の相対的な見積もりを行うことができる。すなわち、熱伝導計測を行う試料に比較して、エポキシなどの熱伝導率が極めて小さい材料を、試料を支持させる場所に用いることで、漏洩する熱を低下させることができる。また、集束イオンビーム(FIB)を利用した厚さ100nm以下の試料を作製することで、熱伝導とナノスケールの微細構造の同時評価が可能になる。   In this way, by making a sample capable of controlling the heat flow of the measurement sample, it is possible to make a relative estimate of thermal resistance and thermal conductivity. That is, the leakage heat can be reduced by using a material having extremely low thermal conductivity, such as epoxy, in a place where the sample is supported as compared to the sample performing the heat conduction measurement. In addition, by preparing a sample having a thickness of 100 nm or less using a focused ion beam (FIB), it is possible to simultaneously evaluate thermal conduction and a nanoscale microstructure.

図7、図8に示す測定結果を用いて、当該測定対象のアルミナの同一粒子内及び異なる粒子間の粒界部分の熱伝導率の相対値をそれぞれ求めた例を、図9、図10を参照して説明する。   Using the measurement results shown in FIG. 7 and FIG. 8, examples in which the relative values of the thermal conductivity of the grain boundary portions within the same particle and between different particles of the alumina to be measured are respectively shown in FIG. 9 and FIG. The description will be given with reference.

図9(A)に示す測定対象のアルミナと熱電対との接触部分、つまり接触時における熱電対先端部から照射点A〜D、及びIまでの直線距離をTEM像から求め、また図7に示す測定結果から求められる熱電対先端部の温度上昇とを図9(B)のグラフにプロットした。図9(B)に示すように、アルミナの同一粒子上の照射点A〜Dへの電子線照射時の温度変化は照射点Dを除いて、ほぼ一直上にプロットされた。照射点Dは照射点A〜Cが設定されている大きなアルミナ粒子上ではあるが、図9(A)に示すように、やや右側に不規則に突出している部分の先端付近の位置であるので、当該粒子の本体部分と突出部との間に欠陥などの熱伝導率に影響を与える構造が隠れているためにその部分の熱伝導率が高くなっていたり、あるいは突出していることにより照射点Dから熱電対の接触部分までの熱流の経路が曲がったり、あるいは熱流の経路が細くなっている可能性がある。従って照射点Dは除外し、照射点A〜Cについてグラフ上で直線近似(図9(B)上でほぼA、B、Cを通る破線で示す)を行い、直線近似式
y = −0.026868x + 0.26905
を得た(ここで、x及びyはそれぞれ図9(B)のグラフの横軸及び縦軸)。この直線の傾きの絶対値0.026868は同一のアルミナ粒子内のナノレベルの熱伝導率の逆数を表す。
The contact distance between the alumina to be measured and the thermocouple shown in FIG. 9A, that is, the linear distance from the tip of the thermocouple to the irradiation points A to D and I at the time of contact is obtained from the TEM image, and FIG. The temperature rise at the tip of the thermocouple determined from the measurement results shown is plotted in the graph of FIG. As shown in FIG. 9 (B), the temperature change at the time of electron beam irradiation to the irradiation points A to D on the same particles of alumina was plotted almost directly except for the irradiation point D. Although the irradiation point D is on the large alumina particles where the irradiation points A to C are set, as shown in FIG. 9 (A), it is a position near the tip of the portion that protrudes irregularly to the right. Because the structure that affects the thermal conductivity such as defects is hidden between the main body part and the protruding part of the particle, the thermal conductivity of the part is increased or the irradiation point There is a possibility that the path of the heat flow from D to the contact portion of the thermocouple is bent or the path of the heat flow is narrowed. Accordingly, the irradiation point D is excluded, and the irradiation points A to C are linearly approximated on the graph (indicated by broken lines passing through substantially A, B, and C in FIG. 9B), and the linear approximation formula y = −0. 026868x + 0.26905
(Where x and y are the horizontal and vertical axes of the graph of FIG. 9B, respectively). The absolute value 0.026868 of the slope of this straight line represents the reciprocal of the nano-level thermal conductivity in the same alumina particle.

上側にある平板状のアルミナ粒子上の照射点はI一つしかないが、欠陥のほとんどない同じ材料でできている大きな方のアルミナ粒子(照射点A〜Dを有する粒子)と同じ熱伝導率を有するとして、図9(B)のグラフ上に照射点Iを通り照射点A〜Cに対応する近似直線に平行な近似直線(同じく破線で示す)を引いた。こちら側の直線近似式は
y =−0.026868x+ 0.307
となった。
Although there is only one irradiation point on the plate-like alumina particles on the upper side, the thermal conductivity is the same as that of the larger alumina particles (particles having irradiation points A to D) made of the same material with almost no defects. As shown in FIG. 9B, an approximate straight line (also indicated by a broken line) parallel to the approximate straight line passing through the irradiation point I and corresponding to the irradiation points A to C was drawn on the graph of FIG. The linear approximation formula on this side is y = −0.026868x + 0.307
It became.

更に、これら2つのアルミナ粒子の粒界の直下及び直上に互いに40nm離間した点U及びVをそれぞれ設定し、ナノ熱電対の先端部からこれらの点までの直線距離を求めた。更に、点U及びVに対応する点がそれぞれA〜Cの近似直線上及びIの近似直線上に乗るとみなして、図9(B)のグラフ上にプロットした。点Uと点Vの間にある粒界部分の熱伝導率は、図9(B)のグラフ上で点U、Vを結ぶ直線
y =−0.9775x + 1.313186
の傾きで表される。ただし、電子線照射時の発熱率は材料により異なるため、このようにして求められた粒子内及び粒界部分の熱伝導率は相対値であることに注意されたい。従って、例えば、上で求められた同一のアルミナ粒子内の熱伝導率をkAl2O3、アルミナ粒子粒界の熱伝導率をkboundaryとしたとき、両者の比率が以下の通り求められる。
Al2O3/kboundary= (1/0.026868)/0.9775=36.382
なお、点U及びVは実際には照射を行っていないが、他の実際に照射を行った(実照射点と呼ぶことができる)複数の照射点についてのデータに基づいて照射点と同等のデータを計算した点であるため、仮想照射点と呼ぶことができる。仮想照射点は、そのデータの計算に使用できる実照射点のデータが存在する限り、試料表面に限定されず、試料内部にも自由に設定することが可能である。
Furthermore, points U and V that are 40 nm apart from each other were set immediately below and immediately above the grain boundaries of these two alumina particles, and the linear distance from the tip of the nano thermocouple to these points was determined. Further, the points corresponding to the points U and V were assumed to be on the approximate lines A to C and the approximate line I, respectively, and plotted on the graph of FIG. The thermal conductivity of the grain boundary portion between the point U and the point V is the line y = −0.9775x + 1.313186 connecting the points U and V on the graph of FIG.
It is expressed by the slope of. However, since the heat generation rate at the time of electron beam irradiation differs depending on the material, it should be noted that the thermal conductivity in the grain and the grain boundary portion thus obtained is a relative value. Therefore, for example, when the thermal conductivity in the same alumina particle obtained above is kAl2O3 and the thermal conductivity of the alumina grain boundary is kboundary , the ratio between the two is obtained as follows.
k Al2O3 / k boundary = (1 / 0.026868) /0.9775=36.382
Note that points U and V are not actually irradiated, but are equivalent to the irradiation points based on data on a plurality of irradiation points that were actually irradiated (which can be called actual irradiation points). Since it is a point where data is calculated, it can be called a virtual irradiation point. The virtual irradiation point is not limited to the sample surface as long as there is actual irradiation point data that can be used for the calculation of the data, and can be freely set inside the sample.

上で説明したところの、試料の熱伝導率の相対値を求めることができる構成例をモデル化した概念図を図10に示す。この図に示されるように、TEM中に設置された試料上の任意の点に電子ビームを照射することにより、当該点に熱が与えられ温度が上昇する。これによりできた温度勾配により熱流が発生する。図10では電子線照射点から左側と右側の両方に熱流が生起する可能性がある。しかし、右側へ向かっての熱流は試料を台座(図示せず)に接着するためのエポキシ樹脂の低い熱伝導率(つまり、高い熱抵抗)によりほぼ阻止され、熱流の大部分は図10の左側へ向かい、最終的には左端の熱電対に到達し、この位置に温度変化を引き起こす。もちろん、電子線照射点の右側もある程度の熱容量を有しているため、電子線照射直後のある期間は右向きの熱流も発生するが、右側へ向かう熱流はエポキシ樹脂によって阻止されるため、照射点よりも右側部分は急速に温度が上昇し、その後は熱流は実質的には左向きのみとなる。   FIG. 10 is a conceptual diagram modeling the configuration example that can determine the relative value of the thermal conductivity of the sample as described above. As shown in this figure, by irradiating an electron beam to an arbitrary point on the sample placed in the TEM, heat is applied to the point and the temperature rises. A heat flow is generated by the temperature gradient generated by this. In FIG. 10, there is a possibility that a heat flow occurs on both the left side and the right side from the electron beam irradiation point. However, the heat flow toward the right side is substantially blocked by the low thermal conductivity (ie, high thermal resistance) of the epoxy resin for bonding the sample to the pedestal (not shown), and the majority of the heat flow is on the left side of FIG. And finally reaches the leftmost thermocouple, causing a temperature change at this position. Of course, the right side of the electron beam irradiation point also has a certain amount of heat capacity, so a right-handed heat flow is also generated for a certain period immediately after the electron beam irradiation, but the heat flow toward the right side is blocked by the epoxy resin, so the irradiation point On the other hand, the temperature of the right part rises more rapidly, after which the heat flow is substantially only leftward.

原理的には、熱が与えられる点からの熱流が複数の経路を取って流れる場合でも、それぞれの経路の熱流量が計算あるいは測定できるのであれば、熱伝導率の計算は可能である。しかし、そのような場合には多様な経路の熱流量の計算や測定が複雑或いは困難である。また、その様な問題を克服できたとしても、熱流を特定の経路に集中させた方が経路上の温度勾配が大きくなるため、測定の分解能や精度の面で有利である。   In principle, even when the heat flow from a point where heat is applied flows through a plurality of paths, if the heat flow rate of each path can be calculated or measured, the thermal conductivity can be calculated. However, in such a case, it is complicated or difficult to calculate and measure the heat flow of various paths. Even if such problems can be overcome, concentrating the heat flow on a specific path is advantageous in terms of measurement resolution and accuracy because the temperature gradient on the path increases.

上の実施例で説明したように、電子線照射点がIの場合には熱流の経路は全て一様な材料(熱伝導率kAl2O3)であるが、A〜Dに電子線を照射した場合には、熱流の経路中に熱抵抗が高い粒界(熱伝導率kboundary)が介在する。もちろん、熱流の経路上に熱伝導率が異なる複数種類の材料が介在することもある。従って、このモデルでは、経路上の多数の点にそれぞれ同一の熱を与えてそれによる熱電対先端部の温度上昇を測定し、熱電対先端部と電子線照射点との距離と当該電子線照射による温度上昇との関係をグラフ上にプロットすると、折れ線状のグラフになる。この折れ線を構成する各線分が熱流の経路上における熱伝導率が同じ材料でできている領域に対応する。なお、熱伝導率の計算に使用する電子線照射点は全て電子線照射時の吸熱量が実質的に同じ(つまり、熱伝導率の計算結果がそれに求められる精度を保持できる程度に近い値)であるか、少なくとも各点における吸熱量の比がわかっていなければならない。例えば上述の実施例では電子線照射点A〜D、Iは同じ材料(アルミナ)からなる表面上に設定したので、これらの点における電子線照射時の吸熱量もほぼ同じであると考えることができる。 As explained in the above embodiment, when the electron beam irradiation point is I, the heat flow path is all a uniform material (thermal conductivity k Al2O3 ), but when the electron beam is irradiated to AD In the heat flow path, a grain boundary having high thermal resistance (thermal conductivity kboundary ) is interposed. Of course, a plurality of types of materials having different thermal conductivities may be present on the heat flow path. Therefore, in this model, the same heat is applied to many points on the path, and the temperature rise at the thermocouple tip is measured, and the distance between the thermocouple tip and the electron beam irradiation point and the electron beam irradiation are measured. When the relationship with the temperature rise due to is plotted on a graph, it becomes a line graph. Each line segment constituting the broken line corresponds to a region made of a material having the same thermal conductivity on the heat flow path. In addition, all the electron beam irradiation points used for calculating the thermal conductivity have substantially the same endothermic amount during the electron beam irradiation (that is, a value that is close enough to maintain the accuracy required for the calculation result of the thermal conductivity). Or at least the ratio of endothermic quantities at each point must be known. For example, since the electron beam irradiation points A to D and I are set on the surface made of the same material (alumina) in the above-described embodiment, it is considered that the endothermic amount at the time of electron beam irradiation at these points is substantially the same. it can.

ここで、図10を用いて説明したモデルと図9等を用いて説明した現実の試料との違いについて注意すべき点は、図10のモデルは試料中の同じ材料でできている区間(図10では同じ濃度で描かれている区間)は熱伝導率が同一であると仮定されているが、現実の測定では必ずしもこれが成立しないことである。図9で言えば、同じ結晶粒子中の照射点A〜Cについて考えてみても、結晶粒子中のわずかな不純物や格子欠陥、各照射点からナノ熱電対の接触点までの熱流経路が互いに平行になっていないことによるこれらの熱流路と結晶軸のなす角度の相違、測定時の各種の揺らぎ等による測定誤差等により、図9(B)に示すように照射点A〜Cについてのデータは完全に一本の直線上に並ぶとは限らない。従って、図10のモデルで考えれば、同一材料でできた区間内で2つの照射点を設定するだけで十分なはずであるが、実際には上で述べたような各種の要因があるため、3つあるいはもっと多数の照射点を設定し、図9(B)の破線で示されるようなこれらの照射点について得られるデータにもっともよくあてはまる直線近似などを行うことで、測定精度を改善することができる。本願で複数の照射点(より一般的には加熱点)の間の熱伝導率を求めるという場合には、2つの照射点に対応するデータからその間の熱伝導率を求めることだけではなく、上述のような3つ以上の照射点に対応するデータに対して直線近似等を行うことで、これらの照射点が存在する領域内での熱伝導率を求めることも包含することに注意されたい。   Here, it should be noted about the difference between the model described with reference to FIG. 10 and the actual sample described with reference to FIG. 9 and the like. The model of FIG. 10 is a section made of the same material in the sample (FIG. In FIG. 10, it is assumed that the thermal conductivity is the same in the section drawn with the same concentration), but this is not always true in the actual measurement. Speaking of FIG. 9, even if the irradiation points A to C in the same crystal particle are considered, slight impurity and lattice defects in the crystal particle, and heat flow paths from each irradiation point to the contact point of the nano thermocouple are parallel to each other. As shown in FIG. 9 (B), the data about the irradiation points A to C are due to the difference in the angle formed by these heat flow paths and the crystal axis due to the fact that they are not, measurement errors due to various fluctuations during measurement, etc. It does not always line up on a single straight line. Therefore, considering the model of FIG. 10, it should be sufficient to set two irradiation points within a section made of the same material. However, since there are various factors as described above, Improve measurement accuracy by setting three or more irradiation points and performing a linear approximation that best fits the data obtained for these irradiation points as shown by the broken lines in FIG. 9B. Can do. When obtaining the thermal conductivity between a plurality of irradiation points (more generally, heating points) in the present application, not only obtaining the thermal conductivity between the two irradiation points, but also the above-mentioned. It should be noted that this also includes obtaining the thermal conductivity in a region where these irradiation points exist by performing linear approximation or the like on data corresponding to three or more irradiation points.

なお、図10を用いて説明した一次元熱流モデルが成立するためには、熱電対を接触させる端部と反対側の端部を十分に大きな熱抵抗を有する手段(例えばエポキシ樹脂、あるいは真空などでもよい)で熱絶縁するだけではなく、熱流がほぼ一次元的に流れるようにするため、それ以外の方向の熱流の経路が実質的に存在しない(図10で言えば経路の途中で上下方向などに熱流が漏洩しない)ように、熱抵抗の大きな材料や真空等で周囲を取り囲むことが必要である。さらには、試料内部も熱流が一次元方向に流れること(つまり、試料内部が熱伝導率で見たとき、一次元構造になっていて、試料内部で熱流が予測できない態様で蛇行したり迂回したりしないようになっていること)も必要とされる。この最後の条件を満足させるようにする方法の一つとして、試料を非常に細い、あるいは非常に薄い形状に形成する(例えば、上述したように、FIBを用いて100nm以下の厚さに加工する)ことで、試料内部に不均一性が存在しないようにすることが考えられる。あるいは試料内部に熱伝導率が異なる領域が混在している場合であっても、混在のパターンが測定の分解能との比較で十分に一様に分布していたり、あるいは熱伝導率が他の領域よりも十分に大きいために熱流の大部分が通る領域に着目した場合にこのような領域が実質的に一様な一次元の熱流の経路を提供するなどの場合には、この最後の条件は実質的に満足されているとみなすことができる。   In order to establish the one-dimensional heat flow model described with reference to FIG. 10, means having a sufficiently large thermal resistance (for example, epoxy resin, vacuum, etc.) at the end opposite to the end contacting the thermocouple. In order to allow the heat flow to flow almost one-dimensionally, there is substantially no heat flow path in any other direction (in FIG. 10, in the vertical direction in the middle of the path). It is necessary to surround the periphery with a material having a high thermal resistance or a vacuum so that the heat flow does not leak into the Furthermore, heat flow also flows inside the sample in a one-dimensional direction (that is, the sample has a one-dimensional structure when viewed in terms of thermal conductivity, meandering or bypassing in a manner in which the heat flow cannot be predicted inside the sample. Is also required). As one method for satisfying this last condition, the sample is formed into a very thin or very thin shape (for example, as described above, it is processed to a thickness of 100 nm or less using FIB. Therefore, it can be considered that non-uniformity does not exist inside the sample. Or even if there are areas with different thermal conductivity inside the sample, the mixed pattern is distributed sufficiently uniformly compared to the resolution of the measurement, or the thermal conductivity is in other areas. If the focus is on a region through which most of the heat flow passes because it is much larger than this, such a region provides a substantially uniform one-dimensional heat flow path, this last condition is It can be regarded as being substantially satisfied.

また、試料作製の都合その他の事情によっては、図10の左端に示すように熱伝導率測定対象の材料(ここではAl)表面に直接ナノ熱電対を接触させる代わりに、熱電対が接触する側の面に更に別の材料を設けた形態の試料を準備し、ナノ熱電対は直接には当該別の材料に接触させてもよい。 Also, depending on the convenience of sample preparation and other circumstances, instead of directly contacting the nano thermocouple with the surface of the material to be measured for thermal conductivity (here, Al 2 O 3 ) as shown in the left end of FIG. A sample in a form in which another material is provided on the surface on the contact side may be prepared, and the nano thermocouple may be brought into direct contact with the other material.

さらに、熱伝導率が既知の標準材料の利用により、電子線照射時の発熱エネルギーを見積もることによって、絶対値の見積もりも可能になる。具体的には、例えば図11に示す概念図を参照して以下で説明する方法によって熱伝導率の絶対値を求めることができる。図11は基本的には図10に更に要素を追加したものであるので、図10について既に説明済みの事項についてはここでは説明を省略する。また、図11には、図10の説明中で言及したところの、電子線照射位置の熱電対先端部からの距離と当該照射による熱電対先端部の温度上昇の関係の折れ線状グラフも図示されている。   Furthermore, by using a standard material with a known thermal conductivity, it is possible to estimate the absolute value by estimating the heat generation energy at the time of electron beam irradiation. Specifically, for example, the absolute value of the thermal conductivity can be obtained by the method described below with reference to the conceptual diagram shown in FIG. Since FIG. 11 is basically a further addition of elements to FIG. 10, the description of matters already described with reference to FIG. 10 is omitted here. FIG. 11 also shows a line graph of the relationship between the distance from the tip of the thermocouple at the electron beam irradiation position and the temperature rise at the tip of the thermocouple due to the irradiation as mentioned in the description of FIG. ing.

図11に示す構成の特徴は以下の三点である。
A. 電子線照射時に熱変換しにくい軽元素からなる試料の熱伝導率測定にも対応するために、電子線照射時の熱変換率が高く熱投入量が比較的大きい重元素からなる「同一の試料」で標準試料と測定試料をそれぞれ挟み込むようにする。(電子線にとってより透明な材料ともいえる炭素などの軽元素でできたカーボンナノチューブ、グラフェン、エポキシ樹脂等に電子線を照射しても、熱の吸収率があまり良くなく、十分な熱量が投入できない。従って、図10に示す手法において、電子線を照射する場所(熱投入する場所)に軽元素の材料を使うことは適切ではない。そこで、様々な材料の熱伝導率の絶対値が評価できるところの、以下で図11を参照して説明するような手法がより好ましい。)
B.電子線照射時の吸熱量がどの照射点でも同じになるように、全ての電子線照射点が同一の材料(図11ではタングステン)からなるようにする。つまり、試料(図11では測定試料)を上述の「同一の材料」で挟むようにする。
C.熱流が既知の熱伝導率を有する材料(標準材料)を通過するようにするため、熱流の通過経路中に上述の「同一の材料」で挟まれた標準材料を設ける。
The features of the configuration shown in FIG. 11 are the following three points.
A. In order to correspond to the measurement of thermal conductivity of a sample made of a light element that is difficult to convert heat when irradiated with an electron beam, the same “consisting of a heavy element having a high heat conversion rate during irradiation with an electron beam and a relatively large amount of heat input. The standard sample and the measurement sample are sandwiched in the “sample”. (Even when an electron beam is irradiated to carbon nanotubes, graphene, epoxy resin, etc., which are light elements such as carbon, which can be said to be a more transparent material for electron beams, the heat absorption rate is not so good and a sufficient amount of heat cannot be input. Therefore, it is not appropriate to use a light element material in the place where the electron beam is irradiated (place where heat is input) in the method shown in Fig. 10. Therefore, the absolute value of the thermal conductivity of various materials can be evaluated. However, the method described below with reference to FIG. 11 is more preferable.)
B. All the electron beam irradiation points are made of the same material (tungsten in FIG. 11) so that the endothermic amount at the time of electron beam irradiation is the same at any irradiation point. That is, the sample (measurement sample in FIG. 11) is sandwiched between the above-mentioned “same materials”.
C. In order to allow the heat flow to pass through a material (standard material) having a known thermal conductivity, a standard material sandwiched between the above-mentioned “same materials” is provided in the passage of heat flow.

図11に示す構成において、電子線照射点(1)〜(6)のうちで、(2)及び(3)は熱流の向きに関して測定試料の上流側及び下流側の測定試料近傍に定められる。また、(4)及び(5)は同じく熱流の向きに関して標準材料のそれぞれ上流側及び下流側近傍に定められる。この構成に対してこれまでに説明した態様で電子線照射を行って左端部分の温度変化を熱電対で測定することにより、図11の下側に示すグラフが得られる。ここで電子線は全てタングステンでできた部分に照射されるため、各照射によって試料に吸収された熱量は同じである。また、測定試料中及び標準材料中の熱流経路長はTEMによる観察等で測定できる。従って、このグラフ上で(2)と(3)との間のグラフの線分の傾きであるΔT試料/Δx試料、及び(4)と(5)との間のグラフの線分の傾きであるΔT標準材料/Δx標準材料が計算できる。 In the configuration shown in FIG. 11, among the electron beam irradiation points (1) to (6), (2) and (3) are determined in the vicinity of the measurement sample upstream and downstream of the measurement sample with respect to the direction of heat flow. In addition, (4) and (5) are also determined in the vicinity of the upstream side and downstream side of the standard material with respect to the direction of heat flow, respectively. By performing electron beam irradiation on this configuration in the manner described above and measuring the temperature change at the left end portion with a thermocouple, the graph shown at the bottom of FIG. 11 is obtained. Here, since the electron beam is irradiated to a portion made of tungsten, the amount of heat absorbed by the sample by each irradiation is the same. The heat flow path length in the measurement sample and the standard material can be measured by observation with a TEM or the like. Therefore, on this graph, ΔT sample / Δx sample , which is the slope of the line segment of the graph between (2) and (3), and the slope of the line segment of the graph between (4) and (5) A ΔT standard material / Δx standard material can be calculated.

ここにおいて、標準材料の既知の熱伝導率k標準材料を使って、試料の熱伝導率k試料を以下のように表すことができる。
標準材料 = αk試料
ここで
α =(ΔT試料/Δx試料)/(ΔT標準材料/Δx標準材料
αを表す分数式の分子および分母は上で述べたように計算できることから、試料の熱伝導率k試料も、その絶対値を計算することができる。
Here, using the known thermal conductivity k standard material of the standard material , the thermal conductivity k sample of the sample can be expressed as:
k standard material = αk sample
Where α = (ΔT sample / Δx sample ) / (ΔT standard material / Δx standard material )
Since the numerator and denominator of the fractional expression representing α can be calculated as described above, the absolute value of the thermal conductivity k sample of the sample can also be calculated.

なお、前記電子線照射点(2)〜(5)が何らかの事情で測定試料あるいは標準材料に充分近接した位置に設定できない場合は、図9を用いて説明したような仮想照射点を所望の位置に設定し、他の複数の照射点に対応して得られたデータに基づいてこれらの仮想照射点に対応するデータを計算してもよい。   When the electron beam irradiation points (2) to (5) cannot be set at a position sufficiently close to the measurement sample or the standard material for some reason, the virtual irradiation point as described with reference to FIG. The data corresponding to these virtual irradiation points may be calculated based on the data obtained corresponding to the other plurality of irradiation points.

また、上の説明中における測定試料を挟む「同一材料」の当該使用環境下での熱伝導率が既知である場合には、上記標準材料を「同一材料」と同じ材料とすることができることに注意されたい。このように標準材料にも「同一材料」を使用した場合には、図11の(3)より左側の構造は上記同一材料だけでできた一体の構造に単純化される。上述の熱伝導率の絶対値の計算式もこれに合わせて修正することができる。   In addition, when the thermal conductivity of the “same material” sandwiching the measurement sample in the above description is known, the standard material can be the same material as the “same material”. Please be careful. Thus, when the “same material” is used for the standard material, the structure on the left side of (3) in FIG. 11 is simplified to an integral structure made of only the same material. The calculation formula of the absolute value of the above-mentioned thermal conductivity can be corrected accordingly.

本発明は、電子線の照射等によるナノスケールでの熱の印加方法とナノスケールの空間分解能の温度計測とを組み合わせたものであり、本発明はこれらに限定するものではないが、以下に例示する各種の分野に利用することができる。
・熱伝導複合材料の熱伝導機構の解明
・ナノスケール物質の熱伝導度の計測
・ナノスケール熱電デバイスの微細構造と熱流の同時評価
The present invention is a combination of a nanoscale heat application method such as electron beam irradiation and a nanoscale spatial resolution temperature measurement, and the present invention is not limited to these, but is exemplified below. It can be used in various fields.
・ Elucidation of heat conduction mechanism of heat conduction composite materials ・ Measurement of thermal conductivity of nanoscale materials ・ Simultaneous evaluation of microstructure and heat flow of nanoscale thermoelectric devices

また、本発明は加熱できる領域のサイズや位置分解能、熱電対先端のサイズやその接触位置設定の分解能、その他の上述した熱伝導率計算手法の特性等から、1nm×10nm×10nm〜100μm×10μm×1μm(長さx×奥行きy×厚さz)程度の範囲の大きさの試料や所望の領域の熱伝導率(絶対値あるいは相対値)の測定に特に有用である。   In addition, the present invention is 1 nm × 10 nm × 10 nm to 100 μm × 10 μm in terms of the size and position resolution of the heatable region, the size of the thermocouple tip and the resolution of the contact position setting, and other characteristics of the thermal conductivity calculation method described above. It is particularly useful for measuring the thermal conductivity (absolute value or relative value) of a sample having a size of about 1 μm (length x × depth y × thickness z) or a desired region.

Li Shi, Sergei Plyasunov, Adrian Bachtold, Paul L. McEuen, andArunava Majumdar, Appl. Phys. Lett. Vol. 77, No. 26, 4295 (2000)Li Shi, Sergei Plyasunov, Adrian Bachtold, Paul L. McEuen, and Arunava Majumdar, Appl. Phys. Lett. Vol. 77, No. 26, 4295 (2000) Naoyuki Kawamoto, Ming-Sheng Wang, Xianlong Wei, Dai-Ming Tang, Yasukazu Murakami, Daisuke Shindo, Masanori Mitome and Dmitri Golberg, Nanotechnology 22, 485707 (2011).Naoyuki Kawamoto, Ming-Sheng Wang, Xianlong Wei, Dai-Ming Tang, Yasukazu Murakami, Daisuke Shindo, Masanori Mitome and Dmitri Golberg, Nanotechnology 22, 485707 (2011).

Claims (17)

試料に接触する熱電対と、
前記試料上の複数の加熱点を順次加熱する加熱装置と、
前記順次加熱による前記接触点の温度上昇に応答した前記熱電対の複数の出力を検出して前記複数の加熱点の加熱にそれぞれ対応する複数の温度上昇を測定する装置と
を設け、
前記複数の加熱点間または前記複数の加熱点から前記試料上の前記熱電対の接触点までの距離及び前記複数の加熱点に対応する前記複数の温度上昇に基づいて前記複数の加熱点の間または前記複数の加熱点と前記接触点の間の熱伝導率または前記熱伝導率間の比率を求める微小熱伝導率測定装置。
A thermocouple in contact with the sample;
A heating device for sequentially heating a plurality of heating points on the sample;
An apparatus for detecting a plurality of outputs of the thermocouple in response to a temperature increase at the contact point due to the sequential heating and measuring a plurality of temperature increases respectively corresponding to heating at the plurality of heating points;
Between the plurality of heating points based on the distance between the plurality of heating points or from the plurality of heating points to the contact point of the thermocouple on the sample and the plurality of temperature rises corresponding to the plurality of heating points. Or the micro thermal conductivity measuring apparatus which calculates | requires the thermal conductivity between the said several heating point and the said contact point, or the ratio between the said thermal conductivity.
前記加熱装置は収束された電子線を前記複数の加熱点に照射する、請求項1に記載の微小熱伝導率測定装置。   The minute heat conductivity measuring device according to claim 1, wherein the heating device irradiates the plurality of heating points with converged electron beams. 前記試料が透過型電子顕微鏡(TEM)または走査透過電子顕微鏡(STEM)内に収容されてTEM像またはSTEM像を観察可能であるとともに、
前記収束された電子線を前記複数の加熱点に照射する加熱装置は前記TEMまたはSTEMの電子銃である、
請求項2に記載の微小熱伝導率測定装置。
The sample is accommodated in a transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM), and a TEM image or a STEM image can be observed.
The heating device that irradiates the converged electron beam to the plurality of heating points is the electron gun of the TEM or STEM.
The micro thermal conductivity measuring apparatus according to claim 2.
前記熱電対は非磁性体の二種類の材料の針状物の接合体である、請求項3に記載の微小熱伝導率測定装置。   4. The micro thermal conductivity measuring device according to claim 3, wherein the thermocouple is a joined body of needles of two kinds of nonmagnetic materials. 前記二種類の材料はクロメル及びコンスタンタンである、請求項4に記載の微小熱伝導率測定装置。   The micro thermal conductivity measuring apparatus according to claim 4, wherein the two kinds of materials are chromel and constantan. 前記針状物の先端の径は100nm以下である、請求項4または5に記載の微小熱伝導率測定装置。   The micro thermal conductivity measuring device according to claim 4 or 5, wherein a diameter of a tip of the needle-like object is 100 nm or less. 前記試料は前記熱電対よりも熱抵抗が高い材料を介して台座に取り付けられる、請求項1から6の何れかに記載の微小熱伝導率測定装置。   The micro thermal conductivity measuring apparatus according to claim 1, wherein the sample is attached to the pedestal via a material having a higher thermal resistance than the thermocouple. 試料に熱電対を接触させ、
前記試料上の複数の加熱点を順次加熱し、
前記順次加熱による前記接触点の昇温に応答した前記熱電対の複数の出力を検出して前記複数の加熱点の加熱にそれぞれ対応する複数の温度上昇を測定し、
前記複数の加熱点間または前記複数の加熱点から前記試料上の前記熱電対の接触点までの距離及び前記複数の加熱点に対応する前記複数の温度上昇に基づいて前記複数の加熱点間または前記複数の加熱点と前記接触点との間の熱伝導率または前記熱伝導率間の比率を求める
微小熱伝導率測定方法。
Contact the sample with a thermocouple,
Sequentially heating a plurality of heating points on the sample;
Detecting a plurality of outputs of the thermocouple in response to a temperature rise of the contact point by the sequential heating, and measuring a plurality of temperature rises respectively corresponding to heating of the plurality of heating points;
Based on the distance between the plurality of heating points or the distance from the plurality of heating points to the contact point of the thermocouple on the sample and the plurality of temperature rises corresponding to the plurality of heating points, or between the plurality of heating points or A micro thermal conductivity measurement method for obtaining a thermal conductivity between the plurality of heating points and the contact point or a ratio between the thermal conductivities.
前記加熱は収束した電子線により行う、請求項8に記載の微小熱伝導率測定方法。   The method according to claim 8, wherein the heating is performed by a converged electron beam. 前記試料をTEMまたはSTEM内に収容してそのTEM像またはSTEM像を観察できるようにし、
前記電子線の照射は前記TEMまたはSTEMの電子銃により行う
請求項9に記載の微小熱伝導率測定方法。
The sample is accommodated in a TEM or STEM so that the TEM image or STEM image can be observed,
The method according to claim 9, wherein the electron beam irradiation is performed by the electron gun of the TEM or STEM.
前記試料と前記熱電対との接触を解除した状態で前記熱電対からの前記複数の加熱点の加熱に対応する複数の較正出力を検出し、
前記複数の加熱点への前記電子線の照射による二次電子が前記熱電対の前記出力に与える影響を前記複数の較正出力により打ち消す、
請求項9または10に記載の微小熱伝導率測定方法。
Detecting a plurality of calibration outputs corresponding to heating of the plurality of heating points from the thermocouple in a state where contact between the sample and the thermocouple is released;
Canceling out the influence of secondary electrons caused by irradiation of the electron beam on the plurality of heating points on the output of the thermocouple by the plurality of calibration outputs;
The micro thermal conductivity measuring method according to claim 9 or 10.
前記熱電対は非磁性体の二種類の材料の針状物の接合体である、請求項9から11の何れかに記載の微小熱伝導率測定方法。     The method of measuring micro thermal conductivity according to any one of claims 9 to 11, wherein the thermocouple is a joined body of needles of two kinds of nonmagnetic materials. 前記試料は前記熱電対よりも熱抵抗が高い材料を介して台座に取り付けられる、請求項8から12の何れかに記載の微小熱伝導率測定方法。   The micro thermal conductivity measurement method according to claim 8, wherein the sample is attached to the pedestal via a material having a higher thermal resistance than the thermocouple. 前記試料上または前記試料中の点であって前記複数の加熱点以外の点を仮想加熱点として設定し、
前記仮想加熱点から前記接触点までの距離と前記複数の加熱点から選択された複数個の加熱点に対応して測定された前記複数の温度上昇に基づいて前記仮想加熱点に対応する温度上昇を計算し、
熱伝導率または前記熱伝導率間の比率を求めるに当たって、前記仮想加熱点を前記複数の加熱点の一部とみなす、
請求項8から13の何れかに記載の微小熱伝導率測定方法。
A point on the sample or in the sample other than the plurality of heating points is set as a virtual heating point,
A temperature rise corresponding to the virtual heating point based on a distance from the virtual heating point to the contact point and the plurality of temperature rises measured corresponding to the plurality of heating points selected from the plurality of heating points. Calculate
In determining the thermal conductivity or the ratio between the thermal conductivities, the virtual heating point is regarded as a part of the plurality of heating points.
The micro thermal conductivity measuring method according to any one of claims 8 to 13.
前記試料上の前記加熱点は前記加熱による熱吸収量が互いに等しい、請求項8〜14の何れかに記載の微小熱伝導率測定方法。   The method according to claim 8, wherein the heating points on the sample have the same amount of heat absorbed by the heating. 前記試料の前記熱電対が接触する位置の反対側を前記熱電対よりも熱抵抗が高い材料を介して台座に接続する、請求項8から15の何れかに記載の微小熱伝導率測定方法。   The micro thermal conductivity measurement method according to any one of claims 8 to 15, wherein an opposite side of the sample to a position where the thermocouple contacts is connected to a pedestal via a material having a higher thermal resistance than the thermocouple. 前記試料は、
前記熱抵抗が高い材料から前記接触点に向かって、
第1の材料からなる第1の領域と、
熱伝導率を測定すべき材料からなる第2の領域と、
前記第1の材料からなる第3の領域と、
熱伝導率が既知の材料からなる第4の領域と、
前記第1の材料からなる第5の領域と
が互いに接続されて配列され、
前記加熱点は、
前記第1の領域上に設けられた第1の加熱点と、
前記第3の領域上に設けられた第2の加熱点と、
前記第3の領域上であって前記第2の加熱点よりも前記接触点に近い位置に設けられた第3の加熱点と、
前記第5の領域上に設けられた第4の加熱点と
を含み、
前記第1〜第4の加熱点から前記接触点までの距離及び前記第1〜第4の加熱点に対応する前記温度上昇と前記第4の領域の前記材料の熱伝導率とに基づいて前記第2の領域の材料の熱伝導率を求める
請求項16に記載の微小熱伝導率測定方法。
The sample is
From the material with high thermal resistance toward the contact point,
A first region of a first material;
A second region of material whose thermal conductivity is to be measured;
A third region of the first material;
A fourth region of a material having a known thermal conductivity;
And a fifth region made of the first material and connected to each other,
The heating point is
A first heating point provided on the first region;
A second heating point provided on the third region;
A third heating point located on the third region and closer to the contact point than the second heating point;
A fourth heating point provided on the fifth region,
Based on the distance from the first to fourth heating points to the contact point, the temperature rise corresponding to the first to fourth heating points, and the thermal conductivity of the material in the fourth region. The micro thermal conductivity measuring method according to claim 16, wherein the thermal conductivity of the material in the second region is obtained.
JP2013172783A 2013-08-23 2013-08-23 Minute thermal conductivity measuring device and measuring method Active JP6164735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172783A JP6164735B2 (en) 2013-08-23 2013-08-23 Minute thermal conductivity measuring device and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172783A JP6164735B2 (en) 2013-08-23 2013-08-23 Minute thermal conductivity measuring device and measuring method

Publications (2)

Publication Number Publication Date
JP2015040801A true JP2015040801A (en) 2015-03-02
JP6164735B2 JP6164735B2 (en) 2017-07-19

Family

ID=52695043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172783A Active JP6164735B2 (en) 2013-08-23 2013-08-23 Minute thermal conductivity measuring device and measuring method

Country Status (1)

Country Link
JP (1) JP6164735B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134945A (en) * 1989-10-20 1991-06-07 Jeol Ltd Standard specimen preparing method for scan type electron microscope
JPH11326251A (en) * 1998-05-08 1999-11-26 Matsushita Electric Ind Co Ltd Apparatus and method for measuring thermal diffusion coefficient
WO2003044509A1 (en) * 2001-11-19 2003-05-30 The Circle For The Promotion Of Science And Engineering Method for thermal analysis and system for thermal analysis
JP2004325141A (en) * 2003-04-22 2004-11-18 Rikogaku Shinkokai Thermal analysis method and thermal analysis device
US6905736B1 (en) * 2001-02-28 2005-06-14 University Of Central Florida Fabrication of nano-scale temperature sensors and heaters
JP2006319193A (en) * 2005-05-13 2006-11-24 Nec Electronics Corp Inspection device and method therefor
JP2008051744A (en) * 2006-08-28 2008-03-06 National Institute Of Advanced Industrial & Technology Method of measuring thermophysical property value of thermoelectric material, and thermoelectric material measuring device
JP2011145138A (en) * 2010-01-14 2011-07-28 National Institute Of Advanced Industrial Science & Technology Thermophysical property measuring device and heat conduction imaging device
JP2012527626A (en) * 2009-05-19 2012-11-08 ハワード ユニバーシティ Nano thermocouple detector based on thermoelectric nanowires

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03134945A (en) * 1989-10-20 1991-06-07 Jeol Ltd Standard specimen preparing method for scan type electron microscope
JPH11326251A (en) * 1998-05-08 1999-11-26 Matsushita Electric Ind Co Ltd Apparatus and method for measuring thermal diffusion coefficient
US6905736B1 (en) * 2001-02-28 2005-06-14 University Of Central Florida Fabrication of nano-scale temperature sensors and heaters
WO2003044509A1 (en) * 2001-11-19 2003-05-30 The Circle For The Promotion Of Science And Engineering Method for thermal analysis and system for thermal analysis
JP2004325141A (en) * 2003-04-22 2004-11-18 Rikogaku Shinkokai Thermal analysis method and thermal analysis device
JP2006319193A (en) * 2005-05-13 2006-11-24 Nec Electronics Corp Inspection device and method therefor
JP2008051744A (en) * 2006-08-28 2008-03-06 National Institute Of Advanced Industrial & Technology Method of measuring thermophysical property value of thermoelectric material, and thermoelectric material measuring device
JP2012527626A (en) * 2009-05-19 2012-11-08 ハワード ユニバーシティ Nano thermocouple detector based on thermoelectric nanowires
JP2011145138A (en) * 2010-01-14 2011-07-28 National Institute Of Advanced Industrial Science & Technology Thermophysical property measuring device and heat conduction imaging device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAOYUKI KAWAMOTO ET AL.: "Local temperature measurements on nanoscale materials using a movable nanothermocouple assembled in", NANOTECHNOLOGY, vol. 22, JPN6017021053, 2 December 2011 (2011-12-02), pages 485707 - 8, ISSN: 0003575510 *

Also Published As

Publication number Publication date
JP6164735B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
Zhang et al. A review on principles and applications of scanning thermal microscopy (SThM)
Kim et al. Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air
Zhao et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
Menges et al. Temperature mapping of operating nanoscale devices by scanning probe thermometry
Li et al. Characterization of semiconductor surface conductivity by using microscopic four-point probe technique
Beechem et al. Invited Review Article: Error and uncertainty in Raman thermal conductivity measurements
Borca-Tasciuc Scanning probe methods for thermal and thermoelectric property measurements
Zhao et al. An integrated H-type method to measure thermoelectric properties of two-dimensional materials
Tovee et al. Mapping nanoscale thermal transfer in-liquid environment—immersion scanning thermal microscopy
Thompson Pettes et al. A reexamination of phonon transport through a nanoscale point contact in vacuum
Bodzenta et al. Quantitative thermal measurement by the use of scanning thermal microscope and resistive thermal probes
Kawamoto et al. Visualizing nanoscale heat pathways
Nakabeppu et al. Microscale temperature measurement by scanning thermal microscopy
Ramiandrisoa et al. A dark mode in scanning thermal microscopy
Nguyen et al. Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM)
US20210072282A1 (en) Scanning tunneling thermometer
JP6164735B2 (en) Minute thermal conductivity measuring device and measuring method
JP3687030B2 (en) Micro surface temperature distribution measurement method and apparatus therefor
Pratap et al. Effect of air confinement on thermal contact resistance in nanoscale heat transfer
Hu et al. Dual-wavelength flash Raman mapping method for measuring thermal diffusivity of the suspended nanowire
KR20110004925A (en) Quantitative temperature and thermal conductivity measuring method using scanning thermal microscope
Jarzembski et al. Force-induced acoustic phonon transport across single-digit nanometre vacuum gaps
Genix et al. Local temperature surface measurement with intrinsic thermocouple
Hippalgaonkar et al. Experimental studies of thermal transport in nanostructures
Nguyen et al. Calibration tools for scanning thermal microscopy probes used in temperature measurement mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170616

R150 Certificate of patent or registration of utility model

Ref document number: 6164735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250