JP2015040638A - Apparatus and method for manufacturing solidified slag - Google Patents

Apparatus and method for manufacturing solidified slag Download PDF

Info

Publication number
JP2015040638A
JP2015040638A JP2013170102A JP2013170102A JP2015040638A JP 2015040638 A JP2015040638 A JP 2015040638A JP 2013170102 A JP2013170102 A JP 2013170102A JP 2013170102 A JP2013170102 A JP 2013170102A JP 2015040638 A JP2015040638 A JP 2015040638A
Authority
JP
Japan
Prior art keywords
mold
slag
solidified
molten slag
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013170102A
Other languages
Japanese (ja)
Other versions
JP6015593B2 (en
Inventor
恵太 田
Keita Den
恵太 田
博幸 當房
Hiroyuki Tofusa
博幸 當房
渡辺 圭児
Keiji Watanabe
圭児 渡辺
桑山 道弘
Michihiro Kuwayama
道弘 桑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013170102A priority Critical patent/JP6015593B2/en
Publication of JP2015040638A publication Critical patent/JP2015040638A/en
Application granted granted Critical
Publication of JP6015593B2 publication Critical patent/JP6015593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and method for manufacturing solidified slag in which the solidified slag is compact with less pores, and the desired solidified slag of around 20 mm can be easily obtained by subsequent crushing, and also the production efficiency is superior.SOLUTION: An apparatus 1 for manufacturing solidified slag concerning the present invention is characterized as follows: molds 4 are formed of recesses 4a where molten slag 3 is poured into both sides; a circumferential movement mechanism 7 is provided for horizontally revolving and moving a plurality of molds 4 while being brought closely and supported; the circumferential movement mechanism 7 includes an air-cooled moving part 9 for moving the molds 4 in the revolving direction, and air-cooling and solidifying the molten slag 3 in the state where the poured molten slag 3 is held in the recesses 4a while the molds 4 are revolved one round, an inversion ejecting part 11 for reversing the molds 4 and ejecting the solidified slag 18, and a moving part 12 for moving the reversed molds 4 as being reversed; and each mold 4 is reversed every round and the molten slag 3 is poured into the recesses 4a of different faces.

Description

本発明は、装置1周ごとに溶融状態のスラグ(以下、溶融スラグという)を金属製鋳型内で凝固させて、凝固状態のスラグ(以下、凝固スラグという)を鋳型から排出する装置であって、当該1周ごとの操作を周回させて連続的に行う凝固スラグ製造装置、該凝固スラグ製造装置を用いた凝固スラグ製造方法に関する。   The present invention is an apparatus that solidifies molten slag (hereinafter referred to as molten slag) in a metal mold and discharges the solidified slag (hereinafter referred to as solidified slag) from the mold every round of the apparatus. The present invention relates to a solidified slag manufacturing apparatus that continuously performs the operation for each round, and a solidified slag manufacturing method using the solidified slag manufacturing apparatus.

金属の精錬工程などで発生する溶融スラグを凝固させるには、高圧の冷却水を溶融スラグに吹き付けて急冷する方法、あるいは、溶融スラグをドライピットやスラグヤードに放置して大気中で徐冷する方法が広く用いられている。
溶融スラグを急冷すると、高圧の冷却水を大量に吹き付けるので、多数の気孔を有する粒径5mm以下の砂状の凝固スラグ(いわゆる水砕スラグ)となる。一方、溶融スラグを土間に流して徐冷すると、厚さが数mとなり、これを破砕して塊状の凝固スラグ(いわゆる徐冷スラグ)とする。
In order to solidify the molten slag generated in the metal refining process, high-pressure cooling water is sprayed onto the molten slag and cooled rapidly, or the molten slag is left in a dry pit or slag yard and gradually cooled in the atmosphere. The method is widely used.
When the molten slag is rapidly cooled, a large amount of high-pressure cooling water is blown, so that it becomes a sand-like solidified slag (so-called granulated slag) having a number of pores and a particle diameter of 5 mm or less. On the other hand, when the molten slag is gradually cooled by flowing between the soils, the thickness becomes several meters, and this is crushed into a solidified solid slag (so-called gradually cooled slag).

近年、凝固スラグの再利用に伴って、砂利等に代わるコンクリート用粗骨材に凝固スラグの適用が図られている。凝固スラグをコンクリート用粗骨材に適用するには、スラグ中の気孔を低減し、スラグ粒径の最大値を20mm程度に調整する必要がある。従って、水砕スラグは、現状のままでは、気孔が多くて粒径が小さいことから、コンクリート用粗骨材には適用できず、一方、徐冷スラグは、数mの大きさの塊を20mm程度の粒径に破砕する時間が多大であって効率的でない。   In recent years, with the reuse of solidified slag, solidified slag has been applied to coarse aggregate for concrete instead of gravel. In order to apply the solidified slag to the coarse aggregate for concrete, it is necessary to reduce pores in the slag and adjust the maximum value of the slag particle size to about 20 mm. Therefore, granulated slag cannot be applied to coarse aggregate for concrete because it has many pores and small particle size as it is, while slow-cooled slag has a mass of several meters of 20 mm. It takes a long time to crush to a particle size of a certain level and is not efficient.

そこで、コンクリート用粗骨材として、気孔が少なく破砕が容易な凝固スラグを得るために、比較的小さい鋳型を用いて溶融スラグを凝固させる技術が種々提案されている。小さい鋳型の中でスラグを凝固させると、水砕スラグより大きくて、かつ、徐冷スラグより小さいサイズを容易に得ることができて、徐冷スラグより破砕の時間を短縮できて20mm程度の所望の凝固スラグを容易に得ることができる。   Therefore, various techniques for solidifying molten slag using a relatively small mold have been proposed in order to obtain solidified slag with few pores and easy crushing as coarse aggregate for concrete. If the slag is solidified in a small mold, a size larger than the granulated slag and smaller than the slow-cooled slag can be easily obtained, and the crushing time can be shortened from the slow-cooled slag. The solidified slag can be easily obtained.

このような小さい鋳型を用いて凝固スラグを製造する装置としては、例えば特許文献1に開示されたスラグの連続凝固装置がある。
特許文献1に開示されたスラグの連続凝固装置は、複数個の金属製鋳型を無端状に連結して直線状一方向に移動させながら、溶融スラグを鋳型に流し込んで凝固させて、凝固スラグを鋳型から連続して排出するというものである。
また、小さい鋳型を用いて凝固スラグを製造する他の例として、例えば特許文献2に記載された鉄冶金滓の処理装置がある。特許文献2の鉄冶金滓の処理装置は、回転テーブルを用いたものであって、個々の鋳造容器内の鋳造面を常に水平位置に維持しながら鋳造容器が曲線の軌道上を連続的に水平移動し、複数回周回して、1周当たり薄くスラグを凝固させ、複数回の周回によって厚くスラグを積層させるものである(特許文献2の第2頁右上欄参照)。
As an apparatus for producing solidified slag using such a small mold, there is a continuous solidification apparatus for slag disclosed in Patent Document 1, for example.
The continuous solidification device for slag disclosed in Patent Document 1 connects a plurality of metal molds in an endless manner and moves them in one linear direction while pouring molten slag into the mold to solidify the solidified slag. It is to discharge continuously from the mold.
Another example of manufacturing solidified slag using a small mold is an iron metallurgical iron processing apparatus described in Patent Document 2, for example. The iron metallurgical iron processing apparatus of Patent Document 2 uses a rotary table, and the casting vessel is continuously horizontal on a curved track while always maintaining the casting surface in each casting vessel in a horizontal position. It moves and goes around a plurality of times to solidify the slag thinly per turn, and thickens the slag by a plurality of turns (see the upper right column on page 2 of Patent Document 2).

特開2003−207281号公報JP 2003-207281 A 特開昭53−32828号公報JP-A-53-32828

特許文献1に記載のスラグの連続凝固装置は、複数の鋳型を無端状に連結し、無端状の一端側にある鋳型に溶融スラグを流し込んだ後、無端状の他端まで直線的に移動させ、該他端において鋳型を反転させて凝固スラグを鋳型から排出し、反転状態にある鋳型を前記一端側まで直線的に移動させて戻すというものである。
上記のような複数の鋳型を直線的に無端状に連結する装置では、行きの行程と帰りの行程が同じ長さになるため、鋳型に溶融スラグを流し込んで移動させる(行きの行程)時間と、凝固スラグを排出して空の状態で鋳型を移動させる(帰りの行程)時間が同じになる。鋳型に溶融スラグを流し込んで移動させる時間は、溶融スラグを凝固させるのに必要な時間となるため、この時間を基準にして鋳型の連結個数や移動速度が決められることになる。このため、鋳型を反転させた後の移動時間には無駄が生じてしまうことになる。また、移動速度を速くしようとすると、凝固時間を確保するため、鋳型の連結個数を増やすことになって、鋳型を長い距離で中吊りさせる必要があり、装置構造が複雑で設備費が多大となり、駆動する電力など稼働費用も多大となるという問題もある。
The continuous solidification device for slag described in Patent Document 1 connects a plurality of molds endlessly, and after pouring molten slag into a mold on one end side of endless shape, linearly moves to the other end of endless shape. The mold is inverted at the other end, the solidified slag is discharged from the mold, and the mold in the inverted state is linearly moved to the one end side and returned.
In an apparatus for connecting a plurality of molds linearly and endlessly as described above, since the going process and the returning process have the same length, the molten slag is poured into the mold and moved (going process) The time required for discharging the solidified slag and moving the mold in the empty state (return process) is the same. The time for pouring and moving the molten slag into the mold is the time required to solidify the molten slag, and the number of connected molds and the moving speed are determined based on this time. For this reason, the moving time after inverting the mold is wasted. Also, when trying to increase the moving speed, it is necessary to increase the number of connected molds in order to secure the solidification time, and it is necessary to suspend the molds at a long distance, the structure of the apparatus is complicated, and the equipment cost becomes large. In addition, there is a problem that the operation cost such as driving electric power becomes large.

また、特許文献1に記載のスラグの連続凝固装置では、鋳型の片面側に溶融スラグを流し込んで、鋳型を反転させて凝固スラグを鋳型から排出した後、この溶融スラグを流し込んだ側の片面のみに冷却水を噴射して冷却する方法であるため、鋳型の両面での温度差が大きくなり易く、特に生産性を上げた場合のように鋳型の熱負荷が大きい条件では、長期間にわたる使用によって鋳型が反るように変形し易いという問題があった。   Moreover, in the continuous slag solidification apparatus described in Patent Document 1, the molten slag is poured into one side of the mold, the mold is inverted, the solidified slag is discharged from the mold, and then only the one side on which the molten slag is poured. This is a method of cooling by injecting cooling water into the mold, so the temperature difference between both sides of the mold tends to be large, especially when the mold has a large heat load as in the case of increased productivity. There was a problem that the mold was easily deformed to warp.

特許文献2に記載の鉄冶金滓の処理装置は、鋳造容器(鋳型)を常に水平状態で移動させるものであり、溶滓を早期に凝固させるため1回周回する際の鋳造層の厚みを薄くして、鋳造容器を複数回周回させて鋳造層を多層に積層させて所望する厚みの鋳造層を得る装置である。従って、所望する厚みとなった塊滓を排出する以外は、鋳造容器の凹部を常に上に向けたまま、複数回の周回の間を水平移動させる必要があり、また、溶滓を注いだ鋳造層を早期に凝固させるために空気または蒸気を溶滓の上から吹き付けている。また、鋳造容器の冷却については一切記載がなく、鋳造容器から塊滓を排出した後、鋳造容器はそのままの状態で溶滓を鋳込んでいると思われる。   The iron metallurgical iron processing apparatus described in Patent Document 2 always moves the casting container (mold) in a horizontal state, and thins the thickness of the casting layer at the time of one turn in order to solidify the hot metal early. And it is an apparatus which obtains a casting layer of desired thickness by circulating a casting container in multiple times and laminating a casting layer in multiple layers. Therefore, except for discharging the lump with the desired thickness, it is necessary to move horizontally between multiple rounds with the concave portion of the casting container always facing upward, and casting with molten iron poured Air or steam is blown over the hot metal to quickly solidify the layer. Moreover, there is no description about cooling of a casting container, and after discharging lump from a casting container, it seems that the casting container casts molten iron in the state as it is.

従って、特許文献2の方法および装置を採用すると、複数回の周回を必要とし、その間、鋳造容器は全く強制冷却されないことから、鋳造容器が高温の溶滓の熱により歪んで装置の連続回転が不能になる問題が多々生じる。また、複数回の周回に時間が掛かり、効率良く凝固塊滓を得ることが難しい問題もある。さらに、特許文献2の第1図から凝固した塊滓を周回方向の径方向に傾動させて鋳造容器から排出させるため、周回中心に対して重心がずれて回転装置全体のバランスが崩れ易く、安定して凝固塊滓を得ることが難しくて問題であった。   Therefore, when the method and apparatus of Patent Document 2 are adopted, a plurality of rounds are required, and during that time, the casting container is not forcibly cooled at all. Therefore, the casting container is distorted by the heat of the hot metal and the apparatus continuously rotates. There are many problems that make it impossible. In addition, there is a problem that it takes time for a plurality of rounds and it is difficult to obtain a coagulated mass efficiently. Further, since the lump solidified from FIG. 1 of Patent Document 2 is tilted in the radial direction of the circulation direction and discharged from the casting container, the center of gravity is shifted from the rotation center, and the balance of the entire rotating device is easily lost and stable. Thus, it was difficult to obtain a coagulated lump.

本発明は、上記のような問題を解決するためになされたものであり、溶融スラグの連続凝固にあたり、気孔の少ない緻密な凝固スラグであって、その後の破砕により容易に所望の20mm程度のスラグ製品が得られる凝固スラグを得やすくて、かつ、鋳型の耐久性が高く、さらには生産効率のよい凝固スラグ製造装置及び該凝固スラグ製造装置を用いた凝固スラグ製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In continuous solidification of molten slag, the present invention is a dense solidified slag with few pores, which can be easily crushed by the subsequent crushing to a desired slag of about 20 mm. It is an object of the present invention to provide a solidified slag production apparatus and a solidified slag production apparatus using the solidified slag production apparatus, which are easy to obtain solidified slag from which products can be obtained, have high mold durability, and have high production efficiency. To do.

(1)本発明に係る凝固スラグ製造装置は、周回する複数の金属製の鋳型に溶融スラグを流し込んで凝固スラグを連続的に製造する凝固スラグ製造装置であって、
前記鋳型は両面に溶融スラグが流し込まれる凹陥部が形成されており、前記複数の鋳型を近接させて支持した状態で水平方向に周回移動させる周回移動機構を備え、該周回移動機構は鋳型が1周回する間に、流し込まれた溶融スラグを前記凹陥部に保持した状態で鋳型を周回方向に移動させ前記溶融スラグを空冷して凝固させる空冷移動部と、前記鋳型を反転させて凝固スラグを排出する反転排出部と、反転した鋳型を反転した状態のままで移動させる移動部とを備え、前記各鋳型は周回毎に反転されて異なる面の凹陥部に溶融スラグが流し込まれることを特徴とするものである。
(1) A solidified slag production apparatus according to the present invention is a solidified slag production apparatus for continuously producing solidified slag by pouring molten slag into a plurality of metal molds that circulate.
The mold has recesses into which molten slag is poured on both sides, and includes a circumferential movement mechanism that moves in a horizontal direction in a state where the plurality of molds are supported close to each other. While circulating, the molten slag that has been poured is held in the concave portion, the mold is moved in the circumferential direction, the molten slag is cooled by air, and the molten slag is cooled and solidified, and the mold is inverted and the solidified slag is discharged. And a reversing discharge part to be moved and a moving part for moving the reversed mold in an inverted state, wherein each mold is reversed at each turn so that molten slag is poured into the recesses on different surfaces. Is.

(2)また、上記(1)に記載の周回移動機構一周において、前記空冷移動部の占める長さ(角度)を周回軌道全長(全角360度)の1/2(180度)超え、3/4(270度)未満とすることを特徴とするものである。 (2) Further, in one round of the orbital movement mechanism described in (1) above, the length (angle) occupied by the air-cooling movement unit exceeds 1/2 (180 degrees) of the entire orbit (360 degrees), 3 / It is characterized by being less than 4 (270 degrees).

(3)また、上記(1)又は(2)に記載のものにおいて、前記反転排出部は、前記鋳型を周回方向に向けて回転させることによって鋳型を反転させることを特徴とするものである。 (3) Further, in the above (1) or (2), the reversing discharge unit is characterized in that the mold is reversed by rotating the mold in the circumferential direction.

(4)また、上記(1)乃至(3)のいずれかに記載のものにおいて、前記移動部において前記鋳型の上下両面に冷媒を噴射して冷却する冷却装置を備えたことを特徴とするものである。 (4) Further, in any one of the above (1) to (3), the moving unit is provided with a cooling device for injecting and cooling a coolant on both upper and lower surfaces of the mold. It is.

(5)また、上記(4)に記載のものにおいて、鋳型の表面温度を300℃以下とするように前記鋳型を冷却することを特徴とするものである。 (5) Further, in the above (4), the mold is cooled so that the surface temperature of the mold is 300 ° C. or less.

(6)本発明に係る凝固スラグ製造方法は、上記(1)〜(5)のいずれかに記載の凝固スラグ製造装置を用いて凝固スラグを製造する凝固スラグ製造方法であって、
鋳型の凹陥部に溶融スラグを注入する溶融スラグ注入工程と、溶融スラグが注入された鋳型を周回移動させながら溶融スラグを空冷する空冷工程と、鋳型を反転させて20〜40mmの厚みの板状に凝固した溶融スラグを排出する凝固スラグ排出工程を備えたことを特徴とするものである。
(6) The method for producing solidified slag according to the present invention is a method for producing solidified slag by using the solidified slag producing apparatus according to any one of (1) to (5) above,
A molten slag injection step for injecting molten slag into the concave portion of the mold, an air cooling step for air-cooling the molten slag while rotating the mold infused with the molten slag, and a plate having a thickness of 20 to 40 mm by inverting the mold And a solidified slag discharge step for discharging the molten slag solidified.

本発明においては、溶融スラグが流し込まれる凹陥部を両面に有する複数の鋳型を近接させ支持した状態で水平方向に周回移動させる周回移動機構を備え、該周回移動機構において装置1周の間に、空冷して凝固させる空冷移動部と、鋳型を反転させて凝固スラグを排出する反転排出部と、反転した鋳型を反転した状態のままで移動させる移動部とを備え、前記各鋳型は周回毎に反転されて異なる面の凹陥部に溶融スラグが流し込まれるようにしたことにより、鋳型を直線的に無端状に連結する従来例のように空冷移動行程の長さが限定されず、空冷移動部に続く反転排出部等の各部に必要とされる周回方向長さを除いて、空冷移動部の長さに割り当てることが可能となり、周回行程に無駄な時間が生じなく、その結果、凝固スラグを効率的に製造することができる。
また、溶融スラグが流し込まれる鋳型の面が周回毎に変わるため、鋳型に作用する熱応力を緩和することができ、鋳型の変形を防止することができる。また、鋳型を反転して溶融スラグを排出した後、溶融スラグが流し込まれていた面を反転したままの状態で反対側の面で次の溶融スラグを受けられるようにしたので、鋳型の片面のみで溶融スラグを受け入れる場合に比較して鋳型の冷却時間を長く確保できる。
In the present invention, it comprises a circular movement mechanism that moves in a horizontal direction in a state where a plurality of molds having concave portions into which molten slag is poured on both sides are supported close to each other. An air-cooling moving part for solidifying by air cooling, a reversing discharge part for discharging the solidified slag by reversing the mold, and a moving part for moving the reversed mold in an inverted state, each mold being rotated By inverting and allowing molten slag to flow into the recesses on different surfaces, the length of the air-cooling movement process is not limited as in the conventional example in which the molds are linearly connected endlessly, and the air-cooling movement part It can be assigned to the length of the air-cooled moving part, except for the length in the circulation direction required for each part such as the subsequent reverse discharge part, so there is no wasted time in the circulation process, and as a result, the solidification slag is made efficient Target It can be produced.
In addition, since the surface of the mold into which the molten slag is poured changes every turn, the thermal stress acting on the mold can be relieved, and the mold can be prevented from being deformed. In addition, after the mold was reversed and the molten slag was discharged, the next side was allowed to receive the next molten slag while the surface on which the molten slag was poured was reversed. Therefore, the mold can be cooled for a longer time than when molten slag is received.

本発明の一実施の形態に係る凝固スラグ製造装置の全体構成を模式的に示す模式図である。It is a schematic diagram which shows typically the whole structure of the solidification slag manufacturing apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る凝固スラグ製造装置の鋳型の説明図である。It is explanatory drawing of the casting_mold | template of the solidification slag manufacturing apparatus which concerns on one embodiment of this invention. 本発明の一実施の形態に係る凝固スラグ製造装置における周回移動機構の各部の配置を説明する説明図である。It is explanatory drawing explaining arrangement | positioning of each part of the rotation moving mechanism in the solidification slag manufacturing apparatus which concerns on one embodiment of this invention. 比較例の凝固スラグ製造装置の全体構成を模式的に示す模式図である。It is a schematic diagram which shows typically the whole structure of the solidification slag manufacturing apparatus of a comparative example. 比較例の凝固スラグ製造装置の鋳型の説明図である。It is explanatory drawing of the casting_mold | template of the solidification slag manufacturing apparatus of a comparative example. 比較例の凝固スラグ製造装置における周回移動機構の各部の配置を説明する説明図である。It is explanatory drawing explaining arrangement | positioning of each part of the rotation moving mechanism in the solidification slag manufacturing apparatus of a comparative example.

本発明の一実施の形態に係る凝固スラグ製造装置1(図1)は、周回する複数の金属製の鋳型4に溶融スラグ3を流し込んで凝固スラグ18を連続的に製造する凝固スラグ製造装置であって、鋳型4は両面に溶融スラグ3が流し込まれる凹陥部4aが形成されており、複数の鋳型4を近接させて支持した状態で水平方向に周回移動させる周回移動機構7を備え、周回移動機構7は鋳型4が1周回する間に、流し込まれた溶融スラグ3を凹陥部4aに保持した状態で鋳型4を周回方向に移動させ溶融スラグ3を空冷して凝固させる空冷移動部9と、鋳型4を反転させて凝固スラグ18を排出する反転排出部11と、反転した鋳型4を反転した状態のままで移動させる移動部12とを備え、各鋳型4は周回毎に反転されて異なる面の凹陥部4aに溶融スラグ3が流し込まれることを特徴とするものである。
なお、凝固スラグ製造装置1は、鋳型4に溶融スラグ3を流し込みやすいように、樋22を設置するとよい。
以下、各構成を詳細に説明する。
A solidified slag production apparatus 1 (FIG. 1) according to an embodiment of the present invention is a solidified slag production apparatus that continuously produces solidified slag 18 by pouring molten slag 3 into a plurality of metal molds 4 that circulate. The mold 4 is provided with a recessed portion 4a into which the molten slag 3 is poured on both sides, and is provided with a revolving mechanism 7 that revolves in the horizontal direction in a state where a plurality of molds 4 are brought close to each other and supported. The mechanism 7 is an air-cooled moving part 9 that moves the mold 4 in the rotating direction while holding the poured molten slag 3 in the recessed part 4a while the mold 4 makes one round, and air-cools and solidifies the molten slag 3; The reversal discharge part 11 which reverses the casting_mold | template 4 and discharges the solidification slag 18 and the moving part 12 which moves the reversed casting_mold | template 4 in the reversed state are provided, and each casting_mold | template 4 is reversed for every round and is different. In the recessed part 4a It is characterized in that the melting slag 3 is poured.
In addition, the solidification slag manufacturing apparatus 1 is good to install the trough 22 so that the molten slag 3 may be easily poured into the mold 4.
Hereinafter, each configuration will be described in detail.

<鋳型>
鋳型4は、溶融スラグ3が流し込まれる浅底の凹陥部4aを両面に有している。より詳細には、図2に示すように、鋳型5は、ほぼ台形形状の凹陥部4aを有する金属製容器がよい。本実施の形態の鋳型4は、図1に示されるように、複数の鋳型4が円周を形成するように近接させて配置される。そのため、円周状に効率よく配置されるように外周側となる辺部が下底、内周側となる辺部が上底となる略台形をしている。
なお、この例では、鋳型4を円周状に配置するため、鋳型4の形状を平面視で略台形になるようにしているが、周回軌道の形状に合わせて効率的な配置ができる形状に設定すればよい。例えば、周回軌道が矩形状であれば、鋳型4は矩形が好ましい。
<Mold>
The mold 4 has shallow concave portions 4a into which the molten slag 3 is poured on both surfaces. More specifically, as shown in FIG. 2, the mold 5 is preferably a metal container having a substantially trapezoidal recessed portion 4a. As shown in FIG. 1, the mold 4 of the present embodiment is arranged close to each other so that a plurality of molds 4 form a circumference. Therefore, in order to arrange them efficiently in a circumferential shape, the side portion on the outer peripheral side has a lower trapezoid and the side portion on the inner peripheral side has a substantially trapezoidal shape.
In this example, since the mold 4 is arranged in a circumferential shape, the shape of the mold 4 is substantially trapezoidal in plan view, but the shape can be efficiently arranged according to the shape of the orbit. You only have to set it. For example, if the circular orbit is rectangular, the mold 4 is preferably rectangular.

鋳型4の内壁は底から上に向かって外側に傾斜する傾斜面4bを有するとよい。これは、鋳型4を反転した際に凝固スラグが離型しやすくするためである。
また、鋳型4は、溶融スラグ3を流し込む際に、隣接する鋳型4の隙間に溶融スラグ3が落下することを防止するためのスラグ落下防止部位4cを設けるとよい(図2参照)。
鋳型4の材質は、鋳鋼またはステンレス鋼等の耐熱性に優れた金属からなる。また、鋳型4の厚みは、例えば40mm程度が良い。鋳型4の厚みが薄過ぎると高温のスラグの熱により変形しやすくなり、搬送に支障をきたすことになるため、少なくとも20mm以上にするのが好ましく、逆に、厚くなり過ぎると、重量が増加して、搬送や反転に支障をきたすことにもなりかねないので、80mm以下とするのが好ましい。
The inner wall of the mold 4 may have an inclined surface 4b that is inclined outward from the bottom toward the top. This is to make the solidified slag easy to release when the mold 4 is inverted.
Moreover, when casting the molten slag 3, the mold 4 may be provided with a slag fall prevention portion 4 c for preventing the molten slag 3 from falling into the gap between the adjacent molds 4 (see FIG. 2).
The material of the mold 4 is made of a metal having excellent heat resistance such as cast steel or stainless steel. The thickness of the mold 4 is preferably about 40 mm, for example. If the thickness of the mold 4 is too thin, it is likely to be deformed by the heat of the high-temperature slag, causing trouble in conveyance. Therefore, it is preferable that the thickness is at least 20 mm. Conversely, if the thickness is too thick, the weight increases. In this case, it is preferable that the thickness is 80 mm or less.

なお、後述するように凝固スラグをコンクリート粗骨材として使用する場合、凝固スラグの厚みは20〜40mmが好ましい。このような凝固厚みの凝固スラグを製造するには、鋳型4の凹陥部4aの深さは、凝固厚みの3〜5倍程度の60〜200mm程度が好ましい。凝固厚みの3〜5倍程度の深さがあれば、溶融スラグの流量が変動した場合でも、鋳型から溶融スラグが溢れることはなかった。   In addition, when using solidification slag as concrete coarse aggregate so that it may mention later, 20-40 mm is preferable for the thickness of solidification slag. In order to produce a solidified slag having such a solidified thickness, the depth of the recessed portion 4a of the mold 4 is preferably about 60 to 200 mm, which is about 3 to 5 times the solidified thickness. If the solidified thickness was about 3 to 5 times, the molten slag did not overflow from the mold even when the flow rate of the molten slag varied.

<周回移動機構>
周回移動機構7は、複数の鋳型4を近接状態で円周状に支持して周回移動させるものである。鋳型4を支持する支持機構は特に限定されるものではないが、例えば鋳型4の外周側と内周側に軸部と車輪を設け、該車輪を周回方向に延びるレール上に支持し、車輪を駆動機構によって所定の速度で回転させるようにすればよい。
周回移動機構7は、装置1周の間に、図1及び図3に示すように、周回方向に順に、空冷移動部9と、反転排出部11と、移動部12とを備えている。
以下、周回移動機構7の各部を詳細に説明する。
<Circular movement mechanism>
The circular movement mechanism 7 supports the plurality of molds 4 in a circular shape in a proximity state and moves them around. The support mechanism for supporting the mold 4 is not particularly limited. For example, a shaft portion and a wheel are provided on the outer peripheral side and the inner peripheral side of the mold 4 and the wheel is supported on a rail extending in the circumferential direction. What is necessary is just to make it rotate at a predetermined speed with a drive mechanism.
As shown in FIGS. 1 and 3, the orbital movement mechanism 7 includes an air-cooling movement unit 9, a reverse discharge unit 11, and a movement unit 12 in order in the circulation direction, as shown in FIGS. 1 and 3.
Hereinafter, each part of the circular movement mechanism 7 will be described in detail.

《空冷移動部》
空冷移動部9は、流し込まれた溶融スラグ3を凹陥部4aに保持した状態で鋳型4を周回方向に移動させて溶融スラグ3を空冷して凝固させる部位である。
空冷移動部9は、流し込まれた溶融スラグ3が空冷されて所定の凝固状態になるまでの時間が必要とされるが、本実施の形態の周回移動機構7は、鋳型4を水平方向に周回移動させるようにしているので、鋳型4を直線的に無端状に連結する場合のように、周回移動の半分の行程が溶融スラグ凝固のための空冷移動部9になるというような制約がない。
そのため、空冷移動部9に続く反転排出部11等の各部に必要とされる周回方向長さを除く長さを空冷移動部9に割り当てることも可能となる。これによって、周回行程の中に無駄な時間が生じないようにすることができる。
なお、前記空冷移動部9では、スラグに散水して冷却すると多孔質に凝固して固化したスラグの強度が低下するため、散水を禁止している。
また、空冷移動部9の占める長さ(角度)は、周回軌道全長(全角360度)に占める割合の1/2(180度)超え、3/4(270度)未満とするとよい。
<Air-cooled moving part>
The air-cooling moving part 9 is a part that moves the casting mold 4 in the circumferential direction in a state where the poured molten slag 3 is held in the recessed part 4a to air-cool and solidify the molten slag 3.
The air-cooling moving unit 9 requires time until the molten slag 3 poured into the air-cooled state is cooled to a predetermined solidified state, but the orbiting moving mechanism 7 of the present embodiment circulates the mold 4 in the horizontal direction. Since it is made to move, there is no restriction that the half of the circular movement becomes the air-cooling moving part 9 for melting slag solidification as in the case where the mold 4 is linearly connected endlessly.
For this reason, it is possible to assign the air cooling moving unit 9 with a length excluding the circumferential length required for each part such as the reverse discharge unit 11 following the air cooling moving unit 9. As a result, useless time can be prevented from occurring during the round trip.
In the air-cooling moving unit 9, water spraying is prohibited because the strength of the slag solidified and solidified into a porous body is reduced when water is sprayed on the slag and cooled.
Further, the length (angle) occupied by the air-cooling moving unit 9 is preferably set to be more than 1/2 (180 degrees) and less than 3/4 (270 degrees) of the ratio of the total length of the orbit (360 degrees).

《反転排出部》
反転排出部11は、鋳型4をその凹陥部4aが下方に向くように反転させて凝固スラグ18を排出する部位である。
反転排出部11は、図1に示されるように、空冷移動部9の次に配置されるものであり、排出される凝固スラグ18を収容可能なピット19が周回する鋳型4の下方に設けられている。ピット内にスラグを収容するための容器を配置して、スラグを収容、運搬するようにしても良い。
鋳型4を反転させる機構は特に限定されるものではないが、例えば上記の周回移動機構7の説明で述べたように、鋳型4をレール上に車輪を介して軸支持する際に回転可能に支持して、かつ空冷移動部9では鋳型5が回転しないように鋳型4の姿勢を保持する保持部を設けておき、続いて、反転排出部11に鋳型4が来たときに、鋳型4の姿勢が反転するようにガイドするガイド部を設けるようにすればよい。
《Reverse discharge unit》
The reverse discharge part 11 is a part for discharging the solidified slag 18 by inverting the mold 4 so that the recessed part 4a faces downward.
As shown in FIG. 1, the reverse discharge unit 11 is disposed next to the air-cooling moving unit 9 and is provided below the mold 4 around which the pits 19 that can store the solidified slag 18 to be discharged circulate. ing. You may make it arrange | position the container for accommodating slag in a pit, and to accommodate and convey slag.
Although the mechanism for reversing the mold 4 is not particularly limited, for example, as described in the explanation of the circular movement mechanism 7 above, the mold 4 is rotatably supported when the shaft 4 is supported on the rail via the wheel. In addition, the air-cooling moving unit 9 is provided with a holding unit that holds the posture of the mold 4 so that the mold 5 does not rotate. Subsequently, when the mold 4 comes to the reverse discharge unit 11, the posture of the mold 4 is set. What is necessary is just to provide the guide part which guides so that it may reverse.

なお、鋳型4の反転方向は、図1に示すように、周回方向に向かって回転させて反転させるようにするのが好ましい。鋳型4を周回方向に回転させて反転させるようにすれば、例えば特許文献2の鋳型4を周回方向の径方向に傾動させる場合のような周回中心に対して重心がずれて回転装置全体のバランスが崩れるといった問題がない。なお、鋳型4の周回方向の回転は順転あるいは逆転のいずれでもよい。   As shown in FIG. 1, the reversal direction of the mold 4 is preferably reversed by rotating it in the circumferential direction. If the mold 4 is rotated in the rotating direction to be reversed, the center of gravity is shifted from the rotating center as in the case where the mold 4 of Patent Document 2 is tilted in the radial direction of the rotating direction, for example, and the balance of the entire rotating device. There is no problem of collapse. The rotation of the mold 4 in the circumferential direction may be either forward rotation or reverse rotation.

《移動部》
移動部12は、反転し凝固スラグを排出した鋳型4を前記反転排出部11で反転した状態のままで、再び前記溶融スラグ3が流し込まれる部位まで移動させる部位である。移動部12には、図1に示すように、鋳型4の上側及び下側から冷媒を噴射して鋳型4を冷却する冷却装置20を設けるのが好ましい。
具体的には、上側及び下側から、ノズル等を用いて冷却水やミストや冷却ガスを反転させた鋳型4に吹き付けるとよいが、効率よく短時間で冷却するには、冷却水を上下双方から噴射して急冷するのがよい。
《Moving part》
The moving part 12 is a part that moves the mold 4 that has been inverted and discharged the solidified slag to a part where the molten slag 3 is poured again while the mold 4 is inverted by the inverted discharging part 11. As shown in FIG. 1, the moving unit 12 is preferably provided with a cooling device 20 that cools the mold 4 by injecting a coolant from the upper side and the lower side of the mold 4.
Specifically, it is preferable to spray the cooling water, mist, or cooling gas from the upper side and the lower side to the mold 4 in which the cooling water, the cooling gas, and the like are reversed. It is better to cool it by spraying it.

本実施の形態では鋳型4の下面側では冷却水が自然落下するが、上面側では鋳型内に冷却水が溜まるため少量の冷却水で効率良く冷却することが可能である。但し、鋳型4内に冷却水が残留したまま鋳型に再び溶融スラグを流し込むと、凝固したスラグに気孔が多数発生してコンクリート粗骨材として適用できなくなるという問題があり、水蒸気爆発を引き起こす危険性の問題もあるため、上面側の冷却水の制御には注意を払う必要がある。
過剰な溜まり水を生じさせないように鋳型温度に応じて噴射する冷却水量を制御するとともに、鋳型温度を150℃未満に低下させすぎないようにし、かつ乾燥時間、即ち、上面側の冷却水の最終噴射位置からスラグ注入位置までの移動時間をある程度確保することによって、この問題は解消できる。
In the present embodiment, the cooling water naturally falls on the lower surface side of the mold 4, but the cooling water accumulates in the mold on the upper surface side, so that it can be efficiently cooled with a small amount of cooling water. However, if the molten slag is poured again into the mold 4 while the cooling water remains in the mold 4, there is a problem that many pores are generated in the solidified slag and cannot be applied as a concrete coarse aggregate, and there is a risk of causing a steam explosion. Therefore, it is necessary to pay attention to the control of the cooling water on the upper surface side.
The amount of cooling water jetted is controlled according to the mold temperature so as not to generate excessive accumulated water, and the mold temperature is prevented from being excessively lowered below 150 ° C., and the drying time, that is, the final cooling water on the upper surface side is determined. This problem can be solved by securing a certain amount of travel time from the injection position to the slag injection position.

冷却水量を低下させた場合においても、所定の冷却面積と冷却効率を確保する観点から、上面側の冷却水ノズルには気水2流体のミストスプレーノズルを用いることが望ましい。
また、水切り用のワイピングノズルを上面側の冷却水の最終噴射位置の後に設置して送風することにより水切りを行うことが望ましく、空冷用のガスジェットの吹き付けにより水切り及び乾燥を兼ねるようにしても良い。
Even when the amount of cooling water is reduced, it is desirable to use a two-mist mist spray nozzle as the upper cooling water nozzle from the viewpoint of ensuring a predetermined cooling area and cooling efficiency.
Further, it is desirable to drain water by installing a wiping nozzle for draining water after the final injection position of the cooling water on the upper surface side and blowing air, and it is also possible to perform draining and drying by blowing a gas jet for air cooling. good.

一方、凝固スラグ18に接触していた面は移動部12において下面側になり、吹き付けられた冷却水のほとんどは自然落下して回収された後再利用されるので、冷却水の噴射量は鋳型4の冷却条件を考慮して自由に設定することができる。また、下面側には溶融スラグの流し込み時に冷却水が付着していても問題ないので、図1に示したように、必要に応じて十分な冷却区間(上面側よりも長い冷却区間)を確保するようにできる。なお、溶融スラグを流し込まれる位置において鋳型4の下方に水たまりがあると、仮に溶融スラグが溢れた場合等に水蒸気爆発等が発生する可能性があるため、スラグを流し込む位置において鋳型4に付着していた水が落下しない程度に水切りあるいは乾燥する必要があり、このため必要に応じて上面側と同様に水切り用のワイピングノズルを設けるようにしてもよい。   On the other hand, the surface that has been in contact with the solidified slag 18 becomes the lower surface side in the moving unit 12, and most of the sprayed cooling water is spontaneously dropped and collected and reused. 4 can be set freely in consideration of the cooling condition. In addition, there is no problem even if cooling water adheres to the lower surface when molten slag is poured. As shown in FIG. 1, a sufficient cooling section (a cooling section longer than the upper surface) is secured as required. You can do that. If there is a puddle below the mold 4 at the position where the molten slag is poured, a steam explosion may occur if the molten slag overflows. Therefore, the molten slag adheres to the mold 4 at the position where the slag is poured. It is necessary to drain or dry to such an extent that the water that has been dropped does not fall. For this reason, a wiping nozzle for draining may be provided as necessary on the upper surface side.

鋳型温度の過渡的な変化に対応して、溶融スラグを流し込む上面側に冷却水が残留しないようにしつつ、鋳型を過不足なく冷却するためには、冷却装置20の上面側及び下面側のそれぞれの配管系統を周回方向に複数に分割して、各配管系統毎に冷却水流量を制御することが望ましい。   In order to cool the mold without excess or deficiency while preventing the cooling water from remaining on the upper surface side where the molten slag is poured in response to the transient change in the mold temperature, each of the upper surface side and the lower surface side of the cooling device 20 is used. It is desirable to divide this piping system into a plurality of circumferential directions and control the cooling water flow rate for each piping system.

なお、鋳型4を上側及び下側の両面から冷却することで、片側のみからの冷却に比較すると冷却時間を短くでき、このため全周回長さに対する鋳型冷却の反転移動部13の長さを短くし、その分をスラグ凝固のための空冷移動部9の長さを長くすることができて、空冷移動部9の長さを、周回軌道全長の1/2超えにできるわけである。   In addition, by cooling the mold 4 from both the upper and lower sides, the cooling time can be shortened as compared with cooling from only one side, and therefore the length of the reversal moving portion 13 for mold cooling with respect to the entire round length is shortened. Accordingly, the length of the air-cooling moving part 9 for slag solidification can be increased by that amount, and the length of the air-cooling moving part 9 can be more than ½ of the entire length of the orbit.

また、鋳型の片面側のみに凹陥部を有する装置の場合には、再びスラグを流し込むのに鋳型を再反転するための部位を周回軌道中に設ける必要があるが、鋳型の両面に凹陥部を有する本実施の形態では、鋳型を再反転する必要がない。そのため、このような再反転のための部位を鋳型の冷却あるいは空冷移動部として活用できるという利点もある。   In addition, in the case of a device having a recessed portion only on one side of the mold, it is necessary to provide a portion for re-inversion of the mold in the circular track to flow the slag again. In this embodiment, it is not necessary to reinvert the template. Therefore, there is also an advantage that such a portion for re-inversion can be used as a mold cooling or air cooling moving part.

前述したように、空冷移動部9の長さは溶融スラグ3が所定の状態に凝固するための時間を確保する必要があるため、所定の長さが必要となるが、それ以外の周回長さにおける各部位の長さの割合を少なくできるということは、装置全体を小型化できることになる。その意味で、鋳型4を上下両面から冷却することは、装置全体の小型化に大きく寄与する。
また、鋳型4を上下両面から冷却することで、鋳型4を満遍なく冷却できるので、熱応力によって鋳型4が変形するのを防止できる。またさらに、鋳型4の両面に凹陥部を設けてスラグを流し込むようにしたことから、熱応力が対称にかかるようになったので、熱負荷が大きい場合でも鋳型4の反り変形を防止できるという優れた効果もある。鋳型4の変形は周回移動や反転にとって安定してこれら動作を行う上で重要な問題であり、またスラグ厚みを均一にして空冷移動部9において凝固を完了させつつ生産性を高めるうえでも重要となるので、鋳型4の変形防止は本装置稼働の要である。
As described above, the length of the air-cooling moving part 9 needs to be a predetermined length because it is necessary to secure time for the molten slag 3 to solidify into a predetermined state. The fact that the ratio of the length of each part in can be reduced means that the entire apparatus can be miniaturized. In that sense, cooling the mold 4 from the upper and lower surfaces greatly contributes to the miniaturization of the entire apparatus.
Moreover, since the mold 4 can be cooled evenly by cooling the mold 4 from the upper and lower surfaces, it is possible to prevent the mold 4 from being deformed by thermal stress. Furthermore, since the concave portions are provided on both sides of the mold 4 so as to flow the slag, the thermal stress is applied symmetrically, so that it is possible to prevent warpage deformation of the mold 4 even when the heat load is large. There is also an effect. The deformation of the mold 4 is an important problem for carrying out these operations stably for circular movement and reversal, and is also important for improving productivity while making the slag thickness uniform and completing solidification in the air-cooling moving part 9. Therefore, prevention of deformation of the mold 4 is the key to the operation of this apparatus.

なお、上述のように鋳型4の冷却は上側及び下側の両面から行うのが好ましいが、本発明では、上側のみ、あるいは下側のみからの片側冷却を排除するものではない。   As described above, the cooling of the mold 4 is preferably performed from both the upper side and the lower side, but in the present invention, one-side cooling from only the upper side or only from the lower side is not excluded.

また、図1に示すように、冷却装置20によって冷却した後、所定の距離だけ移動させ、その後に再び溶融スラグを流し込むようにするのが好ましい。この理由は、冷却後に所定距離だけ移動させることで、移動中に冷却時に鋳型4の上面に残留した水分が、鋳型4の残留熱によって蒸発して、完全に除去されるからである。   Moreover, as shown in FIG. 1, after cooling with the cooling device 20, it is preferable to move only a predetermined distance, and after that, pouring molten slag again. The reason for this is that the moisture remaining on the upper surface of the mold 4 during the cooling during the movement is evaporated by the residual heat of the mold 4 and is completely removed by moving it by a predetermined distance after the cooling.

以上のように構成された本実施の形態の凝固スラグ製造装置1を用いて凝固スラグを製造する方法の一例を、凝固スラグ製造装置1の動作と共に説明する。
周回移動機構7を所定の速度で回転させ、装置1周の間に溶融スラグ流入部位にて、周回している鋳型4に溶融スラグ3を流し込み、溶融スラグ3が流し込まれた鋳型4は空冷移動部9を移動し、溶融スラグ3は鋳型4に熱を奪われるとともに空冷されて凝固スラグになる。
反転排出部11に到着した鋳型4は、反転排出部11において周回方向に向けて回転して反転し、凝固スラグ18がピット19に排出される。凝固スラグ18を排出した鋳型4は反転状態で移動部12を移動し、該移動途中において冷却装置20によって冷却される。
移動部12を通過した鋳型4には再びスラグ流入部で溶融スラグ3が流し込まれる。
An example of a method for producing solidified slag using the solidified slag producing apparatus 1 of the present embodiment configured as described above will be described together with the operation of the solidified slag producing apparatus 1.
The orbiting movement mechanism 7 is rotated at a predetermined speed, and the molten slag 3 is poured into the circulating mold 4 at the molten slag inflow portion during one round of the apparatus, and the mold 4 into which the molten slag 3 is poured is moved by air cooling. The molten slag 3 moves through the portion 9 and is deprived of heat by the mold 4 and is air-cooled to become solidified slag.
The mold 4 arriving at the reverse discharge unit 11 rotates and reverses in the circumferential direction at the reverse discharge unit 11, and the solidified slag 18 is discharged into the pits 19. The mold 4 from which the solidified slag 18 has been discharged moves the moving part 12 in an inverted state, and is cooled by the cooling device 20 during the movement.
The molten slag 3 is poured into the casting mold 4 that has passed through the moving portion 12 again at the slag inflow portion.

以上のように、本実施の形態においては、複数の鋳型4を近接状態で支持した状態で水平方向に周回移動させる周回移動機構7を備え、該周回移動機構7の装置1周の間、空冷して凝固させる空冷移動部9と、鋳型4をその凹陥部4aが下方に向くように反転させて凝固スラグ18を排出する反転排出部11と、反転した鋳型4を反転した状態のままで移動させる移動部12とを備えたことにより、鋳型を直線的に無端状に連結する従来例のようにスラグ凝固の空冷行程の必要長さによって装置の全周長さが限定されず、空冷移動部9に続く反転排出部11等の各部に必要とされる周回方向長さを除いて空冷移動部9の長さに割り当てることが可能となり、周回行程に無駄な時間が生じない。
また、本実施の形態では、移動部12において鋳型4を上下両面から冷却するようにしているので、鋳型4を効率的に冷却することができ、これによって移動部12の長さを短くできる。更に、鋳型の両面に凹陥部を有する本実施の形態では、溶融スラグを再び流し込むために鋳型を再反転する必要がないため、このための部位を、鋳型の冷却や空冷移動部に活用できるという利点もある。その結果として周回長さを短くでき、装置全体をコンパクトにできる。
As described above, in the present embodiment, the circular movement mechanism 7 that moves in the horizontal direction in a state in which the plurality of molds 4 are supported in the proximity state is provided, and air cooling is performed during one turn of the circular movement mechanism 7. The air cooling moving part 9 for solidifying, the reversing discharge part 11 for reversing the mold 4 so that the recessed part 4a faces downward and discharging the solidified slag 18 and the reversing mold 4 are moved in the inverted state. Since the moving part 12 is provided, the entire peripheral length of the apparatus is not limited by the required length of the air cooling process of slag solidification as in the conventional example in which the molds are linearly connected endlessly, and the air cooling moving part 9 can be assigned to the length of the air-cooling moving unit 9 except for the length in the circulation direction required for each part such as the reverse discharge unit 11 following 9, and no wasteful time is generated in the circulation process.
Moreover, in this Embodiment, since the casting_mold | template 4 is cooled from both upper and lower surfaces in the moving part 12, the casting_mold | template 4 can be cooled efficiently and the length of the moving part 12 can be shortened by this. Further, in the present embodiment having concave portions on both sides of the mold, it is not necessary to re-invert the mold in order to flow the molten slag again, so that the portion for this can be used for the cooling of the mold and the air-cooling moving section. There are also advantages. As a result, the circulation length can be shortened and the entire apparatus can be made compact.

なお、JIS A5011コンクリート用スラグ骨材-第1部:高炉スラグ骨材に規定される高炉スラグ粗骨材2005の粒径範囲のものを製造するため、スラグの凝固厚みは20〜40mmとした。そのため、凝固厚みが20mm以下では、破砕後の粒度分布が細粒になり、規格を満たさない。
一方、凝固厚みが40mm以上になると、吸水率が高くなり1.5%を超えることと、20mm以下にするために破砕の繰り返しが必要になり5mm未満の細粒が増え歩留が低下することが問題になる。
In addition, in order to manufacture the thing of the particle size range of the blast furnace slag coarse aggregate 2005 prescribed | regulated to slag aggregate for JIS A5011 concrete-1st part: blast furnace slag aggregate, the solidification thickness of slag was 20-40 mm. Therefore, when the solidification thickness is 20 mm or less, the particle size distribution after crushing becomes fine and does not satisfy the standard.
On the other hand, when the solidification thickness is 40 mm or more, the water absorption rate increases and exceeds 1.5%, and crushing is required to reduce it to 20 mm or less, and the fine grains of less than 5 mm increase and the yield decreases. become.

本発明の凝固スラグ製造装置1による作用効果について、具体的な実施例に基づいて説明する。
本実施例においては、鋳型4は平面視台形形状の鋳鋼製で、その厚みを45mmとし、台形外径の上底短辺を0.7m、台形外径の下底短辺の長さを1.0mとし、台形外径の高さを2.7mとした。また、鋳型4の両面の凹陥部4aの深さを100mmとした。
周回移動機構7は、図1に示したものと同様であり、周回搬送する搬送速度は角速度で120度/minとした。
スラグ流入部位において、鋳型4には、1360℃以上1410℃以下の溶融状態の高炉スラグを約2.1t/minで流入させた。溶融スラグの流入速度は、スラグ鍋の形状と傾動角度の変化速度から算出されるスラグの排出速度と等しく、傾動角度を自動制御することにより調節した。
溶融スラグ3が流し込まれた鋳型4は空冷移動部9を126秒間{空冷移動部の長さが全周の70%(252度)}搬送し、溶融スラグ3を鋳型による抜熱及び空冷によって凝固スラグとした。
The effect by the solidification slag manufacturing apparatus 1 of this invention is demonstrated based on a specific Example.
In this embodiment, the mold 4 is made of cast steel having a trapezoidal shape in plan view, the thickness is 45 mm, the upper base short side of the trapezoid outer diameter is 0.7 m, and the length of the lower base short side of the trapezoid outer diameter is 1. 0.0 m, and the height of the trapezoid outer diameter was 2.7 m. Moreover, the depth of the recessed part 4a of both surfaces of the casting_mold | template 4 was 100 mm.
The circular movement mechanism 7 is the same as that shown in FIG. 1, and the conveyance speed for circular conveyance is 120 degrees / min in angular velocity.
At the slag inflow site, molten blast furnace slag of 1360 ° C. or higher and 1410 ° C. or lower was flowed into the mold 4 at about 2.1 t / min. The inflow speed of the molten slag was equal to the slag discharge speed calculated from the shape of the slag pan and the change speed of the tilt angle, and was adjusted by automatically controlling the tilt angle.
The mold 4 into which the molten slag 3 has been poured conveys the air-cooled moving part 9 for 126 seconds {the length of the air-cooled moving part is 70% of the entire circumference (252 degrees)}, and the molten slag 3 is solidified by heat removal by the mold and air cooling. It was slag.

反転排出部11では実施の形態で説明したように、鋳型4を、その支持軸を回転軸として周回方向に回転させて反転させ、凝固スラグ18をピット19に落下させ排出させた。
反転排出部11で反転して凝固スラグ18を排出した鋳型4を、反転した状態のままで移動部12を移動させ、冷却装置20が設置されている部位にて上下両面から冷却水を噴射して急冷した。
凝固スラグ排出直後の反転状態の鋳型4は凝固スラグ18に接触していた表面は300℃超えの高温状態まで上昇したが、反転させたまま冷却水を噴射することによって、鋳型4の表面温度を200℃以下の温度に急冷することができた。
As described in the embodiment, in the reverse discharge unit 11, the mold 4 is rotated in the circumferential direction with the support shaft as a rotation axis and reversed, and the solidified slag 18 is dropped into the pit 19 and discharged.
The mold 4 that has been reversed by the reversal discharge unit 11 and discharged the solidified slag 18 is moved in the inverted state, and the moving unit 12 is moved, and cooling water is sprayed from both the upper and lower sides at the site where the cooling device 20 is installed. And quickly cooled.
The mold 4 in the inverted state immediately after discharge of the solidified slag rose to a high temperature state exceeding 300 ° C. while the surface that was in contact with the solidified slag 18 was raised. It was possible to rapidly cool to a temperature of 200 ° C. or lower.

一方、鋳型4の背面側(当該周回において溶融スラグを流し込んだ面の反対側)は、移動部12において上面側になり、凝固スラグ排出直後の表面温度が200℃以上に上昇してから冷却水を噴射し、再びスラグを流し込む前の鋳型温度が150℃未満にならないように、凝固スラグ排出直後の表面温度に応じて上面側及び下面側の冷却水量と冷却水を噴射する範囲を調節した。また、上面側の冷却水噴射ノズルの設置区間の後に設置した図示しないワイピングノズルによって空気を吹き付け、鋳型4の上面側の溜まり水を排出した。
冷却後の鋳型4は、再び溶融スラグの流し込み位置まで移動部12を搬送され、この間において水冷時に残留した水分が、鋳型4の残留熱によって蒸発して、完全に除去された。
On the other hand, the back surface side of the mold 4 (the side opposite to the surface into which the molten slag was poured in the circumference) is the upper surface side in the moving part 12, and the cooling water is increased after the surface temperature immediately after discharging the solidified slag rises to 200 ° C or higher. The amount of cooling water on the upper surface side and the lower surface side and the range for injecting the cooling water were adjusted according to the surface temperature immediately after discharging the solidified slag so that the mold temperature before flowing the slag again did not become less than 150 ° C. Further, air was blown by a wiping nozzle (not shown) installed after the installation section of the cooling water spray nozzle on the upper surface side, and the accumulated water on the upper surface side of the mold 4 was discharged.
The mold 4 after cooling was again conveyed through the moving part 12 to the pouring position of the molten slag. During this time, the water remaining during the water cooling was evaporated by the residual heat of the mold 4 and completely removed.

なお、鋳型の温度はスラグを反転して落下させる直前に最も高い温度になるが、そのときに放射温度計で測定した鋳型背面側の表面温度が300℃を超えると、耐力が低下して鋳型4が変形する場合があったので、散水量、散水時間を調節して鋳型4の背面側の表面温度は300℃以下とするのが望ましい。   The temperature of the mold becomes the highest temperature just before the slag is inverted and dropped. However, if the surface temperature on the mold back side measured by the radiation thermometer exceeds 300 ° C., the proof stress decreases and the mold Since 4 may be deformed, it is desirable that the surface temperature on the back side of the mold 4 is 300 ° C. or lower by adjusting the watering amount and watering time.

その後、スラグの流し込み位置に周回して戻された鋳型に再び溶融スラグを流し込んだ。以上の工程を1回のスラグ鍋に対して約5周繰り返し、30トンの溶融スラグを連続して処理した。   Thereafter, the molten slag was poured again into the mold that had been circulated back to the slag pouring position. The above process was repeated about 5 laps for one slag pan, and 30 tons of molten slag was continuously processed.

反転した鋳型から落下したスラグをピット19から回収後、凝固厚み測定すると21〜32mmであり、平均厚みは26.2mmであった。
従来実施されていた土間に溶融スラグ3を流して数mの厚みとなる場合に比べて、空冷であっても冷却速度は大きくなり、凝固スラグ18は気孔が少ない緻密な結晶質になっていた。
The slag dropped from the inverted mold was collected from the pit 19 and then measured for solidification thickness, which was 21 to 32 mm, and the average thickness was 26.2 mm.
Compared to the case where the molten slag 3 is flowed between soils, which has been conventionally performed, and has a thickness of several meters, the cooling rate is increased even with air cooling, and the solidified slag 18 has a dense crystalline with few pores. .

以上のように、凝固スラグ製造装置1によれば、気孔の含有率が極めて低い緻密で高品質な凝固スラグ18を効率よく且つ連続的に得ることができた。   As described above, according to the solidified slag manufacturing apparatus 1, a dense and high-quality solidified slag 18 having a very low pore content can be obtained efficiently and continuously.

次に、実施例と類似の周回機構を有する図4に示した凝固スラグ製造装置2において、図5に示した片面側にのみ凹陥部5aを有する鋳型5に、溶融状態の高炉スラグを流し込んで凝固スラグを製造する比較例について説明する。なお、図4において、図1と同一機能を有する部位には同一の符号を付している。   Next, in the solidified slag manufacturing apparatus 2 shown in FIG. 4 having a revolving mechanism similar to the embodiment, molten blast furnace slag is poured into the mold 5 having the recessed portion 5a only on one side shown in FIG. A comparative example for producing the solidified slag will be described. 4, parts having the same functions as those in FIG. 1 are denoted by the same reference numerals.

鋳型5に流し込まれた溶融スラグ3は、鋳型5が空冷移動部9を搬送される間に鋳型5による抜熱及び空冷によって凝固した後、反転排出部11で鋳型5を反転させることにより、凝固スラグ18としてピット19に落下して排出された。
凝固スラグ18を排出した鋳型5は、反転状態のまま反転移動部13を搬送され、冷却装置21が設置されている部位にて上下両面から冷却水を噴射して急冷した。
続いて、反転状態の鋳型5は、再反転部15において再反転され、再び元の凹陥部5aが上方を向いた状態に戻された後、再び溶融スラグが流し込まれた。以上の工程を繰り返して溶融スラグを連続して処理した。
The molten slag 3 poured into the mold 5 is solidified by reversing the mold 5 by the reversing discharge section 11 after solidifying by heat removal and air cooling by the mold 5 while the mold 5 is transported through the air cooling moving section 9. The slag 18 dropped into the pit 19 and was discharged.
The mold 5 from which the solidified slag 18 had been discharged was conveyed through the reversal moving unit 13 while being in a reversed state, and was rapidly cooled by jetting cooling water from both the upper and lower surfaces at the site where the cooling device 21 was installed.
Subsequently, the mold 5 in the inverted state was re-inverted in the re-inversion part 15 and the original concave part 5a was again returned to the upward state, and then molten slag was poured again. The above process was repeated to continuously process the molten slag.

鋳型5の凹陥部5aを下方に向けている間に下側から噴射される冷却水のほとんどは自然落下するが、付着した水分が凹陥部5aに残留していると再び溶融スラグを流し込む際に問題となる。このため、鋳型5が再反転部15を経て再び溶融スラグが流し込まれる位置まで搬送される間に鋳型5の残留熱によって蒸発するように、再びスラグを流し込む前の鋳型温度が150℃以上とするよう、凝固スラグ排出直後の表面温度に応じて冷却水量と冷却水を噴射する範囲を調節した。   While most of the cooling water sprayed from the lower side naturally falls while the concave portion 5a of the mold 5 is directed downward, if the adhering water remains in the concave portion 5a, the molten slag is poured again. It becomes a problem. For this reason, the mold temperature before pouring the slag again is 150 ° C. or higher so that the mold 5 evaporates due to the residual heat of the mold 5 while it is conveyed to the position where the molten slag is poured again through the re-inversion unit 15. The amount of cooling water and the range for injecting cooling water were adjusted according to the surface temperature immediately after discharging the solidified slag.

前記の実施例と対比すると、実施例と同等の鋳型の冷却及び乾燥の条件としたうえで再反転部15を設けるためには、図6に示したように空冷移動部9を1割程度短縮して全周の64%(230度)とし、空冷移動部9の移動時間を115秒間とする必要があった。このことから、実施例と同等の溶融スラグの流入速度では、反転排出部11において排出したスラグの内部が未凝固となって破面から流れ出し、一定した板状の形状の凝固スラグが得られない場合があったため、溶融スラグの流入速度を2.0t/minに調節し、凝固スラグの平均厚みは25.0mmとなった。前述したように実施例では溶融スラグの流入速度を2.1t/minとしても問題がなかったことから、実施例では比較例に対して約5%の生産性向上が可能であることが分かる。   In contrast to the above-described embodiment, in order to provide the re-inversion portion 15 with the same mold cooling and drying conditions as the embodiment, the air-cooling moving portion 9 is shortened by about 10% as shown in FIG. Therefore, it was necessary to set 64% (230 degrees) of the entire circumference, and the moving time of the air-cooling moving unit 9 was 115 seconds. From this, at the inflow speed of the molten slag equivalent to that of the embodiment, the inside of the slag discharged in the reverse discharge part 11 becomes unsolidified and flows out from the fracture surface, and a solid plate-shaped solidified slag cannot be obtained. In some cases, the molten slag inflow rate was adjusted to 2.0 t / min, and the average thickness of the solidified slag was 25.0 mm. As described above, in the example, there was no problem even when the inflow rate of the molten slag was set to 2.1 t / min. Therefore, it can be seen that in the example, the productivity can be improved by about 5% compared to the comparative example.

また、同程度の鋳型の冷却条件、即ち、凝固スラグ排出直後の鋳型背面温度を同等にする条件において、3ヶ月使用後の長期間での鋳型の反り変形の程度を比較したところ、実施例では平均反り変形量が比較例に対して約1/3に減少した。実施例では、鋳型の両面に溶融スラグを流し込むことにより、熱応力の非対称性が緩和されて、反り変形が抑制されていると考えられる。   In addition, when the mold cooling conditions were comparable, i.e., the mold back surface temperature immediately after discharging the solidified slag was equivalent, the degree of warpage deformation of the mold over a long period of time after use for 3 months was compared. The average warpage deformation amount was reduced to about 1/3 of the comparative example. In the example, it is considered that by introducing molten slag to both surfaces of the mold, the asymmetry of the thermal stress is relaxed and the warpage deformation is suppressed.

なお、上述した実施の形態では、図1に示したように周回方向を右回りにする例を示したが、本発明における周回方向はこれに限られず、空冷移動部、反転排出部、移動部の順に左回りであってもよい。
また、周回の形状についても、円周状でなくても、例えば楕円、矩形等であってもよい。
In the embodiment described above, an example in which the circulation direction is clockwise as shown in FIG. 1 is shown. However, the circulation direction in the present invention is not limited to this, and the air cooling moving unit, the reverse discharge unit, the moving unit May be counterclockwise.
Also, the shape of the circle may not be a circle but may be, for example, an ellipse or a rectangle.

1 凝固スラグ製造装置(本発明例)
2 凝固スラグ製造装置(比較例)
3 溶融スラグ
4 鋳型(本発明例)
4a 凹陥部
4b 傾斜面
4c スラグ落下防止部位
5 鋳型(比較例)
5a 凹陥部
5b 傾斜面
5c スラグ落下防止部位
7 周回移動機構
9 空冷移動部
11 反転排出部
12 移動部
13 反転移動部
15 再反転部
17 再反転移動部
18 凝固スラグ
19 ピット
20 冷却装置
21 冷却装置
22 樋
1 Solidification slag production equipment (example of the present invention)
2 Solidified slag production equipment (comparative example)
3 Molten slag 4 Mold (Example of the present invention)
4a Recessed part 4b Inclined surface 4c Slag fall prevention part 5 Mold (comparative example)
5a Concave part 5b Inclined surface 5c Slag fall prevention part 7 Circumferential movement mechanism 9 Air cooling movement part 11 Reverse discharge part 12 Movement part 13 Reverse movement part 15 Reinversion part 17 Reinversion movement part 18 Solidification slag 19 Pit 20 Cooling device 21 Cooling device 22 樋

Claims (6)

周回する複数の金属製の鋳型に溶融スラグを流し込んで凝固スラグを連続的に製造する凝固スラグ製造装置であって、
前記鋳型は両面に溶融スラグが流し込まれる凹陥部が形成されており、
前記複数の鋳型を近接させて支持した状態で水平方向に周回移動させる周回移動機構を備え、
該周回移動機構は鋳型が1周回する間に、流し込まれた溶融スラグを前記凹陥部に保持した状態で鋳型を周回方向に移動させ前記溶融スラグを空冷して凝固させる空冷移動部と、前記鋳型を反転させて凝固スラグを排出する反転排出部と、反転した鋳型を反転した状態のままで移動させる移動部とを備え、
前記各鋳型は周回毎に反転されて異なる面の凹陥部に溶融スラグが流し込まれることを特徴とする凝固スラグ製造装置。
A solidified slag production apparatus for continuously producing solidified slag by pouring molten slag into a plurality of metal molds that circulate,
The mold is formed with recesses into which molten slag is poured on both sides,
Comprising a circular movement mechanism for circular movement in the horizontal direction in a state of supporting the plurality of molds close to each other,
The orbiting movement mechanism includes an air-cooling moving unit that moves the mold in a circling direction while the molten slag poured in is held in the recessed portion while the mold makes one revolution, and air-cools and solidifies the molten slag, and the mold And a reversing discharge unit that discharges the solidified slag and a moving unit that moves the reversed mold in an inverted state.
Each casting mold is inverted for each turn, and molten slag is poured into the recessed portions of different surfaces.
前記周回移動機構一周において、前記空冷移動部の占める長さ(角度)を周回軌道全長(全角360度)の1/2(180度)超え、3/4(270度)未満とすることを特徴とする請求項1に記載の凝固スラグ製造装置。   In one round of the circular moving mechanism, the length (angle) occupied by the air-cooled moving part is more than 1/2 (180 degrees) and less than 3/4 (270 degrees) of the total length of the circular trajectory (full angle 360 degrees). The solidified slag manufacturing apparatus according to claim 1. 前記反転排出部は、前記鋳型を周回方向に向けて回転させることによって鋳型を反転させることを特徴とする請求項1又は2に記載の凝固スラグ製造装置。   The solidification slag manufacturing apparatus according to claim 1, wherein the reverse discharge unit reverses the mold by rotating the mold in a circumferential direction. 前記移動部において鋳型の上下両面に冷媒を噴射して冷却する冷却装置を備えたことを特徴とする請求項1乃至3のいずれか一項に記載の凝固スラグ製造装置。   The solidified slag manufacturing apparatus according to any one of claims 1 to 3, further comprising a cooling device that cools the moving portion by injecting a coolant onto both upper and lower surfaces of the mold. 鋳型の表面温度を300℃以下にするように前記鋳型を冷却することを特徴とする請求項4に記載の凝固スラグ製造装置。   The solidified slag manufacturing apparatus according to claim 4, wherein the mold is cooled so that the surface temperature of the mold is 300 ° C. or less. 請求項1〜5のいずれか一項に記載の凝固スラグ製造装置を用いて凝固スラグを製造する凝固スラグ製造方法であって、
鋳型の凹陥部に溶融スラグを注入する溶融スラグ注入工程と、溶融スラグが注入された鋳型を周回移動させながら溶融スラグを空冷する空冷工程と、鋳型を反転させて20〜40mmの厚みの板状に凝固した凝固スラグを排出する凝固スラグ排出工程を備えたことを特徴とする凝固スラグ製造方法。
A solidified slag production method for producing a solidified slag using the solidified slag production apparatus according to any one of claims 1 to 5,
A molten slag injection step for injecting molten slag into the concave portion of the mold, an air cooling step for air-cooling the molten slag while rotating the mold infused with the molten slag, and a plate having a thickness of 20 to 40 mm by inverting the mold A solidified slag manufacturing method comprising a solidified slag discharging step of discharging solidified slag solidified.
JP2013170102A 2013-08-20 2013-08-20 Solidified slag manufacturing apparatus and solidified slag manufacturing method Active JP6015593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013170102A JP6015593B2 (en) 2013-08-20 2013-08-20 Solidified slag manufacturing apparatus and solidified slag manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013170102A JP6015593B2 (en) 2013-08-20 2013-08-20 Solidified slag manufacturing apparatus and solidified slag manufacturing method

Publications (2)

Publication Number Publication Date
JP2015040638A true JP2015040638A (en) 2015-03-02
JP6015593B2 JP6015593B2 (en) 2016-10-26

Family

ID=52694905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170102A Active JP6015593B2 (en) 2013-08-20 2013-08-20 Solidified slag manufacturing apparatus and solidified slag manufacturing method

Country Status (1)

Country Link
JP (1) JP6015593B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129124A (en) * 1977-04-18 1978-11-10 Nagata Seisakusho Co Ltd Circular casting machine
JPS588988A (en) * 1981-07-08 1983-01-19 住友金属工業株式会社 Method of treating melted metallurgical slag
JP2003207281A (en) * 2002-01-18 2003-07-25 Jfe Steel Kk Operating method of continuous solidification device of slag
JP5413542B1 (en) * 2012-02-17 2014-02-12 Jfeスチール株式会社 Solidified slag manufacturing device, concrete coarse aggregate manufacturing device, solidified slag manufacturing method, and concrete coarse aggregate manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129124A (en) * 1977-04-18 1978-11-10 Nagata Seisakusho Co Ltd Circular casting machine
JPS588988A (en) * 1981-07-08 1983-01-19 住友金属工業株式会社 Method of treating melted metallurgical slag
JP2003207281A (en) * 2002-01-18 2003-07-25 Jfe Steel Kk Operating method of continuous solidification device of slag
JP5413542B1 (en) * 2012-02-17 2014-02-12 Jfeスチール株式会社 Solidified slag manufacturing device, concrete coarse aggregate manufacturing device, solidified slag manufacturing method, and concrete coarse aggregate manufacturing method

Also Published As

Publication number Publication date
JP6015593B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5413542B1 (en) Solidified slag manufacturing device, concrete coarse aggregate manufacturing device, solidified slag manufacturing method, and concrete coarse aggregate manufacturing method
KR20130099102A (en) Dry granulation of metallurgical slag
JP2009227497A (en) Cooling treatment device and cooling processing method of molten slag
CN108372280A (en) A kind of casting technique of graphite mould titanium alloy casting
JP6318982B2 (en) Heat recovery method and heat recovery system for solidified slag
JP6015593B2 (en) Solidified slag manufacturing apparatus and solidified slag manufacturing method
KR102144062B1 (en) Method and device for manufacturing shot particles
KR101566873B1 (en) Screw conveyor type sand cooler
RU2600297C2 (en) Method for complex processing melts and process line for its implementation
JP5994558B2 (en) Method and apparatus for manufacturing coarse aggregate for concrete
JP3957738B1 (en) Method and apparatus for producing spherical metal particles
CA2800101A1 (en) Method and device for manufacturing vitreous slag
JP2003207281A (en) Operating method of continuous solidification device of slag
CN108300823A (en) A kind of slag stream conveying device and slag granulating take hot systems
CN106077547A (en) A kind of device and method reducing the crystallizer molten steel degree of superheat
JP5892143B2 (en) Solidified slag manufacturing apparatus, concrete coarse aggregate manufacturing apparatus, solidified slag manufacturing method, concrete coarse aggregate manufacturing method
JP2003342047A (en) Granulation method and apparatus for fused slag
JP2008308397A (en) Method of cooling molten slag and method of manufacturing slag product
JP2003221611A (en) Method and apparatus for casting slag
SU1101432A1 (en) Apparatus for granulating molten slags
JPS596166B2 (en) Hard granulated slag production equipment
JP2022039742A (en) Manufacturing method and manufacturing device for casting materials
JP2000088235A (en) Method and system for slow cooling of molten slag
RU1796595C (en) Plant for producing slag stone
JP2003290883A (en) Equipment and method for continuously casting thin cast strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250