JP2015038373A - Friction mechanism and geared motor - Google Patents

Friction mechanism and geared motor Download PDF

Info

Publication number
JP2015038373A
JP2015038373A JP2013170016A JP2013170016A JP2015038373A JP 2015038373 A JP2015038373 A JP 2015038373A JP 2013170016 A JP2013170016 A JP 2013170016A JP 2013170016 A JP2013170016 A JP 2013170016A JP 2015038373 A JP2015038373 A JP 2015038373A
Authority
JP
Japan
Prior art keywords
gear
axial direction
friction mechanism
ring gate
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013170016A
Other languages
Japanese (ja)
Other versions
JP6276538B2 (en
Inventor
勇太 大島
Yuta Oshima
勇太 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Sankyo Corp
Original Assignee
Nidec Sankyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Sankyo Corp filed Critical Nidec Sankyo Corp
Priority to JP2013170016A priority Critical patent/JP6276538B2/en
Priority to CN201420372810.5U priority patent/CN203979192U/en
Priority to CN201410321008.8A priority patent/CN104421349B/en
Publication of JP2015038373A publication Critical patent/JP2015038373A/en
Application granted granted Critical
Publication of JP6276538B2 publication Critical patent/JP6276538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transmission Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a friction mechanism which inhibits strength deterioration by welding and variations in friction torque even when a gear member is formed by resin molding, and to provide a geared motor including the friction mechanism.SOLUTION: A friction mechanism 9 includes: a gear member 92 where a gear part 926 is formed at a cylindrical trunk part 923 extending in a motor axis line direction S; a rotary member 91 including multiple elastic deformation parts 915; and a biasing member 93 which biases the elastic deformation parts 915 and causes the elastic deformation parts 915 to elastically contact with an inner peripheral surface 923p of the trunk part 923. When the gear member 92 is resin molded, a ring gate is disposed at a position in a mold which excludes portions where the gear part 926 and the inner peripheral surface 923p are formed. Thus, a ring gate cutting part is located in a part of the gear member 92 which excludes the gear part 926 and the inner peripheral surface 923p.

Description

本発明は、歯車列等に設けられるフリクション機構、およびフリクション機構を備えたギヤードモータに関するものである。   The present invention relates to a friction mechanism provided in a gear train and the like, and a geared motor including the friction mechanism.

ギヤードモータ等において、歯車列に用いた歯車やモータを保護するためのフリクション機構としては、回転部材の弾性変形部を付勢部材によって歯車部材の円筒状の胴部の内周面に弾性をもって接触させた機構が提案されている(特許文献1参照)。   As a friction mechanism for protecting gears and motors used in gear trains in geared motors, etc., the elastically deforming part of the rotating member is elastically brought into contact with the inner peripheral surface of the cylindrical body of the gear member by the biasing member. A mechanism that has been proposed has been proposed (see Patent Document 1).

特開2010−78009号公報JP 2010-78009 A

特許文献1に記載のフリクション機構を構成するにあたって、歯車部材を樹脂成形によって形成する際に3点ゲート方式を採用すると、ゲート切断部の間にウエルドが発生するため、強度が低下するという問題点がある。また、3点ゲート方式で成形すると、樹脂の流れが不安定であるため、胴部において回転部材と摺動する内周面の真円度が低く、フリクショントルクがばらつきやすいという問題点もある。   In constructing the friction mechanism described in Patent Document 1, if a three-point gate method is employed when forming the gear member by resin molding, a weld is generated between the gate cut portions, resulting in a decrease in strength. There is. Further, when the molding is performed by the three-point gate method, since the flow of the resin is unstable, there is a problem that the roundness of the inner peripheral surface that slides on the rotating member in the trunk portion is low and the friction torque is likely to vary.

以上の問題点に鑑みて、本発明の課題は、歯車部材を樹脂成形によって形成した場合でも、ウエルドによる強度低下やフリクショントルクのばらつきを抑制することのできるフリクション機構、およびフリクション機構を備えたギヤードモータを提供することにある。   In view of the above problems, an object of the present invention is to provide a friction mechanism capable of suppressing a decrease in strength due to welds and variations in friction torque even when the gear member is formed by resin molding, and a geared equipped with the friction mechanism. It is to provide a motor.

上記課題を解決するために、本発明では、軸線方向に延在する円筒状の胴部に歯車部が形成された歯車部材と、前記胴部の外側および内側のうちの一方の周面に径方向から弾性をもって接する複数の弾性変形部を備えた回転部材と、を有し、前記歯車部材は、樹脂製であって、前記歯車部および前記一方の周面を除く位置にリングゲート切断部があることを特徴とする。   In order to solve the above-described problems, in the present invention, a gear member having a gear portion formed on a cylindrical trunk portion extending in the axial direction, and a diameter on one outer surface of the outer side and the inner side of the trunk portion. A rotating member having a plurality of elastically deforming portions that are elastically contacted from the direction, and the gear member is made of resin, and the ring gate cutting portion is located at a position excluding the gear portion and the one peripheral surface. It is characterized by being.

本発明では、回転部材あるいは歯車部材に過大な負荷が印加されていない限り、回転部材と歯車部材は、回転部材と歯車部材との間の摩擦係合力によって一体に回転する。これに対して、回転部材および歯車部材のうちの一方に大きな負荷が加わっている場合には、回転部材と歯車部材との間で空回りが起こるため、回転部材や歯車部材に接続する歯車やモータが破損することを防止することができる。ここで、歯車部材は樹脂製であるが、リングゲートを用いた成形により製造される。このため、3点ゲート方式を採用した場合と違って、ウエルドの発生がないため、十分な強度を有する。また、3点ゲート方式を採用した場合と違って、成形時の樹脂の流れが安定であるため、胴部において回転部材と摺動する周面の真円度が向上する。それ故、安定したフリクショントルクを得ることができる。また、リングゲートが歯車部および一方の周面を除く位置に配置されるので、歯車部や一方の周面にリングゲート切断部が残らない。それ故、歯車部材を用いた歯車列やフリクション機構の動作にリングゲート切断部が支障を及ぼさない。   In the present invention, unless an excessive load is applied to the rotating member or the gear member, the rotating member and the gear member rotate integrally by the frictional engagement force between the rotating member and the gear member. On the other hand, when a large load is applied to one of the rotating member and the gear member, idle rotation occurs between the rotating member and the gear member. Therefore, a gear or a motor connected to the rotating member or the gear member is used. Can be prevented from being damaged. Here, the gear member is made of resin, but is manufactured by molding using a ring gate. For this reason, unlike the case where the three-point gate method is adopted, there is no generation of welds, so that the strength is sufficient. Further, unlike the case where the three-point gate method is adopted, the resin flow at the time of molding is stable, so that the roundness of the peripheral surface that slides with the rotating member in the trunk portion is improved. Therefore, a stable friction torque can be obtained. Further, since the ring gate is disposed at a position excluding the gear portion and the one peripheral surface, the ring gate cutting portion does not remain on the gear portion or the one peripheral surface. Therefore, the ring gate cutting portion does not hinder the operation of the gear train using the gear member and the friction mechanism.

本発明において、前記歯車部は、前記胴部の前記軸線方向の一方の端部に設けられており、前記胴部において前記歯車部より前記軸線方向の他方の端部側に前記リングゲート切断部があることが好ましい。かかる構成によれば、成形時、歯車部を形成する部分には樹脂が高圧で充填されるため、歯車部を高い精度で形成することができる。   In this invention, the said gear part is provided in the one end part of the said axial direction of the said trunk | drum, and the said ring gate cutting | disconnection part is provided in the other end side of the said axial direction from the said gear part in the said trunk | drum. It is preferable that there is. According to such a configuration, at the time of molding, the portion that forms the gear portion is filled with the resin at a high pressure, so that the gear portion can be formed with high accuracy.

本発明において、前記胴部において前記軸線方向の中間位置より前記他方の端部側に前記リングゲート切断部があることが好ましい。かかる構成によれば、成形時、歯車部を形成する部分には樹脂が高圧で充填される。このため、歯車部を高い精度で形成することができる。   In the present invention, it is preferable that the ring gate cutting portion is located on the other end side of the trunk portion from the intermediate position in the axial direction. According to such a configuration, the resin is filled at a high pressure in the portion forming the gear portion during molding. For this reason, a gear part can be formed with high precision.

本発明において、前記胴部において、前記軸線方向の他方側に向いている環状端面に前記リングゲート切断部があることが好ましい。かかる構成によれば、成形時、樹脂が軸線方向に流れやすいので、歯車部等を高い精度で形成することができる。   In this invention, it is preferable that the said ring gate cutting part exists in the cyclic | annular end surface which faces the other side of the said axial direction in the said trunk | drum. According to this configuration, since the resin easily flows in the axial direction during molding, the gear portion and the like can be formed with high accuracy.

本発明において、前記胴部は、前記軸線方向の他方側に向く第1環状端面と、前記第1環状端面より前記軸線方向の一方側で前記軸線方向の他方側に向く第2環状端面と、を備え、前記第2環状端面に前記リングゲート切断部があることが好ましい。かかる構成によれば、第2環状端面にリングゲート切断部があっても、第2環状端面より軸線方向の他方側に第1環状端面があるため、歯車部材では、胴部の軸線方向の最も他方側の端部でリングゲート切断部が凸部として残らない。   In the present invention, the body portion includes a first annular end face facing the other side in the axial direction, a second annular end face facing the other side in the axial direction on one side in the axial direction from the first annular end face, It is preferable that the ring gate cutting portion is provided on the second annular end face. According to such a configuration, even if there is a ring gate cutting portion on the second annular end surface, the first annular end surface is on the other side in the axial direction from the second annular end surface. The ring gate cut portion does not remain as a convex portion at the other end.

本発明において、前記第1環状端面は、前記回転部材に対して前記軸線方向で重なって前記回転部材を前記軸線方向の一方側で位置決めしていることが好ましい。   In the present invention, it is preferable that the first annular end surface overlaps the rotating member in the axial direction to position the rotating member on one side in the axial direction.

本発明において、前記胴部において、前記軸線方向の他方側に向いている環状端面の縁に前記リングゲート切断部がある構成を採用してもよい。   In this invention, you may employ | adopt the structure which has the said ring gate cutting part in the edge of the annular end surface which has faced the other side of the said axial direction in the said trunk | drum.

本発明において、前記胴部の外側および内側のうちの他方の周面に前記リングゲート切断部がある構成を採用してもよい。   In this invention, you may employ | adopt the structure which has the said ring gate cutting part in the other surrounding surface of the outer side and the inner side of the said trunk | drum.

本発明において、前記胴部は、第1胴部と、該第1胴部より前記軸線方向の一方側に形成され、外径寸法が第1胴部より大の第2胴部と、を備え、前記第2胴部の外側および内側のうちの他方の周面に前記歯車部が形成されていることが好ましい。かかる構成によれば、歯車部材の第2胴部(大径部)に歯車部を形成することができる。また、歯車部は、胴部において径方向外側に張り出した部分に形成されているので、歯車部に対して軸線方向の他方側に他の歯車等の部材が位置する場合でも、歯車部材と干渉しない。   In the present invention, the body portion includes a first body portion, and a second body portion that is formed on one side in the axial direction from the first body portion and has an outer diameter larger than that of the first body portion. It is preferable that the gear portion is formed on the other peripheral surface of the outer side and the inner side of the second body portion. According to this structure, a gear part can be formed in the 2nd trunk | drum (large diameter part) of a gear member. In addition, since the gear portion is formed in a portion that protrudes radially outward in the body portion, even when a member such as another gear is located on the other side in the axial direction with respect to the gear portion, it interferes with the gear member. do not do.

本発明において、前記弾性変形部を径方向に付勢して前記弾性変形部を前記一方の周面に弾性をもって接触させる付勢部材を有することが好ましい。かかる構成によれば、弾性変形部を歯車部材の周面に所定の弾性をもって接触させることができるので、適正な摩擦係合力を発生させることができる。   In the present invention, it is preferable to have a biasing member that biases the elastic deformation portion in the radial direction and elastically contacts the elastic deformation portion with the one peripheral surface. According to this configuration, the elastic deformation portion can be brought into contact with the peripheral surface of the gear member with a predetermined elasticity, so that an appropriate frictional engagement force can be generated.

この場合、径方向からみたとき、前記付勢部材は、前記歯車部に重なる位置に配置されていることが好ましい。歯車部は肉厚に形成されるので、付勢部材の付勢力が歯車部材の胴部に加わっても、歯車部材の胴部には、応力に起因する変形や割れが発生しにくい。また、歯車部は、高い精度で形成されるので、適正な摩擦係合力を発生させることができる。   In this case, it is preferable that the urging member is disposed at a position overlapping the gear portion when viewed from the radial direction. Since the gear portion is formed thick, even if the urging force of the urging member is applied to the body portion of the gear member, deformation or cracking due to stress is unlikely to occur in the body portion of the gear member. Further, since the gear portion is formed with high accuracy, an appropriate frictional engagement force can be generated.

本発明に係るフリクション機構はギヤードモータに用いられる。この場合、ギヤードモータは、モータ部と、出力部材と、前記モータの回転を前記出力部材に伝達する歯車列と、を有し、前記歯車列に含まれる2つの歯車のうちの一方が前記歯車部材であり、他方が前記回転部材であることを特徴とする。   The friction mechanism according to the present invention is used in a geared motor. In this case, the geared motor includes a motor unit, an output member, and a gear train that transmits the rotation of the motor to the output member, and one of the two gears included in the gear train is the gear. It is a member and the other is the said rotation member, It is characterized by the above-mentioned.

本発明において、歯車部材は樹脂製であるが、リングゲート切断部を用いた成形により製造される。このため、3点ゲート方式を採用した場合と違って、ウエルドの発生がないため、十分な強度を有する。また、3点ゲート方式を採用した場合と違って、成形時の樹脂の流れが安定であるため、胴部において回転部材と摺動する周面の真円度が向上するので、安定したフリクショントルクを得ることができる。また、リングゲートが歯車部および一方の周面を除く位置に配置されるので、歯車部や一方の周面にリングゲート切断部が残らない。それ故、歯車部材を用いた歯車列やフリクション機構の動作にリングゲート切断部が支障を及ぼさない。   In the present invention, the gear member is made of resin, but is manufactured by molding using a ring gate cutting portion. For this reason, unlike the case where the three-point gate method is adopted, there is no generation of welds, so that the strength is sufficient. Unlike the three-point gate system, the flow of resin during molding is stable, and the roundness of the peripheral surface that slides with the rotating member in the body improves, so stable friction torque is achieved. Can be obtained. Further, since the ring gate is disposed at a position excluding the gear portion and the one peripheral surface, the ring gate cutting portion does not remain on the gear portion or the one peripheral surface. Therefore, the ring gate cutting portion does not hinder the operation of the gear train using the gear member and the friction mechanism.

本発明の実施の形態1に係るギヤードモータの説明図である。It is explanatory drawing of the geared motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るギヤードモータに搭載したフリクション機構の説明図である。It is explanatory drawing of the friction mechanism mounted in the geared motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るギヤードモータに搭載したフリクション機構を反出力側からみたときの説明図である。It is explanatory drawing when the friction mechanism mounted in the geared motor which concerns on Embodiment 1 of this invention is seen from the non-output side. 本発明の実施の形態1に係るギヤードモータのフリクション機構に用いた歯車部材の説明図である。It is explanatory drawing of the gear member used for the friction mechanism of the geared motor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係るギヤードモータのフリクション機構に用いた歯車部材の説明図である。It is explanatory drawing of the gear member used for the friction mechanism of the geared motor which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係るギヤードモータのフリクション機構に用いた歯車部材の説明図である。It is explanatory drawing of the gear member used for the friction mechanism of the geared motor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係るギヤードモータのフリクション機構に用いた歯車部材の説明図である。It is explanatory drawing of the gear member used for the friction mechanism of the geared motor which concerns on Embodiment 4 of this invention.

本発明の実施の形態について、図面を参照しながら説明する。なお、本発明に係るフリクション機構では、歯車部材の胴部の外側および内側のいずれの周面に回転部材の弾性変形部が接していてもよいが、以下の説明では、歯車部材の胴部の内側の周面に回転部材の弾性変形部が接している形態を中心に説明する。従って、本発明における「一方の周面」は「内周面」であり、「他方の周面」は「外周面」である。また、本発明に係るフリクション機構では、歯車部材の胴部の出力側および反出力側のいずれの端部に歯車部が形成されていてもよいが、以下の説明では、歯車部材の胴部の出力側の端部に歯車部が形成されている形態を中心に説明する。従って、本発明における「軸線方向の一方側」は「出力側」であり、「軸線方向の他方側」は「反出力側」である。また、以下の説明においては、モータ部2の軸線方向に限らず、モータ部2の軸線方向と平行な方向についても、「モータ軸線方向S」として説明する。   Embodiments of the present invention will be described with reference to the drawings. In the friction mechanism according to the present invention, the elastic deformation portion of the rotating member may be in contact with either the outer surface or the inner peripheral surface of the gear member body. Description will be made centering on the form in which the elastic deformation portion of the rotating member is in contact with the inner peripheral surface. Therefore, “one peripheral surface” in the present invention is an “inner peripheral surface”, and “the other peripheral surface” is an “outer peripheral surface”. In the friction mechanism according to the present invention, the gear portion may be formed at either the output side or the counter-output side end portion of the gear member body. Description will be made centering on a form in which a gear portion is formed at the output side end. Therefore, “one side in the axial direction” in the present invention is “the output side”, and “the other side in the axial direction” is “the opposite output side”. In the following description, not only the axial direction of the motor unit 2 but also the direction parallel to the axial direction of the motor unit 2 will be described as “motor axial direction S”.

[実施の形態1]
(全体構造)
図1は、本発明の実施の形態1に係るギヤードモータの説明図であり、図1(a)、(b)、(c)は各々、ギヤードモータの歯車列の構成を示す横断面図、その縦断面図、および歯車列における歯車の噛合状態を示す展開図である。
[Embodiment 1]
(Overall structure)
FIG. 1 is an explanatory diagram of a geared motor according to Embodiment 1 of the present invention, and FIGS. 1 (a), (b), and (c) are cross-sectional views showing the configuration of a gear train of the geared motor, It is the expanded view which shows the meshing state of the gearwheel in the longitudinal cross-sectional view and a gear train.

図1(a)、(b)、(c)において、本発明を適用したギヤードモータ1は、ステッピングモータ構造を備えたモータ部2を備えており、モータ部2は、ステータ4とロータ3とから概略構成されている。ステータ4は、モータ軸線方向Sに重ねて配置された2つのステータ組4a、4bを備えており、ステータ組4a、4bでは、外ステータコア41と内ステータコア42とがモータ軸線方向Sで対向するように配置されている。外ステータコア41および内ステータコア42は、いずれも円環状のフランジ部と、フランジ部の内周縁からモータ軸線方向Sに折れ曲がった極歯とを備え、外ステータコア41および内ステータコア42をモータ軸線方向Sに配置した状態で、外ステータコア41の極歯と、内ステータコア42の極歯は、周方向で交互に配列される。   1A, 1B and 1C, a geared motor 1 to which the present invention is applied includes a motor unit 2 having a stepping motor structure. The motor unit 2 includes a stator 4 and a rotor 3. It is roughly composed. The stator 4 includes two stator sets 4a and 4b that are arranged so as to overlap in the motor axial direction S. In the stator sets 4a and 4b, the outer stator core 41 and the inner stator core 42 are opposed to each other in the motor axial direction S. Is arranged. Each of the outer stator core 41 and the inner stator core 42 includes an annular flange portion and pole teeth bent in the motor axial direction S from the inner peripheral edge of the flange portion, and the outer stator core 41 and the inner stator core 42 are arranged in the motor axial direction S. In the arranged state, the pole teeth of the outer stator core 41 and the pole teeth of the inner stator core 42 are alternately arranged in the circumferential direction.

ステータ4の内側にはロータ3が同軸状に配置されている。ロータ3は、軸穴330を備えたロータ本体33と、このロータ本体33の外周面に固着された永久磁石31とを備えており、永久磁石31の外周面は、極歯と対向している。かかるロータ3は、軸穴330に嵌った支軸70によって回転可能に支持されている。支軸70は、モータケース5の底部51と、モータケース5の上面を覆うモータカバー50とによって両端が支持された固定軸である。ロータ本体33において、モータカバー50側の端部は、外周面にロータピニオン35を備えた回転軸34になっている。このように構成したモータ部2において回転軸34が突出する側を出力側S1とし、その反対側を反出力側S2とした場合、反出力側S2のステータ組4bでは、外ステータコア41がモータケース5の底部51の一部として形成されている。   The rotor 3 is coaxially arranged inside the stator 4. The rotor 3 includes a rotor main body 33 having a shaft hole 330 and a permanent magnet 31 fixed to the outer peripheral surface of the rotor main body 33. The outer peripheral surface of the permanent magnet 31 faces the pole teeth. . The rotor 3 is rotatably supported by a support shaft 70 fitted in the shaft hole 330. The support shaft 70 is a fixed shaft whose both ends are supported by the bottom 51 of the motor case 5 and the motor cover 50 that covers the upper surface of the motor case 5. In the rotor body 33, the end on the motor cover 50 side is a rotating shaft 34 having a rotor pinion 35 on the outer peripheral surface. In the motor unit 2 configured as described above, when the side from which the rotating shaft 34 protrudes is the output side S1, and the opposite side is the non-output side S2, the outer stator core 41 is the motor case in the stator set 4b on the non-output side S2. 5 is formed as a part of the bottom 51.

2つのステータ組4a、4bの内ステータコア42は、コイルボビン86を樹脂形成する際にインサート成形されて、コイルボビン86のフランジ部88で覆われる。その際、樹脂部分8には、端子保持部85も形成される。樹脂部分8は、コイルボビン86を構成する部分に、極歯の周りを囲む円筒部87と、円筒部87のモータ軸線方向Sの端部で拡径する円環状のフランジ部88とを備えており、円筒部87とフランジ部88によって区画された領域内にコイル45が巻回されている。コイル45は、2つのステータ組4a、4bの各々に2本の巻き線が巻回された2相のコイルであり、ステータ組4a、4bに巻回されたコイル45の中間部分は、共通の巻き線として引き出されている。このため、ステータ4から引き出される巻き線の端部の本数は5本であり、かかる巻き線の端部は、端子保持部85に保持されたモータ側端子191に絡げられた後、ハンダ付けによりモータ側端子191に電気的に接続される。モータ側端子191の外周側には、外部接続端子192を保持するコネクタハウジング11が配置され、モータ側端子191と外部接続端子192とはフレキシブル配線基板12を介して電気的に接続されている。   The inner stator core 42 of the two stator sets 4 a and 4 b is insert-molded when the coil bobbin 86 is formed of resin, and is covered with the flange portion 88 of the coil bobbin 86. At that time, a terminal holding portion 85 is also formed in the resin portion 8. The resin portion 8 includes a cylindrical portion 87 surrounding the pole teeth and an annular flange portion 88 whose diameter is increased at the end in the motor axial direction S of the cylindrical portion 87 at a portion constituting the coil bobbin 86. The coil 45 is wound in an area defined by the cylindrical portion 87 and the flange portion 88. The coil 45 is a two-phase coil in which two windings are wound around each of the two stator sets 4a and 4b, and an intermediate portion of the coil 45 wound around the stator sets 4a and 4b is common. It is drawn out as a winding. For this reason, the number of winding ends pulled out from the stator 4 is 5, and the winding ends are tangled to the motor-side terminal 191 held by the terminal holding portion 85 and then soldered. Thus, the motor side terminal 191 is electrically connected. A connector housing 11 that holds an external connection terminal 192 is disposed on the outer peripheral side of the motor side terminal 191, and the motor side terminal 191 and the external connection terminal 192 are electrically connected via the flexible wiring board 12.

本形態のギヤードモータ1は、複数の歯車からなる歯車列6を備えており、モータ部2のロータ3の回転は、歯車列6を介して外部に出力される。本形態において、歯車列6は計5つの歯車61、62、63、64、65を備えており、最終段の歯車65は出力軸651(出力部材)を備えている。ここで、最終段の歯車65を除く4つの歯車61、62、63、64はいずれも、モータケース5に固定された地板55と、モータカバー50とに両端が支持された支軸71、72、73、74によって回転可能に支持され、最終段の歯車65は、それ自身に形成された軸部652、653がモータカバー50側の軸受部501と地板55側の軸受部551とに回転可能に支持されている。   The geared motor 1 of this embodiment includes a gear train 6 composed of a plurality of gears, and the rotation of the rotor 3 of the motor unit 2 is output to the outside via the gear train 6. In this embodiment, the gear train 6 includes a total of five gears 61, 62, 63, 64, 65, and the final stage gear 65 includes an output shaft 651 (output member). Here, all of the four gears 61, 62, 63, 64 except the final stage gear 65 are support shafts 71, 72 supported at both ends by the base plate 55 fixed to the motor case 5 and the motor cover 50. , 73 and 74, and the final stage gear 65 has shaft parts 652 and 653 formed on itself that can rotate to a bearing part 501 on the motor cover 50 side and a bearing part 551 on the main plate 55 side. It is supported by.

本形態において、第1番目の歯車61の大径歯車部611は、回転軸34の出力側S1の外周側に形成されたロータピニオン35と噛合し、歯車61の小径歯車部612には、第2番目の歯車62の大径の歯車部926が噛合している。歯車62の小径の歯車部914には、第3番目の歯車63の大径歯車部631が噛合し、歯車63の小径歯車部632には第4番目の歯車64の大径歯車部641が噛合している。そして、歯車64の小径歯車部642には、最終段の歯車65の歯車部655が噛合している。このようにして歯車列6は減速歯車列として構成されている。ここで、5つの歯車61、62、63、64、65は、ロータピニオン35の周りに配置されている。   In the present embodiment, the large-diameter gear portion 611 of the first gear 61 meshes with the rotor pinion 35 formed on the outer peripheral side of the output side S1 of the rotating shaft 34, and the small-diameter gear portion 612 of the gear 61 includes A large-diameter gear portion 926 of the second gear 62 is engaged. The small diameter gear portion 914 of the gear 62 meshes with the large diameter gear portion 631 of the third gear 63, and the small diameter gear portion 632 of the gear 63 meshes with the large diameter gear portion 641 of the fourth gear 64. doing. The gear portion 655 of the final stage gear 65 meshes with the small-diameter gear portion 642 of the gear 64. Thus, the gear train 6 is configured as a reduction gear train. Here, the five gears 61, 62, 63, 64, 65 are arranged around the rotor pinion 35.

(フリクション機構の構成)
図2は、本発明の実施の形態1に係るギヤードモータ1に搭載したフリクション機構の説明図であり、図2(a)、(b)、(c)、(d)は各々、フリクション機構を出力側からみた斜視図、断面図、出力側からみた分解斜視図、およびさらに細かく分解した様子を出力側からみた分解斜視図である。図3は、本発明の実施の形態1に係るギヤードモータ1に搭載したフリクション機構を反出力側からみたときの説明図であり、図3(a)、(b)、(c)は各々、フリクション機構を反出力側からみた斜視図、反出力側からみた分解斜視図、およびさらに細かく分解した様子を反出力側からみた分解斜視図である。
(Configuration of friction mechanism)
FIG. 2 is an explanatory view of the friction mechanism mounted on the geared motor 1 according to the first embodiment of the present invention. FIGS. 2 (a), (b), (c), and (d) each show the friction mechanism. It is the perspective view seen from the output side, sectional drawing, the disassembled perspective view seen from the output side, and the disassembled perspective view which looked at the mode further disassembled from the output side. FIG. 3 is an explanatory diagram when the friction mechanism mounted on the geared motor 1 according to Embodiment 1 of the present invention is viewed from the counter-output side, and FIGS. 3A, 3B, and 3C are respectively FIG. 4 is a perspective view of the friction mechanism as viewed from the non-output side, an exploded perspective view as viewed from the non-output side, and an exploded perspective view of the further disassembled state as viewed from the non-output side.

図1を参照して説明したギヤードモータ1において、出力軸651に過大な負荷が印加されている状態でモータ部2が動作すると、歯車列6に用いた歯車61、62、63、64、65や、ロータピニオン35が破損するおそれがある。そこで、歯車列6の途中にトルクリミッタとして作用するフリクション機構9が構成されている。本形態では、歯車列6に用いた歯車61、62、63、64、65のうち、歯車62にフリクション機構9が構成されている。   In the geared motor 1 described with reference to FIG. 1, when the motor unit 2 operates in the state where an excessive load is applied to the output shaft 651, the gears 61, 62, 63, 64, 65 used for the gear train 6 are used. In addition, the rotor pinion 35 may be damaged. Therefore, a friction mechanism 9 that functions as a torque limiter is provided in the middle of the gear train 6. In the present embodiment, among the gears 61, 62, 63, 64, 65 used for the gear train 6, the friction mechanism 9 is configured in the gear 62.

図2および図3において、歯車62に形成されたフリクション機構9は、POM(ポリアセタール)等の樹脂製の回転部材91と、PBT(ポリブチレンテレフタレート)等の樹脂製の歯車部材92と、付勢部材93とを備えており、本形態において、付勢部材93は、周方向の1箇所で切断されたステンレス製のC形ワッシャである。   2 and 3, the friction mechanism 9 formed on the gear 62 includes a rotating member 91 made of resin such as POM (polyacetal), a gear member 92 made of resin such as PBT (polybutylene terephthalate), and an urging force. In this embodiment, the urging member 93 is a stainless steel C-shaped washer cut at one location in the circumferential direction.

回転部材91は、ポリアセタール樹脂等の樹脂成形品であり、歯車62のモータ軸線方向Sの出力側S1に延びた円筒状の中心軸部911と、中心軸部911の長さ方向の途中部分から径方向に張り出した円盤状の鍔部912とを備えている。中心軸部911において、鍔部912から反出力側S2に突出した軸端部913の外周側面には歯車部914が形成されており、かかる歯車部914は、図1に示す第3番目の歯車63と噛合する小径歯車である。また、中心軸部911には、図1に示す支軸72が嵌る軸穴910が形成されている。   The rotating member 91 is a resin molded product such as polyacetal resin, and includes a cylindrical central shaft portion 911 extending to the output side S1 in the motor axial direction S of the gear 62, and a middle portion in the length direction of the central shaft portion 911. And a disk-shaped flange portion 912 protruding in the radial direction. In the central shaft portion 911, a gear portion 914 is formed on the outer peripheral side surface of the shaft end portion 913 protruding from the flange portion 912 to the opposite output side S2, and the gear portion 914 is the third gear shown in FIG. This is a small-diameter gear meshing with 63. Further, the central shaft portion 911 is formed with a shaft hole 910 into which the support shaft 72 shown in FIG.

回転部材91において、鍔部912の外周縁からは、モータ軸線方向Sの出力側S1に向けて複数枚の板状の弾性変形部915が延びており、弾性変形部915は、周方向では円弧状に湾曲している。本形態において、弾性変形部915は、周方向に2枚配置されており、円筒部をスリット917で分割した構造になっている。かかる回転部材91では、弾性変形部915の内周側面と中心軸部911の外周側面との間には環状溝916が形成されている。   In the rotating member 91, a plurality of plate-like elastic deformation portions 915 extend from the outer peripheral edge of the flange portion 912 toward the output side S1 in the motor axial direction S. The elastic deformation portions 915 are circular in the circumferential direction. Curved in an arc. In this embodiment, two elastic deformation portions 915 are arranged in the circumferential direction and have a structure in which a cylindrical portion is divided by a slit 917. In the rotating member 91, an annular groove 916 is formed between the inner peripheral side surface of the elastic deformation portion 915 and the outer peripheral side surface of the central shaft portion 911.

環状溝916の内側には、C形ワッシャ状の付勢部材93が圧入されている。付勢部材93としては、コイルバネを用いることもできる。ここで、外力を加えていない状態の付勢部材93の内径寸法は、中心軸部911の外径寸法に比して十分大きい。また、外力を加えていない状態の付勢部材93の外径寸法は、弾性変形部915の内周面で規定される円の径よりも大きい。このため、環状溝916に付勢部材93を圧入すると、付勢部材93は、縮径した状態に変形し、その形状復帰力(バネ力)によって弾性変形部915を径方向外側に押し広げる。弾性変形部915の内周側面には、小さな段差915eが形成されており、かかる段差915eによって、付勢部材93のモータ軸線方向Sにおける位置が規定される。   Inside the annular groove 916, a C-shaped washer-like urging member 93 is press-fitted. A coil spring can also be used as the urging member 93. Here, the inner diameter dimension of the urging member 93 in a state where no external force is applied is sufficiently larger than the outer diameter dimension of the central shaft portion 911. Further, the outer diameter of the biasing member 93 in a state where no external force is applied is larger than the diameter of the circle defined by the inner peripheral surface of the elastic deformation portion 915. For this reason, when the urging member 93 is press-fitted into the annular groove 916, the urging member 93 is deformed into a reduced diameter state, and the elastic deformation portion 915 is pushed outward in the radial direction by its shape restoring force (spring force). A small step 915e is formed on the inner peripheral side surface of the elastic deformation portion 915, and the position of the biasing member 93 in the motor axial direction S is defined by the step 915e.

このように構成した回転部材91において、2つの弾性変形部915の出力側S1の端部には、弾性変形部915の周方向の中央位置から径方向外側に突出する第1凸部918が形成されており、弾性変形部915の外周面において、第1凸部918に対して反出力側S2に位置する部分は平坦面915cになっている。   In the rotating member 91 configured as described above, the first convex portion 918 that protrudes radially outward from the circumferential center position of the elastic deformation portion 915 is formed at the end of the output side S1 of the two elastic deformation portions 915. In the outer peripheral surface of the elastic deformation portion 915, a portion located on the opposite output side S2 with respect to the first convex portion 918 is a flat surface 915c.

また、回転部材91の反出力側S2の端部において、円盤状の鍔部912の外周面には、周方向の2個所から径方向外側に突出する第2凸部919が形成されており、かかる第2凸部919は、スリット917から径方向外側に突出している。第2凸部919の反出力側S2の面には凹部919aが形成されている。   Further, at the end on the counter-output side S2 of the rotating member 91, a second convex portion 919 is formed on the outer peripheral surface of the disc-shaped flange portion 912 that protrudes radially outward from two locations in the circumferential direction. The second protrusion 919 protrudes radially outward from the slit 917. A concave portion 919a is formed on the surface of the second convex portion 919 on the side opposite to the output side S2.

(歯車部材92の構成)
図4は、本発明の実施の形態1に係るギヤードモータ1のフリクション機構9に用いた歯車部材92の説明図であり、図4(a)、(b)、(c)、(d)は各々、歯車部材92を出力側S1からみた平面図、側面図、反出力側S2からみた分解斜視図、および断面図である。
(Configuration of gear member 92)
FIG. 4 is an explanatory diagram of the gear member 92 used in the friction mechanism 9 of the geared motor 1 according to the first embodiment of the present invention. FIGS. 4 (a), 4 (b), 4 (c), and 4 (d) They are a plan view, a side view, an exploded perspective view, and a cross-sectional view, as seen from the output side S1, of the gear member 92, respectively.

図2および図4に示すように、歯車部材92は、歯車62のモータ軸線方向Sに延在する円筒状の胴部923を備えている。胴部923は、第1胴部928と、第1胴部928よりモータ軸線方向Sの出力側S1に形成された第2胴部929とを備え、第2胴部929は、外径寸法が第1胴部928より大である。   As shown in FIGS. 2 and 4, the gear member 92 includes a cylindrical body 923 extending in the motor axial direction S of the gear 62. The body 923 includes a first body 928 and a second body 929 formed on the output side S1 in the motor axial direction S from the first body 928. The second body 929 has an outer diameter dimension. It is larger than the first body portion 928.

第2胴部929の外周面には歯車部926が形成されており、歯車部926は、図1に示す第1番目の歯車61と噛合する大径歯車である。歯車部材92の中心穴は、回転部材91の弾性変形部915が嵌る嵌合穴921である。   A gear portion 926 is formed on the outer peripheral surface of the second body portion 929, and the gear portion 926 is a large-diameter gear that meshes with the first gear 61 shown in FIG. The center hole of the gear member 92 is a fitting hole 921 into which the elastic deformation portion 915 of the rotating member 91 is fitted.

胴部923の反出力側S2の端部923b(第1胴部928の反出力側S2の端部923b)では、第1胴部928の径方向内側から反出力側S2に向けて環状突起927が突出している。このため、胴部923には、環状突起927によってモータ軸線方向Sの反出力側S2に向く第1環状端面924が形成され、環状突起927の径方向外側には、第1環状端面924よりモータ軸線方向Sの出力側S1でモータ軸線方向Sの反出力側S2に向く第2環状端面925が形成されている。また、胴部923の出力側S1の端部923a(第2胴部929の出力側S1の端部923a)には、嵌合穴921の縁に沿って出力側S1に端面を向ける環状段部921bが形成されている。   At the end portion 923b of the body portion 923 on the counter-output side S2 (the end portion 923b of the first body portion 928 on the counter-output side S2), the annular protrusion 927 extends from the radially inner side of the first body portion 928 toward the counter-output side S2. Is protruding. Therefore, a first annular end surface 924 is formed on the body portion 923 by the annular protrusion 927 and faces the opposite output side S <b> 2 in the motor axial direction S. The motor is connected to the outer side of the annular protrusion 927 in the radial direction from the first annular end surface 924. A second annular end surface 925 is formed on the output side S1 in the axial direction S and facing the opposite output side S2 in the motor axial direction S. In addition, an annular stepped portion having an end surface directed toward the output side S1 along the edge of the fitting hole 921 is formed at the end portion 923a of the output side S1 of the body portion 923 (the end portion 923a of the output side S1 of the second body portion 929). 921b is formed.

このように構成した歯車部材92、回転部材91および付勢部材93を用いてフリクション機構9(歯車62)を構成するには、付勢部材93を装着しない状態で、歯車部材92の弾性変形部915を内側に弾性変形させ、この状態で、歯車部材92の嵌合穴921に反出力側S2から回転部材91の弾性変形部915を嵌めた後、出力側S1から弾性変形部915の内側に付勢部材93を押し込む。あるいは、付勢部材93を装着した状態で、歯車部材92の弾性変形部915を内側に弾性変形させ、この状態で、歯車部材92の嵌合穴921に反出力側S2から回転部材91の弾性変形部915を嵌めてもよい。いずれの場合でも、付勢部材93は、径方向からみたとき、歯車部926に重なる位置で弾性変形部915を径方向外側に押圧する。その結果、弾性変形部915は、嵌合穴921の内周面923p(胴部923の内周面923p)に弾性をもって当接し、摩擦係合する。従って、回転部材91の側に過大な負荷が印加されていない限り、回転部材91と歯車部材92は、回転部材91と歯車部材92との間の摩擦係合力によって一体に回転する。これに対して、回転部材91に大きな負荷が加わっている場合には、回転部材91と歯車部材92との間で空回りが起こるため、回転部材91や歯車部材92に接続する歯車やモータが破損することを防止することができる。   In order to configure the friction mechanism 9 (gear 62) using the gear member 92, the rotating member 91, and the urging member 93 configured as described above, the elastic deformation portion of the gear member 92 without the urging member 93 attached. 915 is elastically deformed inward, and in this state, the elastic deformation portion 915 of the rotating member 91 is fitted into the fitting hole 921 of the gear member 92 from the non-output side S2, and then the output side S1 is moved to the inside of the elastic deformation portion 915. The urging member 93 is pushed in. Alternatively, the elastic deformation portion 915 of the gear member 92 is elastically deformed in the state where the urging member 93 is mounted, and in this state, the elastic force of the rotating member 91 from the counter-output side S2 to the fitting hole 921 of the gear member 92. The deformable portion 915 may be fitted. In any case, the biasing member 93 presses the elastic deformation portion 915 radially outward at a position overlapping the gear portion 926 when viewed from the radial direction. As a result, the elastic deformation portion 915 abuts on the inner peripheral surface 923p of the fitting hole 921 (the inner peripheral surface 923p of the trunk portion 923) with elasticity and frictionally engages. Therefore, as long as an excessive load is not applied to the rotating member 91, the rotating member 91 and the gear member 92 rotate together by the frictional engagement force between the rotating member 91 and the gear member 92. On the other hand, when a large load is applied to the rotating member 91, idle rotation occurs between the rotating member 91 and the gear member 92, so that the gear and the motor connected to the rotating member 91 and the gear member 92 are damaged. Can be prevented.

本形態では、歯車部材92の嵌合穴921に反出力側S2から回転部材91の弾性変形部915を嵌めた際、回転部材91の第1凸部918は、歯車部材92の環状段部921bに出力側S1から被さるように係合する。このため、歯車部材92は、環状段部921bによって反出力側S2への位置が決められるとともに、嵌合穴921からの抜けが防止される。また、歯車部材92の嵌合穴921に反出力側S2から回転部材91の弾性変形部915を嵌めた際、回転部材91の第2凸部919は、歯車部材92の第1環状端面924に当接し、歯車部材92は、第1環状端面924によって出力側S1への位置が決められる。   In this embodiment, when the elastic deformation portion 915 of the rotating member 91 is fitted into the fitting hole 921 of the gear member 92 from the opposite output side S2, the first convex portion 918 of the rotating member 91 is the annular step portion 921b of the gear member 92. Are engaged so as to cover from the output side S1. For this reason, the gear member 92 is positioned at the counter-output side S2 by the annular step portion 921b, and is prevented from coming off from the fitting hole 921. Further, when the elastic deformation portion 915 of the rotating member 91 is fitted into the fitting hole 921 of the gear member 92 from the non-output side S <b> 2, the second convex portion 919 of the rotating member 91 is formed on the first annular end surface 924 of the gear member 92. The gear member 92 is in contact with the first annular end surface 924, and the position to the output side S1 is determined.

(歯車部材92の製造方法)
本形態において、歯車部材92は、PBT等の樹脂成形品であり、歯車部材92を成形するにあたっては、図4(d)に示すように、金型において歯車部926および内周面923pを形成する部分を除く位置に、矢印で模式的に示すように、リングゲートGを配置する。このため、歯車部材92には、図4(c)に一点鎖線で示すように、歯車部926および内周面923pを除く位置にリングゲート切断部G0がある。
(Manufacturing method of the gear member 92)
In this embodiment, the gear member 92 is a resin molded product such as PBT. When the gear member 92 is molded, a gear portion 926 and an inner peripheral surface 923p are formed in the mold as shown in FIG. A ring gate G is arranged at a position excluding the portion to be formed as schematically shown by an arrow. For this reason, the gear member 92 has a ring gate cutting part G0 at a position excluding the gear part 926 and the inner peripheral surface 923p, as shown by a one-dot chain line in FIG.

特に本形態では、金型において歯車部926を形成する部分より反出力側S2の端部923bの側にリングゲートGを配置する。このため、歯車部材92では、歯車部926より反出力側S2の端部923bの側にリングゲート切断部G0がある。特に、金型において胴部923を形成する部分のうちの、モータ軸線方向Sの中間位置より反出力側S2の端部923b側にリングゲートGを配置する。このため、歯車部材92では、胴部923のモータ軸線方向Sの中間位置より反出力側S2の端部923b側にリングゲート切断部G0がある。   In particular, in the present embodiment, the ring gate G is disposed on the side of the end 923b on the counter-output side S2 from the portion where the gear portion 926 is formed in the mold. For this reason, in the gear member 92, the ring gate cutting part G0 is located on the side of the end 923b on the counter-output side S2 from the gear part 926. In particular, the ring gate G is disposed on the end 923b side on the counter-output side S2 from the intermediate position in the motor axial direction S in the portion of the mold that forms the body portion 923. For this reason, in the gear member 92, there is a ring gate cutting part G0 on the end 923b side on the counter-output side S2 from the intermediate position of the body part 923 in the motor axial direction S.

より具体的には、本形態では、金型において胴部923のモータ軸線方向Sの反出力側S2に向いている第2環状端面925を形成する部分にリングゲートGを配置する。このため、歯車部材92では、胴部923において、モータ軸線方向Sの反出力側S2に向いている第2環状端面925にリングゲート切断部G0がある。   More specifically, in the present embodiment, the ring gate G is disposed in a portion of the mold where the second annular end surface 925 that faces the counter-output side S2 in the motor axial direction S of the body portion 923 is formed. For this reason, in the gear member 92, in the trunk portion 923, there is a ring gate cutting portion G0 on the second annular end surface 925 facing the opposite output side S2 in the motor axial direction S.

(本形態の主な効果)
以上説明したように、本形態では、歯車部材92は樹脂製であるが、リングゲートGを用いた成形により製造される。このため、3点ゲート方式を採用した場合と違って、ウエルドの発生がないため、十分な強度を有する。また、3点ゲート方式を採用した場合と違って、成形時の樹脂の流れが安定であるため、胴部923において回転部材91と摺動する内周面923pの真円度が向上する。それ故、安定したフリクショントルクを得ることができる。また、リングゲートGが歯車部926および内周面923pを除く位置に配置されるので、歯車部926や内周面923pにリングゲート切断部G0が残らない。それ故、歯車部材92を用いた歯車列6やフリクション機構9の動作にリングゲート切断部G0が支障を及ぼさない。
(Main effects of this form)
As described above, in this embodiment, the gear member 92 is made of resin, but is manufactured by molding using the ring gate G. For this reason, unlike the case where the three-point gate method is adopted, there is no generation of welds, so that the strength is sufficient. Unlike the case where the three-point gate method is adopted, the resin flow at the time of molding is stable, so that the roundness of the inner peripheral surface 923p that slides on the rotating member 91 in the trunk portion 923 is improved. Therefore, a stable friction torque can be obtained. Further, since the ring gate G is disposed at a position excluding the gear portion 926 and the inner peripheral surface 923p, the ring gate cutting portion G0 does not remain on the gear portion 926 or the inner peripheral surface 923p. Therefore, the ring gate cutting part G0 does not hinder the operation of the gear train 6 and the friction mechanism 9 using the gear member 92.

また、金型において歯車部926を形成する部分より反出力側S2の端部923bの側にリングゲートGが配置される。特に本形態では、金型において胴部923を形成する部分のうちの、モータ軸線方向Sの中間位置より反出力側S2の端部923b側にリングゲートGを配置される。このため、リングゲートGから遠い位置で歯車部926を成形するので、成形時、歯車部926を形成する部分には樹脂が高圧で充填される。それ故、歯車部926を高い精度で形成することができる。   Further, the ring gate G is arranged on the side of the end 923b on the counter-output side S2 from the portion where the gear portion 926 is formed in the mold. In particular, in the present embodiment, the ring gate G is disposed on the end 923b side on the counter-output side S2 from the intermediate position in the motor axial direction S in the portion of the mold that forms the body portion 923. For this reason, since the gear part 926 is shape | molded in the position far from the ring gate G, the resin is filled with the high pressure in the part which forms the gear part 926 at the time of shaping | molding. Therefore, the gear portion 926 can be formed with high accuracy.

また、本形態では、金型において胴部923のモータ軸線方向Sの反出力側S2に向いている第2環状端面925を形成する部分にリングゲートGが配置される。このため、成形時、樹脂がモータ軸線方向Sの出力側S1に流れやすいので、歯車部926等を高い精度で形成することができる。   Further, in this embodiment, the ring gate G is disposed in a portion of the mold that forms the second annular end surface 925 that faces the opposite output side S2 of the body portion 923 in the motor axial direction S. For this reason, since resin tends to flow to the output side S1 in the motor axial direction S during molding, the gear portion 926 and the like can be formed with high accuracy.

さらに、第2環状端面925は、第1環状端面924よりモータ軸線方向Sの出力側S1に位置する。このため、第2環状端面925にリングゲート切断部G0があっても、歯車部材92では、胴部923の軸線方向の最も他方側の端部(第1環状端面924)でリングゲート切断部G0が凸部として残らない。それ故、第1環状端面924を回転部材91のモータ軸線方向Sでの位置決めに用いることができる。   Further, the second annular end surface 925 is located on the output side S1 in the motor axial direction S from the first annular end surface 924. For this reason, even if the ring gate cutting part G0 is present on the second annular end face 925, the ring gate cutting part G0 is formed at the end of the body 923 in the axial direction (first annular end face 924). Does not remain as protrusions. Therefore, the first annular end surface 924 can be used for positioning the rotating member 91 in the motor axial direction S.

また、弾性変形部915を径方向に付勢して弾性変形部915を歯車部材92の内周面923pに弾性をもって接触させる付勢部材93が用いられている。このため、弾性変形部915を歯車部材92の内周面923pに所定の弾性をもって接触させることができるので、適正な摩擦係合力を発生させることができる。   Further, an urging member 93 that urges the elastic deformation portion 915 in the radial direction and elastically contacts the elastic deformation portion 915 with the inner peripheral surface 923p of the gear member 92 is used. For this reason, since the elastic deformation part 915 can be made to contact the inner peripheral surface 923p of the gear member 92 with a predetermined elasticity, an appropriate frictional engagement force can be generated.

また、径方向からみたとき、付勢部材93は、歯車部926に重なる位置に配置されている。歯車部926は肉厚に形成されるので、付勢部材93の付勢力が歯車部材92の胴部923に加わっても、歯車部材92の胴部923には、応力に起因する変形や割れが発生しにくい。また、歯車部926は、高い精度で形成されるので、適正な摩擦係合力を発生させることができる。   Further, when viewed from the radial direction, the biasing member 93 is disposed at a position overlapping the gear portion 926. Since the gear portion 926 is formed thick, even if the urging force of the urging member 93 is applied to the body portion 923 of the gear member 92, the body portion 923 of the gear member 92 is not deformed or cracked due to stress. Hard to occur. Moreover, since the gear part 926 is formed with high accuracy, an appropriate frictional engagement force can be generated.

さらに、歯車部926は、胴部923において径方向外側に張り出した第2胴部929に形成されているので、歯車部926に対してモータ軸線方向Sの反出力側S2に他の歯車等の部材が位置する場合でも、歯車部材92と干渉しない。   Further, since the gear portion 926 is formed on the second barrel portion 929 that projects outward in the radial direction at the trunk portion 923, other gears or the like are disposed on the opposite output side S2 in the motor axial direction S with respect to the gear portion 926. Even when the member is located, it does not interfere with the gear member 92.

[実施の形態2]
図5は、本発明の実施の形態2に係るギヤードモータ1のフリクション機構9に用いた歯車部材92の説明図であり、図5(a)、(b)、(c)、(d)は各々、歯車部材92を出力側S1からみた平面図、側面図、反出力側S2からみた分解斜視図、および断面図である。なお、本形態および後述する実施の形態3、4は、基本的な構成が実施の形態1と同様であるため、共通する部分には同一の符号を付して図示し、それらの説明を省略する。
[Embodiment 2]
FIG. 5 is an explanatory diagram of a gear member 92 used in the friction mechanism 9 of the geared motor 1 according to the second embodiment of the present invention. FIGS. 5 (a), 5 (b), 5 (c), and 5 (d) They are a plan view, a side view, an exploded perspective view, and a cross-sectional view, as seen from the output side S1, of the gear member 92, respectively. Since the basic configuration of the present embodiment and later-described third and fourth embodiments is the same as that of the first embodiment, common portions are denoted by the same reference numerals and description thereof is omitted. To do.

図5に示す歯車部材92も、実施の形態1と同様、PBT等の樹脂成形品である。本形態では、歯車部材92を成形するにあたって、図5(d)に示すように、金型において胴部923のモータ軸線方向Sの反出力側S2に向いている第2環状端面925を形成する部分の外側の縁にリングゲートGを配置する。このため、歯車部材92では、胴部923において、モータ軸線方向Sの反出力側S2に向いている第2環状端面925の外側の縁925eにリングゲート切断部G0がある。   The gear member 92 shown in FIG. 5 is also a resin molded product such as PBT as in the first embodiment. In this embodiment, when the gear member 92 is formed, as shown in FIG. 5D, a second annular end surface 925 that faces the opposite output side S2 in the motor axial direction S of the body portion 923 is formed in the mold. A ring gate G is arranged on the outer edge of the part. Therefore, in the gear member 92, the ring portion 923 has a ring gate cutting portion G0 at the outer edge 925e of the second annular end surface 925 facing the opposite output side S2 in the motor axial direction S.

従って、本形態でも、実施の形態1と同様、歯車部926や内周面923pにリングゲート切断部G0が残らないので、歯車部材92を用いた歯車列6やフリクション機構9の動作にリングゲート切断部G0が支障を及ぼさない。また、金型において歯車部926を形成する部分より反出力側S2の端部923bの側にリングゲートGが配置されるため、リングゲートGから遠い位置で歯車部926を形成する。このため、成形時、歯車部926を形成する部分には樹脂が高圧で充填されるので、歯車部926を高い精度で形成することができる等、実施の形態1と同様な効果を奏する。   Accordingly, in this embodiment, as in the first embodiment, the ring gate cutting portion G0 does not remain on the gear portion 926 and the inner peripheral surface 923p, so that the ring gate is used for the operation of the gear train 6 and the friction mechanism 9 using the gear member 92. The cutting part G0 does not hinder. Further, since the ring gate G is arranged on the side of the end 923b on the counter-output side S2 from the portion where the gear portion 926 is formed in the mold, the gear portion 926 is formed at a position far from the ring gate G. For this reason, at the time of molding, since the resin forming portion is filled with resin at a high pressure, the gear portion 926 can be formed with high accuracy, and the same effects as in the first embodiment can be obtained.

[実施の形態3]
図6は、本発明の実施の形態3に係るギヤードモータ1のフリクション機構9に用いた歯車部材92の説明図であり、図6(a)、(b)、(c)、(d)は各々、歯車部材92を出力側S1からみた平面図、側面図、反出力側S2からみた分解斜視図、および断面図である。
[Embodiment 3]
FIG. 6 is an explanatory diagram of the gear member 92 used in the friction mechanism 9 of the geared motor 1 according to the third embodiment of the present invention. FIGS. 6 (a), (b), (c), and (d) They are a plan view, a side view, an exploded perspective view, and a cross-sectional view, as seen from the output side S1, of the gear member 92, respectively.

図6に示す歯車部材92も、実施の形態1と同様、PBT等の樹脂成形品である。本形態では、歯車部材92を成形するにあたって、図6(d)に示すように、金型において胴部923の外周面923rを形成する部分のうち、モータ軸線方向Sにおける中間位置より反出力側S2の端部923b側にリングゲートGを配置する。このため、図6(b)に示すように、歯車部材92では、胴部923の外周面923rのうち、モータ軸線方向Sにおける中間位置より反出力側S2の端部923b側にリングゲート切断部G0がある。   The gear member 92 shown in FIG. 6 is also a resin molded product such as PBT, as in the first embodiment. In the present embodiment, when the gear member 92 is formed, as shown in FIG. 6D, the portion that forms the outer peripheral surface 923r of the body portion 923 in the mold is on the side opposite to the output side from the intermediate position in the motor axial direction S. The ring gate G is disposed on the end 923b side of S2. For this reason, as shown in FIG. 6B, in the gear member 92, the ring gate cutting portion is located on the end portion 923b side on the counter-output side S2 from the intermediate position in the motor axial direction S of the outer peripheral surface 923r of the trunk portion 923. There is G0.

従って、本形態でも、実施の形態1と同様、歯車部926や内周面923pにリングゲート切断部G0が残らないので、歯車部材92を用いた歯車列6やフリクション機構9の動作にリングゲート切断部G0が支障を及ぼさない等、実施の形態1と同様な効果を奏する。   Accordingly, in this embodiment, as in the first embodiment, the ring gate cutting portion G0 does not remain on the gear portion 926 and the inner peripheral surface 923p, so that the ring gate is used for the operation of the gear train 6 and the friction mechanism 9 using the gear member 92. The same effects as those of the first embodiment are obtained, such as the cutting part G0 does not hinder.

[実施の形態4]
図7は、本発明の実施の形態4に係るギヤードモータ1のフリクション機構9に用いた歯車部材92の説明図であり、図7(a)、(b)、(c)、(d)は各々、歯車部材92を出力側S1からみた平面図、側面図、反出力側S2からみた分解斜視図、および断面図である。
[Embodiment 4]
FIG. 7 is an explanatory diagram of the gear member 92 used in the friction mechanism 9 of the geared motor 1 according to the fourth embodiment of the present invention. FIGS. 7 (a), (b), (c), and (d) They are a plan view, a side view, an exploded perspective view, and a cross-sectional view, as seen from the output side S1, of the gear member 92, respectively.

図7に示す歯車部材92も、実施の形態1と同様、PBT等の樹脂成形品である。本形態では、歯車部材92を成形するにあたって、図7(d)に示すように、金型において胴部923の出力側S1の端面922を形成する部分にリングゲートGを配置する。このため、図7(a)に示すように、歯車部材92では、胴部923の出力側S1の端面922にリングゲート切断部G0がある。   The gear member 92 shown in FIG. 7 is also a resin molded product such as PBT as in the first embodiment. In this embodiment, when the gear member 92 is formed, as shown in FIG. 7 (d), the ring gate G is disposed in a portion where the end surface 922 of the output side S1 of the body 923 is formed in the mold. Therefore, as shown in FIG. 7A, in the gear member 92, the ring gate cutting portion G0 is provided on the end surface 922 on the output side S1 of the trunk portion 923.

従って、本形態でも、実施の形態1と同様、歯車部926や内周面923pにリングゲート切断部G0が残らないので、歯車部材92を用いた歯車列6やフリクション機構9の動作にリングゲート切断部G0が支障を及ぼさない等、実施の形態1と同様な効果を奏する。   Accordingly, in this embodiment, as in the first embodiment, the ring gate cutting portion G0 does not remain on the gear portion 926 and the inner peripheral surface 923p, so that the ring gate is used for the operation of the gear train 6 and the friction mechanism 9 using the gear member 92. The same effects as those of the first embodiment are obtained, such as the cutting part G0 does not hinder.

[他の実施の形態]
上記実施の形態では、歯車部材92の胴部923の内周面923pに回転部材91の弾性変形部915が接していたが、歯車部材92の胴部923の外周面923rに回転部材91の弾性変形部915が接している構成を採用してもよい。この場合、本発明における「一方の周面」は「外周面923r」であり、「他方の周面」は「内周面923p」である。
[Other embodiments]
In the above embodiment, the elastic deformation portion 915 of the rotating member 91 is in contact with the inner peripheral surface 923p of the trunk portion 923 of the gear member 92, but the elasticity of the rotating member 91 is in contact with the outer peripheral surface 923r of the trunk portion 923 of the gear member 92. A configuration in which the deformable portion 915 is in contact may be employed. In this case, “one peripheral surface” in the present invention is “outer peripheral surface 923r”, and “the other peripheral surface” is “inner peripheral surface 923p”.

また、上記実施の形態では、歯車部材92の胴部923の出力側S1の端部923aに歯車部926が形成されていたが、歯車部材92の胴部923の反出力側S2の端部923bに歯車部926が形成されていてもよい。この場合、本発明における「モータ軸線方向Sの一方側」は「反出力側S2」であり、「モータ軸線方向Sの他方側」は「出力側S1」である。   In the above embodiment, the gear portion 926 is formed at the output side S1 end portion 923a of the body portion 923 of the gear member 92. However, the end portion 923b on the counter-output side S2 of the body portion 923 of the gear member 92 is formed. A gear portion 926 may be formed on the top. In this case, “one side in the motor axial direction S” in the present invention is “the opposite side S2”, and “the other side in the motor axial direction S” is “the output side S1”.

上記実施の形態では、歯車62にフリクション機構9を設けたが、他の歯車61、63、64、65にフリクション機構9を設けてもよい。   In the above embodiment, the friction mechanism 9 is provided on the gear 62, but the friction mechanism 9 may be provided on the other gears 61, 63, 64, 65.

1 ギヤードモータ
2 モータ部
3 ロータ
4 ステータ
6 歯車列
9 フリクション機構
91 回転部材
92 歯車部材
93 付勢部材
651 出力軸(出力部材)
915 弾性変形部
921 嵌合穴
922 出力側の端面
923 胴部
923a 出力側の端部
923b 反出力側端部
923p 胴部の内周面
923r 胴部の外周面
924 第1環状端面
925 第2環状端面
925e 第2環状端面の縁
G リングゲート
G0 リングゲート切断部
DESCRIPTION OF SYMBOLS 1 Geared motor 2 Motor part 3 Rotor 4 Stator 6 Gear train 9 Friction mechanism 91 Rotating member 92 Gear member 93 Biasing member 651 Output shaft (output member)
915 Elastic deformation portion 921 Fitting hole 922 Output side end surface 923 Body portion 923a Output side end portion 923b Counter output side end portion 923p Body portion inner peripheral surface 923r Body portion outer peripheral surface 924 First annular end surface 925 Second annular end surface End face 925e Edge G of second annular end face Ring gate G0 Ring gate cutting part

Claims (12)

軸線方向に延在する円筒状の胴部に歯車部が形成された歯車部材と、
前記胴部の外側および内側のうちの一方の周面に径方向から弾性をもって接する複数の弾性変形部を備えた回転部材と、
を有し、
前記歯車部材は、樹脂製であって、前記歯車部および前記一方の周面を除く位置にリングゲート切断部があることを特徴とするフリクション機構。
A gear member in which a gear portion is formed on a cylindrical trunk portion extending in the axial direction;
A rotating member provided with a plurality of elastically deforming portions that elastically contact one of the outer surface and the inner surface of the body portion from the radial direction;
Have
The gear mechanism is made of resin, and has a ring gate cutting portion at a position excluding the gear portion and the one peripheral surface.
前記歯車部は、前記胴部の前記軸線方向の一方の端部に設けられており、
前記胴部において前記歯車部より前記軸線方向の他方の端部側に前記リングゲート切断部があることを特徴とする請求項1に記載のフリクション機構。
The gear portion is provided at one end of the trunk portion in the axial direction,
The friction mechanism according to claim 1, wherein the ring gate cutting portion is located on the other end side in the axial direction from the gear portion in the trunk portion.
前記胴部において前記軸線方向の中間位置より前記他方の端部側に前記リングゲート切断部があることを特徴とする請求項2に記載のフリクション機構。   3. The friction mechanism according to claim 2, wherein the ring gate cutting portion is located on the other end portion side of the barrel portion from the intermediate position in the axial direction. 前記胴部において、前記軸線方向の他方側に向いている環状端面に前記リングゲート切断部があることを特徴とする請求項2または3に記載のフリクション機構。   4. The friction mechanism according to claim 2, wherein the ring gate cutting portion is provided on an annular end surface facing the other side in the axial direction in the trunk portion. 5. 前記胴部は、前記軸線方向の他方側に向く第1環状端面と、前記第1環状端面より前記軸線方向の一方側で前記軸線方向の他方側に向く第2環状端面と、を備え、
前記第2環状端面に前記リングゲート切断部があることを特徴とする請求項2乃至4の何れか一項に記載のフリクション機構。
The barrel includes a first annular end face facing the other side in the axial direction, and a second annular end face facing the other side in the axial direction on one side in the axial direction from the first annular end face,
The friction mechanism according to any one of claims 2 to 4, wherein the ring gate cutting portion is provided on the second annular end surface.
前記第1環状端面は、前記回転部材に対して前記軸線方向で重なって前記回転部材を前記軸線方向の一方側で位置決めしていることを特徴とする請求項5に記載のフリクション機構。   The friction mechanism according to claim 5, wherein the first annular end surface overlaps the rotating member in the axial direction to position the rotating member on one side in the axial direction. 前記胴部において、前記軸線方向の他方側に向いている環状端面の縁に前記リングゲート切断部があることを特徴とする請求項2または3に記載のフリクション機構。   4. The friction mechanism according to claim 2, wherein the ring gate cutting portion is provided at an edge of an annular end surface facing the other side in the axial direction in the trunk portion. 5. 前記胴部の外側および内側のうちの他方の周面に前記リングゲート切断部があることを特徴とする請求項2または3に記載のフリクション機構。   4. The friction mechanism according to claim 2, wherein the ring gate cutting portion is provided on the other peripheral surface of the outer side and the inner side of the body portion. 前記胴部は、第1胴部と、該第1胴部より前記軸線方向の一方側に形成され、外径寸法が第1胴部より大の第2胴部と、を備え
前記第2胴部の外側および内側のうちの他方の周面に前記歯車部が形成されていることを特徴とする請求項1乃至8の何れか一項に記載のフリクション機構。
The body includes a first body, and a second body formed on one side in the axial direction from the first body and having an outer diameter larger than that of the first body. The friction mechanism according to any one of claims 1 to 8, wherein the gear portion is formed on the other peripheral surface of the outer side and the inner side of the portion.
前記弾性変形部を径方向に付勢して前記弾性変形部を前記一方の周面に弾性をもって接触させる付勢部材を有することを特徴とする請求項1乃至9の何れか一項に記載のフリクション機構。   10. The biasing member according to claim 1, further comprising a biasing member that biases the elastic deformation portion in a radial direction and elastically contacts the elastic deformation portion with the one peripheral surface. Friction mechanism. 径方向からみたとき、前記付勢部材は、前記歯車部に重なる位置に配置されていることを特徴とする請求項10に記載のフリクション機構。   The friction mechanism according to claim 10, wherein the urging member is disposed at a position overlapping the gear portion when viewed from a radial direction. 請求項1乃至11の何れか一項に記載のフリクション機構を備えたギヤードモータであって、
モータ部と、
出力部材と、
前記モータの回転を前記出力部材に伝達する歯車列と、
を有し、
前記歯車列に含まれる2つの歯車のうちの一方が前記歯車部材であり、他方が前記回転部材であることを特徴とするギヤードモータ。
A geared motor comprising the friction mechanism according to any one of claims 1 to 11,
A motor section;
An output member;
A gear train for transmitting rotation of the motor to the output member;
Have
One of the two gears included in the gear train is the gear member, and the other is the rotating member.
JP2013170016A 2013-08-20 2013-08-20 Friction mechanism and geared motor Active JP6276538B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013170016A JP6276538B2 (en) 2013-08-20 2013-08-20 Friction mechanism and geared motor
CN201420372810.5U CN203979192U (en) 2013-08-20 2014-07-07 Friction mechanism and gear motor
CN201410321008.8A CN104421349B (en) 2013-08-20 2014-07-07 Friction mechanism and gear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013170016A JP6276538B2 (en) 2013-08-20 2013-08-20 Friction mechanism and geared motor

Publications (2)

Publication Number Publication Date
JP2015038373A true JP2015038373A (en) 2015-02-26
JP6276538B2 JP6276538B2 (en) 2018-02-07

Family

ID=51976641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170016A Active JP6276538B2 (en) 2013-08-20 2013-08-20 Friction mechanism and geared motor

Country Status (2)

Country Link
JP (1) JP6276538B2 (en)
CN (2) CN203979192U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276538B2 (en) * 2013-08-20 2018-02-07 日本電産サンキョー株式会社 Friction mechanism and geared motor
CN109296730A (en) * 2018-10-18 2019-02-01 珠海格力电器股份有限公司 A kind of air conditioner clutch gear, rotating mechanism and air conditioner
JP2020067168A (en) * 2018-10-26 2020-04-30 日本電産サンキョー株式会社 Overload protection mechanism and geared motor equipped with the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702122A (en) * 1986-09-02 1987-10-27 The Scott & Fetzer Company Bi-directional advance gear having a torque limiting clutch
JPH1014170A (en) * 1996-06-19 1998-01-16 Sankyo Seiki Mfg Co Ltd Friction mechanism and compact motor with friction mechanism
JPH11170310A (en) * 1997-12-05 1999-06-29 Victor Co Of Japan Ltd Injection mold
JP2003035355A (en) * 2001-07-23 2003-02-07 Enplas Corp Multi-stage gear made of resin and gear made of resin
JP2005280105A (en) * 2004-03-30 2005-10-13 Mitsubishi Materials Corp Mold assembly
JP2005299864A (en) * 2004-04-15 2005-10-27 Mitsubishi Motors Corp Parallel-axes type multi-stage transmission
JP2010078009A (en) * 2008-09-24 2010-04-08 Nidec Sankyo Corp Friction mechanism, geared motor and method of manufacturing friction mechanism
JP2010078008A (en) * 2008-09-24 2010-04-08 Nidec Sankyo Corp Friction mechanism and geared motor
JP2010253856A (en) * 2009-04-27 2010-11-11 Ckd Corp Method for manufacturing cylindrical part, and mold for manufacturing cylindrical part
JP2012250381A (en) * 2011-06-01 2012-12-20 Hitachi Automotive Systems Ltd Resin gear, mold, and method of producing the resin gear

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY123065A (en) * 1995-10-06 2006-05-31 Nidec Sankyo Corp Friction mechanism and small motor with friction mechanism
CN101017997B (en) * 2002-07-12 2010-10-13 布莱克-德克尔公司 Method for manufacturing armature
JP4557522B2 (en) * 2003-09-17 2010-10-06 本田技研工業株式会社 Connection structure of resin gear and oil pump shaft
CN101685997A (en) * 2008-09-24 2010-03-31 日本电产三协株式会社 Friction mechanism, gear motor, and method for manufacturing the friction mechanism
CN102029374A (en) * 2010-10-08 2011-04-27 上海光裕汽车空调压缩机有限公司 Method for casting cylinder body of compressor
JP5429406B2 (en) * 2011-12-07 2014-02-26 日本精工株式会社 Worm wheel and electric power steering device
JP6276538B2 (en) * 2013-08-20 2018-02-07 日本電産サンキョー株式会社 Friction mechanism and geared motor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702122A (en) * 1986-09-02 1987-10-27 The Scott & Fetzer Company Bi-directional advance gear having a torque limiting clutch
JPH1014170A (en) * 1996-06-19 1998-01-16 Sankyo Seiki Mfg Co Ltd Friction mechanism and compact motor with friction mechanism
JPH11170310A (en) * 1997-12-05 1999-06-29 Victor Co Of Japan Ltd Injection mold
JP2003035355A (en) * 2001-07-23 2003-02-07 Enplas Corp Multi-stage gear made of resin and gear made of resin
JP2005280105A (en) * 2004-03-30 2005-10-13 Mitsubishi Materials Corp Mold assembly
JP2005299864A (en) * 2004-04-15 2005-10-27 Mitsubishi Motors Corp Parallel-axes type multi-stage transmission
JP2010078009A (en) * 2008-09-24 2010-04-08 Nidec Sankyo Corp Friction mechanism, geared motor and method of manufacturing friction mechanism
JP2010078008A (en) * 2008-09-24 2010-04-08 Nidec Sankyo Corp Friction mechanism and geared motor
JP2010253856A (en) * 2009-04-27 2010-11-11 Ckd Corp Method for manufacturing cylindrical part, and mold for manufacturing cylindrical part
JP2012250381A (en) * 2011-06-01 2012-12-20 Hitachi Automotive Systems Ltd Resin gear, mold, and method of producing the resin gear

Also Published As

Publication number Publication date
CN203979192U (en) 2014-12-03
CN104421349A (en) 2015-03-18
JP6276538B2 (en) 2018-02-07
CN104421349B (en) 2018-04-13

Similar Documents

Publication Publication Date Title
JP6130875B2 (en) Step actuator
JP5836007B2 (en) Gear mechanism and geared motor
EP2963782B1 (en) Motor device
JP6276538B2 (en) Friction mechanism and geared motor
JP6625658B2 (en) Geared motor
US10753426B2 (en) Geared motor and manufacturing method for geared motor
CN203554187U (en) Motor
JP2013027302A (en) Linear step motor
JP5845024B2 (en) Geared motor
JP6353258B2 (en) Bearing mechanism and motor device
JP2016101088A (en) motor
JP4592519B2 (en) motor
JP2013172522A (en) Motor with wave motion reduction gear
CN203554186U (en) Motor
JP2019066023A (en) Composite gear and geared motor
JP2015033215A (en) Motor
JP6040014B2 (en) motor
JP2020088893A (en) motor
JP2019041496A (en) Geared motor and pointer type display device
JP2018117408A (en) Geared motor and pointer type display device
JP2017011892A (en) Motor with speed reducer
JP2012085521A (en) Stepper motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180112

R150 Certificate of patent or registration of utility model

Ref document number: 6276538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150