JP2015037018A - Sealed type nonaqueous electrolyte secondary battery - Google Patents

Sealed type nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015037018A
JP2015037018A JP2013167495A JP2013167495A JP2015037018A JP 2015037018 A JP2015037018 A JP 2015037018A JP 2013167495 A JP2013167495 A JP 2013167495A JP 2013167495 A JP2013167495 A JP 2013167495A JP 2015037018 A JP2015037018 A JP 2015037018A
Authority
JP
Japan
Prior art keywords
positive electrode
mass
aqueous electrolyte
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013167495A
Other languages
Japanese (ja)
Inventor
三橋 利彦
Toshihiko Mihashi
利彦 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013167495A priority Critical patent/JP2015037018A/en
Publication of JP2015037018A publication Critical patent/JP2015037018A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reliable sealed type nonaqueous electrolyte secondary battery which suppresses a failure accompanying manganese precipitation, and secures a sufficient amount of gas in the pressure rise inside a battery case.SOLUTION: In a sealed type nonaqueous electrolyte secondary battery 100, a positive electrode active material is composed of a lithium transition metal complex oxide including at least nickel, cobalt and manganese as transition metal elements. A nonaqueous electrolyte contains biphenyl and crown ether; the percentage of the biphenyl is 1-3 mass% to a total of 100 mass% of the nonaqueous electrolyte, and the percentage of the crown ether is 0.3-1 mass%. A battery case 50 is provided with a current interrupt device 30 which is activated when the pressure inside the battery case 50 is raised with generation of gas.

Description

本発明は、非水電解液二次電池に関する。詳しくは、内圧上昇により作動する電流遮断機構を備えた密閉型非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery. More specifically, the present invention relates to a sealed nonaqueous electrolyte secondary battery provided with a current interruption mechanism that operates by increasing internal pressure.

リチウムイオン二次電池等の非水電解液二次電池の一形態として、密閉型非水電解液二次電池が挙げられる。該電池は、典型的には、正負極からなる電極体が非水電解液とともに電池ケースに収容された後、蓋体が装着されて封口(密閉)されることにより構築される。密閉型非水電解液二次電池の正極は、導電性部材(正極集電体)の上に電荷担体となる化学種(例えばリチウムイオン)を可逆的に吸蔵及び放出し得る物質(正極活物質)を主体とする電極材料が層状に形成された構成(以下、かかる層状形成物を「正極活物質層」という。)をしている。かかる正極活物質の一つとして、例えば、引用文献1に示すように、遷移金属元素として少なくともニッケルとコバルトとマンガンとを含む複合酸化物(以下、「NiCoMn酸化物」ともいう。)が挙げられる。かかる複合酸化物は、高容量であって熱安定性に優れる正極活物質である。   As one form of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery, a sealed nonaqueous electrolyte secondary battery can be given. Typically, the battery is constructed in such a manner that an electrode body composed of positive and negative electrodes is accommodated in a battery case together with a non-aqueous electrolyte, and then a lid is attached and sealed (sealed). The positive electrode of the sealed nonaqueous electrolyte secondary battery is a substance (positive electrode active material) that can reversibly occlude and release chemical species (for example, lithium ions) serving as a charge carrier on a conductive member (positive electrode current collector). ) As a main component (hereinafter, the layered product is referred to as a “positive electrode active material layer”). One example of such a positive electrode active material is a composite oxide (hereinafter also referred to as “NiCoMn oxide”) containing at least nickel, cobalt, and manganese as transition metal elements, as shown in Patent Document 1. . Such a composite oxide is a positive electrode active material having a high capacity and excellent thermal stability.

特開2003−223887号公報Japanese Patent Application Laid-Open No. 2003-223887 特開2003−187864号公報JP 2003-187864 A

ところで、密閉型非水電解液二次電池は、一般に電圧が所定の領域(例えば3.0V以上4.2V以下)に収まるよう制御された状態で使用されるが、電池に通常以上の電流が供給されると、所定の電圧を超えて過充電となる場合がある。過充電対策技術としては、電池ケース内の圧力が所定値以上になると充電電流を遮断する電流遮断機構(CID:Current Interrupt Device)が広く用いられている。一般に、電池が過充電状態になると非水電解液中の非水溶媒等が電気分解され、ガスが発生する。上記電流遮断機構はこのガス発生に基づいて電池の充電経路を切断し、それ以上の過充電を防止し得るようになっている。上記電流遮断機構をより効果的に作動させるために、非水電解液の非水溶媒よりも酸化電位の低い(即ち、酸化分解反応の始まる電圧が低い)化合物(以下、「ガス発生剤」という。)を、あらかじめ非水電解液中に含有させておく手法が知られている。   By the way, the sealed nonaqueous electrolyte secondary battery is generally used in a state where the voltage is controlled so as to be within a predetermined region (for example, 3.0 V or more and 4.2 V or less). When supplied, it may overcharge beyond a predetermined voltage. As an overcharge countermeasure technique, a current interruption device (CID: Current Interrupt Device) that cuts off a charging current when the pressure in the battery case reaches a predetermined value or more is widely used. Generally, when a battery is overcharged, a non-aqueous solvent or the like in the non-aqueous electrolyte is electrolyzed to generate gas. The current interruption mechanism cuts off the charging path of the battery based on this gas generation, and can prevent further overcharge. In order to operate the current interruption mechanism more effectively, a compound (hereinafter referred to as “gas generating agent”) having an oxidation potential lower than that of the non-aqueous solvent of the non-aqueous electrolyte (that is, lower voltage at which the oxidative decomposition reaction starts) )) Is known in advance in a non-aqueous electrolyte.

しかしながら、正極活物質としてNiCoMn酸化物を備える非水電解液二次電池において、非水電解液中にガス発生剤としてのビフェニルを添加すると、ガス発生量は確保されるものの、NiCoMn酸化物から非水電解液中へマンガンが溶出してしまう虞がある。非水電解液中に溶出したマンガンが負極の表面に析出することによって、正負極間で短絡が発生したり、電池容量が低下する虞がある。   However, in a non-aqueous electrolyte secondary battery including a NiCoMn oxide as a positive electrode active material, when biphenyl as a gas generating agent is added to the non-aqueous electrolyte, a gas generation amount is ensured, but the NiCoMn oxide does not There is a risk that manganese will elute into the water electrolyte. When manganese eluted in the non-aqueous electrolyte is deposited on the surface of the negative electrode, there is a possibility that a short circuit may occur between the positive and negative electrodes or the battery capacity may be reduced.

本発明はかかる点に鑑みてなされたものであり、その目的は、マンガンの析出に伴う不具合を抑制すると共に、電池ケース内の圧力上昇時において十分なガス量の発生が確保された信頼性の高い密閉型非水電解液二次電池を提供することである。   The present invention has been made in view of such a point, and the object thereof is to suppress defects associated with manganese precipitation and to ensure reliability in generating a sufficient amount of gas when the pressure in the battery case is increased. It is to provide a high hermetically sealed nonaqueous electrolyte secondary battery.

本願発明者は、ビフェニルが添加された非水電解液中に、さらにクラウンエーテルを添加することによって、負極表面でのマンガンの析出を抑制することができることを見出し、本発明を完成した。   The inventor of the present application has found that the precipitation of manganese on the negative electrode surface can be suppressed by further adding crown ether to the non-aqueous electrolyte to which biphenyl is added, and the present invention has been completed.

即ち、本発明によって提供される密閉型非水電解液二次電池は、正極および負極を有する電極体と、非水電解液と、前記電極体および前記非水電解液を収容する電池ケースと、を備える密閉型非水電解液二次電池である。前記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質を含む正極活物質層と、を備えている。前記正極活物質は、遷移金属元素として少なくともニッケルとコバルトとマンガンとを含むリチウム遷移金属複合酸化物である。前記非水電解液には、所定の電池電圧を超えた際に分解してガスを発生し得るビフェニルと、添加剤としてクラウンエーテルと、が含まれている。前記電池ケースには、前記ガスの発生に伴って前記電池ケース内の圧力が上昇した際に作動する電流遮断機構が設けられている。好ましくは、前記非水電解液の全体を100質量%としたときに、前記ビフェニルの割合は1質量%〜3質量%である。また、好ましくは、前記非水電解液の全体を100質量%としたときに、前記クラウンエーテルの割合は0.3質量%〜1質量%である。   That is, a sealed non-aqueous electrolyte secondary battery provided by the present invention includes an electrode body having a positive electrode and a negative electrode, a non-aqueous electrolyte, a battery case containing the electrode body and the non-aqueous electrolyte, Is a sealed nonaqueous electrolyte secondary battery. The positive electrode includes a positive electrode current collector and a positive electrode active material layer including at least a positive electrode active material formed on the positive electrode current collector. The positive electrode active material is a lithium transition metal composite oxide containing at least nickel, cobalt, and manganese as transition metal elements. The non-aqueous electrolyte contains biphenyl that can decompose to generate gas when a predetermined battery voltage is exceeded, and crown ether as an additive. The battery case is provided with a current interrupt mechanism that operates when the pressure in the battery case increases with the generation of the gas. Preferably, when the total amount of the non-aqueous electrolyte is 100% by mass, the ratio of the biphenyl is 1% by mass to 3% by mass. Preferably, when the total amount of the non-aqueous electrolyte is 100% by mass, the proportion of the crown ether is 0.3% by mass to 1% by mass.

なお、本明細書において「非水電解液二次電池」とは、非水電解液(典型的には、非水溶媒(有機溶媒)中に支持塩(支持電解質)を含む電解液)を備えた電池をいう。
また、本明細書において「二次電池」とは、繰り返し充放電可能な電池一般をいい、リチウムイオン二次電池等のいわゆる化学電池ならびに電気二重層キャパシタ等の物理電池を包含する用語である。
In this specification, the “non-aqueous electrolyte secondary battery” includes a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent (organic solvent)). Battery.
In the present specification, the term “secondary battery” refers to a battery that can be repeatedly charged and discharged, and is a term that includes a so-called chemical battery such as a lithium ion secondary battery and a physical battery such as an electric double layer capacitor.

本発明によって提供される非水電解液二次電池では、遷移金属元素として少なくともニッケルとコバルトとマンガンとを含むリチウム遷移金属複合酸化物(以下、「NCM酸化物」ともいう。)を正極活物質として用いており、非水電解液にはクラウンエーテルとガス発生剤としてのビフェニルとが含まれている。非水電解液中にビフェニルが含まれているため、NCM酸化物からマンガンが非水電解液中に溶出し得る。しかし、非水電解液はさらにクラウンエーテルを含んでいるため、非水電解液中に溶出したマンガンイオンはクラウンエーテルに捕捉される。即ち、クラウンエーテルはマンガンイオンを包み込むように錯体を形成する。この結果、非水電解液中に溶出したマンガンイオンが負極上にマンガンとして析出することは抑制される。また、ビフェニルの割合が1質量%〜3質量%である場合、電池ケース内の圧力上昇時において十分なガス量の発生が確保され得る。さらに、クラウンエーテルの割合が0.3質量%〜1質量%である場合、負極上にマンガンが析出することをより抑制することができる。なお、引用文献2には、液状の電解質である電解液中にクラウンエーテル類を含有した二次電池が開示されているが、マンガンを含む正極活物質からマンガンが溶出することによって発生し得る不具合についての開示はなく、該不具合を解決するためにクラウンエーテルを含有したものではない。このため、本発明の構成を示唆または動機付けるものではない。   In the nonaqueous electrolyte secondary battery provided by the present invention, a lithium transition metal complex oxide (hereinafter also referred to as “NCM oxide”) containing at least nickel, cobalt, and manganese as transition metal elements is used as a positive electrode active material. The non-aqueous electrolyte contains crown ether and biphenyl as a gas generating agent. Since biphenyl is contained in the non-aqueous electrolyte, manganese can be eluted from the NCM oxide into the non-aqueous electrolyte. However, since the nonaqueous electrolytic solution further contains crown ether, manganese ions eluted in the nonaqueous electrolytic solution are captured by the crown ether. That is, the crown ether forms a complex so as to enclose manganese ions. As a result, it is suppressed that the manganese ion eluted in the non-aqueous electrolyte is deposited as manganese on the negative electrode. Moreover, when the ratio of biphenyl is 1 mass%-3 mass%, generation | occurrence | production of sufficient gas amount can be ensured at the time of the pressure rise in a battery case. Furthermore, when the proportion of the crown ether is 0.3% by mass to 1% by mass, it is possible to further suppress the precipitation of manganese on the negative electrode. Reference 2 discloses a secondary battery in which a crown ether is contained in an electrolytic solution that is a liquid electrolyte. However, a problem that may occur when manganese is eluted from a positive electrode active material containing manganese. There is no disclosure about the above, and it does not contain crown ether in order to solve the problem. Therefore, it does not suggest or motivate the configuration of the present invention.

本発明の一実施形態に係る密閉型非水電解液二次電池の外形を模式的に示す斜視図である。1 is a perspective view schematically showing an outer shape of a sealed nonaqueous electrolyte secondary battery according to an embodiment of the present invention. 図1中のII‐II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire in FIG. クリプタンド[2.2.2]の添加量と容量維持率との関係を示すグラフである。It is a graph which shows the relationship between the addition amount of a cryptand [2.2.2], and a capacity | capacitance maintenance factor.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここで開示される密閉型非水電解液二次電池は、上述の通り、正極活物質は、遷移金属元素としてニッケルとコバルトとマンガンとを含むリチウム遷移金属複合酸化物であり、非水電解液には、所定の電池電圧を超えた際に分解してガスを発生し得るビフェニルと、添加剤としてクラウンエーテルと、が含まれることによって特徴づけられる。以下、密閉型非水電解液二次電池としてリチウムイオン二次電池である場合を典型例としてより詳しく説明するが、本発明の適用対象をかかる電池に限定する意図ではない。   In the sealed nonaqueous electrolyte secondary battery disclosed herein, as described above, the positive electrode active material is a lithium transition metal composite oxide containing nickel, cobalt, and manganese as transition metal elements. Is characterized by containing biphenyl, which can decompose to generate gas when a predetermined battery voltage is exceeded, and crown ether as an additive. Hereinafter, the case where the sealed nonaqueous electrolyte secondary battery is a lithium ion secondary battery will be described in more detail as a typical example, but the application target of the present invention is not intended to be limited to such a battery.

まず、ここで開示されるリチウムイオン二次電池の正極について説明する。ここで開示される正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質を含む正極活物質層と、を備えている。正極活物質層は、正極活物質と導電材と結着剤等とを含む。正極集電体としては、導電性の良好な金属(例えばアルミニウム)からなる導電性部材を好適に採用し得る。   First, the positive electrode of the lithium ion secondary battery disclosed here will be described. The positive electrode disclosed here includes a positive electrode current collector and a positive electrode active material layer including at least a positive electrode active material formed on the positive electrode current collector. The positive electrode active material layer includes a positive electrode active material, a conductive material, a binder, and the like. As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum) can be suitably employed.

上記正極活物質としては、遷移金属元素として少なくともマンガンを含むリチウム遷移金属複合酸化物が挙げられる。好ましくは、遷移金属元素としてニッケルとコバルトとマンガンとを含むリチウム遷移金属複合酸化物(例えばLiNi1/3Co1/3Mn1/3)が挙げられる。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料を採用し得る。結着剤としては、ポリフッ化ビニリデン(PVDF)やポリエチレンオキサイド(PEO)等の各種のポリマー材料を採用し得る。 Examples of the positive electrode active material include lithium transition metal composite oxides containing at least manganese as a transition metal element. Preferably, a lithium transition metal complex oxide (for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) containing nickel, cobalt, and manganese as the transition metal element can be used. As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be adopted. As the binder, various polymer materials such as polyvinylidene fluoride (PVDF) and polyethylene oxide (PEO) can be adopted.

ここで開示される負極は、負極集電体と、該負極集電体上に形成された負極活物質層とを有している。負極活物質層は、負極活物質と結着剤と増粘材等とを含む。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料を好適に採用し得る。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料を用いることができ、なかでも黒鉛を好適に採用し得る。結着剤としては、スチレンブタジエンゴム(SBR)等の各種ポリマー材料を採用し得る。増粘剤としては、カルボキシメチルセルロース(CMC)等の各種のポリマー材料を採用し得る。   The negative electrode disclosed here has a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector. The negative electrode active material layer includes a negative electrode active material, a binder, a thickener, and the like. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper) can be suitably used. As the negative electrode active material, a carbon material such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), or the like can be used, and among them, graphite can be preferably used. As the binder, various polymer materials such as styrene butadiene rubber (SBR) can be adopted. As the thickener, various polymer materials such as carboxymethyl cellulose (CMC) can be employed.

図1および図2に示すように、本実施形態に係るリチウムイオン二次電池は、密閉型のリチウムイオン二次電池100である。電池ケース(外容器)50は、金属製(例えばアルミニウム製)の電池ケースである。電池ケース50は、上端が開放された有底の扁平な角型形状の電池ケース本体52と、その開口部を塞ぐ蓋体54とを備える。蓋体54には、捲回電極体80の正極シート10と電気的に接続する正極端子70と、捲回電極体80の負極シート20と電気的に接続する負極端子72と、が設けられている。また、蓋体54には、従来のリチウムイオン二次電池の電池ケースと同様に、電池ケース50内部で発生したガスを電池ケース50の外部に排出するための安全弁55が設けられている。かかる安全弁55は、典型的には電流遮断機構30の作動する圧力以上で開放されるよう設定されている。電池ケース50の内部には、正極シート10および負極シート20を計二枚のセパレータ40A、40B(例えば、樹脂からなる多孔性シート)とともに積層して長手方向に捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって作製される扁平形状の捲回電極体80と、非水電解液とが収容されている。なお、正極シート(正極)10は、正極集電体12と、該正極集電体12上に形成された少なくとも正極活物質を含む正極活物質層14と、を備えている。   As shown in FIGS. 1 and 2, the lithium ion secondary battery according to this embodiment is a sealed lithium ion secondary battery 100. The battery case (outer container) 50 is a metal (for example, aluminum) battery case. The battery case 50 includes a bottomed flat rectangular battery case main body 52 having an open upper end, and a lid 54 that closes the opening. The lid 54 is provided with a positive electrode terminal 70 electrically connected to the positive electrode sheet 10 of the wound electrode body 80 and a negative electrode terminal 72 electrically connected to the negative electrode sheet 20 of the wound electrode body 80. Yes. In addition, the lid 54 is provided with a safety valve 55 for discharging the gas generated inside the battery case 50 to the outside of the battery case 50 as in the case of the battery case of the conventional lithium ion secondary battery. The safety valve 55 is typically set to be opened at a pressure higher than the pressure at which the current interrupt mechanism 30 operates. Inside the battery case 50, the positive electrode sheet 10 and the negative electrode sheet 20 are laminated together with a total of two separators 40A and 40B (for example, a porous sheet made of resin) and wound in the longitudinal direction. A flat wound electrode body 80 produced by crushing the body from the side direction and kidnapping it, and a non-aqueous electrolyte are accommodated. The positive electrode sheet (positive electrode) 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 including at least a positive electrode active material formed on the positive electrode current collector 12.

電池ケース50の内部には、電池ケース50内の圧力が上昇した際に作動する電流遮断機構30が設けられている。電流遮断機構30は、電池ケース50の内圧が上昇した場合に正極端子70および負極端子72の少なくとも一方の電極端子から捲回電極体80に至る導電経路(例えば、充電経路)を切断するように構成されていればよい。図2に示すように、電流遮断機構30は蓋体54に固定した正極端子70と捲回電極体80との間に設けられ、電池ケース50の内圧が上昇した場合に正極端子70から捲回電極体80に至る導電経路を切断するように構成されている。   Inside the battery case 50 is provided a current interrupt mechanism 30 that operates when the pressure in the battery case 50 rises. When the internal pressure of the battery case 50 increases, the current interruption mechanism 30 cuts off a conductive path (for example, a charging path) from at least one of the positive electrode terminal 70 and the negative electrode terminal 72 to the wound electrode body 80. It only has to be configured. As shown in FIG. 2, the current interrupt mechanism 30 is provided between the positive electrode terminal 70 fixed to the lid 54 and the wound electrode body 80, and is wound from the positive electrode terminal 70 when the internal pressure of the battery case 50 rises. The conductive path reaching the electrode body 80 is cut.

より具体的には、上記電流遮断機構30は例えば第一部材32と第二部材34とを含み得る。そして、電池ケース50の内圧が上昇した場合に第一部材32および第二部材34の少なくとも一方が変形して他方から離隔することにより上記導電経路を切断するように構成されている。第一部材32は、中央部分が下方へ湾曲したアーチ形状に形成され、その周縁部分が集電リード端子35を介して正極端子70の下面と接続されている。また、第一部材32の湾曲部分33の先端が第二部材34の上面と接合されている。第二部材34の下面(裏面)には正極集電板74が接合され、かかる正極集電板74が捲回電極体80の正極シート10(正極集電体12)に接続されている。   More specifically, the current interrupt mechanism 30 may include a first member 32 and a second member 34, for example. When the internal pressure of the battery case 50 rises, at least one of the first member 32 and the second member 34 is deformed and separated from the other, thereby cutting the conductive path. The first member 32 is formed in an arch shape with a central portion curved downward, and a peripheral portion thereof is connected to the lower surface of the positive electrode terminal 70 via a current collecting lead terminal 35. Further, the tip of the curved portion 33 of the first member 32 is joined to the upper surface of the second member 34. A positive electrode current collector plate 74 is joined to the lower surface (back surface) of the second member 34, and the positive electrode current collector plate 74 is connected to the positive electrode sheet 10 (positive electrode current collector 12) of the wound electrode body 80.

また、電流遮断機構30は、プラスチック等により形成された絶縁ケース38を備えている。絶縁ケース38は第一部材32を囲むように設けられ、第一部材32の上面を気密に密閉している。この気密に密閉された湾曲部分33の上面には電池ケース50の内圧が作用しない。電流遮断機構30において、電池ケース50の内圧が高まると該内圧が第一部材32の湾曲部分33の下面に作用し、下方へ湾曲した湾曲部分33が上方へ押し上げられる。そして、電池ケース50の内圧が設定圧力を超えると湾曲部分33が上下反転し上方へ湾曲するように変形する。これにより、第一部材32と第二部材34との接合点36が切断され、正極端子70から捲回電極体80に至る導電経路が切断され、過充電電流が遮断されるようになっている。   The current interrupt mechanism 30 includes an insulating case 38 made of plastic or the like. The insulating case 38 is provided so as to surround the first member 32, and hermetically seals the upper surface of the first member 32. The internal pressure of the battery case 50 does not act on the upper surface of the hermetically sealed curved portion 33. In the current interrupt mechanism 30, when the internal pressure of the battery case 50 increases, the internal pressure acts on the lower surface of the curved portion 33 of the first member 32, and the curved portion 33 curved downward is pushed upward. When the internal pressure of the battery case 50 exceeds the set pressure, the curved portion 33 is inverted so as to bend upside down and bend upward. Thereby, the junction point 36 between the first member 32 and the second member 34 is cut, the conductive path from the positive electrode terminal 70 to the wound electrode body 80 is cut, and the overcharge current is cut off. .

なお、電流遮断機構30は、上述した第一部材32の変形を伴う機械的な切断に限定されず、例えば、電池ケース50の内圧をセンサで検知し、該センサで検知した内圧が設定圧力を超えると充電電流を遮断するような外部回路を電流遮断機構として設けることもできる。   The current interruption mechanism 30 is not limited to the mechanical cutting accompanied by the deformation of the first member 32 described above. For example, the internal pressure of the battery case 50 is detected by a sensor, and the internal pressure detected by the sensor sets the set pressure. An external circuit that cuts off the charging current when exceeded can be provided as a current cut-off mechanism.

上記非水電解液としては、有機溶媒(非水溶媒)中に支持塩、ガス発生剤および添加剤を含有させたものを用いる。支持塩としては、リチウム塩、ナトリウム塩等を用いることができ、なかでもLiPF、LiBF等のリチウム塩を好適に採用し得る。有機溶媒としては、カーボネート類、エステル類、エーテル類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。 As the non-aqueous electrolyte, an organic solvent (non-aqueous solvent) containing a supporting salt, a gas generating agent and an additive is used. As the supporting salt, a lithium salt, a sodium salt or the like can be used, and among them, a lithium salt such as LiPF 6 or LiBF 4 can be preferably used. As the organic solvent, aprotic solvents such as carbonates, esters and ethers can be used. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be preferably used.

上記ガス発生剤としては、ビフェニルが用いられる。ビフェニルは、所定の電池電圧を超えた際に分解してガスを発生し得る化合物(即ち、酸化電位がリチウムイオン二次電池の作動電圧以上であって、該電池が過充電状態となった場合に分解してガスを発生するような化合物)である。なお、ビフェニルに加えて、同様の用途で用いられているガス発生剤(例えばシクロヘキシルベンゼン)を使用してもよい。   Biphenyl is used as the gas generating agent. Biphenyl is a compound that can decompose and generate gas when it exceeds a predetermined battery voltage (that is, when the oxidation potential is higher than the operating voltage of the lithium ion secondary battery and the battery is overcharged) A compound that decomposes into a gas and generates gas). In addition to biphenyl, a gas generating agent (for example, cyclohexylbenzene) used for the same purpose may be used.

非水電解液の全体を100質量%としたときに、ビフェニルの割合は0.1質量%以上(典型的には0.5質量%以上、好ましくは1質量%以上、より好ましくは2質量%以上。)であって、10質量%以下(典型的には5質量%以下、好ましくは3質量%以下。)であることが好ましい。ビフェニルの割合が0.1質量%よりも小さすぎる場合は過充電時におけるガス発生量が少なくなり、電流遮断機構が正常に作動しない虞がある。また、ビフェニルの割合が10質量%よりも大きすぎる場合は、電池性能が低下する虞がある。   When the total amount of the non-aqueous electrolyte is 100% by mass, the proportion of biphenyl is 0.1% by mass or more (typically 0.5% by mass or more, preferably 1% by mass or more, more preferably 2% by mass). Or more), and preferably 10% by mass or less (typically 5% by mass or less, preferably 3% by mass or less). When the proportion of biphenyl is too smaller than 0.1% by mass, the amount of gas generated during overcharge decreases, and the current interrupt mechanism may not operate normally. Moreover, when the ratio of biphenyl is too larger than 10 mass%, there exists a possibility that battery performance may fall.

上記クラウンエーテルとしては、非水電解液中に溶出したマンガンイオンを補足する(取り込む)ことができる化合物であれば、特に限定することなく使用することができる。例えば、12−クラウン−4、15−クラウン−5、18−クラウン−6等の大環状エーテルや、クリプタンド等の複環式エーテル等が挙げられる。好ましいクラウンエーテルとして、下記式(I)で表されるクリプタンド[2.2.2](即ち、1,10‐ジアザ‐4,7,13,16,21,24‐ヘキサオキサビシクロ[8,8,8]ヘキサコン、N(CHCHOCHCHOCHCHN)が例示される。 The crown ether can be used without particular limitation as long as it is a compound capable of capturing (taking in) manganese ions eluted in the non-aqueous electrolyte. Examples thereof include macrocyclic ethers such as 12-crown-4, 15-crown-5, and 18-crown-6, and polycyclic ethers such as cryptands. As a preferred crown ether, a cryptand [2.2.2] represented by the following formula (I) (that is, 1,10-diaza-4,7,13,16,21,24-hexoxabicyclo [8,8 , 8] hexacon, N (CH 2 CH 2 OCH 2 CH 2 OCH 2 CH 2 ) 3 N).

Figure 2015037018
Figure 2015037018

非水電解液の全体を100質量%としたときに、クラウンエーテルの割合は0.1質量%以上(典型的には0.2質量%以上、好ましくは0.3質量%以上。)であって、3質量%以下(典型的には2質量%以下、好ましくは1質量%以下。)であることが好ましい。クラウンエーテルの割合が0.1質量%よりも小さすぎる場合は非水電解液中に溶出したマンガンを十分に補足することができず、負極上にマンガンが析出する虞がある。   When the total amount of the non-aqueous electrolyte is 100% by mass, the proportion of crown ether is 0.1% by mass or more (typically 0.2% by mass or more, preferably 0.3% by mass or more). 3 mass% or less (typically 2 mass% or less, preferably 1 mass% or less). When the proportion of the crown ether is less than 0.1% by mass, manganese eluted in the non-aqueous electrolyte cannot be sufficiently captured, and manganese may be deposited on the negative electrode.

本実施形態に係る密閉型のリチウムイオン二次電池100では、遷移金属元素として少なくともマンガンを含むリチウム遷移金属複合酸化物を正極活物質として用いており、非水電解液にはガス発生剤としてビフェニルとクラウンエーテルが含まれている。非水電解液中にビフェニルが含まれているため、過充電時にはガスが発生し電流遮断機構30は作動し信頼性の高い二次電池になり得る。しかしながら、非水電解液中にビフェニルが含まれているため、通常の充放電時には、リチウム遷移金属複合酸化物からマンガンが非水電解液中に溶出しやすくなる。ここで、非水電解液はさらにクラウンエーテルを含んでいるため、非水電解液中に溶出したマンガンイオンはクラウンエーテルに取り込まれる。この結果、非水電解液中にマンガンが溶出した場合であっても、マンガンイオンが負極の表面にマンガンとして析出することは抑制される。以上より、本実施形態に係るリチウムイオン二次電池100は、正極活物質からのマンガンの析出に伴う不具合を抑制すると共に、電池ケース内の圧力上昇時において十分なガス量の発生が確保された信頼性の高い二次電池となり得る。   In the sealed lithium ion secondary battery 100 according to the present embodiment, a lithium transition metal composite oxide containing at least manganese as a transition metal element is used as a positive electrode active material, and biphenyl is used as a gas generating agent in a non-aqueous electrolyte. And crown ether. Since biphenyl is contained in the non-aqueous electrolyte, gas is generated at the time of overcharging, and the current interrupting mechanism 30 operates to provide a highly reliable secondary battery. However, since biphenyl is contained in the non-aqueous electrolyte, manganese is easily eluted from the lithium transition metal composite oxide into the non-aqueous electrolyte during normal charge / discharge. Here, since the non-aqueous electrolyte further contains crown ether, manganese ions eluted in the non-aqueous electrolyte are taken into the crown ether. As a result, even when manganese is eluted in the non-aqueous electrolyte, it is suppressed that manganese ions are precipitated as manganese on the surface of the negative electrode. As described above, the lithium ion secondary battery 100 according to the present embodiment suppresses the problems associated with the precipitation of manganese from the positive electrode active material and ensures the generation of a sufficient amount of gas when the pressure in the battery case increases. It can be a highly reliable secondary battery.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<例1>
正極活物質としてのLiNi1/3Co1/3Mn1/3と、導電材としてのアセチレンブラック(AB)と、結着剤としてのPVDFとの質量比が90:8:2となるように秤量し、これら材料をN‐メチル‐2‐ピロリドン(NMP)に分散させてペースト状の正極活物質層形成用組成物を調製した。該組成物を厚さ15μmのアルミニウム箔(正極集電体)上に塗布した。その塗布物を乾燥させ、プレス処理を行うことにより、正極集電体上に正極活物質層が形成された正極シートを作製した。
<Example 1>
The mass ratio of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material, acetylene black (AB) as the conductive material, and PVDF as the binder is 90: 8: 2. Thus, these materials were dispersed in N-methyl-2-pyrrolidone (NMP) to prepare a paste-like composition for forming a positive electrode active material layer. The composition was applied onto an aluminum foil (positive electrode current collector) having a thickness of 15 μm. The coated material was dried and subjected to a press treatment to produce a positive electrode sheet having a positive electrode active material layer formed on a positive electrode current collector.

天然黒鉛と、結着剤としてのSBRと、増粘剤としてのCMCとの質量比が98:1:1となるように秤量し、これら材料をイオン交換水に分散させてペースト状の負極活物質層形成用組成物を調製した。該組成物を厚さ10μmの銅箔(負極集電体)上に塗布した。その塗布物を乾燥させ、プレス処理を行うことにより、負極集電体上に負極活物質層が形成された負極シートを作製した。   Weigh so that the mass ratio of natural graphite, SBR as a binder, and CMC as a thickener is 98: 1: 1, and disperse these materials in ion-exchanged water to obtain a paste-like negative electrode active material. A composition for forming a material layer was prepared. The composition was applied onto a 10 μm thick copper foil (negative electrode current collector). The coated material was dried and subjected to a press treatment to prepare a negative electrode sheet in which a negative electrode active material layer was formed on the negative electrode current collector.

上記準備した正極シートと負極シートとの間にセパレータシート(多孔質ポリエチレン層の両面に多孔質ポリプロピレン層が形成された三層構造のセパレータシート)を介在させて楕円状に捲回して捲回電極体を作製した。この捲回電極体の正負の電極集電体の端部にそれぞれ電極端子を接合し、縦75mm、幅120mm、厚さ15mm、ケースの厚み1mmのアルミ製電池ケース内に該捲回電極体を収容した。次いで、上記電池ケース内に例1に係る非水電解液を注入して例1に係るリチウムイオン二次電池を作製した。例1に係る非水電解液は、ECとDMCとEMCとの体積比が3:4:3の非水溶媒に、支持塩としてLiPFを溶解させたものを使用した。例1に係る非水電解液中のLiPFの濃度は1.1mol/Lであった。 A wound electrode is formed by winding a separator sheet (a separator sheet having a three-layer structure in which a porous polypropylene layer is formed on both sides of a porous polyethylene layer) between the prepared positive electrode sheet and the negative electrode sheet, and winding it in an elliptical shape. The body was made. Electrode terminals are joined to the ends of the positive and negative electrode current collectors of the wound electrode body, and the wound electrode body is placed in an aluminum battery case having a length of 75 mm, a width of 120 mm, a thickness of 15 mm, and a case thickness of 1 mm. Accommodated. Next, the non-aqueous electrolyte solution according to Example 1 was injected into the battery case to produce a lithium ion secondary battery according to Example 1. The non-aqueous electrolyte according to Example 1 was prepared by dissolving LiPF 6 as a supporting salt in a non-aqueous solvent having a volume ratio of EC, DMC, and EMC of 3: 4: 3. The concentration of LiPF 6 in the nonaqueous electrolytic solution according to Example 1 was 1.1 mol / L.

<例2〜例4>
例2に係る非水電解液として、例1に係る非水電解液に、さらにガス発生剤としてのビフェニルを添加したものを使用した他は例1と同様にして、例2に係るリチウムイオン二次電池を作製した。例2に係る非水電解液の全体を100質量%としたときに、ビフェニルの割合は1質量%であった。また、ビフェニルの割合を表1に示すものに変更した他は例2と同様にして、例3および例4にかかるリチウムイオン二次電池を作製した。
<Example 2 to Example 4>
In the same manner as in Example 1, except that a non-aqueous electrolyte according to Example 2 was added to the non-aqueous electrolyte according to Example 1 and biphenyl as a gas generating agent was used. A secondary battery was produced. When the total amount of the nonaqueous electrolytic solution according to Example 2 was 100% by mass, the proportion of biphenyl was 1% by mass. Moreover, the lithium ion secondary battery concerning Example 3 and Example 4 was produced like Example 2 except having changed the ratio of biphenyl into what was shown in Table 1. FIG.

Figure 2015037018
Figure 2015037018

[充放電サイクル試験]
上記作製した例1〜例4に係るリチウムイオン二次電池に対して、C/5の電流値(充電レート)で4.1Vまで定電流で充電を行った後、定電圧充電時の電流値がC/50になる点まで定電圧充電を行うことによって満充電(SOC100%)とした。その後、25℃の温度条件下において、C/5の電流値で3Vまで定電流で放電を行ったときの放電容量(初期電池容量)を測定した。ここで1Cとは、正極の理論容量より予測した電池容量(Ah)を1時間で充電できる電流値を意味する。上記初期電池容量測定後の例1〜例4の各リチウムイオン二次電池に対して、充放電を1000サイクル繰り返した。1サイクルの充放電条件は、60℃の温度条件下において、2Cの充電レートで電圧4.1Vまで定電流充電行い、その後2Cの放電レートで電圧3Vまで定電流放電を行うものであった。1000サイクル後の各リチウムイオン二次電池について、上記初期容量測定と同様にして1000サイクル後の放電容量(サイクル後電池容量)を測定した。ここで、次式:{(サイクル後電池容量)/(初期電池容量)}×100;を、1000サイクル後の容量維持率[%]とした。測定結果を表1に示す。
[Charge / discharge cycle test]
The lithium ion secondary batteries according to Examples 1 to 4 manufactured above were charged at a constant current up to 4.1 V at a current value (charge rate) of C / 5, and then the current value during constant voltage charging. The battery was fully charged (SOC 100%) by performing constant voltage charging up to a point where C becomes C / 50. Thereafter, under a temperature condition of 25 ° C., a discharge capacity (initial battery capacity) was measured when discharging was performed at a constant current up to 3 V at a current value of C / 5. Here, 1C means a current value that can charge the battery capacity (Ah) predicted from the theoretical capacity of the positive electrode in one hour. Charging / discharging was repeated 1000 cycles for each of the lithium ion secondary batteries of Examples 1 to 4 after the initial battery capacity measurement. The charge / discharge conditions for one cycle were a constant current charge to a voltage of 4.1V at a charge rate of 2C and a constant current discharge to a voltage of 3V at a discharge rate of 2C under a temperature condition of 60 ° C. For each lithium ion secondary battery after 1000 cycles, the discharge capacity after 1000 cycles (post-cycle battery capacity) was measured in the same manner as the initial capacity measurement. Here, the following formula: {(battery capacity after cycle) / (initial battery capacity)} × 100 was defined as the capacity retention rate [%] after 1000 cycles. The measurement results are shown in Table 1.

[ガス発生量の測定]
上記作製した例1〜例4係るリチウムイオン二次電池について、アルキメデス法にて各電池の体積A[mL]を測定した。そして、1000サイクル後の例1〜例4に係るリチウムイオン二次電池について、アルキメデス法にて各電池の体積B[mL]を測定した。そして、体積B[mL]から体積A[mL]をそれぞれ差し引いて、1000サイクル後におけるガス発生量(B−A)[mL]を算出した。測定結果を表1に示す。なお、アルキメデス法とは、測定対象物(本例では、組立体とリチウムイオン二次電池)を、媒液(例えば、蒸留水やアルコール等)に浸漬し、測定対象物が受ける浮力を測定することにより、該測定対象物の体積を求める手法である。
[Measurement of gas generation amount]
About the lithium ion secondary battery which concerns on the produced said Example 1-Example 4, volume A [mL] of each battery was measured by the Archimedes method. And about the lithium ion secondary battery which concerns on Example 1-Example 4 after 1000 cycles, the volume B [mL] of each battery was measured by the Archimedes method. Then, the volume A [mL] was subtracted from the volume B [mL], respectively, and the gas generation amount (BA) [mL] after 1000 cycles was calculated. The measurement results are shown in Table 1. In the Archimedes method, a measurement object (in this example, an assembly and a lithium ion secondary battery) is immersed in a liquid medium (for example, distilled water or alcohol), and the buoyancy that the measurement object receives is measured. This is a method for obtaining the volume of the measurement object.

表1に示すように、ビフェニルの割合(添加量)が多くなるほどガス発生量は増加しているが、その背反として容量維持率が低下していることが確認された。これは、ビフェニルの添加量が多くなるほど、正極活物質から非水電解液に溶出するマンガンの量が増え、電荷が消費されてマンガンが負極表面に析出した結果、総電荷量が減少したためだと考えられる。   As shown in Table 1, it was confirmed that although the amount of gas generation increased as the proportion (added amount) of biphenyl increased, the capacity maintenance rate decreased as a contradiction. This is because as the amount of biphenyl added increases, the amount of manganese eluted from the positive electrode active material into the non-aqueous electrolyte increases, and as a result of the charge being consumed and manganese precipitating on the negative electrode surface, the total charge decreased. Conceivable.

<例5〜例9>
例5に係る非水電解液として、例4に係る非水電解液に、さらに添加剤としてクリプタンド[2.2.2]を添加したものを使用した他は例4と同様にして、例5に係るリチウムイオン二次電池を作製した。例5に係る非水電解液の全体を100質量%としたときに、クリプタンド[2.2.2]の割合は0.1質量%であった。また、クリプタンド[2.2.2]の割合を表2に示すものに変更した他は例5と同様にして、例6〜例9にかかるリチウムイオン二次電池を作製した。
<Example 5 to Example 9>
Example 5 is the same as Example 4 except that the nonaqueous electrolytic solution according to Example 5 is obtained by adding the cryptand [2.2.2] as an additive to the nonaqueous electrolytic solution according to Example 4. The lithium ion secondary battery which concerns on was produced. When the total amount of the nonaqueous electrolytic solution according to Example 5 was 100% by mass, the ratio of cryptand [2.2.2] was 0.1% by mass. Further, lithium ion secondary batteries according to Examples 6 to 9 were produced in the same manner as Example 5 except that the ratio of cryptand [2.2.2] was changed to that shown in Table 2.

Figure 2015037018
Figure 2015037018

[充放電サイクル試験]
上記例5〜例9に係るリチウムイオン二次電池について、上記例1〜例4に係るリチウムイオン二次電池に対して行った充放電サイクル試験と同様の試験を行い、1000サイクル後の容量維持率を測定した。測定結果を表2および図3に示す。
[Charge / discharge cycle test]
About the lithium ion secondary battery which concerns on the said Example 5-Example 9, the test similar to the charging / discharging cycle test performed with respect to the lithium ion secondary battery which concerns on the said Example 1- Example 4 was done, and the capacity | capacitance maintenance after 1000 cycles The rate was measured. The measurement results are shown in Table 2 and FIG.

表2および図3に示すように、ビフェニルの割合(添加量)が同じ場合であっても、クリプタンド[2.2.2]が非水電解液中に含まれていると、容量維持率が大きく改善されていることが確認された(例4および例5参照)。特に、クリプタンド[2.2.2]の添加量が0.3質量%以上のときには、高い容量維持率が得られることが確認された。これは、ビフェニルの添加量を増やすことによって、正極活物質から非水電解液に溶出するマンガンの量が増えた場合であっても、非水電解液中でクリプタンド[2.2.2]が溶出したマンガンイオンを捕捉するため、マンガンが負極上に析出するのが抑制されているためだと考えられる。   As shown in Table 2 and FIG. 3, even when the proportion (addition amount) of biphenyl is the same, if the cryptand [2.2.2] is contained in the non-aqueous electrolyte, the capacity retention rate is A significant improvement was confirmed (see Examples 4 and 5). In particular, it was confirmed that a high capacity retention ratio was obtained when the amount of cryptand [2.2.2] added was 0.3% by mass or more. This is because even when the amount of manganese eluted from the positive electrode active material into the non-aqueous electrolyte is increased by increasing the amount of biphenyl added, the cryptand [2.2.2] is reduced in the non-aqueous electrolyte. This is probably because manganese is suppressed from being deposited on the negative electrode in order to capture the eluted manganese ions.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (1)

正極および負極を有する電極体と、非水電解液と、前記電極体および前記非水電解液を収容する電池ケースと、を備える密閉型非水電解液二次電池であって、
前記正極は、正極集電体と、該正極集電体上に形成された少なくとも正極活物質を含む正極活物質層と、を備え、
前記正極活物質は、遷移金属元素として少なくともニッケルとコバルトとマンガンとを含むリチウム遷移金属複合酸化物であり、
前記非水電解液には、所定の電池電圧を超えた際に分解してガスを発生し得るビフェニルと、添加剤としてクラウンエーテルと、が含まれ、
前記非水電解液の全体を100質量%としたときに、前記ビフェニルの割合は1質量%〜3質量%であり、かつ前記クラウンエーテルの割合は0.3質量%〜1質量%であり、
前記電池ケースには、前記ガスの発生に伴って前記電池ケース内の圧力が上昇した際に作動する電流遮断機構が設けられている、密閉型非水電解液二次電池。
A sealed non-aqueous electrolyte secondary battery comprising an electrode body having a positive electrode and a negative electrode, a non-aqueous electrolyte, and a battery case containing the electrode body and the non-aqueous electrolyte,
The positive electrode includes a positive electrode current collector, and a positive electrode active material layer including at least a positive electrode active material formed on the positive electrode current collector,
The positive electrode active material is a lithium transition metal composite oxide containing at least nickel, cobalt, and manganese as transition metal elements,
The non-aqueous electrolyte includes biphenyl that can decompose and generate gas when a predetermined battery voltage is exceeded, and crown ether as an additive,
When the total amount of the non-aqueous electrolyte is 100% by mass, the proportion of the biphenyl is 1% by mass to 3% by mass, and the proportion of the crown ether is 0.3% by mass to 1% by mass,
A sealed nonaqueous electrolyte secondary battery, wherein the battery case is provided with a current interrupting mechanism that operates when the pressure in the battery case increases as the gas is generated.
JP2013167495A 2013-08-12 2013-08-12 Sealed type nonaqueous electrolyte secondary battery Pending JP2015037018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013167495A JP2015037018A (en) 2013-08-12 2013-08-12 Sealed type nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013167495A JP2015037018A (en) 2013-08-12 2013-08-12 Sealed type nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015037018A true JP2015037018A (en) 2015-02-23

Family

ID=52687422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013167495A Pending JP2015037018A (en) 2013-08-12 2013-08-12 Sealed type nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015037018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093443A1 (en) 2017-11-10 2019-05-16 三菱ケミカル株式会社 Nonaqueous electrolyte solution and energy device using same
US10581117B2 (en) * 2017-07-07 2020-03-03 GM Global Technology Operations LLC Iron ion trapping van der Waals gripper additives for electrolyte systems in lithium-ion batteries
US10581119B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries
CN113410519A (en) * 2021-06-22 2021-09-17 山东海科创新研究院有限公司 Lithium ion battery non-aqueous electrolyte for lithium manganate and lithium ion battery obtained by same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10581117B2 (en) * 2017-07-07 2020-03-03 GM Global Technology Operations LLC Iron ion trapping van der Waals gripper additives for electrolyte systems in lithium-ion batteries
US10581119B2 (en) 2017-07-07 2020-03-03 GM Global Technology Operations LLC Polymeric ion traps for suppressing or minimizing transition metal ions and dendrite formation or growth in lithium-ion batteries
WO2019093443A1 (en) 2017-11-10 2019-05-16 三菱ケミカル株式会社 Nonaqueous electrolyte solution and energy device using same
US11631895B2 (en) 2017-11-10 2023-04-18 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and energy device using same
CN113410519A (en) * 2021-06-22 2021-09-17 山东海科创新研究院有限公司 Lithium ion battery non-aqueous electrolyte for lithium manganate and lithium ion battery obtained by same

Similar Documents

Publication Publication Date Title
CN110400922B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101343707B1 (en) Nonaqueous electrolyte secondary battery
CN108232099B (en) Lithium ion secondary battery
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP5781386B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2007265668A (en) Cathode for nonaqueous electrolyte secondary battery and its manufacturing method
JP5734708B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR101671106B1 (en) Non aqueous electrolyte secondary battery
JP2010108732A (en) Lithium secondary battery
JP2020102348A (en) Manufacturing method of lithium ion battery, and lithium ion battery
JP2014036010A (en) Nonaqueous electrolyte secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP5704409B2 (en) Sealed lithium secondary battery
JP2015037018A (en) Sealed type nonaqueous electrolyte secondary battery
JP2016152071A (en) Secondary battery
JP2012124026A (en) Nonaqueous electrolyte secondary battery
JP6870676B2 (en) Non-aqueous electrolyte secondary battery
KR101424865B1 (en) Method of manufacturing positive electrode active material and electrode, and electrode
US10714794B2 (en) Lithium ion secondary battery and method of producing the lithium ion secondary battery
JP2007257958A (en) Battery
JP6688974B2 (en) Secondary battery
JP5405353B2 (en) Non-aqueous electrolyte secondary battery
JP5644732B2 (en) Nonaqueous electrolyte secondary battery
CN112673503A (en) Nonaqueous electrolyte electricity storage element and electricity storage device
US10153486B2 (en) Positive electrode material, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery