JP2015035359A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015035359A
JP2015035359A JP2013166150A JP2013166150A JP2015035359A JP 2015035359 A JP2015035359 A JP 2015035359A JP 2013166150 A JP2013166150 A JP 2013166150A JP 2013166150 A JP2013166150 A JP 2013166150A JP 2015035359 A JP2015035359 A JP 2015035359A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013166150A
Other languages
Japanese (ja)
Inventor
英世 戎崎
Hideyo Ebisaki
英世 戎崎
石井 勝
Masaru Ishii
勝 石井
寛 浜口
Hiroshi Hamaguchi
寛 浜口
徹 中井
Toru Nakai
徹 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013166150A priority Critical patent/JP2015035359A/en
Publication of JP2015035359A publication Critical patent/JP2015035359A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery arranged to be able to maintain both a battery performance when working normally and the reliability when subjected to overcharging.SOLUTION: The present invention provides a nonaqueous electrolyte secondary battery which comprises: a positive electrode; a negative electrode; a nonaqueous electrolyte; and a battery case in which the positive and negative electrodes and the nonaqueous electrolyte are enclosed. The positive electrode includes a positive electrode current collector, and a positive electrode active material layer formed on the positive electrode current collector; in the positive electrode active material layer, a positive electrode active material and dicyclohexylbenzene are almost uniformly mixed together on the whole. In addition, the nonaqueous electrolyte contains cyclohexylbenzene. The battery case includes a current interruption mechanism which is activated when the internal pressure of the battery case is increased by gas produced as a result of the decomposition of the cyclohexylbenzene and/or the dicyclohexylbenzene.

Description

本発明は非水電解液二次電池に関する。詳しくは、内圧上昇により作動する電流遮断機構を備えた当該電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery. Specifically, the present invention relates to the battery provided with a current interruption mechanism that operates by increasing the internal pressure.

リチウムイオン二次電池、ニッケル水素電池等の非水電解液二次電池は、近年、携帯電子機器や輸送機器の電源として広く用いられている。特に軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両駆動用高出力電源として好ましく用いられている。   In recent years, nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries and nickel metal hydride batteries have been widely used as power sources for portable electronic devices and transportation devices. In particular, a lithium ion secondary battery that is lightweight and has a high energy density is preferably used as a high-output power source for driving a vehicle.

このような非水電解液二次電池は、一般に電圧が所定の領域(例えば3.0V〜4.2V)に収まるよう制御された状態で使用されるが、誤操作等によって電池に通常以上の電流が供給されると、所定の電圧を超えて過充電となる場合がある。そこで、例えば車両駆動用に用いられるような大型および/または高容量の電池では、ケース内の圧力が所定以上になると充電電流を遮断して過充電の進行を停止する電流遮断機構(Current Interrupt Device:CID)が用いられている。これに関連する技術として、特許文献1〜3が挙げられる。例えば特許文献1には、正極の表面にシクロヘキシル基を有するポリマーを備えることで、過充電時に短時間でCIDを作動させ得ることが記載されている。   Such a non-aqueous electrolyte secondary battery is generally used in a state in which the voltage is controlled so as to be within a predetermined region (for example, 3.0 V to 4.2 V). May be overcharged exceeding a predetermined voltage. Therefore, for example, in a large-sized and / or high-capacity battery used for driving a vehicle, a current interruption device (current interrupt device) that cuts off the charging current and stops the progress of overcharging when the pressure in the case exceeds a predetermined value : CID) is used. As techniques related to this, Patent Documents 1 to 3 are cited. For example, Patent Document 1 describes that by providing a polymer having a cyclohexyl group on the surface of the positive electrode, the CID can be activated in a short time during overcharge.

特開2012―109219号公報JP 2012-109219 A 特開2013−004305号公報JP 2013-004305 A 特開2004−063114号公報JP 2004-063114 A

特許文献1に記載の技術では、上記ポリマーを含有する非水電解液中に電極体を浸漬させて充電を行うことにより、正極の表面にポリマーを生成させる。このため、非水電解液中に多量のポリマーを添加する必要があり、正常作動時の電池特性(例えば充放電特性や出力特性)が悪化することがあった。
本発明は、かかる事情に鑑みてなされたものであり、正常作動時の電池特性と、過充電時の信頼性とを高いレベルで両立可能な二次電池の提供を目的とする。
In the technique described in Patent Document 1, a polymer is generated on the surface of the positive electrode by immersing the electrode body in a nonaqueous electrolytic solution containing the polymer and performing charging. For this reason, it is necessary to add a large amount of polymer in the non-aqueous electrolyte, and battery characteristics (for example, charge / discharge characteristics and output characteristics) during normal operation may be deteriorated.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a secondary battery capable of achieving both high-level battery characteristics during normal operation and reliability during overcharge.

本発明者らが鋭意検討を重ねた結果、上記課題を解決し得る手段を見出し、本発明を完成させた。本発明によれば、正極と負極と非水電解液とが電池ケース内に収容された非水電解液二次電池が提供される。上記正極は、正極集電体と、当該正極集電体上に形成された正極活物質層であって正極活物質とジシクロヘキシルベンゼン(Dicyclohexylbenzene:以下、「DCHB」ともいう。)とが全体に渡ってほぼ均質に混在する正極活物質層とを備える。また、上記非水電解液はシクロヘキシルベンゼン(Cyclohexylbenzene:以下、「CHB」ともいう。)を含む。そして、上記電池ケースは、上記シクロヘキシルベンゼンおよび/または上記ジシクロヘキシルベンゼンの分解によってガスが生じ上記電池ケースの内圧が上昇した際に作動する電流遮断機構を備える。   As a result of intensive studies by the present inventors, a means capable of solving the above problems has been found and the present invention has been completed. ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery with which the positive electrode, the negative electrode, and the nonaqueous electrolyte solution were accommodated in the battery case is provided. The positive electrode is a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector, and the positive electrode active material and dicyclohexylbenzene (hereinafter also referred to as “DCHB”). And a positive electrode active material layer mixed almost uniformly. The non-aqueous electrolyte contains cyclohexylbenzene (hereinafter also referred to as “CHB”). The battery case includes a current interrupt mechanism that operates when gas is generated by decomposition of the cyclohexylbenzene and / or the dicyclohexylbenzene and the internal pressure of the battery case increases.

正極活物質層内にジシクロヘキシルベンゼン(DCHB)を均質に混在させ、且つ、非水電解液中にシクロヘキシルベンゼン(CHB)を含ませることで、過充電状態となった際に大量のガスを迅速に発生させることができる。これによって電池ケース内の圧力を素早く上昇させることができ、的確にCIDを作動させることができる。
この作用は定かではないが、正極活物質層内のDCHBが反応種となり、非水電解液中のCHBの反応を活性化させていることが考えられる。より具体的には、電池が過充電になった際に、正極活物質層内のDCHBが酸化分解されて反応性の高いカチオンラジカルとなり、当該ラジカルが非水電解液中のCHBをアタックして重合するか、または、CHBのカチオンラジカルを生じて、他のモノマーをアタックして重合が進行すると考えられる。このように、反応の起点となるDCHBが反応場としての正極に含有されていることで、過充電時のガス発生のスピードや効率を高めていると考えられる。
By mixing dicyclohexylbenzene (DCHB) homogeneously in the positive electrode active material layer and including cyclohexylbenzene (CHB) in the non-aqueous electrolyte, a large amount of gas can be quickly discharged when overcharged. Can be generated. As a result, the pressure in the battery case can be quickly increased, and the CID can be operated accurately.
Although this effect is not clear, it is considered that DCHB in the positive electrode active material layer serves as a reactive species and activates the reaction of CHB in the nonaqueous electrolytic solution. More specifically, when the battery is overcharged, DCCHB in the positive electrode active material layer is oxidatively decomposed to become a highly reactive cation radical, and the radical attacks the CHB in the non-aqueous electrolyte. It is considered that the polymerization proceeds or a cation radical of CHB is generated to attack another monomer. Thus, it is thought that the speed and efficiency of the gas generation at the time of overcharge are raised because DCHB used as the starting point of reaction is contained in the positive electrode as a reaction field.

また、正極活物質層内に混在するDCHBは、シクロヘキシル基および/または六員環の部分において、アニオンの挿入脱離を行い得る。このため、充放電時の抵抗を低く抑えることができ、正常作動時の抵抗を従来に比べて低減することができると考えられる。
さらには、過充電時に分解してガスを発生させ得る化合物(ここではDCHBとCHB;以下、これらを総称し、単に「ガス発生剤」ということがある。)を正極と非水電解液とに配分することで、非水電解液中のCHB濃度を相対的に低く抑えることができる。このため、正常作動時の抵抗を従来に比べて一層低減することができ、優れた電池特性を発揮することができる。
したがって、本発明によれば、過充電時にCIDを的確に作動させることができる信頼性を確保しつつ、且つ、正常作動時の電池性能が良好な非水電解液二次電池を提供することができる。
In addition, DCB mixed in the positive electrode active material layer can perform anion insertion / extraction at a cyclohexyl group and / or a 6-membered ring portion. For this reason, it is thought that the resistance at the time of charging / discharging can be kept low, and the resistance at the time of normal operation can be reduced as compared with the conventional case.
Furthermore, compounds capable of decomposing during overcharge to generate gas (DCCH and CHB here; these are collectively referred to as “gas generating agent” hereinafter) are converted into a positive electrode and a non-aqueous electrolyte. By allocating, the CHB concentration in the non-aqueous electrolyte can be kept relatively low. For this reason, the resistance at the time of normal operation can be further reduced as compared with the conventional case, and excellent battery characteristics can be exhibited.
Therefore, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery that ensures reliability that allows the CID to be accurately operated at the time of overcharge and that has good battery performance during normal operation. it can.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない構成要素や電池の一般的な製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for carrying out the present invention (for example, general manufacturing processes of components and batteries not characterizing the present invention) It can be grasped as a design matter of those skilled in the art based on the prior art. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここに開示される非水電解液二次電池は、正極および負極を含む電極体と、非水電解液と、電池ケースとを備える。上記電極体および上記非水電解液は、上記電池ケース内に収容されている。以下、各構成要素について順に説明する。   The non-aqueous electrolyte secondary battery disclosed herein includes an electrode body including a positive electrode and a negative electrode, a non-aqueous electrolyte, and a battery case. The electrode body and the non-aqueous electrolyte are accommodated in the battery case. Hereinafter, each component will be described in order.

ここに開示される非水電解液二次電池の正極は、正極集電体と、当該正極集電体上に形成された正極活物質層とを備える。かかる正極活物質層は、正極活物質とジシクロヘキシルベンゼン(DCHB)とが全体に渡ってほぼ均質に混在していることを特徴とする。より具体的には、例えば正極活物質層を厚さ方向に2分したときに、上層部と下層部とでDCHBの占める割合がほぼ均等である。または、例えば正極活物質層の幅方向における中央部と端部とでDCHBの占める割合がほぼ均等である。DCHBが正極活物質層全体に均質に存在することで、正極活物質層全体に高い電子伝導性を付与することができ、正常作動時には優れた充放電特性を発揮することができる。また、過充電となった際にはDCHBを短時間で素早く酸化分解することができる。
このような正極は、例えば、正極活物質を適当な溶媒(例えばN−メチルピロリドン)に分散させてなるスラリー状またはペースト状の組成物を正極集電体の表面に付与した後、乾燥して溶媒を除去することによって作製することができる。
The positive electrode of the nonaqueous electrolyte secondary battery disclosed herein includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. Such a positive electrode active material layer is characterized in that the positive electrode active material and dicyclohexylbenzene (DCHB) are mixed almost uniformly throughout. More specifically, for example, when the positive electrode active material layer is divided into two in the thickness direction, the ratio of DCB in the upper layer portion and the lower layer portion is substantially equal. Alternatively, for example, the ratio of DCHB in the central portion and the end portion in the width direction of the positive electrode active material layer is substantially equal. When DCHB is present uniformly throughout the positive electrode active material layer, high electron conductivity can be imparted to the entire positive electrode active material layer, and excellent charge / discharge characteristics can be exhibited during normal operation. In addition, when overcharge occurs, DCHB can be quickly oxidized and decomposed in a short time.
Such a positive electrode is, for example, applied to the surface of the positive electrode current collector with a slurry or paste composition in which the positive electrode active material is dispersed in an appropriate solvent (for example, N-methylpyrrolidone), and then dried. It can be made by removing the solvent.

正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を採用し得る。正極活物質としては、層状系、スピネル系等のリチウム複合金属酸化物(例えば、LiNiO、LiCoO、LiFeO、LiMn、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)を好適に採用し得る。ジシクロヘキシルベンゼンの構造異性体としては、1,4−ジシクロヘキシルベンゼン、1,3−ジシクロヘキシルベンゼン、1,2−ジシクロヘキシルベンゼンが例示され、なかでも1,4−ジシクロヘキシルベンゼンを好適に採用し得る。さらに、正極活物質層には、本発明の効果を著しく損なわない限りにおいて上記以外の成分を含ませることもできる。そのような任意の成分としては、バインダや導電材等が挙げられる。バインダとしては、ポリフッ化ビニリデン(PVdF)やポリエチレンオキサイド(PEO)等のポリマー材料を好ましく採用し得る。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料を好ましく採用し得る。 As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum, nickel, titanium, stainless steel, etc.) can be employed. Examples of the positive electrode active material include lithium composite metal oxides such as layered and spinel (for example, LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4, etc.) can be suitably employed. Examples of structural isomers of dicyclohexylbenzene include 1,4-dicyclohexylbenzene, 1,3-dicyclohexylbenzene, and 1,2-dicyclohexylbenzene, and among these, 1,4-dicyclohexylbenzene can be preferably used. Further, the positive electrode active material layer may contain components other than those described above as long as the effects of the present invention are not significantly impaired. Examples of such optional components include a binder and a conductive material. As the binder, polymer materials such as polyvinylidene fluoride (PVdF) and polyethylene oxide (PEO) can be preferably used. As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be preferably used.

正極活物質層全体に占める正極活物質の割合は、凡そ60質量%以上(典型的には60質量%〜99質量%)とすることが適当であり、通常は凡そ70質量%〜95質量%であることが好ましい。また、正極活物質層全体に占めるジシクロヘキシルベンゼン(DCHB)の割合は、例えば凡そ0.3質量%〜3質量%とすることができ、通常は凡そ1質量%〜2質量%とすることが好ましい。これにより、正常作動時の放電抵抗を10%程度(好ましくは20%程度)改善することができる。また、バインダを使用する場合、正極活物質層全体に占めるバインダの割合は、例えば凡そ0.5質量%〜10質量%とすることができ、通常は凡そ1質量%〜5質量%とすることが好ましい。導電材を使用する場合、正極活物質層全体に占める導電材の割合は、例えば凡そ1質量%〜20質量%とすることができ、通常は凡そ2質量%〜10質量%とすることが好ましい。   The proportion of the positive electrode active material in the entire positive electrode active material layer is suitably about 60% by mass or more (typically 60% by mass to 99% by mass), and usually about 70% by mass to 95% by mass. It is preferable that The proportion of dicyclohexylbenzene (DCHB) in the entire positive electrode active material layer can be, for example, approximately 0.3% by mass to 3% by mass, and is generally preferably approximately 1% by mass to 2% by mass. . Thereby, the discharge resistance during normal operation can be improved by about 10% (preferably about 20%). Moreover, when using a binder, the ratio of the binder which occupies for the whole positive electrode active material layer can be about 0.5 mass%-10 mass%, for example, Usually, you may be about 1 mass%-5 mass%. Is preferred. When the conductive material is used, the ratio of the conductive material in the entire positive electrode active material layer can be, for example, approximately 1% by mass to 20% by mass, and is preferably approximately 2% by mass to 10% by mass. .

ここに開示される非水電解液二次電池の負極は、典型的には、負極集電体と、当該負極集電体上に形成された負極活物質層とを備える。負極活物質層は、少なくとも負極活物質を含んでいる。
負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル、チタン、ステンレス鋼等)からなる導電性部材を採用し得る。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料を好適に用いることができ、なかでもグラファイトを好ましく採用し得る。負極活物質層にはまた、本発明の効果を著しく損なわない限りにおいて、活物質以外の成分を含ませることもできる。そのような任意の成分としては、バインダや増粘剤、分散剤、導電材等が挙げられる。バインダとしては、例えば、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等のポリマー材料を好ましく採用し得る。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)やメチルセルロース(MC)等を好ましく採用し得る。
The negative electrode of the nonaqueous electrolyte secondary battery disclosed herein typically includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector. The negative electrode active material layer contains at least a negative electrode active material.
As the negative electrode current collector, a conductive member made of a metal having good conductivity (for example, copper, nickel, titanium, stainless steel, etc.) can be employed. As the negative electrode active material, carbon materials such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon) and the like can be suitably used, and among them, graphite can be preferably used. The negative electrode active material layer can also contain components other than the active material as long as the effects of the present invention are not significantly impaired. Examples of such optional components include a binder, a thickener, a dispersant, and a conductive material. As the binder, for example, a polymer material such as styrene butadiene rubber (SBR), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE) or the like can be preferably used. As the thickener, for example, carboxymethylcellulose (CMC), methylcellulose (MC) and the like can be preferably used.

ここに開示される非水電解液二次電池の電極体は、上記正極および上記負極に加え、典型的には両者を絶縁する絶縁層としてセパレータを含む。セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートを好適に採用し得る。なかでも多孔性樹脂シートの片面または両面に無機化合物粒子(無機フィラー)を含む耐熱層を備えるものが好ましい。無機フィラーとしては、アルミナ、ベーマイト、マグネシア等を採用し得る。   In addition to the positive electrode and the negative electrode, the electrode body of the nonaqueous electrolyte secondary battery disclosed herein typically includes a separator as an insulating layer that insulates both. As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. Especially, what equips the single side | surface or both surfaces of a porous resin sheet with the heat resistant layer containing an inorganic compound particle (inorganic filler) is preferable. As the inorganic filler, alumina, boehmite, magnesia or the like can be adopted.

ここに開示される非水電解液二次電池の非水電解液は、典型的には非水溶媒中に支持塩とシクロヘキシルベンゼン(CHB)とを含有する。
非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を好適に用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好ましく採用し得る。支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等を好適に用いることができ、なかでもLiPF、LiBF等のリチウム塩を好ましく採用し得る。非水電解液中の支持塩の濃度は、0.7mol/L〜1.3mol/Lの範囲内となるよう調製することが好ましい。シクロヘキシルベンゼンとしては、シクロヘキシルベンゼンおよびその誘導体を採用し得る。非水電解液全体に占めるシクロヘキシルベンゼンの割合は、例えば凡そ0.01質量%〜4質量%とすることができ、凡そ0.1質量%〜2質量%とすることが好ましい。さらに、非水電解液中には、本発明の効果を著しく損なわない限りにおいて、ジフルオロリン酸リチウム、ビニレンカーボネート、フルオロエチレンカーボネート等の各種添加剤を含ませることもできる。
The non-aqueous electrolyte of the non-aqueous electrolyte secondary battery disclosed herein typically contains a supporting salt and cyclohexylbenzene (CHB) in a non-aqueous solvent.
As the non-aqueous solvent, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones, and lactones can be suitably used. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be preferably used. As the supporting salt, a lithium salt, a sodium salt, a magnesium salt, or the like can be suitably used, and among them, a lithium salt such as LiPF 6 or LiBF 4 can be preferably used. It is preferable to prepare so that the density | concentration of the supporting salt in a non-aqueous electrolyte may be in the range of 0.7 mol / L-1.3 mol / L. As cyclohexylbenzene, cyclohexylbenzene and its derivatives can be adopted. The proportion of cyclohexylbenzene in the entire non-aqueous electrolyte can be, for example, about 0.01% by mass to 4% by mass, and preferably about 0.1% by mass to 2% by mass. Furthermore, various additives such as lithium difluorophosphate, vinylene carbonate, and fluoroethylene carbonate can also be included in the nonaqueous electrolytic solution as long as the effects of the present invention are not significantly impaired.

電池ケースは、上記電極体および上記非水電解液を収容する容器である。電池ケースとしては、例えばアルミニウム等の軽量な金属材製のものを好ましく採用し得る。
また、ここに開示される非水電解液二次電池の電池ケースの内部には、電流遮断機構が設けられている。一般に、非水電解液二次電池が過充電状態になると、非水電解液(典型的には非水溶媒)が正極で酸化分解され、これを起点として負極でガスが発生する。上記電流遮断機構は、この発生したガスに基づいて少なくとも一方の電極端子から電極体に至る導電経路を切断することで、それ以上の過充電を防止し得るようになっている。ここに開示される技術では、正極活物質層内に均質に混在するDCHB、および/または、非水電解液中のCHBが正極で酸化分解されることを起点とし、負極で大量のガスを迅速に発生させることができる。これによって電池ケース内の圧力を素早く上昇させることができ、的確にCIDを作動させることができる。
The battery case is a container that accommodates the electrode body and the non-aqueous electrolyte. As a battery case, the thing made from lightweight metal materials, such as aluminum, can be employ | adopted preferably, for example.
Further, a current interruption mechanism is provided inside the battery case of the nonaqueous electrolyte secondary battery disclosed herein. Generally, when a non-aqueous electrolyte secondary battery is overcharged, a non-aqueous electrolyte (typically a non-aqueous solvent) is oxidized and decomposed at the positive electrode, and gas is generated at the negative electrode starting from this. The current interruption mechanism can prevent further overcharge by cutting a conductive path from at least one electrode terminal to the electrode body based on the generated gas. In the technology disclosed herein, a large amount of gas is rapidly generated at the negative electrode starting from the fact that DCB homogeneously mixed in the positive electrode active material layer and / or CHB in the non-aqueous electrolyte is oxidatively decomposed at the positive electrode. Can be generated. As a result, the pressure in the battery case can be quickly increased, and the CID can be operated accurately.

ここに開示される非水電解液二次電池は、過充電時にCIDを的確に作動させることができる信頼性の高いものであって、正常作動時の電池性能(例えば出力特性)が従来品に比べて向上していることを特徴とする。したがって、かかる特徴を活かして、大型または大容量の電池で好適に利用し得る。具体例として、プラグインハイブリッド自動車、ハイブリッド自動車、電気自動車等の車両に搭載される駆動用高出力電源が挙げられる。   The non-aqueous electrolyte secondary battery disclosed herein is a highly reliable battery that can accurately operate the CID when overcharged, and the battery performance (for example, output characteristics) during normal operation is the conventional product. It is characterized by improvement. Therefore, taking advantage of such characteristics, the battery can be suitably used for a large or large capacity battery. As a specific example, there is a high output power source for driving mounted on a vehicle such as a plug-in hybrid vehicle, a hybrid vehicle, or an electric vehicle.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

<非水電解液二次電池の構築>
先ず、ガス発生剤としてのジシクロヘキシルベンゼン(DCHB)をメノウ乳鉢で粉砕した。次に、当該DCHBを正極活物質としてのLi1.14Ni0.34Co0.33Mn0.33に加え、軽く混合した。ここに、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)と、分散媒としてのN−メチルピロリドン(NMP)とを加え、自転・公転ミキサーで混合して正極スラリーを調製した。表1には使用したDCHBの種類(構造異性体)と混合割合(質量%)を示している。なお、当該欄に「−」とある場合は、DCHBを添加しなかったことを示している。そして、このスラリーをアルミニウム箔(正極集電体)の表面に塗布して乾燥することにより、正極シート(例1〜例12)を作製した。
<Construction of non-aqueous electrolyte secondary battery>
First, dicyclohexylbenzene (DCHB) as a gas generating agent was pulverized in an agate mortar. Next, the DCHB was added to Li 1.14 Ni 0.34 Co 0.33 Mn 0.33 O 4 as a positive electrode active material and lightly mixed. Here, acetylene black (AB) as a conductive material, polyvinylidene fluoride (PVdF) as a binder, and N-methylpyrrolidone (NMP) as a dispersion medium are added and mixed in a rotating / revolving mixer to obtain a positive electrode slurry. Was prepared. Table 1 shows the types (structural isomers) of DCHB used and the mixing ratio (% by mass). Note that “-” in the column indicates that DCHB was not added. And this positive electrode sheet | seat (Example 1-Example 12) was produced by apply | coating this slurry to the surface of aluminum foil (positive electrode collector), and drying.

次に、負極活物質としての天然黒鉛と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMCナトリウム塩)とを、イオン交換水で粘度を調製しながら混練して、負極スラリーを調製した。このスラリーを銅箔(負極集電体)の表面に塗布して乾燥することにより、負極シートを作製した。   Next, natural graphite as a negative electrode active material, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC sodium salt) as a thickener are kneaded while adjusting the viscosity with ion-exchanged water. A negative electrode slurry was prepared. The slurry was applied to the surface of a copper foil (negative electrode current collector) and dried to prepare a negative electrode sheet.

上記で作製した正負極をセパレータシート(ここでは、ポリエチレンの両面にポリプロピレンが積層された三層構造のものを用いた。)を介して活物質層同士が対向するよう積層して、電極体を作製した。かかる電極体を電池ケース内に配置し、そこへ非水電解液を注入した。非水電解液としては、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=30:30:40の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させ、さらに例1〜例11ではガス発生剤としてシクロヘキシルベンゼン(DCHB)を表1に示す割合で含ませた。このようにして、12種類のリチウムイオン二次電池(例1〜例12)を構築した。 The positive and negative electrodes prepared above are laminated so that the active material layers face each other through a separator sheet (here, a three-layer structure in which polypropylene is laminated on both sides of polyethylene), and an electrode body is obtained. Produced. Such an electrode body was disposed in a battery case, and a non-aqueous electrolyte was injected therein. As a non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) in a volume ratio of EC: EMC: DMC = 30: 30: 40 is used as a supporting salt. LiPF 6 was dissolved at a concentration of 1.1 mol / L, and in Examples 1 to 11, cyclohexylbenzene (DCHB) was included as a gas generating agent in the ratio shown in Table 1. In this way, 12 types of lithium ion secondary batteries (Examples 1 to 12) were constructed.

<放電特性試験>
構築した各電池に常法でコンディショニング処理とエージング処理を施した後、25℃の温度環境下において、構築した電池の初期放電抵抗を測定した。具体的には、1Cの定電流で電池電圧が3.7Vに到達するまでCC充電した後、充電電流が1/10Cとなるまで当該電圧でCV充電した。その後、10Cの定電流で10秒間ハイレート放電を行い、このときの電圧降下から下式(I)を用いて初期放電抵抗(IV抵抗)を算出した。結果を表1に示す。なお、表1中には、例9を基準とした相対値を示している。
放電抵抗=(放電直前の電圧−放電10秒後の電圧)/(放電電流) (I)
<Discharge characteristics test>
Each battery thus constructed was subjected to conditioning treatment and aging treatment in the usual manner, and then the initial discharge resistance of the constructed battery was measured under a temperature environment of 25 ° C. Specifically, CC charging was performed at a constant current of 1 C until the battery voltage reached 3.7 V, and then CV charging was performed at the voltage until the charging current reached 1/10 C. Thereafter, high-rate discharge was performed at a constant current of 10 C for 10 seconds, and an initial discharge resistance (IV resistance) was calculated from the voltage drop at this time using the following formula (I). The results are shown in Table 1. In Table 1, relative values based on Example 9 are shown.
Discharge resistance = (voltage immediately before discharge−voltage after 10 seconds of discharge) / (discharge current) (I)

<過充電試験>
初期特性測定後の電池に対し、25℃の温度環境下で過充電試験を行った。具体的には、先ず1Cの定電流で電池電圧が4.1Vに到達するまでCC充電した後、充電電流が1/10Cとなるまで当該電圧でCV充電し、満充電状態に調整した。次に、当該満充電状態の電池に1Cの定電流で強制的に充電をし続け、この時の電池の挙動を観察した。結果を表1に示す。なお、表1中では、安全な状態でCIDが正常に作動した場合を「○」と表記し、CIDが作動する前に電池温度の過度な上昇等が認められた場合には「×」と表記した。
<Overcharge test>
The battery after the initial characteristic measurement was subjected to an overcharge test under a temperature environment of 25 ° C. Specifically, first, CC charging was performed at a constant current of 1 C until the battery voltage reached 4.1 V, and then CV charging was performed at the voltage until the charging current reached 1/10 C to adjust to a fully charged state. Next, the fully charged battery was continuously charged with a constant current of 1 C, and the behavior of the battery at this time was observed. The results are shown in Table 1. In Table 1, the case where the CID operates normally in a safe state is indicated as “◯”, and when the battery temperature is excessively increased before the CID is operated, “X” is indicated. Indicated.

Figure 2015035359
Figure 2015035359

ガス発生剤(CHB)の添加量のみが異なる例9〜例11を比較すると、例9および例10で過充電時に電池温度の過度な上昇が認められた。これは、CHBの添加量が少なかったためにCIDが作動するのに十分な量のガスが迅速に発生しなかったためと考えられる。一方、CHBの添加量が多い例11ではCIDが正常に作動し、すなわち過充電耐性に優れることがわかった。しかしながら、例11では例9に比べて放電抵抗が20%以上悪化していた。これは、非水電解液中のCHBの濃度が増加したことによって、リチウムイオンおよび/またはアニオンの拡散・泳動が阻害されたためと考えられる。   When Example 9 to Example 11 differing only in the amount of addition of the gas generating agent (CHB) were compared, in Example 9 and Example 10, an excessive increase in battery temperature was observed during overcharge. This is presumably because a sufficient amount of gas for CID operation was not generated quickly because the amount of CHB added was small. On the other hand, in Example 11 with a large amount of CHB added, it was found that CID operates normally, that is, it has excellent overcharge resistance. However, in Example 11, the discharge resistance was deteriorated by 20% or more compared to Example 9. This is presumably because the diffusion and migration of lithium ions and / or anions were inhibited by the increase in the concentration of CHB in the non-aqueous electrolyte.

これらに対し、例4は、優れた過充電耐性を備え、且つ例9に比べて放電抵抗が20%以上向上していた。例4が優れた過充電耐性を示した理由としては、正極活物質層中のDCHBと非水電解液中のCHBとが上述のような相互作用を生じたことが考えられる。また、例4で放電抵抗が向上した理由としては、以下(1),(2)が考えられる。
(1)非水電解液中のCHBの濃度を相対的に低く抑えることができたこと。
(2)黒鉛に代表されるように六員環にはイオンが挿入脱離可能なことが知られていることから、DCHBの六員環内でも同様にアニオンの挿入脱離が行われたこと。
On the other hand, Example 4 had excellent overcharge resistance, and the discharge resistance was improved by 20% or more compared to Example 9. As the reason why Example 4 showed excellent overcharge resistance, it is considered that DCHB in the positive electrode active material layer and CHB in the non-aqueous electrolyte caused the above interaction. Moreover, the following (1) and (2) can be considered as the reason why the discharge resistance is improved in Example 4.
(1) The CHB concentration in the nonaqueous electrolytic solution could be kept relatively low.
(2) Since it is known that ions can be inserted into and desorbed from a six-membered ring as represented by graphite, the insertion and desorption of anions was similarly performed within the six-membered ring of DCBB. .

正極活物質層内のDCHBの割合のみが異なる例1〜例6は、いずれも優れた過充電耐性を備えていた。さらに、例1〜例5では、例9に比べて放電抵抗の向上がみられ、良好な充放電特性(低抵抗)を示すことがわかった。なかでも、DCHBの添加量を1.2質量%とした例4において放電抵抗が最も改善されていた。これは、正極活物質層内のDCHBは充放電に寄与するものの、過剰に添加すると正極活物質の反応サイトを塞いでしまい、リチウムイオンの挿入脱離を阻害するためと考えられる。したがって、正極活物質層において、DCHBの占める割合を0.3質量%〜3質量%とすることで、放電抵抗を10%程度改善でき、特には1質量%〜2質量%とすることで、放電抵抗を20%程度改善できるとわかった。   All of Examples 1 to 6 which differ only in the proportion of DCHB in the positive electrode active material layer had excellent overcharge resistance. Furthermore, in Examples 1 to 5, it was found that the discharge resistance was improved as compared with Example 9, and good charge / discharge characteristics (low resistance) were exhibited. Among them, the discharge resistance was most improved in Example 4 in which the amount of DCHB added was 1.2 mass%. This is presumably because DCCHB in the positive electrode active material layer contributes to charge / discharge, but if added excessively, the reaction site of the positive electrode active material is blocked and insertion / extraction of lithium ions is inhibited. Therefore, in the positive electrode active material layer, by setting the proportion of DCB to 0.3 mass% to 3 mass%, the discharge resistance can be improved by about 10%, in particular, 1 mass% to 2 mass%, It was found that the discharge resistance can be improved by about 20%.

また、シクロヘキシル基の位置が異なる例4,例7および例8を比較すると、1,2−DCHBを用いた例7および1,3−DCHBを用いた例8では、1,4−DCHBを用いたとき(例4)ほど放電抵抗の改善は見られなかった。これは、六員環の電子状態の差によるものと考えられる。すなわち、シクロヘキシル基は電子吸引性基であるため、1,4−DCHBでは、六員環内の電子が左右対称に吸引され、電子の偏りを生じやすくなり、このような作用が上述のアニオンの挿入脱離の際に有利に働いたと推察される。   In addition, comparing Example 4, Example 7 and Example 8 in which the position of the cyclohexyl group is different, Example 7 using 1,2-DCCH and Example 8 using 1,3-DCCH use 1,4-DCCH. The discharge resistance was not improved as much as it was (Example 4). This is thought to be due to the difference in the electronic state of the six-membered ring. That is, since the cyclohexyl group is an electron-withdrawing group, in 1,4-DCCH, the electrons in the six-membered ring are attracted symmetrically, and it is easy for the electron to be biased. It is inferred that it worked favorably during insertion and removal.

以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment is only an illustration and what changed and modified the above-mentioned specific example is included in the invention disclosed here.

Claims (1)

正極と負極と非水電解液とが電池ケース内に収容された非水電解液二次電池であって、
前記正極は、正極集電体と、該正極集電体上に形成された正極活物質層であって正極活物質とジシクロヘキシルベンゼンとが全体に渡ってほぼ均質に混在する正極活物質層と、を備え、
前記非水電解液はシクロヘキシルベンゼンを含み、且つ、
前記電池ケースは、前記シクロヘキシルベンゼンおよび/または前記ジシクロヘキシルベンゼンの分解によってガスが生じ前記電池ケースの内圧が上昇した際に作動する電流遮断機構を備える、非水電解液二次電池。
A non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, and a non-aqueous electrolyte are housed in a battery case,
The positive electrode is a positive electrode current collector, a positive electrode active material layer formed on the positive electrode current collector, wherein the positive electrode active material and dicyclohexylbenzene are mixed almost uniformly throughout, and With
The non-aqueous electrolyte contains cyclohexylbenzene, and
The battery case is a non-aqueous electrolyte secondary battery provided with a current interruption mechanism that operates when gas is generated by decomposition of the cyclohexylbenzene and / or the dicyclohexylbenzene and an internal pressure of the battery case increases.
JP2013166150A 2013-08-09 2013-08-09 Nonaqueous electrolyte secondary battery Pending JP2015035359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013166150A JP2015035359A (en) 2013-08-09 2013-08-09 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013166150A JP2015035359A (en) 2013-08-09 2013-08-09 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015035359A true JP2015035359A (en) 2015-02-19

Family

ID=52543749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013166150A Pending JP2015035359A (en) 2013-08-09 2013-08-09 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015035359A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064717A (en) * 2018-10-15 2020-04-23 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064717A (en) * 2018-10-15 2020-04-23 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5822089B2 (en) Sealed lithium secondary battery
US10236537B2 (en) Non-aqueous electrolyte secondary battery
JP6264320B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
KR101556486B1 (en) Nonaqueous electrolyte secondary battery
JP2013152874A (en) Sealed lithium secondary battery
KR101872086B1 (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP7169524B2 (en) Non-aqueous electrolyte secondary battery
JP2019040722A (en) Lithium ion secondary battery
JP2019040721A (en) Lithium ion secondary battery
JP2021039874A (en) Nonaqueous electrolyte secondary battery
JP6722384B2 (en) Lithium ion secondary battery
JP5405353B2 (en) Non-aqueous electrolyte secondary battery
JP7177990B2 (en) lithium ion secondary battery
JP2014229554A (en) Secondary battery and method for manufacturing the same
JP2011124125A (en) Nonaqueous electrolyte secondary battery
JP2015035359A (en) Nonaqueous electrolyte secondary battery
JP6185403B2 (en) Secondary battery and separator for the battery
JP2020119867A (en) Non-aqueous electrolyte for lithium secondary battery
JP6593029B2 (en) Method for producing negative electrode for lithium ion secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
JP6245470B2 (en) Manufacturing method of secondary battery
JP7522687B2 (en) Non-aqueous electrolyte secondary battery
JP6702345B2 (en) Lithium ion secondary battery