JP2015034772A - 静電容量センサ - Google Patents

静電容量センサ Download PDF

Info

Publication number
JP2015034772A
JP2015034772A JP2013166335A JP2013166335A JP2015034772A JP 2015034772 A JP2015034772 A JP 2015034772A JP 2013166335 A JP2013166335 A JP 2013166335A JP 2013166335 A JP2013166335 A JP 2013166335A JP 2015034772 A JP2015034772 A JP 2015034772A
Authority
JP
Japan
Prior art keywords
electrode
signal
antenna
phase
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013166335A
Other languages
English (en)
Inventor
徹 柳沢
Toru Yanagisawa
徹 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2013166335A priority Critical patent/JP2015034772A/ja
Publication of JP2015034772A publication Critical patent/JP2015034772A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】測定領域をより狭い範囲に絞り込んだ静電容量センサを提供する。
【解決手段】静電容量センサ(10)は、交流信号発生源(31)と、交流信号発生源に接続された送信電極(21)と、第1の受信電極(23)と、第1の受信電極の周囲に配置され、第1の受信電極に関して対称な形状を有する第2の受信電極(22)と、送信電極と第1の受信電極の間で移相された信号と第1の受信電極で受信された信号を合成する第1の合成部(39)と、送信電極と第2の受信電極の間で移相された信号と第2の受信電極で受信された信号を合成する第2の合成部(39’)と、第1の合成部で合成された信号を交流信号発生源の信号で位相検波する第1の位相検波部(36)と、第2の合成部で合成された信号を交流信号発生源の信号で位相検波する第2の位相検波部(36’)と、第1の位相検波部からの出力を第2の位相検波部からの出力で補正する補正部(40)とを有する。
【選択図】図1

Description

本発明は、物体の位置を検出する静電容量センサに関する。
2つのアンテナを有し、一方のアンテナから交流電磁界を発生し、他方のアンテナでこれを受信し、受信された信号を位相検波して、物体の位置や移動を検出する静電容量センサが知られている(例えば、特許文献1を参照)。こうした静電容量センサのことを、近接センサともいう。
図8は、特許文献1に記載された従来の近接センサ100の回路図である。近接センサ100は、発振器102と、発振器102の信号に基づいて交流信号Eaを放射する送信アンテナ103と、被検査領域からの交流信号Ebを受信する受信アンテナ104と、バッファ106と、送信アンテナ103と受信アンテナ104との間に設けられ発振器102からの信号を移相するコンデンサ105および抵抗107と、受信アンテナ104の出力を増幅する増幅器108と、受信アンテナ104で受信した信号を発振器102の出力信号で位相検波する位相検波器109と、位相検波器109の出力を平滑化するローパスフィルタ110と、出力端子111とを備える。
こうした静電容量センサで交流電磁界を送受信するアンテナ間の空間は、コンデンサとみなすことができる。その送受信アンテナに近接している被測定物である誘電体に応じて、アンテナ間の静電容量であるアンテナ間容量Caが変化する。そして、アンテナ間の静電容量に応じて、受信される信号の位相と振幅が変化する。そこで、静電容量センサは、その変化を検出(電圧値Viとして出力)することにより、アンテナ間の静電容量に基づき被測定物までの距離を測定する。
特開2012−088293号公報
しかしながら、静電容量センサは、被測定物上のある一定面積を検出対象としており、測定領域を狭い範囲に絞り込むことができない。例えば、基板に設けられた直径が数mm程度の孔の深さや、地板に植わったピンの上部高さなどの狭い範囲を静電容量センサで測定したい場合には、測定対象としていない孔やピンの周囲部分からの寄与が測定結果に含まれてしまう。このため、静電容量センサでは、狭い範囲にある被測定物を正しく測定することができないという不具合がある。
そこで、本発明の目的は、本構成を有しない場合と比べて、測定領域をより狭い範囲に絞り込んだ静電容量センサを提供することである。
本発明に係る静電容量センサは、交流信号発生源と、交流信号発生源に接続された送信電極と、第1の受信電極と、第1の受信電極の周囲に配置され、第1の受信電極に関して対称な形状を有する第2の受信電極と、送信電極と第1の受信電極との間に設けられた第1の移相部と、送信電極と第2の受信電極との間に設けられた第2の移相部と、第1の移相部で移相された信号と第1の受信電極で受信された信号を合成する第1の合成部と、第2の移相部で移相された信号と第2の受信電極で受信された信号を合成する第2の合成部と、第1の合成部で合成された信号を交流信号発生源の信号で位相検波して、送信電極と第1の受信電極との間の静電容量に応じた第1の出力値を出力する第1の位相検波部と、第2の合成部で合成された信号を交流信号発生源の信号で位相検波して、送信電極と第2の受信電極との間の静電容量に応じた第2の出力値を出力する第2の位相検波部と、第1の出力値を第2の出力値で補正して、被測定物までの距離を算出する補正部とを有する。
本発明に係る静電容量センサでは、第2の受信電極は、第1の受信電極を取り囲む環状の電極であることが好ましい。
本発明に係る静電容量センサでは、送信電極は、第2の受信電極を取り囲む環状の電極であることが好ましい。
本発明に係る静電容量センサでは、第2の受信電極は、第1の受信電極を挟んで配置された直線状の電極であることが好ましい。
本発明に係る静電容量センサでは、送信電極は、第2の受信電極を挟んで配置された直線状の電極であることが好ましい。
本発明に係る静電容量センサでは、補正部は、第1の受信電極と第2の受信電極との間の距離に応じて決まる補正係数を第2の出力値に乗じた値を、第1の出力値から減算することが好ましい。
本発明によれば、静電容量センサの測定領域をより狭い範囲に絞り込むことができる。
静電容量センサ10の模式図である。 センサヘッド20の模式図である。 検出回路30の一例を示す回路図である。 受信アンテナ22,23を含む平面に垂直な、受信アンテナ23を通るセンサヘッド20の断面を示した図である。 図4の水平軸上の各点について、各アンテナA〜Cまでの距離の逆数をプロットしたグラフである。 補正部40が補正係数を決定する処理の一例を示すフローチャートである。 センサヘッド70の模式図である。 従来の近接センサ100の回路図である。
以下、添付図面を参照して、本発明に係る静電容量センサについて詳細に説明する。ただし、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
図1は、静電容量センサ10の模式図である。図2は、センサヘッド20の模式図である。図2は、静電容量センサ10を図1の下側から見た図に相当する。
静電容量センサ10は、センサヘッド20と、検出回路30と、補正部40とを有する。
センサヘッド20は、静電容量センサ10の先端部分であり、送信アンテナ21と、2つの受信アンテナ22,23とを有する。送信アンテナ21は交流信号を送信し、受信アンテナ22,23は被検査領域からの交流信号を受信する。これらのアンテナは、静電容量センサ10の底面に設けられている。
受信アンテナ23は、第1の受信電極の一例であり、センサヘッド20の中心に位置する点状のアンテナである。受信アンテナ22は、第2の受信電極の一例であり、受信アンテナ23を取り囲む環状のアンテナである。送信アンテナ21は、送信電極の一例であり、受信アンテナ22を取り囲む環状のアンテナである。
例えば、直径数mm程度の対象物を測定するためには、外側の受信アンテナ22が直径10mm程度であり、かつ送信アンテナ21は直径15mm程度であることが好ましい。また、小さな孔やピンなどを測定するには、送信アンテナと受信アンテナとは、環状など、センサヘッド20の中心軸に関して対称な形状を有することが好ましい。
検出回路30は、送信アンテナ21から送信され、受信アンテナ23で受信された交流信号を位相検波して、送信アンテナ21と受信アンテナ23との間の静電容量に応じた第1の電圧値(第1の出力値)を出力する。また、検出回路30は、送信アンテナ21から送信され、受信アンテナ22で受信された交流信号を位相検波して、送信アンテナ21と受信アンテナ22との間の静電容量に応じた第2の電圧値(第2の出力値)を出力する。
補正部40は、適当な補正係数を第2の電圧値に乗じた値を第1の電圧値から減算することにより、第1の電圧値を第2の電圧値で補正する。すなわち、補正部40は、外側の受信アンテナ22で受信された信号に基づく検出回路30の出力値を減算することにより、中心の受信アンテナ23で受信された信号に基づく検出回路30の出力値を補正する。補正部40により補正された第1の電圧値は、最終的な測定結果として、図示しない静電容量センサ10の表示部や、外部のPCなどに出力される。
これにより、静電容量センサ10は、例えば基板50に設けられた孔51を測定する場合に、被測定物の周囲部分52からの寄与を除いて、被測定物である孔51からの寄与を主に検出する。すなわち、静電容量センサ10は、測定領域53を孔51上の狭い範囲に絞り込むことができる。
図3は、検出回路30の一例を示す回路図である。検出回路30は、受信アンテナ23で受信された交流信号を位相検波する回路と、受信アンテナ22で受信された交流信号を位相検波する回路とが組み合わされたものである。
検出回路30は、発振器31とバッファ32と、抵抗33と、コンデンサ34と、増幅器35と、検波器36と、ローパスフィルタ37と、出力端子38とを有する。また、検出回路30は、抵抗33’と、コンデンサ34’と、増幅器35’と、検波器36’と、ローパスフィルタ37’と、出力端子38’とを有する。これらは、抵抗33、コンデンサ34、増幅器35、検波器36、ローパスフィルタ37および出力端子38と同様のものであるから、以下では重複する内容については説明を省略する。
発振器31は、交流信号Eaを発生する交流信号発生源であり、例えば水晶振動子を用いて構成される。交流信号Eaは、送信アンテナ21によって被検査領域へ放射される。送信アンテナ21から放射される交流信号Eaの周波数および強度の安定性が、近接センサ10の出力の安定性を左右する。したがって、発振器31としては、周波数の安定度が高く、位相ノイズが少なく、かつ温度や経時変化などに対して安定な水晶振動子を用いることが好ましい。
バッファ32は、後段の回路からの発振器31へ影響が、周波数や振幅に変化を生じるのを防止するために設けられる。
抵抗33とコンデンサ34は、送信アンテナ21と、被検査領域からの交流信号Ebを受信する受信アンテナ23とを電気的に接続する移相部として機能する。抵抗33とコンデンサ34は第1の移相部の一例であり、抵抗33’とコンデンサ34’は第2の移相部の一例である。
図3に示す検出回路30では、移相部はコンデンサ34を含んでいる。ただし、例えば、受信アンテナ23の出力を増幅する増幅器35がオペアンプを利用した電流電圧変換回路などによって構成される場合には、コンデンサ34は必須ではない。なお、送信アンテナ21および受信アンテナ23ならびにその配線は、一般にかなり大きな寄生容量を持つので、新たにコンデンサ34を付加する必要がない場合が多いと考えられる。しかしながら、増幅器35が単にその出力を増幅するアンプで構成される場合には、出力端子38からの位相差に応じた電圧値を得る際のSN比を向上させることできるので、コンデンサ34を設けた方がよい。
また、抵抗33は、送信アンテナ21と受信アンテナ23の結合抵抗であり、受信アンテナ23から入力する信号に、発振器31の中間電位を基準電位として与える。抵抗33は、電源電圧の振幅を有する交流信号Eaを、受信アンテナ23からの交流信号Ebに対してあまり違わない大きさになる値に定める機能も有する。
検出回路30では、発振器31からの信号の振幅を、抵抗33により大きく減衰させて微細な振幅を持つ受信アンテナ23からの信号と合成する。ここで、互いの振幅を同程度とする理由を述べる。発振器31からの信号を減衰させる抵抗33の値が大きいと、信号に対する抵抗33が出すノイズの割合が大きくなり、また外部からの回りこみノイズの割合も増加する。一方、減衰が大きい場合は、受信アンテナ23からの信号の振幅の変化がより大きく合成波の位相の変化に反映して、見かけの感度が増大するというメリットもある。したがって、設定する振幅の割合は感度とノイズ増加との兼ね合いとなるが、発明者が検討したところによれば、両者を同程度の振幅にするのが最適である。
検出回路30では、受信アンテナ23の仕様と、要求される増幅率とを考慮して、抵抗33の抵抗値を0.1MΩ〜10MΩとする。コンデンサ34の値は、抵抗33の値が決定した後に、設定する位相遅れ量と、回路の寄生容量や受信アンテナ部分の寄生容量を考慮して決定する。
近接センサ10において、設定する位相遅れ量は、0°、180°、360°以外であればよい。このような位相遅れの信号同士を合成した場合は、片方の信号の振幅変化で合成信号の位相が変化しないためである。双方の位相に少しでもずれがある場合は、片方の信号の振幅変化は合成信号の位相変化を引き起こすことはよく知られている。近接センサ10では、発振器31からの信号の、受信アンテナ23からの信号に対する位相の遅れ量を、例えば90°とする。なお、位相遅れ量は必ずしも90°である必要はない。例えば45°や60°であっても、受信アンテナ23からの信号の振幅の変化は、合成波の移相の変化に変換できる。以下では、位相遅れ量を90°として説明する。
増幅器35は、受信アンテナ23の出力を増幅する。検波器36は、発振器31の出力信号により受信アンテナ23で受信した信号を検波する。検出回路30では、検波器36で検波を行う参照信号として、バッファ32の出力をそのまま利用する。ローパスフィルタ37は、検波器36の出力を平滑化する。ローパスフィルタ37からの出力信号である電圧値Viは、出力端子38を介して補正部40へ入力される。
検波器36とローパスフィルタ37は第1の位相検波部の一例であり、検波器36’とローパスフィルタ37’は第2の位相検波部の一例である。また、接点39は第1の合成部の一例であり、接点39’は第2の合成部の一例である。
以下では、検出回路30の動作について説明する。検出回路30では、発振器31が生成した交流信号を、送信アンテナ21が被検査領域へ交流信号Eaとして放射する。送信アンテナ21から放射された交流信号Eaは、送信アンテナ21で生成された電荷によって、被検査領域に電界を形成する。受信アンテナ23は、被検出領域に存在する大気、誘電体および導体などによる分極からの寄与を含めた電界から、電荷を生成する。すなわち、受信アンテナ23は、被検査領域に形成される電界に応じた交流信号Ebを受信する。
このとき、送信アンテナ21と受信アンテナ23との間のアンテナ間容量Caに応じて、受信アンテナ23が受信する交流信号Ebの位相および振幅が変化する。測定時において、アンテナ間容量Caは、主に、送信アンテナ21および受信アンテナ23に近接または接触している被測定物である誘電体に応じて変化する。
図3に示す検出回路30では、移相部が位相した信号と、受信アンテナ23が受信した交流信号Ebとを接点39で合成する。移相部が位相した信号とは、送信アンテナ21が送信する交流信号Eaに相当する信号を抵抗33で減衰させ、さらに抵抗33およびコンデンサ34で移相した信号である。さらに、接点39で合成された信号を増幅器35で増幅し、増幅された信号を検波器36へ入力してバッファ32の出力で検波し、検波された信号をローパスフィルタ37へ出力する。ローパスフィルタ37は、位相差に応じた信号を電圧値Viに変換する。電圧値Viは、出力端子38から補正部40に出力される。電圧値Viは、アンテナ間容量Caに比例した値を有し、上記の第1の電圧値に相当する。
同様に、受信アンテナ22は、被検査領域に形成される電界に応じた交流信号Eb’を受信する。交流信号Eb’の位相および振幅は、送信アンテナ21と受信アンテナ22の間のアンテナ間容量に応じて変化する。
図3に示す検出回路30では、交流信号Eaを抵抗33’およびコンデンサ34’で移相した信号と、受信アンテナ22が受信した交流信号Eb’とを接点39’で合成する。さらに、接点39’で合成された信号を増幅器35’で増幅し、増幅された信号を検波器36’へ入力してバッファ32の出力で検波し、検波された信号をローパスフィルタ37’へ出力する。ローパスフィルタ37’は、位相差に応じた信号を電圧値Vi’に変換する。電圧値Vi’は、出力端子38’から補正部40に出力される。電圧値Vi’は、送信アンテナ21と受信アンテナ22の間のアンテナ間容量に比例した値を有し、上記の第2の電圧値に相当する。
次に、補正部40による、検出回路30の出力値の補正について説明する。そのために、まず、2次元平面内における、2つの受信アンテナ22,23での信号を用いた補正を考える。
図4は、受信アンテナ22,23を含む平面に垂直な、受信アンテナ23を通るセンサヘッド20の断面を示した図である。なお、図4では、送信アンテナ21の図示は省略している。
ここでは、測定対象の平面(図1における基板50の平面)上に水平軸をとり、その平面から受信アンテナ22,23までの高さHを10mmとする。また、環状の受信アンテナ22の半径Rを15mmとする。図4に示した断面上において、受信アンテナ23の位置に点状のアンテナAがあり、受信アンテナ22の位置に点状のアンテナB,Cがあるとする。そして、アンテナAの直下の点が水平軸上の原点Oであるとする。直線Lは原点Oを通る直線である。
図5(a)〜図5(c)は、図4の水平軸上の各点について、各アンテナA〜Cまでの距離の逆数をプロットしたグラフである。静電容量センサの性質から、水平軸上の各座標に誘電体が配置されたときの各アンテナA〜Cの感度は、誘電体とアンテナの間の距離に反比例する。したがって、図5(a)〜図5(c)は、水平軸上の各点について、その点に誘電体が配置された場合における、その誘電体から各アンテナA〜Cへの寄与の大きさを示したグラフに相当する。
図5(a)〜図5(c)は、それぞれ、高さHが10mm、8mmおよび20mmのときのグラフである。各グラフにおいて、横軸は、図4の水平軸上の座標を表し、縦軸は、対応するアンテナまでの距離の逆数を表す。細い実線、細い破線および太い破線は、それぞれ、アンテナA,B,Cに対応する。ただし、アンテナB,Cについては、距離の逆数を0.4倍した値を示している。各アンテナの直下の点がそのアンテナに最も近いことから、各曲線は、対応するアンテナと水平座標が同じ点でピークをとる。
また、図5(a)〜図5(c)における太い実線は、アンテナAまでの距離の逆数から、アンテナB,Cまでの距離の逆数を0.4倍した値をそれぞれ減算した値を表す。すなわち、太い実線は、アンテナB,Cで受信された信号に基づく出力値を用いて、アンテナAで受信された信号に基づく出力値を補正した後の値に相当する。
いずれのグラフにおいても、アンテナAの曲線は比較的裾野が広く、原点Oから水平方向に遠ざかっても、比較的大きな値をもつ。これに対し、補正後の曲線は、アンテナAの曲線より裾野が狭くなっており、原点Oから水平方向に離れると値が急激に小さくなる。したがって、アンテナB,Cで受信された信号に基づく出力値を0.4倍した値を、アンテナAで受信された信号に基づく出力値からそれぞれ減算すると、アンテナAは原点O付近のみで高い感度をもつようになり、水平方向におけるアンテナAの感度の広がりが限定されるということがわかる。すなわち、この補正によって、アンテナAによる測定領域が絞り込まれていることになる。そして、補正によりアンテナAの感度の広がりが限定される効果は、図5(a)〜図5(c)のいずれにおいても見られることから、各アンテナA〜Cの高さHによらないということもわかる。
0.4倍という上記の係数は、アンテナA〜Cの間隔(すなわち、環状の受信アンテナ22の半径R)が15mmの場合の値である。この補正係数は、アンテナA〜C間の距離に応じて決まる。上記の通り、各アンテナA〜Cの感度は被測定物からの距離に反比例することから、補正係数は、アンテナA〜C間の距離の逆数(すなわち、1/R)に比例する値になる。この補正係数は、図6を用いて後述するように、実験的に定めることができる。
上記で考察した2次元についての内容を、3次元に拡張する。図4に示した断面を、水平軸に垂直な原点Oを通る直線Lの周りに回転させると、図1に示した3次元の受信アンテナ22,23が再現される。受信アンテナ22,23の形状が直線Lに関して対称であることから、測定対象の平面上の各点に誘電体が配置されたときの、その誘電体から受信アンテナ22,23への寄与の総和は、図5(a)〜図5(c)に示した2次元の場合の寄与を直線Lの周りに積分することにより得られる。直線Lの周りの回転角をΦとし、直線Lから各要素までの距離をrとすると、積分要素にはrdΦの重みが付くが、これ以外は2次元の場合と同様である。
したがって、3次元の場合でも、受信アンテナ22で受信された信号に基づく出力値に補正係数を乗じた値を、受信アンテナ23で受信された信号に基づく出力値から減算すると、静電容量センサ10は、受信アンテナ23を通るセンサヘッド20の中心軸(直線L)の付近のみで高い感度を有するようになる。これにより、受信アンテナ22,23を含む平面の方向における感度の広がりが限定される。
以下では、補正部40の機能について説明する。図1に示したように、補正部40は、データ格納部41と、演算部42と、係数決定部43と、入出力部44とを有する。
データ格納部41は、例えばRAMなどにより構成され、検出回路30から取得される第1の電圧値および第2の電圧値、ならびにその補正演算に用いられる補正係数を格納する。
演算部42は、CPUにより構成され、データ格納部41に格納された第1の電圧値、第2の電圧値および補正係数を用いて、第1の電圧値に対する補正演算を実行する。具体的には、演算部42は、既に説明したように、受信アンテナ22で受信された信号に基づく出力値である第2の電圧値に補正係数を乗じた値を、受信アンテナ23で受信された信号に基づく出力値である第1の電圧値から減算する。実際の測定時には、演算部42により補正された第1の電圧値が、最終的な測定結果として、図示しない静電容量センサ10の表示部や、外部のPCなどに出力される。
係数決定部43は、CPUにより構成され、後述する図6のフローに従い、補正演算に用いられる補正係数を決定する。
入出力部44は、検出回路30や、図示しない表示部、外部のPCなどの間でデータの受渡しを行うためのインタフェースである。
図6は、補正部40が補正係数を決定する処理の一例を示すフローチャートである。図6に示したフローは、補正部40内のROMに予め記憶されたプログラムに従って、補正部40内のCPUにより実行される。
まず、係数決定部43は、センサヘッド20の中心に配置された受信アンテナ23の感度に関する(すなわち、第1の電圧値についての)しきい値と、補正係数の初期値を設定しておく(S1)。そして、補正部40は、センサヘッド20から一定の距離(例えば10mm程度)だけ離れた測定平面上で被測定物を2次元状に動かしたときの、位置座標と第1の電圧値および第2の電圧値とを対応付けた測定データを取得する(S2)。次に、演算部42は、測定平面上の各位置での測定データについて、第2の電圧値に現在の補正係数を乗じた値を第1の電圧値から減算することによって、第1の電圧値を補正する(S3)。
続いて、係数決定部43は、補正された第1の電圧値がセンサヘッド20の中心軸付近における所望の範囲内だけでしきい値以上になっているか否かを判定する(S4)。所望の範囲外でも補正された第1の電圧値がしきい値以上になっている場合(S4でNo)には、係数決定部43は、補正係数を例えば一定の増分だけ変化させる(S5)。そして、処理はS3に戻り、演算部42は、再度測定平面上の各位置について、第1の電圧値を補正する。
一方、補正された第1の電圧値が所望の範囲内だけでしきい値以上になっていれば(S4でYes)、係数決定部43は、現在の補正係数を、実際の測定時の補正に使用する補正係数として決定する(S6)。そして、係数決定部43は、決定した補正係数をデータ格納部41に格納する(S7)。以上で、補正部40が補正係数を決定する処理は終了する。
このように、静電容量センサ10では、2つの受信アンテナ22,23で受信された信号に基づき検出回路30から出力される電圧値を、補正部40で補正する。これにより、静電容量センサ10では、センサヘッド20の中心軸付近における狭い範囲内に測定領域を絞り込み、被測定物が小さい場合でも被測定物の周囲部分が測定結果に影響を及ぼさないようにして、測定結果の精度を高めることができる。
なお、補正部40を静電容量センサ10内に設けずに、検出回路30からの第1の電圧値と第2の電圧値をPCなどに出力して、PCなどで補正部40の機能を実現してもよい。
また、静電容量センサ10では、受信アンテナが2つ(受信アンテナ22,23)あるのに対して送信アンテナは1つ(送信アンテナ21)であるが、受信アンテナ22,23に対応させて2つの送信アンテナを設けてもよい。この場合、一方の送受信アンテナと他方の送受信アンテナについて検出回路を別個に構成し、それぞれの検出回路で異なる周波数の交流信号を使用することが考えられる。その検出回路は、図8に示した従来の近接センサ100と同様のものでもよい。
また、受信アンテナとして、同心円状に配置された3個以上の環状のアンテナを設けてもよい。この場合、補正部40は、センサヘッド20の中心以外(すなわち、受信アンテナ23以外)の受信アンテナでの信号に基づく出力値に、それぞれ適当な係数を乗じて加算または減算することにより、中心の受信アンテナからの出力値を補正すればよい。これにより、受信アンテナが2つの場合と比べて、センサヘッド20の中心軸付近におけるより狭い範囲に測定領域を絞り込むことが可能になる。
また、送信アンテナや受信アンテナは、センサヘッド20の中心軸に関して対称な形状であれば、必ずしも環状でなくてもよい。例えば、以下で説明するように、各アンテナを直線状の形状にして、それらを井桁状に配置してもよい。
図7は、センサヘッド70の模式図である。図1の静電容量センサ10において、センサヘッド20に代えて図7のセンサヘッド70を用いてもよい。
センサヘッド70は、互いに直交する方向に配置され、異なる周波数の交流信号を使用する2組の直線状の送受信アンテナを有する。図7に示すように、センサヘッド70の平面内におけるこれらの方向を、X方向およびY方向とする。
一方の送受信アンテナの組は、互いに平行に配置された、送信電極であるX方向送信アンテナ71と、第2の受信電極に対応するX方向受信アンテナ72と、第1の受信電極に対応するX方向受信アンテナ73とを有する。X方向受信アンテナ73は、センサヘッド20の中心に配置される。X方向受信アンテナ72は、2本のアンテナで構成され、X方向受信アンテナ73を挟んで配置される。X方向送信アンテナ71は、2本のアンテナで構成され、X方向受信アンテナ72,73を挟んで配置される。
そして、補正部40は、X方向受信アンテナ72で受信された信号に基づく出力値に補正係数を乗じた値を、X方向受信アンテナ73で受信された信号に基づく出力値から減算する。これにより、各アンテナに直交する方向(Y方向)に関して、静電容量センサの測定領域を絞り込むことができる。
また、他方の送受信アンテナの組は、互いに平行に配置された、送信電極であるY方向送信アンテナ74と、第2の受信電極に対応するY方向受信アンテナ75と、第1の受信電極に対応するY方向受信アンテナ76とを有する。Y方向受信アンテナ76は、センサヘッド20の中心に配置される。Y方向受信アンテナ75は、2本のアンテナで構成され、Y方向受信アンテナ76を挟んで配置される。Y方向送信アンテナ74は、2本のアンテナで構成され、Y方向受信アンテナ75,76を挟んで配置される。前述したX方向のアンテナと、これらY方向のアンテナとは、例えば絶縁層を介して配置されている。
そして、補正部40は、Y方向受信アンテナ75で受信された信号に基づく出力値に補正係数を乗じた値を、Y方向受信アンテナ76で受信された信号に基づく出力値から減算する。これにより、各アンテナに直交する方向(X方向)に関しても、静電容量センサの測定領域を絞り込むことができる。したがって、センサヘッド20を用いた静電容量センサ10と同様に、センサヘッド70を用いた静電容量センサでも、センサヘッド70の中心軸付近におけるより狭い範囲に測定領域を絞り込むことが可能になる。
10 静電容量センサ
21 送信アンテナ
22,23 受信アンテナ
30 検出回路
31 発振器
33 抵抗
34 コンデンサ
36 検波器
39 接点
40 補正部

Claims (6)

  1. 交流信号発生源と、
    前記交流信号発生源に接続された送信電極と、
    第1の受信電極と、
    前記第1の受信電極の周囲に配置され、前記第1の受信電極に関して対称な形状を有する第2の受信電極と、
    前記送信電極と前記第1の受信電極との間に設けられた第1の移相部と、
    前記送信電極と前記第2の受信電極との間に設けられた第2の移相部と、
    前記第1の移相部で移相された信号と前記第1の受信電極で受信された信号を合成する第1の合成部と、
    前記第2の移相部で移相された信号と前記第2の受信電極で受信された信号を合成する第2の合成部と、
    前記第1の合成部で合成された信号を前記交流信号発生源の信号で位相検波して、前記送信電極と前記第1の受信電極との間の静電容量に応じた第1の出力値を出力する第1の位相検波部と、
    前記第2の合成部で合成された信号を前記交流信号発生源の信号で位相検波して、前記送信電極と前記第2の受信電極との間の静電容量に応じた第2の出力値を出力する第2の位相検波部と、
    前記第1の出力値を前記第2の出力値で補正して、被測定物までの距離を算出する補正部と、
    を有することを特徴とする静電容量センサ。
  2. 前記第2の受信電極は、前記第1の受信電極を取り囲む環状の電極である、請求項1に記載の静電容量センサ。
  3. 前記送信電極は、前記第2の受信電極を取り囲む環状の電極である、請求項2に記載の静電容量センサ。
  4. 前記第2の受信電極は、前記第1の受信電極を挟んで配置された直線状の電極である、請求項1に記載の静電容量センサ。
  5. 前記送信電極は、前記第2の受信電極を挟んで配置された直線状の電極である、請求項4に記載の静電容量センサ。
  6. 前記補正部は、前記第1の受信電極と前記第2の受信電極との間の距離に応じて決まる補正係数を前記第2の出力値に乗じた値を、前記第1の出力値から減算する、請求項1〜5のいずれか一項に記載の静電容量センサ。
JP2013166335A 2013-08-09 2013-08-09 静電容量センサ Pending JP2015034772A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013166335A JP2015034772A (ja) 2013-08-09 2013-08-09 静電容量センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013166335A JP2015034772A (ja) 2013-08-09 2013-08-09 静電容量センサ

Publications (1)

Publication Number Publication Date
JP2015034772A true JP2015034772A (ja) 2015-02-19

Family

ID=52543387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013166335A Pending JP2015034772A (ja) 2013-08-09 2013-08-09 静電容量センサ

Country Status (1)

Country Link
JP (1) JP2015034772A (ja)

Similar Documents

Publication Publication Date Title
US9804260B2 (en) RF proximity sensor
WO2008151141A1 (en) Non-contact measurement system for accurate measurement of frequency and amplitude of mechanical vibration
US11428548B2 (en) Capacitance measuring circuit and electrostatic capacitive displacement meter
KR101830796B1 (ko) 정전용량형 근접 센서 및 정전용량형 근접 검출 방법
US9429672B2 (en) Locator
ES2441869T3 (es) Dispositivo de sensor para generar señales que son indicativas de la posición o el cambio de la posición de extremidades
US20110267046A1 (en) Method and device for compensation in a measurement of a magnetic field, object-localizing method and system, recording medium for these methods
JP5899698B2 (ja) 人体部位位置測定装置および電子機器システム
US8742747B2 (en) Detector for detecting a current carrying conductor
US20200018820A1 (en) Multi-field zone proximity sensor as well as a method for measuring a distance of an object from the multi-field zone proximity sensor
US8362956B2 (en) Electrically small, source direction resolving antennas
JP2015034772A (ja) 静電容量センサ
JP5984827B2 (ja) 静電容量センサ
Linz et al. A Compact, Versatile Six‐Port Radar Module for Industrial and Medical Applications
JP6145467B2 (ja) 位置検出装置
Scherr et al. 61 GHz ISM band FMCW radar for applications requiring high accuracy
KR20160060292A (ko) 시간영역 응답 방식의 터치센싱장치
CN110471053B (zh) 变频测距装置
JP2015190952A (ja) 物体変位量検知信号処理装置
US9588162B2 (en) Capacitive positioning device
US10859532B2 (en) Sensor device and sensing method
US20120143532A1 (en) Detector for Detecting a Current Carrying Conductor
CN104204858A (zh) 电容式定位设备
US11862858B2 (en) Polarization direction measuring device, method of acquiring intensity ratio tables, polarization direction measuring method, and computer-readable storage medium
JP2015175763A (ja) 非接触距離測定器