JP2015034508A - Air intake duct - Google Patents

Air intake duct Download PDF

Info

Publication number
JP2015034508A
JP2015034508A JP2013165548A JP2013165548A JP2015034508A JP 2015034508 A JP2015034508 A JP 2015034508A JP 2013165548 A JP2013165548 A JP 2013165548A JP 2013165548 A JP2013165548 A JP 2013165548A JP 2015034508 A JP2015034508 A JP 2015034508A
Authority
JP
Japan
Prior art keywords
intake duct
air permeability
sec
silencer
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013165548A
Other languages
Japanese (ja)
Other versions
JP6044785B2 (en
Inventor
義則 犬塚
Yoshinori Inuzuka
義則 犬塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2013165548A priority Critical patent/JP6044785B2/en
Publication of JP2015034508A publication Critical patent/JP2015034508A/en
Application granted granted Critical
Publication of JP6044785B2 publication Critical patent/JP6044785B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air intake duct which can attenuate a broadband standing wave and in which excellent sound absorption performance is developed in a specific frequency region in which sound needs to be reduced in particular.SOLUTION: An air intake duct 1 comprises by two half-split bodies made of a fiber mold body being combined includes a cylindrical part 3 and a muffler part 5 provided by branching from the cylindrical part 3. Also, air permeability of a molding wall of the cylindrical part 3 measured by the JIS L1096 A method is 1.0-5.0 cc/cm/sec, and air permeability of a molding wall of the muffler part 5 measured by the JIS L1096 A method is 0.5 cc/cm/sec or less. Furthermore, it is preferable that, when the whole length of the cylindrical part 3 is defined as L, a first high ventilation part having air permeability of 10 cc/cm/sec or more is provided at a position 1/4 of L from one end on a side where air from the cylindrical part 3 flows in, and a second high ventilation part having air permeability of 10 cc/cm/sec or more is provided at a position 3/4 of L.

Description

本発明は、吸気ダクトに関する。更に詳しくは、本発明は、広帯域の定在波を減衰させることができるとともに、特に減音させたい特定の周波数領域において優れた吸音性能が発現される吸気ダクトに関する。   The present invention relates to an intake duct. More specifically, the present invention relates to an intake duct that can attenuate a wide-band standing wave and that exhibits excellent sound absorption performance particularly in a specific frequency region where it is desired to reduce sound.

従来、自動車等の車両における吸気ダクトから発生する騒音を低減させる試みがなされている。即ち、エンジンの吸気に伴う脈動音が車室内及び車室外における騒音となっており、この吸気脈動音を低減させる対策として、吸気ダクトに消音器や絞り部を設けるという方法が知られている。例えば、筒状部の特定の範囲の周波数の1/4波長、望ましくは1/2波長に相当する領域に吸音材を設置した内燃機関用吸気ダクトが知られている(例えば、特許文献1参照。)。また、不織布シートを加熱圧縮成形する吸気ダクトの製造方法も知られている(例えば、特許文献2参照。)。   Conventionally, an attempt has been made to reduce noise generated from an intake duct in a vehicle such as an automobile. That is, the pulsation sound caused by the intake of the engine is a noise in the vehicle interior and the exterior of the vehicle interior. As a countermeasure for reducing the intake pulsation sound, a method of providing a silencer or a throttle in the intake duct is known. For example, an intake duct for an internal combustion engine in which a sound absorbing material is installed in a region corresponding to a quarter wavelength, preferably a half wavelength, of a specific range of frequencies of a cylindrical portion is known (see, for example, Patent Document 1). .) Moreover, the manufacturing method of the air intake duct which heat-molds a nonwoven fabric sheet is also known (for example, refer patent document 2).

特開平8−200170号公報JP-A-8-200170 特開平11−343938号公報JP-A-11-343938

しかしながら、特許文献1に記載された吸気ダクトは、ポリプロピレン等の樹脂材料からなる筒状部の特定の領域に、繊維製の吸音材を配したものであり、その構造が複雑であるため、単に、不織布シートを加熱圧縮成形する方法や、通常のプレス成形によって、製造することは困難であった。   However, the air intake duct described in Patent Document 1 is such that a sound absorbing material made of fiber is arranged in a specific region of a cylindrical portion made of a resin material such as polypropylene, and its structure is complicated. It has been difficult to produce the nonwoven fabric sheet by a method of heat compression molding or ordinary press molding.

本発明は上述の従来の状況に鑑みてなされたものであり、製造が容易であるとともに、広帯域の定在波を減衰させることができ、且つ特に減音させたい特定の周波数領域において優れた吸音性能が発現される吸気ダクトを提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, is easy to manufacture, can attenuate a broadband standing wave, and has excellent sound absorption particularly in a specific frequency region where it is desired to reduce sound. An object of the present invention is to provide an air intake duct that exhibits its performance.

本発明は以下のとおりである。
1.繊維成形体からなる2つの半割体が合わされてなる吸気ダクトであって、
筒状部と、前記筒状部から分岐して設けられた消音器部とを備え、
前記筒状部の成形壁のJIS L1096 A法により測定した通気性が1.0〜5.0cc/cm/secであり、
前記消音器部の成形壁のJIS L1096 A法により測定した通気性が0.5cc/cm/sec以下であることを特徴とする吸気ダクト。
2.前記筒状部の全長をLとしたときに、前記筒状部の空気が流入する側の一端から1/4Lの位置に、前記通気性が10cc/cm/sec以上の第1高通気部が設けられている前記1.に記載の吸気ダクト。
3.前記筒状部の全長をLとしたときに、前記筒状部の空気が流入する側の一端から3/4Lの位置に、前記通気性が10cc/cm/sec以上の第2高通気部が設けられている前記1.又は2.に記載の吸気ダクト。
The present invention is as follows.
1. An air intake duct formed by combining two halves made of a fiber molded body,
A tubular portion, and a silencer portion provided by branching from the tubular portion,
The air permeability measured by the JIS L1096 A method of the molding wall of the cylindrical part is 1.0 to 5.0 cc / cm 2 / sec,
An air intake duct characterized in that the air permeability measured by the JIS L1096 A method of the molding wall of the silencer part is 0.5 cc / cm 2 / sec or less.
2. When the overall length of the tubular part is L, the first highly ventilated part having the air permeability of 10 cc / cm 2 / sec or more at a position 1/4 L from one end of the tubular part on the air inflow side. 1 is provided. The intake duct described in 1.
3. When the overall length of the tubular portion is L, the second highly ventilated portion having the air permeability of 10 cc / cm 2 / sec or more at a position 3 / 4L from one end of the tubular portion on the air inflow side. 1 is provided. Or 2. The intake duct described in 1.

本発明の吸気ダクトは、筒状部のみでなく、筒状部から分岐して設けられた消音器部も、繊維成形体からなる2つの半割体が合わされて一体に形成されている。また、筒状部の成形壁の通気性が特定の数値範囲内であり、消音器部の成形壁の通気性が特定の数値以下である。
このような構成とされていると、筒状部が通気性を有するため、広帯域の定在波を十分に減衰させることができる。また、消音器部は共鳴可能な程度に通気性が低いため、特に吸音させたい特定の周波数領域において十分に減音させることができる。更に、繊維製の筒状部と、繊維製の消音器部とを同時に一体に形成することができ、簡易な工程により効率よく吸気ダクトを製造することができる。
請求項2の吸気ダクトでは、筒状部の空気が流入する側の一端から1/4Lの位置に、通気性が10cc/cm/sec以上の第1高通気部が設けられている。
このような構成とされていると、吸気騒音の支配的なモードと判断される1〜3次共鳴を効率よく低減させることができ、定在波をより効率よく減衰させることができる。
請求項3の吸気ダクトでは、筒状部の空気が流入する側の一端から3/4Lの位置に、通気性が10cc/cm/sec以上の第2高通気部が設けられている。
このような構成とされていると、上述の第1高通気部が設けられているときと同様の作用効果が奏される。また、第1高通気部と併せて第2高通気部が設けられていれば、1〜3次共鳴をより効率よく低減させることができ、定在波を特に大きく減衰させることができる。
尚、従来の樹脂製の吸気ダクトでも、複数個の樹脂製の消音器部を設けることで、広帯域の定在波を減衰させることができる。しかし、工程が複雑になり、コスト高になるとともに、吸気ダクトの重量も増加する。また、筒状部の空気が流入する側の一端から1/2Lの位置に、高通気部を設けてもよいが、1/2Lの位置[図4の(b)の位置参照]であると、1次と3次の共鳴は腹の位置であるが、2次共鳴は節の位置であり、定在波を効率よく減衰させることはできない。
In the intake duct of the present invention, not only the cylindrical portion but also the silencer portion branched from the cylindrical portion is formed integrally by combining two halves made of a fiber molded body. Moreover, the air permeability of the molding wall of the cylindrical part is within a specific numerical range, and the air permeability of the molding wall of the silencer part is not more than a specific numerical value.
With such a configuration, since the cylindrical portion has air permeability, a broadband standing wave can be sufficiently attenuated. Further, since the silencer portion has low air permeability to the extent that it can resonate, it is possible to sufficiently reduce sound particularly in a specific frequency region where it is desired to absorb sound. Furthermore, the fiber cylindrical portion and the fiber silencer portion can be integrally formed at the same time, and the intake duct can be efficiently manufactured by a simple process.
In the intake duct according to the second aspect , the first high ventilation portion having air permeability of 10 cc / cm 2 / sec or more is provided at a position 1/4 L from one end of the cylindrical portion on the air inflow side.
If it is set as such a structure, the 1-3rd resonance judged to be the dominant mode of intake noise can be reduced efficiently, and a standing wave can be attenuated more efficiently.
In the intake duct according to the third aspect, a second high ventilation portion having air permeability of 10 cc / cm 2 / sec or more is provided at a position 3/4 L from one end of the cylindrical portion on the air inflow side.
If it is set as such a structure, the effect similar to when the above-mentioned 1st high ventilation part is provided will be show | played. Moreover, if the 2nd high ventilation part is provided together with the 1st high ventilation part, the 1st-3rd order resonance can be reduced more efficiently and a standing wave can be attenuated especially greatly.
Even in a conventional resin-made air intake duct, a wide-band standing wave can be attenuated by providing a plurality of resin-made silencers. However, the process becomes complicated and the cost increases, and the weight of the intake duct increases. In addition, a high ventilation portion may be provided at a position 1/2 L from one end of the cylindrical portion on the air inflow side, but at a position 1/2 L [refer to the position of FIG. 4B]. The primary and tertiary resonances are antinode positions, but the secondary resonance is a node position, and the standing wave cannot be attenuated efficiently.

半割体の斜視図である。It is a perspective view of a half body. 本発明の吸気ダクトの斜視図である。It is a perspective view of the air intake duct of the present invention. 本発明の吸気ダクトを側面からみた断面であるとともに、定在波の進行を示す説明図である。It is explanatory drawing which shows the progress of a standing wave while it is the cross section which looked at the intake duct of this invention from the side surface. 筒状部の長さ方向の高通気部が設けられる位置を示す説明図である。It is explanatory drawing which shows the position where the high ventilation part of the length direction of a cylindrical part is provided. 樹脂製の筒状部における定在波の進行を示す説明図である。It is explanatory drawing which shows the progress of the standing wave in resin-made cylindrical parts. 繊維製の筒状部に樹脂製の消音器部が設けられた吸気ダクトにおける定在波の進行を示す説明図である。It is explanatory drawing which shows advancing of the standing wave in the air intake duct by which the resin-made silencer part was provided in the cylindrical part made from a fiber. 樹脂製の筒状部における定在波の進行を示す説明図である。It is explanatory drawing which shows the progress of the standing wave in resin-made cylindrical parts. 各種の吸気ダクトにおける減音量と周波数との相関を示すグラフである。It is a graph which shows the correlation of the volume reduction and frequency in various intake ducts.

ここで示される事項は例示的なもの及び本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。   The items shown here are for illustrative purposes and exemplary embodiments of the present invention, and are the most effective and easy-to-understand explanations of the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this respect, it is not intended to illustrate the structural details of the present invention beyond what is necessary for a fundamental understanding of the present invention. It will be clear to those skilled in the art how it is actually implemented.

以下、本発明の吸気ダクトについて図を参照しつつ説明する。
本発明の吸気ダクト(1)は、繊維成形体からなる2つの半割体(1a)、(1b)(図1参照)が合わされてなる吸気ダクト(1)であって、筒状部(3)と、筒状部(3)から分岐して設けられた消音器部(5)とを備える(図2参照)。また、筒状部(3)の成形壁のJIS L1096 A法(フラジール形法)により測定した通気性が1.0〜5.0cc/cm/secであり、消音器部(5)の成形壁のJIS L1096 A法(フラジール形法)により測定した通気性が0.5cc/cm/sec以下である。
The intake duct of the present invention will be described below with reference to the drawings.
The air intake duct (1) of the present invention is an air intake duct (1) formed by combining two halves (1a) and (1b) (see FIG. 1) made of a fiber molded body, and has a cylindrical portion (3). ) And a silencer part (5) provided by branching from the cylindrical part (3) (see FIG. 2). Moreover, the air permeability measured by JIS L1096 A method (fragile type method) of the molding wall of the cylindrical part (3) is 1.0 to 5.0 cc / cm 2 / sec, and the muffler part (5) is molded. The air permeability of the wall measured by the JIS L1096 A method (Fragile type method) is 0.5 cc / cm 2 / sec or less.

2つの半割体(1a)、(1b)は繊維成形体からなる。繊維成形体は、無機繊維と、無機繊維同士を結着する熱可塑性樹脂とにより形成される。無機繊維の材質及び寸法等は特に限定されず、種々の無機繊維を用いることができる。この無機繊維としてはガラス繊維、炭素繊維等が挙げられ、ガラス繊維が用いられることが多い。無機繊維の繊維径は5〜10μmであることが好ましい。また、繊維成形体における無機繊維の含有量は特に限定されない。無機繊維と熱可塑性樹脂との合計を100質量%とした場合に、無機繊維は30〜70質量%、特に40〜60質量%であることが好ましい。   The two halves (1a) and (1b) are made of fiber molded bodies. The fiber molded body is formed of inorganic fibers and a thermoplastic resin that binds the inorganic fibers. The material and dimensions of the inorganic fiber are not particularly limited, and various inorganic fibers can be used. Examples of the inorganic fiber include glass fiber and carbon fiber, and glass fiber is often used. The fiber diameter of the inorganic fiber is preferably 5 to 10 μm. Moreover, content of the inorganic fiber in a fiber molded object is not specifically limited. When the total of the inorganic fiber and the thermoplastic resin is 100% by mass, the inorganic fiber is preferably 30 to 70% by mass, particularly 40 to 60% by mass.

2つの半割体(1a)、(1b)に含有される無機繊維の形態は特に限定されない。例えば、複数本の無機繊維が長さ方向に引き揃えられて規則的に配置された形態、複数本の無機繊維が網目模様を描くように規則的に配置された形態、複数本の無機繊維がランダムに配置された形態等とすることができる。また、複数本の無機繊維が長さ方向に引き揃えられてなる無機繊維シートが複数枚積層され、且つ上下に隣接する無機繊維シートに含有される無機繊維同士が互いに交差した形態とすることもできる。このような形態であれば、優れた機械的特性を有する吸気ダクト(1)とすることができるため好ましい。   The form of the inorganic fiber contained in the two halves (1a) and (1b) is not particularly limited. For example, a form in which a plurality of inorganic fibers are regularly arranged in the length direction, a form in which the plurality of inorganic fibers are regularly arranged to draw a mesh pattern, and a plurality of inorganic fibers are It can be a randomly arranged form or the like. In addition, a plurality of inorganic fiber sheets in which a plurality of inorganic fibers are aligned in the length direction are laminated, and the inorganic fibers contained in the inorganic fiber sheets adjacent vertically may intersect with each other. it can. Such a configuration is preferable because the intake duct (1) having excellent mechanical characteristics can be obtained.

更に、無機繊維シートを用いる場合、その積層数は特に限定されない。例えば、2〜50層とすることができる。また、上述のように、上下に隣接する無機繊維シートに含有される無機繊維の配向方向が異なるように積層されることが好ましい。この場合、各々の無機繊維の配向方向がなす角度は30〜90°であることが好ましい。更に、上下に隣接する無機繊維シートは、各々のシートに含有される無機繊維の配向方向が略直交するように積層されていることがより好ましい。このような形態であれば、長さ方向、径方向及び斜め方向のいずれの方向にも優れた機械的特性を有する吸気ダクト(1)とすることができる。   Furthermore, when using an inorganic fiber sheet, the number of layers is not particularly limited. For example, it can be 2-50 layers. Moreover, it is preferable to laminate | stack so that the orientation direction of the inorganic fiber contained in the inorganic fiber sheet adjacent up and down may differ as mentioned above. In this case, the angle formed by the orientation direction of each inorganic fiber is preferably 30 to 90 °. Furthermore, the inorganic fiber sheets adjacent in the vertical direction are more preferably laminated so that the orientation directions of the inorganic fibers contained in each sheet are substantially orthogonal. If it is such a form, it can be set as the intake duct (1) which has the outstanding mechanical characteristic in any direction of a length direction, a radial direction, and the diagonal direction.

また、上下に隣接する無機繊維シートに含有される各々の無機繊維が、熱可塑性樹脂により結着されることで、優れた機械的特性を有する吸気ダクト(1)とすることができる。更に、筒状部(3)を所定の通気性を有する厚さとすることによって、広帯域の定在波を十分に減衰させることができ、より優れた減音効果を有する吸気ダクト(1)とすることができる。また、より優れた減音効果を有する吸気ダクト(1)とするためには、騒音の波長λの1/4相当の厚さの筒状部(3)とすることが特に好ましい。このような厚さの筒状部(3)であれば、より長波長領域の騒音を十分に低減させることができる。   Moreover, it can be set as the intake duct (1) which has the outstanding mechanical characteristic because each inorganic fiber contained in the inorganic fiber sheet adjacent to the upper and lower sides is bound by the thermoplastic resin. Furthermore, by setting the cylindrical portion (3) to a thickness having a predetermined air permeability, a wide-band standing wave can be sufficiently attenuated, and an intake duct (1) having a more excellent sound reduction effect is obtained. be able to. In order to obtain an intake duct (1) having a more excellent sound reduction effect, it is particularly preferable to use a cylindrical portion (3) having a thickness corresponding to ¼ of the noise wavelength λ. With the cylindrical part (3) having such a thickness, noise in a longer wavelength region can be sufficiently reduced.

無機繊維同士を結着させるための熱可塑性樹脂は特に限定されない。例えば、ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。熱可塑性樹脂としては、無機繊維同士を結着させることができ、且つ成形が容易なポリオレフィン系樹脂が好ましい。ポリオレフィン系樹脂は、オレフィンの単独重合体であってもよく、2種以上のオレフィンの共重合体、又はオレフィンと他の単量体との共重合体であってもよい。   The thermoplastic resin for binding the inorganic fibers is not particularly limited. For example, polyolefin resin, polystyrene resin, acrylic resin and the like can be mentioned. The thermoplastic resin is preferably a polyolefin resin that can bind inorganic fibers and can be easily molded. The polyolefin resin may be an olefin homopolymer, a copolymer of two or more olefins, or a copolymer of an olefin and another monomer.

オレフィンの単独重合体としては、ポリエチレン、ポリプロピレン等が挙げられる。2種以上のオレフィンの共重合体としては、エチレン−プロピレン共重合体、エチレンと1−ブテン、4−メチル−ペンテン−1、1−オクテン等との共重合体である線状低密度ポリエチレンなどが挙げられる。オレフィンと他の単量体との共重合体としては、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体等が挙げられる。これらのポリオレフィン系樹脂は、1種のみを用いてもよく、2種以上を併用してもよい。   Examples of the olefin homopolymer include polyethylene and polypropylene. Examples of the copolymer of two or more olefins include ethylene-propylene copolymer, linear low-density polyethylene that is a copolymer of ethylene and 1-butene, 4-methyl-pentene-1, 1-octene, and the like. Is mentioned. Examples of the copolymer of olefin and another monomer include ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, and the like. These polyolefin resins may be used alone or in combination of two or more.

また、熱可塑性樹脂には、通常、各種の添加剤が配合される。例えば、充填剤、酸化防止剤、紫外線吸収剤、老化防止剤、難燃剤、滑剤、安定剤、耐候剤、帯電防止剤等が配合される。更に、必要に応じて、可塑剤、撥水剤、撥油剤、抗菌剤、防腐剤、着色剤等が配合されていてもよい。   Moreover, various additives are normally mix | blended with a thermoplastic resin. For example, fillers, antioxidants, ultraviolet absorbers, anti-aging agents, flame retardants, lubricants, stabilizers, weathering agents, antistatic agents and the like are blended. Furthermore, a plasticizer, a water repellent, an oil repellent, an antibacterial agent, an antiseptic, a colorant, and the like may be blended as necessary.

2つの半割体(1a)、(1b)が合わされてなる吸気ダクト(1)は、筒状部(3)と消音器部(5)とを備える(図2参照)。また、筒状部(3)は通気性を有する。筒状部(3)は、複数本の無機繊維と、これらの無機繊維同士を結着している熱可塑性樹脂とからなる。そして、隣り合う無機繊維間、及び無機繊維と熱可塑性樹脂からなる結着部との間には微小な空隙が形成されている。この空隙は、筒状部(3)の成形壁の内表面から外表面へと連通しており、筒状部(3)は通気性を有することになる。   The intake duct (1) formed by combining two halves (1a) and (1b) includes a cylindrical part (3) and a silencer part (5) (see FIG. 2). Moreover, a cylindrical part (3) has air permeability. The cylindrical portion (3) is composed of a plurality of inorganic fibers and a thermoplastic resin that binds these inorganic fibers. And the minute space | gap is formed between the adjacent inorganic fibers and between the binding parts which consist of an inorganic fiber and a thermoplastic resin. The void communicates from the inner surface to the outer surface of the molding wall of the cylindrical portion (3), and the cylindrical portion (3) has air permeability.

筒状部(3)の、JIS L1096 A法(フラジール形法)により測定した通気性は、1.0〜5.0cc/cm/secであり、1.5〜3.0cc/cm/secであることが好ましい。筒状部(3)の通気性が1.0〜5.0cc/cm/secであれば、広帯域の定在波を十分に減衰させることができる。尚、定在波の減衰のみを考えれば、通気性は高いほどよいが、放射音が悪化する。そこで、定在波の減衰(吸気口音の減音)と放射音とのトレードオフを考慮して筒状部(3)の通気性を算出し、1.0〜5.0cc/cm/secと設定した。 The air permeability of the tubular portion (3) measured by JIS L1096 A method (Fragile method) is 1.0 to 5.0 cc / cm 2 / sec, and 1.5 to 3.0 cc / cm 2 / It is preferable that it is sec. If the air permeability of the cylindrical portion (3) is 1.0 to 5.0 cc / cm 2 / sec, a broadband standing wave can be sufficiently attenuated. If only the attenuation of the standing wave is considered, the higher the air permeability, the better, but the radiated sound deteriorates. Therefore, the air permeability of the cylindrical portion (3) is calculated in consideration of the tradeoff between the attenuation of the standing wave (reduction of the inlet sound) and the radiated sound, and 1.0 to 5.0 cc / cm 2 / sec. Was set.

更に、筒状部(3)の通気路は、微小な空隙が複雑に連通して形成されている。また、熱可塑性樹脂、特にポリオレフィン系樹脂は疎水性が高い。そのため、筒状部(3)は通気性は有するものの、水が透過することはない。   Furthermore, the air passage of the cylindrical portion (3) is formed by intricately communicating minute gaps. In addition, thermoplastic resins, particularly polyolefin resins, are highly hydrophobic. Therefore, although the cylindrical part (3) has air permeability, water does not permeate.

また、筒状部(3)の全長を(L)としたときに、筒状部(3)の空気が流入する側の一端から1/4Lの位置に、JIS L1096 A法(フラジール形法)により測定した通気性が10cc/cm/sec以上の第1高通気部(a)(図4参照)が設けられていることが好ましい。第1高通気部(a)における通気性は20cc/cm/sec以上(通常、50cc/cm/sec以下である。)であることがより好ましい。 Further, when the total length of the cylindrical portion (3) is (L), the JIS L1096 A method (fragile type method) is placed at a position 1/4 L from one end of the cylindrical portion (3) on the air inflow side. It is preferable that a first highly ventilated portion (a) (see FIG. 4) having an air permeability measured by the above of 10 cc / cm 2 / sec or more is provided. The air permeability in the first highly ventilated part (a) is more preferably 20 cc / cm 2 / sec or more (usually 50 cc / cm 2 / sec or less).

更に、筒状部(3)の全長を(L)としたときに、筒状部(3)の空気が流入する側の一端から3/4Lの位置に、JIS L1096 A法(フラジール形法)により測定した通気性が10cc/cm/sec以上の第2高通気部(c)(図4参照)が設けられていることが好ましい。第2高通気部(c)における通気性は20cc/cm/sec以上(通常、50cc/cm/sec以下である。)であることがより好ましい。 Furthermore, when the total length of the cylindrical portion (3) is (L), the JIS L1096 A method (fragile type method) is positioned at 3 / 4L from one end of the cylindrical portion (3) on the air inflow side. It is preferable that a second highly ventilated portion (c) (see FIG. 4) having an air permeability measured by the above of 10 cc / cm 2 / sec or more is provided. The air permeability in the second highly ventilated part (c) is more preferably 20 cc / cm 2 / sec or more (usually 50 cc / cm 2 / sec or less).

第1高通気部(a)及び第2高通気部(c)を設けることにより、筒状部(3)の他の部位における定在波の減衰に加えて、吸気口音の支配的なモードと判断される1〜3次共鳴を効率的に低減させることができる。また、第1高通気部(a)及び第2高通気部(c)は、両方設けてもよく、いずれか一方のみを設けてもよいが、両方設けることが好ましい。更に、第1高通気部(a)及び第2高通気部(c)の各々の、筒状部(3)の長さ方向における寸法は特に限定されない。第1高通気部(a)及び第2高通気部(c)の寸法は、それぞれ筒状部(3)の全長(L)のL/3〜L/5とすることができ、L/4であることが最も好ましい。   By providing the first high ventilation part (a) and the second high ventilation part (c), in addition to the attenuation of the standing wave in other parts of the cylindrical part (3), the dominant mode of the inlet sound and It is possible to efficiently reduce the determined first to third order resonances. Moreover, although both a 1st high ventilation part (a) and a 2nd high ventilation part (c) may be provided and only one may be provided, it is preferable to provide both. Furthermore, the dimension in the length direction of the cylindrical part (3) of each of the first high ventilation part (a) and the second high ventilation part (c) is not particularly limited. The dimension of the 1st high ventilation part (a) and the 2nd high ventilation part (c) can be made into L / 3-L / 5 of the full length (L) of a cylindrical part (3), respectively, L / 4 Most preferably.

また、筒状部(3)には、筒状部(3)を貫通する貫通孔を設けることもできる。前述のように、筒状部(3)には、無機繊維間等に形成された空隙が複雑に連続して形成された連通孔を有しているが、通気性を調整するため、この連通孔とは別に、筒状部(3)を貫通する貫通孔を設けてもよい。このような貫通孔を設けることで、筒状部(3)の通気性が調整され、より騒音の低減を図ることもできる。この貫通孔が設けられた筒状部(3)の通気性は、前述の筒状部(3)の通気性と同様の数値範囲とすることができる。   Moreover, the through-hole which penetrates a cylindrical part (3) can also be provided in a cylindrical part (3). As described above, the cylindrical portion (3) has a communication hole in which voids formed between inorganic fibers and the like are formed in a complex and continuous manner. In addition to the hole, a through hole penetrating the cylindrical portion (3) may be provided. By providing such a through hole, the air permeability of the cylindrical portion (3) is adjusted, and noise can be further reduced. The air permeability of the cylindrical portion (3) provided with the through hole can be in the same numerical range as the air permeability of the cylindrical portion (3) described above.

筒状部(3)から分岐して設けられる消音器部(5)は、特に減音させたい周波数領域の騒音を効率よく低減させるために設けられる。例えば、吸気に伴って発生する騒音のうちで耳障りな180〜200Hzの周波数領域の騒音を効率よく低減させるために設けることができる。騒音を効率よく低減させたい特定の周波数領域は、消音器部(5)が筒状部(3)から分岐する箇所における開口部から消音器本体(5d)までの接続管部(5c)の長さ(D)、接続管部(5c)の径(d)、及び消音器本体(5d)の容積vによって設定することができる(図3参照)。このように、騒音を効率よく低減させ、減音させたい特定の周波数領域は、消音器部(5)の構成によって定まる。そのため、消音器部(5)が設けられる位置は特に限定されず、筒状部(3)のどの位置に設けられていてもよい。   The silencer part (5) provided by branching from the cylindrical part (3) is provided in order to efficiently reduce noise in a frequency region particularly desired to be reduced. For example, it can be provided in order to efficiently reduce annoying noise in the frequency range of 180 to 200 Hz among noises generated by inhalation. The specific frequency region in which noise is to be reduced efficiently is the length of the connecting pipe part (5c) from the opening to the silencer body (5d) where the silencer part (5) branches off from the cylindrical part (3). (D), the diameter (d) of the connecting pipe portion (5c), and the volume v of the silencer body (5d) can be set (see FIG. 3). As described above, the specific frequency region in which noise is efficiently reduced and reduced is determined by the configuration of the silencer unit (5). Therefore, the position where the silencer part (5) is provided is not particularly limited, and may be provided at any position of the tubular part (3).

また、消音器部(5)を有効に機能させるためには、消音器部(5)は通気性を有さないことが好ましい。しかし、消音器部(5)は繊維成形体からなるため、通気性が全くない消音器部(5)とすることは容易ではなく、僅かな通気性は許容される。この消音器部(5)の成形壁のJIS L1096 A法(フラジール形法)により測定した通気性は0.5cc/cm/sec以下であり、0.1cc/cm/sec以下であることが好ましい。尚、通気性の下限値は0.005cc/cm/secとすることができ、測定限界値未満とすることもできる。即ち、消音器部(5)は実質的に通気性を有さないことが好ましい。 Moreover, in order to make a silencer part (5) function effectively, it is preferable that a silencer part (5) does not have air permeability. However, since the muffler part (5) is made of a fiber molded body, it is not easy to make the muffler part (5) having no air permeability, and a slight air permeability is allowed. JIS L1096 A method of forming the wall of the silencer unit (5) breathability measured by (Frazier method) is less than 0.5cc / cm 2 / sec, or less 0.1cc / cm 2 / sec Is preferred. In addition, the lower limit value of the air permeability can be set to 0.005 cc / cm 2 / sec, and can also be set lower than the measurement limit value. That is, it is preferable that the silencer part (5) has substantially no air permeability.

本発明の吸気ダクト(1)の製造方法は特に限定されない。例えば、下記のような方法により製造することができる。
ガラス繊維等の無機繊維と熱可塑性樹脂繊維とを、必要に応じて解繊し、混綿しながら、ベルトコンベア上等に供給し、堆積させて不織布を形成する。その後、この不織布を加熱し、次いで、含浸圧縮成形し、その後、冷却して、半割体(1a)及び半割体(1b)を形成するためのシート状の基材を作製する。尚、含浸圧縮成形により、無機繊維の繊維間に溶融した熱可塑性樹脂が含浸され、その後の冷却により固化した熱可塑性樹脂によって無機繊維の繊維間が結着される。加熱温度は、熱可塑性樹脂繊維の形成に用いた熱可塑性樹脂の融点によって、設定することができる。含浸圧縮成形前の加熱温度は、熱可塑性樹脂の融点を30〜90℃上回る温度であることが好ましい。また、加熱時間は2〜3分とすることができる。更に、含浸圧縮成形時の加熱温度は、熱可塑性樹脂の融点を20〜80℃上回る温度であることが好ましい。また、圧力は10〜20MPa、加圧時間は3〜10秒とすることができる。更に、冷却条件は特に限定されないが、1次冷却で80〜150℃の温度範囲に冷却し、その後、2次冷却で室温、例えば、10〜30℃にまで冷却し、次いで、3次冷却で冷風を送風することにより、基材全体を均一に且つ十分に冷却することができる。その後、基材を半割体(1a)及び半割体(1b)の寸法に従って所定寸法に裁断し、載置台上に積載して半割体(1a)及び半割体(1b)の形成に給する。
The manufacturing method of the intake duct (1) of the present invention is not particularly limited. For example, it can be produced by the following method.
Inorganic fibers such as glass fibers and thermoplastic resin fibers are defibrated as necessary, and are fed onto a belt conveyor or the like while being blended to form a nonwoven fabric. Then, this nonwoven fabric is heated, then impregnated and compression-molded, and then cooled to produce a sheet-like base material for forming the half body (1a) and the half body (1b). The impregnation compression molding impregnates the molten thermoplastic resin between the inorganic fiber fibers, and the inorganic fiber fibers are bound by the thermoplastic resin solidified by the subsequent cooling. The heating temperature can be set according to the melting point of the thermoplastic resin used for forming the thermoplastic resin fiber. The heating temperature before the impregnation compression molding is preferably 30 to 90 ° C. higher than the melting point of the thermoplastic resin. The heating time can be 2 to 3 minutes. Furthermore, it is preferable that the heating temperature at the time of impregnation compression molding is a temperature that exceeds the melting point of the thermoplastic resin by 20 to 80 ° C. The pressure can be 10 to 20 MPa, and the pressurization time can be 3 to 10 seconds. Furthermore, although the cooling conditions are not particularly limited, the cooling is performed to a temperature range of 80 to 150 ° C. by primary cooling, and then cooled to room temperature, for example, 10 to 30 ° C. by secondary cooling, and then cooled by tertiary cooling. By blowing cold air, the entire substrate can be uniformly and sufficiently cooled. Then, the base material is cut into a predetermined size according to the dimensions of the half body (1a) and the half body (1b), and loaded on the mounting table to form the half body (1a) and the half body (1b). To pay.

また、半割体(1a)及び半割体(1b)は、上述の基材を加熱し、その後、無機繊維と融解した熱可塑性樹脂繊維とからなる基材を、半割体(1a)及び半割体(1b)の各々の形状のキャビティが形成されるプレス成形機の、加熱されていない、室温(例えば、20〜30℃)の成形型の下型上に載置し、次いで、上型を降下させて加圧する冷間圧縮成形法によって作製することができる。この場合、熱可塑性樹脂繊維は融解し、無機繊維間に融解した熱可塑性樹脂が介在した状態で加圧成形される。そのため、半割体(1a)及び半割体(1b)の表面はより緻密になり、通気性は確保されつつ、水の侵入はより確実に防止される吸気ダクト(1)とすることができる。尚、薄い不織布を複数枚積層して所定厚さの基材となるようにしてもよく、所定厚さの1層の不織布からなる基材であってもよい。   The halved body (1a) and the halved body (1b) heat the above-mentioned base material, and then convert the base material made of the inorganic fiber and the molten thermoplastic resin fiber into the half body (1a) and the half body (1a). Place the mold on the lower mold of the mold at room temperature (for example, 20-30 ° C.) of the press molding machine in which the cavities of the respective shapes of the halves (1b) are formed. It can be produced by a cold compression molding method in which the mold is lowered and pressed. In this case, the thermoplastic resin fibers are melted and pressure-molded with the molten thermoplastic resin interposed between the inorganic fibers. Therefore, the surface of the half body (1a) and the half body (1b) becomes denser, and it can be set as the air intake duct (1) in which the invasion of water is more reliably prevented while ensuring the air permeability. . A plurality of thin nonwoven fabrics may be laminated to form a base material having a predetermined thickness, or a base material made of a single layer of nonwoven fabric having a predetermined thickness.

基材の加熱温度は、熱可塑性樹脂繊維の形成に用いた熱可塑性樹脂の融点によって、設定することができる。成形温度は、熱可塑性樹脂の融点を30〜90℃上回る温度であることが好ましい。また、加熱時間は45〜60秒とすることができる。更に、冷間圧縮時の圧力は、成形温度を併せて考慮し、吸気ダクト(1)の筒状部(3)の前述の方法により測定した通気性が、1.0〜5.0cc/cm/sec、特に1.5〜3.0cc/cm/secとなるように設定される。また、所定の通気性となるように圧縮成形することで、筒状部(3)の成形壁の厚さも定まることになる。尚、冷間圧縮する時間は、通常、5〜10秒とすることができる。 The heating temperature of a base material can be set with the melting | fusing point of the thermoplastic resin used for formation of a thermoplastic resin fiber. The molding temperature is preferably 30 to 90 ° C. above the melting point of the thermoplastic resin. The heating time can be 45 to 60 seconds. Further, the pressure at the time of cold compression is taken into account the molding temperature, and the air permeability measured by the above-described method of the cylindrical portion (3) of the intake duct (1) is 1.0 to 5.0 cc / cm. 2 / sec, especially 1.5 to 3.0 cc / cm 2 / sec. Moreover, the thickness of the shaping | molding wall of a cylindrical part (3) will also be determined by compression-molding so that it may become predetermined | prescribed air permeability. The time for cold compression can usually be 5 to 10 seconds.

筒状部(3)の通気性は、上述のように、成形温度及び成形圧力によって設定することができる。一方、消音器部(5)の同様にして測定した通気性は、成形温度、圧力下に成形壁が筒状部3と比べて薄くなるように形成されたキャビティによって調整することができる。成形壁が筒状部(3)と比べて薄くなる、即ち、より圧縮されることにより、消音器部(5)では無機繊維間等の空隙が、筒状部(3)と比べて極めて少なくなり、通気性が筒状部(3)と比べて大きく低下する。これにより、消音器部(5)の前述の方法により測定した通気性は、0.5cc/cm/sec以下となる。 The air permeability of the cylindrical portion (3) can be set by the molding temperature and the molding pressure as described above. On the other hand, the air permeability measured in the same manner of the silencer part (5) can be adjusted by a cavity formed so that the molding wall becomes thinner than the cylindrical part 3 under the molding temperature and pressure. Since the molding wall is thinner than the cylindrical part (3), that is, is more compressed, the silencer part (5) has very few voids between the inorganic fibers compared to the cylindrical part (3). Thus, the air permeability is greatly reduced as compared with the cylindrical portion (3). Thereby, the air permeability measured by the above-mentioned method of the silencer part (5) is 0.5 cc / cm 2 / sec or less.

更に、半割体1a、1bは、複数本の無機繊維が長さ方向に引き揃えられてなる無機繊維シートを複数枚積層し、且つ隣接する無機繊維シートに含有される無機繊維同士が互いに交差する形態とされた積層シートを用いて作製することができる。このようにすれば、無機繊維シートに含有される熱可塑性樹脂繊維等が溶融してなる溶融樹脂による無機繊維同士の結着点が多くなる。これにより、無機繊維シートの層間剥離が防止され、優れた機械的特性を有する吸気ダクト(1)とすることができる。また、上下に隣接する無機繊維シートは、各々のシートに含有される無機繊維の配向方向が略直交するように積層することがより好ましい。このようにすれば、長さ方向、径方向及び斜め方向のいずれの方向にも優れた機械的特性を有する吸気ダクト(1)とすることができる。尚、所定厚さの1枚の無機繊維シートの繊維間が溶融樹脂により結着されたシートを用いて半割体1a、1bを作製し、この半割体1a、1bを使用して吸気ダクト(1)の製造することもできる。   Further, the halves 1a and 1b are formed by laminating a plurality of inorganic fiber sheets in which a plurality of inorganic fibers are aligned in the length direction, and the inorganic fibers contained in adjacent inorganic fiber sheets intersect each other. It can produce using the laminated sheet made into the form to do. If it does in this way, the binding point of the inorganic fibers by the molten resin which the thermoplastic resin fiber etc. which are contained in an inorganic fiber sheet | seat fuse | melt will increase. Thereby, delamination of an inorganic fiber sheet is prevented and it can be set as the intake duct (1) which has the outstanding mechanical characteristic. Moreover, it is more preferable to laminate | stack the inorganic fiber sheet | seat adjoining up and down so that the orientation direction of the inorganic fiber contained in each sheet | seat may be substantially orthogonal. If it does in this way, it can be set as the air intake duct (1) which has the outstanding mechanical characteristic in any direction of a length direction, a radial direction, and the diagonal direction. The half halves 1a and 1b are prepared using a sheet in which the fibers of a single inorganic fiber sheet having a predetermined thickness are bound by a molten resin, and the intake duct is formed using the halves 1a and 1b. (1) can also be manufactured.

半割体(1a)及び半割体(1b)は、それぞれ別個の成形型を用いて作製してもよく、同じ金型で半割体(1a)、(1b)を同時に成形し、その後、半割体(1a)と半割体(1b)とに分割してもよい。また、作製した半割体(1a)、(1b)は、必要に応じてトムソン刃等によりトリミングして整形することが好ましい。また、半割体(1a)及び半割体(1b)は、各々の端面が合わされ、端面同士を熱融着させて吸気ダクト(1)を製造することができる。具体的には、半割体(1a)の半円筒部(3a)と、半割体(1b)の半円筒部(3b)のそれぞれの端面を当接させるとともに、半割体(1a)の消音器用成形部(5a)と、半割体(1b)の消音器用成形部(5b)のそれぞれの端面を当接させる。その後、当接させた部位を、例えば、熱板溶着、超音波溶着、振動溶着、赤外線レーザー溶着等の各種の方法により融着させ、吸気ダクト(1)を製造することができる(図2参照)。   The halves (1a) and halves (1b) may be produced using separate molds, and the halves (1a) and (1b) are simultaneously molded with the same mold, You may divide | segment into a half body (1a) and a half body (1b). The produced halves (1a) and (1b) are preferably trimmed and shaped with a Thomson blade or the like as necessary. In addition, the end faces of the half body (1a) and the half body (1b) are combined, and the end faces can be heat-sealed to produce the intake duct (1). Specifically, the end surfaces of the half cylinder part (3a) of the half body (1a) and the half cylinder part (3b) of the half body (1b) are brought into contact with each other, and the half body (1a) The respective end surfaces of the silencer molding part (5a) and the silencer molding part (5b) of the half body (1b) are brought into contact with each other. Thereafter, the abutted portion is fused by various methods such as hot plate welding, ultrasonic welding, vibration welding, infrared laser welding, etc., and the air intake duct (1) can be manufactured (see FIG. 2). ).

上述のように、半割体(1a)、(1b)の各々の端面を融着させ、筒状部(3)と消音器部5とを一体に同時に形成させ、吸気ダクト(1)を製造することができる。この際、半割体(1a)、(1b)のそれぞれの端面のみを融着させるのではなく、図1のように、半割体(1a)、(1b)の各々の端面にフランジ部(f)を設け、フランジ部(f)の表面同士を超音波溶着等の方法により融着させることが好ましい。このようにすれば、半割体(1a)と半割体(1b)とをより強固に融着させることができる。   As described above, the end faces of the halves (1a) and (1b) are fused, and the cylindrical part (3) and the silencer part 5 are integrally formed at the same time to produce the intake duct (1). can do. At this time, not only the end faces of the halves (1a) and (1b) are fused, but as shown in FIG. 1, flanges ( It is preferable to provide f) and to fuse the surfaces of the flange portions (f) by a method such as ultrasonic welding. If it does in this way, a half body (1a) and a half body (1b) can be fused more firmly.

また、吸気ダクト(1)は、上述のように、無機繊維と、熱可塑性樹脂繊維とを用いて製造することができるが、熱可塑性樹脂繊維に換えて熱可塑性樹脂粒子又は熱可塑性樹脂粉末を用いることもできる。更に、熱可塑性樹脂粒子と熱可塑性樹脂粉末とを併用してもよい。このように粒子及び/又は粉末を用いる場合、熱可塑性樹脂繊維を用いるときと同様に、無機繊維とともに、熱可塑性樹脂粒子及び/又は熱可塑性樹脂粉末をベルトコンベア上等に供給し、堆積させてシートを形成し、その後、同様にして基材を形成し、この基材を用いて半割体(1a)及び半割体(1b)を作製することができる。   Further, as described above, the intake duct (1) can be manufactured using inorganic fibers and thermoplastic resin fibers, but instead of thermoplastic resin fibers, thermoplastic resin particles or thermoplastic resin powders are used. It can also be used. Further, the thermoplastic resin particles and the thermoplastic resin powder may be used in combination. When using particles and / or powder in this way, the thermoplastic resin particles and / or thermoplastic resin powder are supplied onto the belt conveyor and deposited together with the inorganic fibers in the same manner as when using the thermoplastic resin fibers. A sheet | seat is formed, a base material is formed similarly after that, A half body (1a) and a half body (1b) can be produced using this base material.

以下、実施例により本発明を具体的に説明する。
(1)吸気ダクトの構成
実施例1
長さ600mm、外径70mm、内径55mm、成形壁厚7.5mmの筒状部1、及び筒状部1の吸気側の端面から150mmの位置に、筒状部1から分岐して設けられた消音器部5を備える吸気ダクト1を製造した。
Hereinafter, the present invention will be described specifically by way of examples.
(1) Configuration of intake duct Example 1
The tubular portion 1 having a length of 600 mm, an outer diameter of 70 mm, an inner diameter of 55 mm, and a molding wall thickness of 7.5 mm, and a position branched from the tubular portion 1 at a position 150 mm from the end surface on the intake side of the tubular portion 1 are provided. An intake duct 1 having a silencer portion 5 was manufactured.

消音器部5が設けられた筒状部1の吸気側の端面から150mmの位置とは、筒状部1の吸気側の端面と、消音器部5の接続管部5cの径方向の中心点との間の寸法が150mmであることを意味する。また、消音器部5は、接続管部5cが円筒形であり、消音器本体5dは直方体であり、成形壁厚は1.5mmである。更に、筒状部3から分岐する箇所における開口部から消音器本体5dまでの接続管部5cの長さDは30mm、接続管部5cの径dは14mm、及び消音器本体5dの容積vは1000cmである。 The position of 150 mm from the end surface on the intake side of the tubular portion 1 provided with the silencer portion 5 is the center point in the radial direction of the end surface on the intake side of the tubular portion 1 and the connecting pipe portion 5c of the silencer portion 5. It means that the dimension between is 150 mm. Moreover, the silencer part 5 has the connecting pipe part 5c having a cylindrical shape, the silencer body 5d is a rectangular parallelepiped, and the molding wall thickness is 1.5 mm. Further, the length D of the connecting pipe portion 5c from the opening to the silencer body 5d at a location branched from the cylindrical portion 3 is 30 mm, the diameter d of the connecting pipe portion 5c is 14 mm, and the volume v of the silencer body 5d is 1000 cm 3 .

吸気ダクト1は以下のようにして製造した。
複数枚のガラス繊維シートを、隣接するシートに含有されるガラス繊維の配向方向が、互いに略直交するように重ね合わせ、厚さ約5mmの積層シートを形成した。それぞれのガラス繊維シートは、引き揃えられたガラス繊維の間に繊維径7.5〜8.2デシテックスのポリプロピレン繊維が挟持されるようにして形成した。積層シートの目付は820g/mであった。また、積層シートを100質量%としたときに、ガラス繊維は40質量%、樹脂繊維は60質量%であった。
The intake duct 1 was manufactured as follows.
A plurality of glass fiber sheets were overlapped so that the orientation directions of the glass fibers contained in adjacent sheets were substantially orthogonal to each other to form a laminated sheet having a thickness of about 5 mm. Each glass fiber sheet was formed such that polypropylene fibers having a fiber diameter of 7.5 to 8.2 dtex were sandwiched between the aligned glass fibers. The basis weight of the laminated sheet was 820 g / m 2 . When the laminated sheet was 100% by mass, the glass fiber was 40% by mass and the resin fiber was 60% by mass.

その後、積層シートを、加熱炉により温度210℃で2分30秒加熱し、次いで、圧縮成形機の平板な熱板間で、温度200℃、圧力14.8MPaで5秒間加熱、加圧し、含浸圧縮成形した。このようにして、ポリプロピレン繊維を溶融させ、次いで、熱板の設定温度を100〜130℃に低下させて1次冷却し、その後、熱板内に設けられた流路に18℃の冷水を流通させて2次冷却し、次いで、型開きをし、成形体に冷風を吹き付けて3次冷却し、成形体全体を十分に固化させ、この固化した樹脂によってガラス繊維間を結着させた厚さ5mmのシート状の基材を形成した。その後、この基材を、加熱炉により温度210℃で45〜60秒加熱し、次いで、半割体1a、1bの各々の半円筒部3a、3b、消音器用成形部5a、5b、及び半円筒部3a、3bと消音器用成形部5a、5bの各々に連接されるフランジ部fのそれぞれの形状に相当するキャビティを有する圧縮成形機の下型上に載置した。その後、上型を降下させて冷間圧縮し、フランジ部fを有する半割体1a、1b(図1参照)が連結された状態の成形体を一体に製造した。次いで、その成形体を半円筒部3aと3bとの中間部で切断し、半割体1a、1bを得た。その後、それぞれの半割体1a、1bの周縁をトムソン刃によりトリミングし、整形した。このようにして作製した半割体1a、1bにおいて、半円筒部3a、3bの各々の厚さ(筒状部3の厚さである。)は7.5mmであった。また、消音器用成形部5a、5bの各々の厚さ(消音器部5の厚さである。)は1.5mmであった。   Thereafter, the laminated sheet was heated in a heating furnace at a temperature of 210 ° C. for 2 minutes and 30 seconds, and then heated and pressurized at a temperature of 200 ° C. and a pressure of 14.8 MPa for 5 seconds between flat hot plates of a compression molding machine, impregnation. Compression molded. In this way, the polypropylene fiber is melted, and then the set temperature of the hot plate is lowered to 100 to 130 ° C. to perform primary cooling, and then 18 ° C. cold water is circulated through the flow path provided in the hot plate. Second cooling, then mold opening, blown cold air to the molded body and tertiary cooling, the entire molded body is sufficiently solidified, and the thickness of the glass fibers bonded by this solidified resin A 5 mm sheet-like substrate was formed. Thereafter, the substrate is heated in a heating furnace at a temperature of 210 ° C. for 45 to 60 seconds. It mounted on the lower mold | type of the compression molding machine which has a cavity equivalent to each shape of the flange part f connected with each of the parts 3a and 3b and the muffler molding parts 5a and 5b. Thereafter, the upper mold was lowered and cold-compressed to integrally manufacture a molded body in a state where the halves 1a and 1b (see FIG. 1) having the flange portion f were connected. Subsequently, the molded body was cut at an intermediate portion between the semicylindrical portions 3a and 3b to obtain half-split bodies 1a and 1b. Then, the periphery of each halved body 1a, 1b was trimmed with a Thomson blade and shaped. In the halves 1a and 1b thus manufactured, the thickness of each of the semi-cylindrical portions 3a and 3b (the thickness of the cylindrical portion 3) was 7.5 mm. The thickness of each of the muffler molding parts 5a and 5b (the thickness of the muffler part 5) was 1.5 mm.

次いで、半割体1aの半円筒部3aが有するフランジ部fと、半割体1bの半円筒部3bが有するフランジ部fとを当接させた。また、半割体1aの消音器用成形部5aが有するフランジ部fと、半割体1bの消音器用成形部5bが有するフランジ部fとを当接させた。その後、当接された各々のフランジ部fを超音波溶着法により溶着させ、吸気ダクト1を製造した(図2参照)。   Then, the flange part f which the half cylinder part 3a of the half body 1a has, and the flange part f which the half cylinder part 3b of the half body 1b contact | abutted were made to contact | abut. Moreover, the flange part f which the molded part 5a for silencers of the half body 1a has, and the flange part f which the molded part 5b for silencers of the half body 1b contact | abutted were made to contact | abut. Thereafter, the flange portions f that were in contact with each other were welded by an ultrasonic welding method to manufacture the intake duct 1 (see FIG. 2).

上述のようにして製造した筒状部3及び消音器部5のそれぞれから通気性評価用の試験片を切り出した。その後、これらの試験片を用いて、JIS L1096 A法(フラジール形法)により通気性を評価した。その結果、筒状部3の通気性は3.0cc/cm/secであった。一方、消音器部5の通気性は0.01cc/cm/secであった。このように、筒状部3は広帯域の定在波を減衰させるのに適した通気性を有していた。また、消音器部5の通気性は、消音器として有効に機能する極めて低い値であった。 A test piece for air permeability evaluation was cut out from each of the cylindrical part 3 and the silencer part 5 manufactured as described above. Then, air permeability was evaluated by JIS L1096 A method (fragile type method) using these test pieces. As a result, the air permeability of the cylindrical portion 3 was 3.0 cc / cm 2 / sec. On the other hand, the air permeability of the silencer part 5 was 0.01 cc / cm 2 / sec. Thus, the cylindrical part 3 had air permeability suitable for attenuating a broadband standing wave. Further, the air permeability of the silencer unit 5 was an extremely low value that effectively functions as a silencer.

比較例1
実施例1と同形状、同寸法のアクリル樹脂製の筒状部11からなる吸気ダクト9を用いた(図5参照)。この吸気ダクト9には消音器部は設けなかった。実施例1と同様にして測定した筒状部11の通気性は測定下限値未満であった[表1には(0cc/cm/sec)と表記する]。
Comparative Example 1
An intake duct 9 composed of a cylindrical portion 11 made of acrylic resin having the same shape and the same dimensions as in Example 1 was used (see FIG. 5). The intake duct 9 was not provided with a silencer. The air permeability of the cylindrical part 11 measured in the same manner as in Example 1 was less than the measurement lower limit [in Table 1, expressed as (0 cc / cm 2 / sec)].

比較例2
実施例1と同形状、同寸法のアクリル樹脂製の筒状部11及び消音器部13を備える吸気ダクト15を用いた(図6参照)。実施例1と同様にして測定した通気性は、筒状部11、消音器部13ともに測定下限値未満であった[表1には(0cc/cm/sec)と表記する]。
Comparative Example 2
An intake duct 15 having an acrylic resin cylindrical portion 11 and a silencer portion 13 having the same shape and the same dimensions as in Example 1 was used (see FIG. 6). The air permeability measured in the same manner as in Example 1 was less than the measurement lower limit for both the cylindrical part 11 and the silencer part 13 [indicated as (0 cc / cm 2 / sec) in Table 1].

比較例3
実施例1と同材質、同形状、同寸法の繊維製の筒状部3からなる吸気ダクト17を、消音器用成形部を有さない他は、実施例1と同様の2個の半割体を用いて、実施例1と同様にして製造した(図7参照)。実施例1と同様にして測定した筒状部3の通気性は3.0cc/cm/secであった。
Comparative Example 3
Two half halves similar to those of the first embodiment except that the air intake duct 17 composed of the fiber-shaped cylindrical portion 3 having the same material, the same shape and the same dimensions as those of the first embodiment is not provided. Was used in the same manner as in Example 1 (see FIG. 7). The air permeability of the cylindrical part 3 measured in the same manner as in Example 1 was 3.0 cc / cm 2 / sec.

比較例4
実施例1と同材質、同形状、同寸法の繊維製の筒状部を、消音器用成形部を有さない他は、実施例1と同様の2個の半割体を用いて、実施例1と同様にして作製した。その後、実施例1と同形状、同寸法のアクリル樹脂製の消音器部を、筒状部の同様の位置に設け、吸気ダクトを製造した。実施例1と同様にして測定した筒状部の通気性は3.0cc/cm/secであった。また、消音器部の通気性は測定下限値未満であった[表1には(0cc/cm/sec)と表記する]。
Comparative Example 4
Using the same halves as in Example 1, except that the cylindrical part made of fiber having the same material, shape and dimensions as in Example 1 does not have a muffler molding part. 1 was prepared. Then, the silencer part made from the acrylic resin of the same shape and the same dimension as Example 1 was provided in the same position of the cylindrical part, and the air intake duct was manufactured. The air permeability of the cylindrical portion measured in the same manner as in Example 1 was 3.0 cc / cm 2 / sec. Further, the air permeability of the silencer portion was less than the measurement lower limit [indicated as (0 cc / cm 2 / sec) in Table 1].

比較例5
実施例1と同材質、同形状、同寸法の繊維製の筒状部及び消音器部からなる吸気ダクトを、実施例1と同様の2個の半割体を用いて、実施例1と同様にして製造した。但し、消音器部の成形壁を厚くし、通気性を有するようにした。実施例1と同様にして測定した筒状部の通気性は3.0cc/cm/secであった。また、消音器部の通気性は40.0cc/cm/secであった。
以上、実施例1及び比較例1〜5の筒状部と消音器部の各々の通気性を表1に記載する。また、下記(2)吸音性の評価における減音量を表1に併せて記載する。
Comparative Example 5
The intake duct consisting of a cylindrical part made of fiber of the same material, the same shape and the same dimensions as in Example 1 and a silencer part is used in the same manner as in Example 1 using the same two halves as in Example 1. Manufactured. However, the molding wall of the silencer part was thickened to have air permeability. The air permeability of the cylindrical portion measured in the same manner as in Example 1 was 3.0 cc / cm 2 / sec. Moreover, the air permeability of the silencer part was 40.0 cc / cm 2 / sec.
The air permeability of each of the cylindrical portion and the silencer portion of Example 1 and Comparative Examples 1 to 5 is described in Table 1 above. In addition, the volume reduction in the following (2) evaluation of sound absorption is listed in Table 1.

Figure 2015034508
Figure 2015034508

(2)吸音性の評価
実施例1及び比較例1〜5の各々の吸気ダクトの筒状部の一端部にスピーカを接続した試験機を作製した。その後、この試験機を、無響室に載置し、FFTアナライザに接続されたマイク(マイク1)を、筒状部の他端部の開口部の直前に固定した。また、他のマイク(マイク2)を各々の吸気ダクトの筒状部の他端部の近傍に配置した。この状態で、スピーカからホワイトノイズを発振し、そのA特性音圧レベルを測定した(スピーカ加振法参照)。図8は、筒状部の他端部の開口部の直前における測定結果を、周波数を横軸とし、測定されたA特性音圧レベルのスピーカー音圧を基準とした値に基づく減音量[dB](マイク1における音圧−マイク2における音圧)を縦軸として、それらの相関を表すグラフである。
(2) Evaluation of sound absorption property A tester in which a speaker was connected to one end of the cylindrical portion of each intake duct of Example 1 and Comparative Examples 1 to 5 was produced. Thereafter, this tester was placed in an anechoic chamber, and a microphone (microphone 1) connected to the FFT analyzer was fixed immediately before the opening at the other end of the cylindrical portion. Further, another microphone (microphone 2) was disposed in the vicinity of the other end of the cylindrical portion of each intake duct. In this state, white noise was oscillated from the speaker, and its A-characteristic sound pressure level was measured (see speaker excitation method). FIG. 8 shows the result of measurement immediately before the opening at the other end of the cylindrical portion, with the frequency as the horizontal axis and the volume reduction based on the value of the measured A characteristic sound pressure level based on the speaker sound pressure [dB ] (Sound pressure in microphone 1−Sound pressure in microphone 2) is a graph representing their correlation with the vertical axis.

(3)吸気ダクトの作用
表1によれば、実施例1の吸気ダクト1では、繊維製の筒状部3の通気性は3.0cc/cm/secであり、適度な範囲内である。また、消音器部5の通気性は0.01cc/cm/secであり、実質的に通気性を有さない。その結果、表1及び図8によれば、実施例1の吸気ダクト1では、吸気時の耳障りな騒音である周波数190Hzにおける減音量が57.789dBであり、耳障りな騒音が十分に低減されていることが分かる。更に、周波数525Hzにおける減音量も32.386dBであり、広帯域における定在波による騒音も十分に低減されていることが分かる(図3の定在波7が減衰されている減衰波7a参照)。
(3) Action of intake duct According to Table 1, in the intake duct 1 of Example 1, the air permeability of the tubular portion 3 made of fiber is 3.0 cc / cm 2 / sec, which is within an appropriate range. . Moreover, the air permeability of the silencer part 5 is 0.01 cc / cm 2 / sec, and has substantially no air permeability. As a result, according to Table 1 and FIG. 8, in the intake duct 1 of Example 1, the volume reduction at a frequency of 190 Hz, which is annoying noise during inhalation, is 57.789 dB, and the annoying noise is sufficiently reduced. I understand that. Furthermore, the volume reduction at a frequency of 525 Hz is 32.386 dB, and it can be seen that the noise due to the standing wave in a wide band is sufficiently reduced (see the attenuation wave 7a in which the standing wave 7 in FIG. 3 is attenuated).

一方、樹脂製の筒状部11のみを備える比較例1の吸気ダクト9(図5参照)では、周波数190Hzにおける減音量は実施例1と比べて少なく、周波数525Hzでは減音量は極めて少ない。このように、広帯域における定在波の減衰は殆どなされないことが分かる(定在波7が全く減衰されていない図5参照)。また、樹脂製の筒状部11と樹脂製の消音器部13とを備える比較例2の吸気ダクト15(図6参照)では、消音器部13により周波数190Hzでの減音は十分になされるものの、広帯域における定在波の減衰は実施例1と比べて十分ではないことが分かる(図6の定在波7が減衰されている減衰波7a参照)。   On the other hand, in the intake duct 9 (see FIG. 5) of the comparative example 1 having only the resin-made cylindrical portion 11, the volume reduction at a frequency of 190 Hz is smaller than that of the first embodiment, and the volume reduction is extremely small at a frequency of 525 Hz. Thus, it can be seen that the standing wave in the wide band is hardly attenuated (see FIG. 5 where the standing wave 7 is not attenuated at all). Further, in the intake duct 15 (see FIG. 6) of the comparative example 2 including the resin-made cylindrical portion 11 and the resin-made silencer portion 13, sound reduction at a frequency of 190 Hz is sufficiently performed by the silencer portion 13. However, it can be seen that the attenuation of the standing wave in a wide band is not sufficient as compared with the first embodiment (see the attenuation wave 7a in which the standing wave 7 in FIG. 6 is attenuated).

更に、繊維製の筒状部3のみを備える比較例3の吸気ダクト17では、広帯域における定在波の減衰はなされるものの(図7の定在波7が減衰されている減衰波7a参照)、消音器部がないため、周波数190Hzにおける減音は不十分である。また、繊維製の筒状部と樹脂製の消音器部とを備える比較例4では、減音効果は実施例と同等であるが、製造工程が複雑であり、コスト面でも極めて不利である。更に、繊維製の筒状部と消音器部とを備えるものの、消音器部の通気性が40.0cc/cm/secと高い比較例5では、広帯域における定在波の減衰は十分になされているものの、周波数190Hzでの減音量は少なく、劣っていることが分かる。 Furthermore, in the intake duct 17 of Comparative Example 3 including only the fiber-made cylindrical portion 3, although the standing wave is attenuated in a wide band (see the attenuation wave 7a in which the standing wave 7 is attenuated in FIG. 7), Since there is no muffler part, sound reduction at a frequency of 190 Hz is insufficient. Moreover, in the comparative example 4 provided with the fiber-shaped cylindrical part and the resin-made silencer part, the sound reduction effect is equivalent to the example, but the manufacturing process is complicated and it is extremely disadvantageous in terms of cost. Furthermore, although the fiber-shaped cylindrical portion and the silencer portion are provided, in the comparative example 5 in which the air permeability of the silencer portion is as high as 40.0 cc / cm 2 / sec, the standing wave is sufficiently attenuated in a wide band. However, it can be seen that the volume reduction at 190 Hz is small and inferior.

尚、本発明においては、上述の具体的な実施例に限られず、目的、用途等に応じて本発明の範囲内で種々変更した実施例とすることができる。例えば、実施例では、消音器部5の成形壁を十分に薄くし、即ち、より圧縮し、成形することで、通気性を0.01cc/cm/secと極めて低くしたが、0.5cc/cm/sec以下であれば、消音器部5における通気性が少々高くても、吸気時の耳障りな騒音である周波数190Hzにおいて十分に減音することができる。 It should be noted that the present invention is not limited to the above-described specific examples, and can be variously modified examples within the scope of the present invention according to the purpose, application and the like. For example, in the embodiment, by making the molding wall of the silencer part 5 sufficiently thin, that is, by compressing and molding, the air permeability is extremely low as 0.01 cc / cm 2 / sec. If it is / cm 2 / sec or less, even if the air permeability in the silencer unit 5 is a little high, the sound can be sufficiently reduced at a frequency of 190 Hz, which is an annoying noise during intake.

前述の例は単に説明を目的とするものでしかなく、本発明を限定するものと解釈されるものではない。本発明を典型的な実施形態の例を挙げて説明したが、本発明の記述及び図示において使用された文言は、限定的な文言ではなく説明的及び例示的なものであると理解される。ここで詳述したように、その形態において本発明の範囲又は精神から逸脱することなく、添付の特許請求の範囲内で変更が可能である。ここでは、本発明の詳述に特定の構造、材料及び実施例を参照したが、本発明をここに掲げる開示事項に限定することを意図するものではなく、むしろ、本発明は添付の特許請求の範囲内における、機能的に同等の構造、方法、使用の全てに及ぶものとする。   The foregoing examples are for illustrative purposes only and are not to be construed as limiting the invention. Although the invention has been described with reference to exemplary embodiments, it is to be understood that the language used in the description and illustration of the invention is illustrative and exemplary rather than limiting. As detailed herein, changes may be made in its form within the scope of the appended claims without departing from the scope or spirit of the invention. Although specific structures, materials and examples have been referred to in the detailed description of the invention herein, it is not intended to limit the invention to the disclosures presented herein, but rather, the invention is claimed. It covers all functionally equivalent structures, methods and uses within the scope of

本発明は、車両のエアクリーナーに空気を供給するための吸気ダクトの技術分野において利用することができる。   The present invention can be used in the technical field of an intake duct for supplying air to a vehicle air cleaner.

1;吸気ダクト、1a、1b;半割体、3;筒状部、3a、3b;半円筒部、5;消音器部、5a、5b;消音器用成形部、5c;接続管部、5d;消音器本体、a;第1高通気部、c;第2高通気部。   1; intake duct, 1a, 1b; halved body, 3; cylindrical portion, 3a, 3b; semi-cylindrical portion, 5; silencer portion, 5a, 5b; muffler molding portion, 5c; connection pipe portion, 5d; Silencer body, a: first high ventilation part, c: second high ventilation part.

Claims (3)

繊維成形体からなる2つの半割体が合わされてなる吸気ダクトであって、
筒状部と、前記筒状部から分岐して設けられた消音器部とを備え、
前記筒状部の成形壁のJIS L1096 A法により測定した通気性が1.0〜5.0cc/cm/secであり、
前記消音器部の成形壁のJIS L1096 A法により測定した通気性が0.5cc/cm/sec以下であることを特徴とする吸気ダクト。
An air intake duct formed by combining two halves made of a fiber molded body,
A tubular portion, and a silencer portion provided by branching from the tubular portion,
The air permeability measured by the JIS L1096 A method of the molding wall of the cylindrical part is 1.0 to 5.0 cc / cm 2 / sec,
An air intake duct characterized in that the air permeability measured by the JIS L1096 A method of the molding wall of the silencer part is 0.5 cc / cm 2 / sec or less.
前記筒状部の全長をLとしたときに、前記筒状部の空気が流入する側の一端から1/4Lの位置に、前記通気性が10cc/cm/sec以上の第1高通気部が設けられている請求項1に記載の吸気ダクト。 When the overall length of the tubular part is L, the first highly ventilated part having the air permeability of 10 cc / cm 2 / sec or more at a position 1/4 L from one end of the tubular part on the air inflow side. The air intake duct according to claim 1, wherein: 前記筒状部の全長をLとしたときに、前記筒状部の空気が流入する側の一端から3/4Lの位置に、前記通気性が10cc/cm/sec以上の第2高通気部が設けられている請求項1又は2に記載の吸気ダクト。 When the overall length of the tubular portion is L, the second highly ventilated portion having the air permeability of 10 cc / cm 2 / sec or more at a position 3 / 4L from one end of the tubular portion on the air inflow side. The air intake duct according to claim 1, wherein the air intake duct is provided.
JP2013165548A 2013-08-08 2013-08-08 Air intake duct Expired - Fee Related JP6044785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165548A JP6044785B2 (en) 2013-08-08 2013-08-08 Air intake duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165548A JP6044785B2 (en) 2013-08-08 2013-08-08 Air intake duct

Publications (2)

Publication Number Publication Date
JP2015034508A true JP2015034508A (en) 2015-02-19
JP6044785B2 JP6044785B2 (en) 2016-12-14

Family

ID=52543214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165548A Expired - Fee Related JP6044785B2 (en) 2013-08-08 2013-08-08 Air intake duct

Country Status (1)

Country Link
JP (1) JP6044785B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011849A (en) * 2019-07-05 2021-02-04 トヨタ紡織株式会社 Inlet duct of internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190158A (en) * 1985-02-18 1986-08-23 Honda Motor Co Ltd Intake system silencer for internal-combustion engine
JPH08200170A (en) * 1995-01-24 1996-08-06 Nissan Motor Co Ltd Sound absorbing material for internal combustion engine
JPH11343939A (en) * 1998-06-02 1999-12-14 Toyoda Gosei Co Ltd Intake duct
JP2001336457A (en) * 2000-05-26 2001-12-07 Toyoda Gosei Co Ltd Air intake duct
JP2002106434A (en) * 2000-09-28 2002-04-10 Tennex Corp Intake resonator
US6553953B1 (en) * 1998-04-09 2003-04-29 Toyoda Gosei Co., Ltd. Suction duct
JP2012193691A (en) * 2011-03-17 2012-10-11 Sekiso:Kk Intake duct

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190158A (en) * 1985-02-18 1986-08-23 Honda Motor Co Ltd Intake system silencer for internal-combustion engine
JPH08200170A (en) * 1995-01-24 1996-08-06 Nissan Motor Co Ltd Sound absorbing material for internal combustion engine
US6553953B1 (en) * 1998-04-09 2003-04-29 Toyoda Gosei Co., Ltd. Suction duct
JPH11343939A (en) * 1998-06-02 1999-12-14 Toyoda Gosei Co Ltd Intake duct
JP2001336457A (en) * 2000-05-26 2001-12-07 Toyoda Gosei Co Ltd Air intake duct
JP2002106434A (en) * 2000-09-28 2002-04-10 Tennex Corp Intake resonator
JP2012193691A (en) * 2011-03-17 2012-10-11 Sekiso:Kk Intake duct

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011849A (en) * 2019-07-05 2021-02-04 トヨタ紡織株式会社 Inlet duct of internal combustion engine
JP7196791B2 (en) 2019-07-05 2022-12-27 トヨタ紡織株式会社 Inlet duct of internal combustion engine

Also Published As

Publication number Publication date
JP6044785B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP4767209B2 (en) Soundproof cover
KR101114805B1 (en) Sound absorbing material
AU2003231005B2 (en) Gradient density padding material and method of making same
KR102070712B1 (en) Multilayered perforated sound absorber
JP5994713B2 (en) Vehicle parts
WO2012102345A1 (en) Sound-proof material and process for production thereof, sound-proof molding, and sound insulation method
EP2788557B1 (en) Improved thermal-acoustic sections for an aircraft
US9570061B2 (en) Acoustic material and wire harness with acoustic material
JP5844339B2 (en) Manufacturing method of soundproofing material for vehicle
KR101756303B1 (en) Undercover for automobile and Preparing Method thereof
US20210162702A1 (en) Nonwoven composite for air flow applications
JP5307676B2 (en) Duct and manufacturing method thereof
JP6044785B2 (en) Air intake duct
TWI755432B (en) Sound insulation structure, and method for producing sound insulation structure
WO2019004153A1 (en) Soundproof covering material and engine unit
JP2016034828A (en) Method for manufacturing vehicular soundproof material
JP7141086B2 (en) Heat- and sound-insulating materials for vehicles
WO2020116139A1 (en) Sound-proofing cover and engine unit
JP2010036675A (en) Sound insulating material having lightweight multilayer structure for vehicle
JP6754724B2 (en) Soundproof coating and engine unit
JP6655569B2 (en) Engine unit
US20220410525A1 (en) Layered sound-absorbing material
JP2005349998A (en) Skin material for automobile interior material
US20230267906A1 (en) Sound absorbing material and method of producing sound absorbing material
JP2003316366A (en) Acoustic material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R151 Written notification of patent or utility model registration

Ref document number: 6044785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees