JP2015033473A - Convergent ultrasonic wave forming method by frequency modulation - Google Patents

Convergent ultrasonic wave forming method by frequency modulation Download PDF

Info

Publication number
JP2015033473A
JP2015033473A JP2013165642A JP2013165642A JP2015033473A JP 2015033473 A JP2015033473 A JP 2015033473A JP 2013165642 A JP2013165642 A JP 2013165642A JP 2013165642 A JP2013165642 A JP 2013165642A JP 2015033473 A JP2015033473 A JP 2015033473A
Authority
JP
Japan
Prior art keywords
equation
wave
ultrasonic
drive signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013165642A
Other languages
Japanese (ja)
Other versions
JP2015033473A5 (en
Inventor
片倉 景義
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013165642A priority Critical patent/JP2015033473A/en
Publication of JP2015033473A publication Critical patent/JP2015033473A/en
Publication of JP2015033473A5 publication Critical patent/JP2015033473A5/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize setting of a focus at a close-range arbitrary position and realize ultrasonic wave measurement with higher azimuth resolution with a simple device configuration without using any acoustic lens at all in order to solve the problems of an enlarged device scale due to necessity of an acoustic lens for improving the close-range azimuth resolution and a difficulty in changing a focal distance.SOLUTION: An irradiation direction and a focal distance of a concave convergent wavefront to be formed are electronically controlled by using an FM signal to drive one-dimensionally-arrayed oscillators and then controlling a shape of the FM signal.

Description

本発明は、空間分解能の高い超音波送波方式に関する。   The present invention relates to an ultrasonic wave transmission system with high spatial resolution.

空間の三次元情報を、超音波により映像化する構成は、種々知られている。それらにおいて、最も有効な方法の一例として、分極軸を反転した分極反転型配列送波器(特許文献1参照)に一定周波数の信号を印加し、その信号周波数を変化させることにより照射方向を変化させることにより、三次元空間を超音波信号により掃引照射し、対象物からの反射信号を受信する事により三次元空間の情報を収集する構成(特許文献2参照)がある。   Various configurations for visualizing spatial three-dimensional information using ultrasound are known. Among them, as an example of the most effective method, a signal having a constant frequency is applied to a polarization inversion type array transmitter (see Patent Document 1) whose polarization axis is inverted, and the irradiation direction is changed by changing the signal frequency. By doing so, there is a configuration in which information of the three-dimensional space is collected by sweeping and irradiating the three-dimensional space with an ultrasonic signal and receiving a reflection signal from the object (see Patent Document 2).

しかし、主ビーム幅を狭くするため、配列素子数を増加し、配列全長を長くすると、近距離音場距離(D2/λ、D:口径、λ:波長)が急速に伸び、近距離音場内においては解像度が口径程度となることから、方位分解能が低下する。 However, if the number of array elements is increased and the total length of the array is increased to narrow the main beam width, the near field distance (D 2 / λ, D: aperture, λ: wavelength) increases rapidly, and the near field sound In the field, since the resolution is about the aperture, the azimuth resolution is lowered.

そこで、通常はこの対策のために、円筒型音響レンズを使用し、観測対象距離近傍の方位分解能を改善することとなる。   For this reason, a cylindrical acoustic lens is usually used to improve the azimuth resolution near the observation target distance.

特開昭47−26160号公報JP 47-26160 A 特公昭51−44773号公報Japanese Patent Publication No. 51-44773 特開平5−281211号公報Japanese Patent Laid-Open No. 5-281212

従来構成においては、近距離音場内において低下する解像度を改善するために、音響レンズを使用することから、装置が大規模となり、焦点距離の変更も困難となる課題を有する。   In the conventional configuration, since an acoustic lens is used to improve the resolution that decreases in the near field, the apparatus becomes large-scale and has a problem that it is difficult to change the focal length.

そこで本発明は、配列送波器の各振動子を、FM信号により共通駆動することにより、送波音響ビームを電子的に収束し、収束点までの距離である焦点距離も電子的に変更可能とする。   Therefore, in the present invention, the transducers of the array transmitter are driven in common by the FM signal, so that the transmitted acoustic beam can be converged electronically, and the focal length that is the distance to the convergence point can also be changed electronically. And

本発明は、音響レンズを使用することなく、近距離音場内の任意の位置における解像度を改善する利点を有す。   The present invention has the advantage of improving the resolution at any location in the near field without using an acoustic lens.

超音波装置において、分極反転型の配列送波器を、FM信号により共通駆動する構成とすることにより、最良の形態が実現される。   In the ultrasonic apparatus, the best mode is realized by adopting a configuration in which the polarization inversion type array transmitter is driven in common by the FM signal.

方位ごとに周波数の異なる超音波を送出する送波器の最も簡便な構成法は、特許文献1に示された、図1に示すように圧電素子1の分極軸2を交互に反転して配列し、その両面にグランド電極3とホット電極4からなる共通電極を形成した分極反転型配列送波器である。   The simplest configuration method of a transmitter for transmitting ultrasonic waves having different frequencies for each direction is shown in FIG. 1 by alternately inverting the polarization axis 2 of the piezoelectric element 1 as shown in FIG. In addition, the polarization inversion type array transmitter has a common electrode composed of the ground electrode 3 and the hot electrode 4 formed on both sides thereof.

この電極3,4間にバースト波駆動信号5を印加すると、その信号周波数に応じて異なる方向θ(θは超音波の放射面、即ち振動子アレー面の法線方向と超音波の放射方向とのなす角度)に超音波ビーム6を放射できるものである。   When a burst wave drive signal 5 is applied between the electrodes 3 and 4, the direction θ differs depending on the signal frequency (θ is the normal direction of the ultrasonic wave emitting surface, that is, the transducer array surface, and the ultrasonic wave emitting direction. The ultrasonic beam 6 can be emitted at an angle of

ここで、電極3,4間にバースト波駆動信号5を印加すると、図2a) b)の円弧に示す波面が形成される。   Here, when the burst wave drive signal 5 is applied between the electrodes 3 and 4, a wavefront shown in the arc of FIG. 2a) b) is formed.

ここで、分極軸が交互に反転しているため、同時刻の隣接する波面の位相が反転している(実線と破線で位相が180度異なることを示す)。   Here, since the polarization axes are alternately inverted, the phases of adjacent wavefronts at the same time are inverted (indicating that the phase is 180 degrees different between the solid line and the broken line).

このように、波面の位相が反転しているため、法線方向では放射音波が相殺され、超音波ビームの放射は超音波の放射面の法線方向に対し傾斜した方向6のみになされることとなる。   Thus, since the phase of the wave front is reversed, the radiated sound wave is canceled in the normal direction, and the ultrasonic beam is emitted only in the direction 6 inclined with respect to the normal direction of the ultrasonic wave emission surface. It becomes.

図2において、周波数が高い場合には波長が短い事から、図2a)に示すように正面近傍方向へ、一方、周波数が低い場合には波長が長い事から、図2b)に示すように、より傾斜した方向へ波面が形成される。   In FIG. 2, when the frequency is high, the wavelength is short, so as shown in FIG. 2a), in the direction near the front, while when the frequency is low, the wavelength is long, so as shown in FIG. 2b) A wavefront is formed in a more inclined direction.

この放射角度θは、振動子ピッチdと駆動周波数f、その波長λとして、数1で与えられる。   This radiation angle θ is given by Equation 1 as the vibrator pitch d, drive frequency f, and wavelength λ thereof.

(数1)
θ=sin-1(λ/(2d))
(Equation 1)
θ = sin −1 (λ / (2d))

また、この時の遠距離音場指向特性R(θ)は、数2で与えられる。   Further, the long-distance sound field directivity characteristic R (θ) at this time is given by Equation 2.

(数2)
R(θ)=sin(0.5n(φ−γ))/sin(0.5(φ−γ))
φ=π、γ=2πdsin(θ)/λ
(Equation 2)
R (θ) = sin (0.5n (φ−γ)) / sin (0.5 (φ−γ))
φ = π, γ = 2πdsin (θ) / λ

本構成は、これらの関係を利用して超音波ビームを走査するものであり、1本の信号線で周波数掃引することにより超音波ビームをセクタ走査できる。 In this configuration, the ultrasonic beam is scanned using these relationships, and the ultrasonic beam can be sector-scanned by frequency sweeping with one signal line.

以下に、この分極反転型配列送波器をFM信号により駆動することによる電子収束の概要を説明する。 The outline of electron convergence by driving this polarization inversion type array transmitter with the FM signal will be described below.

分極反転型配列送波器を、一定周波数の正弦波により駆動すると、図2と同様に図3a)に示す平面波を送出する。 When the polarization inversion type array transmitter is driven by a sine wave having a constant frequency, the plane wave shown in FIG.

ここで、分極反転型配列送波器を、波長(あるいは周波数)が時間とともに変化する信号により駆動すると、図3b)に示すように、形成される波面が湾曲し、凹面形状の波面を送出可能となる。 Here, when the polarization inversion type array transmitter is driven by a signal whose wavelength (or frequency) changes with time, as shown in FIG. 3b), the wavefront formed is curved and a concave wavefront can be transmitted. It becomes.

このように形成される凹面形状の波面の、焦点形成動作と駆動波形との関係を図4により解析する。   The relationship between the focus forming operation and the drive waveform of the concave wavefront formed in this way is analyzed with reference to FIG.

εを配列素子の間隔とし、第1素子からの方位がθであり、距離がRである点をPとすると、第n素子から点Pまでの距離Dは数3となる The distance D n from the n-th element to the point P is expressed by Equation 3 where ε is the interval between the array elements, the direction from the first element is θ, and the point where the distance is R is P.

(数3)
Dn=[(Rcosθ)2+{Rsinθ+(n-1)ε}2]1/2
=[R2+{(n-1)ε}2+2R(n-1)εsinθ]1/2
=R[1+{(n-1)ε/R}2+2(n-1)εsinθ/R]1/2
(Equation 3)
D n = [(Rcosθ) 2 + {Rsinθ + (n-1) ε} 2 ] 1/2
= [R 2 + {(n-1) ε} 2 + 2R (n-1) εsinθ] 1/2
= R [1 + {(n-1) ε / R} 2 +2 (n-1) εsinθ / R] 1/2

以下に、駆動信号波長と照射方位θおよび、焦点距離Rとの関係を数式により説明する   Hereinafter, the relationship between the drive signal wavelength, the irradiation direction θ, and the focal length R will be described using mathematical formulas.

ここで、分極反転型配列振動子に印加する、時間とともに波長が変化する駆動波形の、m番目の半波長値をλh mとする。 Here, the m-th half-wavelength value of the drive waveform whose wavelength changes with time, which is applied to the domain-inverted array resonator, is λ h m .

この半波長値λh mが、数4の関係を満たすとすると、各素子からの音波は、点Pを中心とする半径Rの円周LR上にて全て同位相となる。 If this half-wavelength value λ h m satisfies the relationship of Equation 4, the sound waves from each element are all in phase on the circumference L R of radius R centered on point P.

(数4)
N-1
Dn-Σ λh m=R・・・・(一定)
m=N-n+1
(Equation 4)
N-1
D n -Σ λ h m = R ・ ・ ・ ・ (Constant)
m = N-n + 1

従って、この円周LR上に形成される凹面形状をした波面は、媒体中を伝搬し、点Pに収束することとなる。 Accordingly, the concave wavefront formed on the circumference L R propagates through the medium and converges to the point P.

ここで、Nは配列素子の総数である。   Here, N is the total number of array elements.

この関係から半波長値λh mは数5として与えられる。 From this relationship, the half-wavelength value λ h m is given as Equation 5.

(数5)
N-1
Σλh m=Dn-R・・・・(n:1,---,N)
m=N-n+1
(Equation 5)
N-1
Σλ h m = D n -R ・ ・ ・ ・ (n: 1, ---, N)
m = N-n + 1

ここで、nをn+1とすることにより数6となる。   Here, Equation 6 is obtained by setting n to n + 1.

(数6)
N-1
Σλh m=Dn+1-R・・・・(n:0,---,N-1)
m=N-n
(Equation 6)
N-1
Σλ h m = D n + 1 -R ・ ・ ・ ・ (n: 0, ---, N-1)
m = Nn

この両者の差を求めることにより、半波長値λh mは数7となる。 By calculating the difference between the two, the half-wavelength value λ h m is given by Equation 7.

(数7)
λh N-n=Dn+1-Dn・・・・(n:1,---,N-1)
(Equation 7)
λ h Nn = D n + 1 -D n・ ・ ・ ・ (n: 1, ---, N-1)

ここで、k=N-nとして表すことにより数8となる。   Here, Expression 8 is obtained by expressing as k = N−n.

(数8)
λh = DN-k+1- DN-k
=R[1+{(N-k)ε/R}2+2(N-k)εsinθ/R]1/2
-R[1+{(N-k-1)ε/R}2+2(N-k-1)εsinθ/R]1/2・・・・(k:1,---,N-1)
(Equation 8)
λ h k = D N-k + 1 -D Nk
= R [1 + {(Nk) ε / R} 2 +2 (Nk) εsinθ / R] 1/2
-R [1 + {(Nk-1) ε / R} 2 +2 (Nk-1) εsinθ / R] 1/2・ ・ ・ ・ (k: 1, ---, N-1)

ここで、比較的焦点距離が長い、遠距離における収束の場合につき、λh の具体的を説明する。 Here, a specific example of λ h k will be described in the case of convergence at a long distance with a relatively long focal length.

ここで、比較的焦点距離が長いとして、マクローリン展開の第1項のみに着目すると、Dnは数9となる。 Here, assuming that the focal length is relatively long, focusing on only the first term of the macrolin expansion, D n is given by Equation 9.

(数9)
Dn≒R+{(n-1)ε}2/(2R)+(n-1)εsinθ
(Equation 9)
D n ≒ R + {(n-1) ε} 2 / (2R) + (n-1) εsinθ

従って、n+1に関しては数10となる。   Therefore, for n + 1, Equation 10 is obtained.

(数10)
Dn+1≒R+(nε)2/(2R)+nεsinθ
(Equation 10)
D n + 1 ≒ R + (nε) 2 / (2R) + nεsinθ

これら両者の差から、半波長値λh mは数11となる。 From the difference between the two, the half-wavelength value λ h m is given by Equation 11.

(数11)
λh N-n=Dn+1-Dn≒(2n-1)ε2/(2R)+εsinθ・・・(n:1,---,N-1)
(Equation 11)
λ h Nn = D n + 1 -D n ≒ (2n-1) ε 2 / (2R) + εsinθ ・ ・ ・ (n: 1, ---, N-1)

ここで、N-nをkと表記すると、N-n=kから半波長値λh mは数12となる。 Here, when Nn is expressed as k, the half-wavelength value λ h m is expressed by Equation 12 from Nn = k.

(数12)
λh k=DN-k+1-DN-k≒{2(N-k)-1}ε2/(2R)+εsinθ
=(N-1/2)ε2/R+εsinθ-kε2/R・・・・・・(k:1,---,N-1)
(Equation 12)
λ h k = D N-k + 1 -D Nk ≒ {2 (Nk) -1} ε 2 / (2R) + εsinθ
= (N-1 / 2) ε 2 / R + εsinθ-kε 2 / R ・ ・ ・ ・ ・ ・ (k: 1, ---, N-1)

この関係から、比較的遠距離に収束させる場合においては、駆動信号の半波長値λh kは、kの値に従い、順次一定量(ε2/R)だけ短縮する波形となる。 From this relationship, in the case of convergence at a relatively long distance, the half-wavelength value λ h k of the drive signal has a waveform that is sequentially shortened by a certain amount (ε 2 / R) according to the value of k.

比較的遠距離に収束させる場合においては、θ方向における距離Rの点に収束させるための、駆動信号の半波長値λh
mは、数12により与えられ、kに従い順次一定量(ε2/R)だけ短縮する波形となる。
In the case of convergence to a relatively long distance, the half-wave value λ h of the drive signal for converging to a point of distance R in the θ direction
m is given by Equation 12, and has a waveform that is sequentially shortened by a certain amount (ε 2 / R) according to k.

このように、駆動信号の半波長値λh kが、kの値に従い、順次一定量(ε2/R)だけ短縮する波形は、周波数が直線的に上昇する波形である線形FM波の特性に類似することから、駆動信号を線形FM波とする構成が想定される。 As described above, the waveform in which the half wavelength value λ h k of the drive signal is sequentially shortened by a certain amount (ε 2 / R) according to the value of k is a characteristic of a linear FM wave whose frequency increases linearly. Therefore, a configuration in which the drive signal is a linear FM wave is assumed.

以下に、線形FM波の形状と、形成されるビームの照射角θ及び、焦点距離Rとの関係を解析する。   Hereinafter, the relationship between the shape of the linear FM wave, the irradiation angle θ of the formed beam, and the focal length R will be analyzed.

初期角周波数ω0、位相角ψ(t)、角周波数ω(t)とし、周波数上昇率2αなる線形FM波y(t)を数13とする。 An initial angular frequency ω 0 , a phase angle ψ (t), an angular frequency ω (t), and a linear FM wave y (t) having a frequency increase rate 2α is expressed by Equation 13.

(数13)
y(t)=sinψ(t)
dψ(t)/dt=ω(t)=2πf(t)
ω(t)=ω0+2αt
(Equation 13)
y (t) = sinψ (t)
dψ (t) / dt = ω (t) = 2πf (t)
ω (t) = ω 0 + 2αt

この関係から、位相角ψ(t)は数14となる。 From this relationship, the phase angle ψ (t) is expressed by Equation 14.

(数14)
t
ψ(t)=∫ω(t)dt=ω0t+αt2
0
(Equation 14)
t
ψ (t) = ∫ω (t) dt = ω 0 t + αt 2
0

ここで、第n回目に半波長となる時刻th nにおいて、位相角ψ(t)はnπとなることから、半波長となる時刻th nは数14から数15の関係となる。 Here, at time t h n as a half wavelength to the n-th phase angle [psi (t) from becoming a n?, The time t h n as a half-wavelength is related several 14 number 15.

(数15)
ω0th n+αth n 2=nπ
(Equation 15)
ω 0 t h n + αt h n 2 = nπ

この、2次方程式の根を求めることにより半波長となる時刻th nは数16と求まる。 By obtaining the root of the quadratic equation, the time t h n at which the half wavelength is reached is obtained as in Expression 16.

(数16)
th n={(ω0 2+4αnπ)1/20}/(2α)={ω0(1+4αnπ/ω0 2)1/20}/(2α)
(Equation 16)
t h n = {(ω 0 2 + 4αnπ) 1/20 } / (2α) = {ω 0 (1 + 4αnπ / ω 0 2 ) 1/20 } / (2α)

この関係を、マクローリン展開することにより、半波長となる時刻th nは数17となる。 By expanding this relationship to Macrolin's expansion, the time t h n at which the half wavelength is reached is given by Equation 17.

(数17)
th n =[ω0{1+2αnπ/ω0 2-2(αnπ/ω0 2)2+---}-ω0]/(2α)
={2αnπ/ω0-2(αnπ)20 3+---}/(2α)
=nπ/ω0-α(nπ)20 3+---
(Equation 17)
t h n = [ω 0 {1 + 2αnπ / ω 0 2 -2 (αnπ / ω 0 2 ) 2 + ---}-ω 0 ] / (2α)
= {2αnπ / ω 0 -2 (αnπ) 2 / ω 0 3 + ---} / (2α)
= nπ / ω 0 -α (nπ) 2 / ω 0 3 + ---

ここで、αが比較的小さいとして、αの高次項を省略すると、半波長となる時刻th nは数18となる。 Here, assuming that α is relatively small and omitting the higher-order term of α, the time t h n at which the half wavelength is reached is expressed by Equation 18.

(数18)
th n≒nπ/ω0-α(nπ)20 3
(Equation 18)
t h n ≒ nπ / ω 0 -α (nπ) 2 / ω 0 3

この関係を、n+1に関して表すと数19となる。   When this relationship is expressed with respect to n + 1, Equation 19 is obtained.

(数19)
th n+1≒(n+1)π/ω0-α(n+1)2π20 3
(Equation 19)
t h n + 1 ≒ (n + 1) π / ω 0 -α (n + 1) 2 π 2 / ω 0 3

数18と数19の差により、線形FM波y(t)の半周期τh nは、数20となる。 Due to the difference between Equation 18 and Equation 19, the half period τ h n of the linear FM wave y (t) becomes Equation 20.

(数20)
τh n=th n+1-th n=π/ω0-α(n+1)2π20 3+αn2π20 3
=π/ω0-2αnπ20 3-απ20 3
=(π/ω0)(1-απ/ω0 2)-2αnπ20 3
(Equation 20)
τ h n = t h n + 1 -t h n = π / ω 0 -α (n + 1) 2 π 2 / ω 0 3 + αn 2 π 2 / ω 0 3
= π / ω 0 -2αnπ 2 / ω 0 3 -απ 2 / ω 0 3
= (π / ω 0 ) (1-απ / ω 0 2 ) -2αnπ 2 / ω 0 3

従って。線形FM波y(t)の半波長λL h nは、音速をcとして数21となる。 Therefore. The half wavelength λ L h n of the linear FM wave y (t) is given by Equation 21 with the sound speed as c.

(数21)
λL h n=cτh n=(cπ/ω0)(1-απ/ω0 2)-2cαnπ20 3
(Equation 21)
λ L h n = cτ h n = (cπ / ω 0 ) (1-απ / ω 0 2 ) -2cαnπ 2 / ω 0 3

一方、θ方向における、距離Rの点に収束させるための駆動信号の半波長値λh
mは数12であり、これを再度示すと数22となる。
On the other hand, the half wavelength value λ h of the drive signal for convergence to the point of the distance R in the θ direction
m is Equation 12, and when this is shown again, Equation 22 is obtained.

(数22)
λh k=(N-1/2)ε2/R+εsinθ-kε2/R
(Equation 22)
λ h k = (N-1 / 2) ε 2 / R + εsinθ-kε 2 / R

これら、数21と数22を比較することにより、第一の関係として数23が得られる。   By comparing these equations 21 and 22, equation 23 is obtained as the first relationship.

(数23)
2cαπ20 3 2/R
(Equation 23)
2cαπ 2 / ω 0 3 = ε 2 / R

また、同様に、第2の関係として数24が得られる。   Similarly, Expression 24 is obtained as the second relationship.

(数24)
(cπ/ω0)(1-απ/ω0 2)=(N-1/2)ε2/R+εsinθ
cπ/ω0-cαπ20 3=(N-1/2)ε2/R+εsinθ
(Equation 24)
(cπ / ω 0 ) (1-απ / ω 0 2 ) = (N-1 / 2) ε 2 / R + εsinθ
cπ / ω 0 -cαπ 2 / ω 0 3 = (N-1 / 2) ε 2 / R + εsinθ

これら、数23と数4から、αを消去すると数25となる。   From these equations 23 and 4, when α is deleted, equation 25 is obtained.

(数25)
cπ/ω02/(2R))=(N-1/2)ε2/R+εsinθ
cπ/(εω0)-ε/(2R))=(N-1/2)ε/R+sinθ
cπ/(εω0)=ε/(2R))+(N-1/2)ε/R+sinθ
cπ/(εω0)=Nε/R+sinθ
cπ/ω0=Nε2/R+εsinθ
ω0=cπ/(Nε2/R +εsinθ)・・・・・・・・[rad/s]
(Equation 25)
cπ / ω 02 / (2R)) = (N-1 / 2) ε 2 / R + εsinθ
cπ / (εω 0 ) -ε / (2R)) = (N-1 / 2) ε / R + sinθ
cπ / (εω 0 ) = ε / (2R)) + (N-1 / 2) ε / R + sinθ
cπ / (εω 0 ) = Nε / R + sinθ
cπ / ω 0 = Nε 2 / R + εsinθ
ω 0 = cπ / (Nε 2 / R + εsinθ) ・ ・ ・ ・ ・ ・ ・ ・ [rad / s]

この数25により、線形FM波の初期角周波数ω0と、照射方位θおよび焦点距離Rとの関係が定まる。 Equation 25 defines the relationship between the initial angular frequency ω 0 of the linear FM wave, the irradiation direction θ, and the focal length R.

数25において、c:音速、N:配列素子総数、ε:配列素子間隔は既知である。   In Equation 25, c: sound velocity, N: total number of array elements, and ε: array element spacing are known.

この関係を、線形FM波の初期周波数f0に対して表示すると、f00/(2π)から、数26となる。 When this relationship is expressed with respect to the initial frequency f 0 of the linear FM wave, Expression 26 is obtained from f 0 = ω 0 / (2π).

(数26)
f00/(2π)=c/{Nε2/(2R)+(ε/2)sinθ}・・・[s-1]
(Equation 26)
f 0 = ω 0 / (2π) = c / {Nε 2 / (2R) + (ε / 2) sinθ} ・ ・ ・ [s -1 ]

また、線形FM波の初期波長λ0に対して表示すると、λ0=c/f0から、数27となる。 Further, when expressed with respect to the initial wavelength λ 0 of the linear FM wave, Equation 27 is obtained from λ 0 = c / f 0 .

(数27)
λ0=c/f0= Nε2/(2R)+(ε/2)sinθ・・・[m]
(Equation 27)
λ 0 = c / f 0 = Nε 2 / (2R) + (ε / 2) sinθ ・ ・ ・ [m]

一方、周波数上昇率αは数23により与えられていて、これを再度示すと数28である。   On the other hand, the frequency increase rate α is given by Equation 23, which is again shown by Equation 28.

(数28)
α=ω0 3ε2/(2cRπ2)・・・・[rad/s2]
(Equation 28)
α = ω 0 3 ε 2 / (2cRπ 2 ) ・ ・ ・ ・ [rad / s 2 ]

このように、数25および数28は、既知の変数(c,N,ε)、目的とする照射方向θおよび焦点距離Rと、線形FM波の初期角周波数ω0および周波数上昇率αとの関係を明示的に与える。 Thus, Equations 25 and 28 represent the known variables (c, N, ε), the target irradiation direction θ and focal length R, and the linear FM wave initial angular frequency ω 0 and frequency increase rate α. Give relationships explicitly.

従って、希望する照射方向θと焦点距離Rを実現する、線形FM波の初期角周波数ω0と周波数上昇率(の半分)αを決定することができる。 Therefore, it is possible to determine the initial angular frequency ω 0 and the frequency increase rate (half) α of the linear FM wave that realize the desired irradiation direction θ and focal length R.

また、照射方向θと焦点距離Rの選択は自由であることから、線形FM波の条件ω0(あるいはf)とαとを変化させることにより、焦点距離Rおよび、照射方向θとを自由に変化させることが可能となる。 Further, since the irradiation direction θ and the focal length R can be freely selected, the focal length R and the irradiation direction θ can be freely changed by changing the linear FM wave condition ω 0 (or f 0 ) and α. It becomes possible to change to.

口径全体の空間分解能を実現するためには、全素子からの信号が寄与する必要があり、図4の動作原理から、図5に示すように素子総数程度(位相反転のため半分)の波数(図5では5周期)を有する長い駆動信号7が必要となり、波面形成方向8へ送出される超音波信号長が長くなる。   In order to realize the spatial resolution of the entire aperture, it is necessary that the signals from all the elements contribute. From the operation principle of FIG. 4, the wave number (half of the number of elements is half) as shown in FIG. In FIG. 5, a long drive signal 7 having 5 cycles) is required, and the length of the ultrasonic signal transmitted in the wavefront forming direction 8 becomes long.

図5に示す例においては、駆動信号の時間長Tに対して、波面形成方向へ送出される超音波信号長が2Tとなり、距離分解能が低下する。   In the example shown in FIG. 5, the ultrasonic signal length transmitted in the wavefront forming direction becomes 2T with respect to the time length T of the drive signal, and the distance resolution is lowered.

このため、距離方向の分解能が低下することから特許文献3による部分口径送波方式が使用される。 For this reason, since the resolution in the distance direction is lowered, the partial aperture transmission method according to Patent Document 3 is used.

図6に示す部分口径送波方式の構成例においては、送波器を分割(図6は3分割)し、部分口径9,10,11とし、時間差T‘(=nT0/2)を有する短い駆動信号12,13,14により送波を行うことにより、超音波ビーム15の方向に短い超音波信号を送波し、高い距離分解能を実現する。ここで、部分口径内の素子数をn、信号周期をT0とする。 In the configuration example of the partial aperture transmission system shown in FIG. 6, the transmitter is divided (FIG. 6 is divided into 3) to have partial apertures 9, 10, and 11, and the time difference T ′ (= n s T 0/2 ). By transmitting with the short drive signals 12, 13, and 14 having the above, a short ultrasonic signal is transmitted in the direction of the ultrasonic beam 15, and high distance resolution is realized. Here, the number of elements in the partial aperture is n s , and the signal period is T 0 .

この構成例によると、短い超音波信号(時間長=2T’)を送波することから、高い距離分解能が実現される。 According to this configuration example, since a short ultrasonic signal (time length = 2T ′) is transmitted, high distance resolution is realized.

部分口径送波方式において、駆動信号にFM波を使用する部分口径FM波駆動凹面収束構成につき図7により説明する。   A partial aperture FM wave drive concave surface converging configuration using an FM wave as a drive signal in the partial aperture transmission system will be described with reference to FIG.

図7に示す部分口径FM波駆動凹面収束構成例においても、送受波器を分割(図7は3分割)し、部分口径9,10,11とし(部分口径内素子数:n)、部分口径内素子数の半分の波数(n/2)を有する部分FM駆動信号16,17,18(時間長≒T”)により送波を行う。 Also in the partial aperture FM wave driven concave convergence configuration example shown in FIG. 7, the transmitter / receiver is divided (FIG. 7 is divided into 3) to have partial apertures 9, 10, and 11 (the number of elements in the partial aperture: n), and the partial aperture Wave transmission is performed by partial FM drive signals 16, 17, and 18 (time length≈T ″) having a wave number (n / 2) that is half the number of inner elements.

このようなFM駆動信号の使用により、超音波ビーム19は凹面収束し、近距離における方位分解能が向上する。 By using such an FM drive signal, the ultrasonic beam 19 converges on the concave surface, and the azimuth resolution at a short distance is improved.

また、この構成例によると、短い超音波信号(時間長≒2T”)を送波することから、高い距離分解能も同時に実現される。   In addition, according to this configuration example, since a short ultrasonic signal (time length≈2T ″) is transmitted, a high distance resolution can be realized at the same time.

本発明によると、音響レンズを全く使用することなく、近距離における任意の位置に焦点を設定可能であり、簡単な装置構成により方位分解能の高い超音波計測が可能となる。   According to the present invention, it is possible to set a focal point at an arbitrary position at a short distance without using any acoustic lens, and it is possible to perform ultrasonic measurement with high azimuth resolution with a simple apparatus configuration.

本発明装置における分極反転型配列送波器の構成を示した説明図である。It is explanatory drawing which showed the structure of the polarization inversion type | mold arrangement | sequence transmitter in this invention apparatus. 方位ごとに周波数の異なる超音波を送出する原理を示した説明図である。It is explanatory drawing which showed the principle which sends out the ultrasonic wave from which a frequency differs for every azimuth | direction. 周波数が変化する波形により凹面収束波面を形成する原理説明図である。It is principle explanatory drawing which forms a concave-converged wave front by the waveform from which a frequency changes. 送波器と焦点との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of a transmitter and a focus. 超音波信号長が長くなる理由を示した説明図である。It is explanatory drawing which showed the reason that ultrasonic signal length becomes long. 送受波器を分割する公知例構成を示した説明図である。It is explanatory drawing which showed the well-known example structure which divides | segments a transducer. 周波数が変化する波形と部分口径により凹面収束波面を形成する説明図である。It is explanatory drawing which forms a concave-converged wave front with the waveform and partial aperture which a frequency changes.

1 圧電素子
2 分極軸
3 グランド電極
4 ホット電極
5 駆動信号
6 超音波ビーム
7 長い駆動信号
8 波面形成方向
9、10、11 部分口径
12、13、14 短い駆動信号
15 超音波ビーム
16,17、18 FM駆動信号
19 超音波ビーム
DESCRIPTION OF SYMBOLS 1 Piezoelectric element 2 Polarization axis 3 Ground electrode 4 Hot electrode 5 Drive signal 6 Ultrasonic beam 7 Long drive signal 8 Wavefront formation direction 9, 10, 11 Partial aperture 12, 13, 14 Short drive signal 15 Ultrasonic beam 16, 17, 18 FM drive signal 19 Ultrasonic beam

この半波長値λh mが、数4の関係を満たすとすると、各素子からの音波は、点Pを中心とする半径Rの円周LR上にて全て同位相となる。この関係を満足する駆動波形の具体例を、s(t)として数4に例示する。 If this half-wavelength value λ h m satisfies the relationship of Equation 4, the sound waves from each element are all in phase on the circumference L R of radius R centered on point P. A specific example of a drive waveform that satisfies this relationship is illustrated in Equation 4 as s (t).

(数4)
N-1
Dn-Σ λh m=R・・・・(一定)
m=N-n+1
s(t)=sin[k 0 {X T -((R-ct) 2 -Y T 2 ) 1/2) }]
c:音速
k 0 =π/ε
X T =Rsinθ+(N-1)ε
Y T =Rcosθ
0<t<(R-Y T )/c
(Equation 4)
N-1
D n -Σ λ h m = R ・ ・ ・ ・ (Constant)
m = N-n + 1
s (t) = sin [k 0 {X T -((R-ct) 2 -Y T 2 ) 1/2) }]
c: speed of sound
k 0 = π / ε
X T = Rsinθ + (N-1) ε
Y T = Rcosθ
0 <t <(RY T ) / c

(数4)
N-1
Dn-Σ λh m=R・・・・(一定)
m=N-n+1
s(t)=sin[k0{XT-((R 0 -ct)2-YT 2)1/2)}]
k0=π/ε
XT=Rsinθ+(N-1)ε
YT=Rcosθ
R 0 =(X T 2 +Y T 2 ) 1/2
0<t<(R 0 -R)/c
(Equation 4)
N-1
D n -Σ λ h m = R ・ ・ ・ ・ (Constant)
m = N-n + 1
s (t) = sin [k 0 {X T -((R 0 -ct) 2 -Y T 2 ) 1/2) }]
k 0 = π / ε
X T = Rsinθ + (N-1) ε
Y T = Rcosθ
R 0 = (X T 2 + Y T 2 ) 1/2
0 <t <(R 0 -R ) / c

Claims (4)

共通電極を有する配列素子に駆動信号を印加することにより超音波信号を送波し、該駆動信号の周波数を各送波毎に変化させることにより超音波照射方位を変更する構成において、該駆動信号を構成する隣接波形の周期が変化するように構成することを特徴とする超音波送波装置。 In a configuration in which an ultrasonic signal is transmitted by applying a drive signal to an array element having a common electrode, and the ultrasonic irradiation direction is changed by changing the frequency of the drive signal for each transmission, the drive signal An ultrasonic wave transmission device configured to change the period of adjacent waveforms constituting the. 第1項記載の共通電極を有する配列素子が分極反転型配列送波器であることを特徴とする超音波送波装置。 An ultrasonic wave transmitting device, wherein the array element having the common electrode according to claim 1 is a polarization inversion type array transmitter. 第1項記載の共通電極を有する配列素子が、複数の部分口径により実現される構成である事を特徴とする超音波送受波装置。 An ultrasonic transducer according to claim 1, wherein the array element having the common electrode according to the first aspect is realized by a plurality of partial apertures. 第1項記載の駆動信号が線形FM波であり、該FM波の初期周波数が照射方位に対応し、周波数上昇率が焦点距離に対応するように構成されることを特徴とする超音波送波装置。
The ultrasonic transmission characterized in that the drive signal described in the first item is a linear FM wave, the initial frequency of the FM wave corresponds to the irradiation direction, and the frequency increase rate corresponds to the focal length. apparatus.
JP2013165642A 2013-08-08 2013-08-08 Convergent ultrasonic wave forming method by frequency modulation Pending JP2015033473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013165642A JP2015033473A (en) 2013-08-08 2013-08-08 Convergent ultrasonic wave forming method by frequency modulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013165642A JP2015033473A (en) 2013-08-08 2013-08-08 Convergent ultrasonic wave forming method by frequency modulation

Publications (2)

Publication Number Publication Date
JP2015033473A true JP2015033473A (en) 2015-02-19
JP2015033473A5 JP2015033473A5 (en) 2016-09-01

Family

ID=52542453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013165642A Pending JP2015033473A (en) 2013-08-08 2013-08-08 Convergent ultrasonic wave forming method by frequency modulation

Country Status (1)

Country Link
JP (1) JP2015033473A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281211A (en) * 1992-04-03 1993-10-29 Hitachi Ltd Ultrasonic apparatus
JPH05285134A (en) * 1992-04-09 1993-11-02 Hitachi Ltd Ultrasonic transmitter/receiver
JP2010071967A (en) * 2008-09-19 2010-04-02 Port & Airport Research Institute Ultrasonic transducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281211A (en) * 1992-04-03 1993-10-29 Hitachi Ltd Ultrasonic apparatus
JPH05285134A (en) * 1992-04-09 1993-11-02 Hitachi Ltd Ultrasonic transmitter/receiver
JP2010071967A (en) * 2008-09-19 2010-04-02 Port & Airport Research Institute Ultrasonic transducer

Similar Documents

Publication Publication Date Title
JP7026328B2 (en) Systems and Methods for Ultrasonic Beamforming Using Coherent Composite Fresnel Focusing
JP5702326B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus including the same
US4509153A (en) Resolution transducers, systems and methods for the transmission and/or reception of waves propagated by vibration
RU2657325C1 (en) Method for ultrasonic controlling objects of solid materials, ultrasonic high-frequency converter for its implementation (options) and antenna array with the application of the method
JP6634331B2 (en) Ultrasonic imaging apparatus and ultrasonic transmission / reception method
JP2015033473A (en) Convergent ultrasonic wave forming method by frequency modulation
JP6944048B2 (en) Ultrasonic system and control method of ultrasonic system
JP2010071967A (en) Ultrasonic transducer
JP5991505B2 (en) Transmitter / receiver and three-dimensional measuring apparatus using the same
KR100294229B1 (en) A method of realizing the transmission focus by synthesizing the pulse-shaped plane waves having the same image point
JP6331200B2 (en) Ultrasound gridded three-dimensional electrified imaging device
US20160107195A1 (en) Ultrasonic generator
JP2013057518A5 (en) Transmitter or receiver and three-dimensional measuring apparatus using the same
JP3495534B2 (en) Ultrasound imaging device
US2435253A (en) System for sound ranging
JP4771575B2 (en) Underwater detector
JP6977547B2 (en) Sonar device and object detection method
JP6434642B2 (en) Sound speed calculation system and sound speed calculation method
RU178897U1 (en) MULTI-ELEMENT INTERFERENCE HYDROACOUSTIC ANTENNA
Opieliński et al. Determining the acoustic field distribution of ultrasonic multi-element probes
JP7080309B2 (en) Ultrasonic probe, ultrasonic probe control method and ultrasonic system
JP6153240B2 (en) Non-contact acoustic inspection equipment
RU2700031C1 (en) Multi-frequency receiving-emitting antenna device
RU179409U1 (en) MULTI-ELEMENT ARC ANTENNA
JP6923884B2 (en) Ultrasonic three-dimensional measuring device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171114