JP2015032937A - Optical transceiver and control method - Google Patents

Optical transceiver and control method Download PDF

Info

Publication number
JP2015032937A
JP2015032937A JP2013160175A JP2013160175A JP2015032937A JP 2015032937 A JP2015032937 A JP 2015032937A JP 2013160175 A JP2013160175 A JP 2013160175A JP 2013160175 A JP2013160175 A JP 2013160175A JP 2015032937 A JP2015032937 A JP 2015032937A
Authority
JP
Japan
Prior art keywords
light
level
light receiving
light emitting
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013160175A
Other languages
Japanese (ja)
Inventor
山本 弘毅
Koki Yamamoto
弘毅 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2013160175A priority Critical patent/JP2015032937A/en
Publication of JP2015032937A publication Critical patent/JP2015032937A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a possibility of giving damage to a reception side light-receiving element due to a reason that a light transmitting level at a distance measuring signal transmission side is not made appropriate for reception at a reception side, in measurement of the transmission distance between optical communication devices whose optical transmission levels are adjustable according to the transmission distance.SOLUTION: An optical transceiver comprises light-emitting means whose output signal optical power is at or below the maximum optical reception level of an opposite light-receiving element connected via a prescribed transmission path, and is set to a prescribed level which is larger than the minimum light-receiving level of the opposite light-receiving element by a prescribed amount corresponding to loss on the transmission path.

Description

本発明は、光トランシーバおよび制御方法に関する。   The present invention relates to an optical transceiver and a control method.

光通信網や携帯電話回線のバックボーンなどで用いられる光通信装置において光トランシーバが搭載されている。光トランシーバを搭載する装置は、様々な通信システムへの利用が求められているのに伴い、短距離から長距離まで広範な通信距離に対応するようになってきている。ところが、光トランシーバについては、通信距離により光送信レベルが異なり、製品も異なっているので、光トランシーバを搭載する装置は通信距離に応じて異なる光トランシーバ製品を備えている。そのため、光トランシーバを搭載する装置には様々なトランシーバに対応するための開発・製造などの費用が掛かっている。そのような費用を低減させうる方法として、光トランシーバを搭載する装置内で通信距離に応じて光送信レベルを調整可能にして、光トランシーバの通信距離に対応した品種を減らすことが挙げられる。通信距離に応じて光送信レベルを調整するような技術が特許文献1に開示されている。   An optical transceiver is mounted in an optical communication device used in an optical communication network, a backbone of a mobile phone line, or the like. A device equipped with an optical transceiver is required to be used for various communication systems, and has been adapted to a wide communication distance from a short distance to a long distance. However, optical transceivers have different optical transmission levels depending on communication distances, and products are also different. Therefore, devices equipped with optical transceivers have different optical transceiver products according to communication distances. For this reason, a device equipped with an optical transceiver is expensive to develop and manufacture in order to support various transceivers. As a method that can reduce such cost, it is possible to adjust the optical transmission level in accordance with the communication distance in an apparatus equipped with the optical transceiver, and to reduce the number of products corresponding to the communication distance of the optical transceiver. A technique for adjusting the optical transmission level according to the communication distance is disclosed in Patent Document 1.

特許文献1に開示されている技術は、次の通りである。   The technique disclosed in Patent Document 1 is as follows.

まず、ONU(Optical Network Unit)の受光レベルモニタ部が、PD(Photo Diode)により受光された光量レベルを検出し、その検出された光量レベルに基づいて、光出力レベル制御部が光出力レベルの調整を行う。   First, a light reception level monitor unit of an ONU (Optical Network Unit) detects a light amount level received by a PD (Photo Diode), and based on the detected light amount level, the light output level control unit detects the light output level. Make adjustments.

次に、OLT(Optical Line Terminal)の距離測定制御部の制御により、OLTからONUまでの距離を測定する。   Next, the distance from the OLT to the ONU is measured under the control of a distance measurement control unit of an OLT (Optical Line Terminal).

この距離測定方法としては、例えばまず、距離測定開始の信号をOLTから送信し、その距離測定信号に対するONUからの返信信号を受信し、この距離測定開始の信号送信から返信信号の受信までの遅延時間によって距離を測定する方法などがある。   As this distance measurement method, for example, first, a distance measurement start signal is transmitted from the OLT, a response signal from the ONU for the distance measurement signal is received, and a delay from the distance measurement start signal transmission to the reception of the response signal is received. There is a method of measuring distance according to time.

こうして測定された距離情報に基づいて、ONU制御情報生成部がその距離における伝送損失を算出し、その伝送損失に応じて、1Gbps、10Gbpsそれぞれの信号についての光出力のレベルを決定する。   Based on the distance information thus measured, the ONU control information generation unit calculates the transmission loss at that distance, and determines the optical output level for each signal of 1 Gbps and 10 Gbps according to the transmission loss.

特開2008−054244号公報JP 2008-054444 A

特許文献1に開示されている技術において、距離測定の前に、OLTの送信する光信号のレベルがONUの受光素子による光信号の受信に適切なレベルとなっていることが担保されていない。このため、受光素子としてAPD(Avalanche Photo Diode)が用いられる場合、OLTの送信した光信号がONUにて高いレベルで受信されると、高感度のAPDが破壊されてしまう可能性が懸念される。   In the technique disclosed in Patent Document 1, it is not guaranteed that the level of the optical signal transmitted by the OLT is an appropriate level for receiving the optical signal by the light receiving element of the ONU before the distance measurement. For this reason, when an APD (Avalanche Photo Diode) is used as a light receiving element, there is a concern that a highly sensitive APD may be destroyed if an optical signal transmitted by the OLT is received at a high level by the ONU. .

つまり、伝送距離に応じて光送信レベルを調整可能な光通信装置間の伝送距離の測定において、距離測定信号の送信側での光送信レベルが受信側での受信に適切なレベルとなっておらず、受信側の受光素子にダメージを与える可能性があることが課題である。   In other words, in the measurement of the transmission distance between optical communication devices that can adjust the optical transmission level according to the transmission distance, the optical transmission level on the transmission side of the distance measurement signal is an appropriate level for reception on the reception side. However, there is a problem that the light receiving element on the receiving side may be damaged.

本発明の目的は、この課題を解決する光トランシーバおよび制御方法を提供することである。   An object of the present invention is to provide an optical transceiver and a control method for solving this problem.

本発明の光トランシーバは、出力信号光パワーが、所定の伝送路を介して接続された対向受光素子の最大光受信レベル以下でありかつ前記対向受光素子の最小受光レベルよりも前記伝送路での損失に対応する所定量大きい所定のレベルに設定された発光手段を備えていることを特徴とする。   In the optical transceiver of the present invention, the output signal light power is equal to or lower than the maximum light receiving level of the counter light receiving element connected via the predetermined transmission path and is lower than the minimum light receiving level of the counter light receiving element in the transmission path. The light-emitting means is set to a predetermined level that is larger by a predetermined amount corresponding to the loss.

本発明の光トランシーバの制御方法は、発光手段の出力信号光パワーを、所定の伝送路を介して接続された対向受光素子の最大光受信レベル以下でありかつ前記対向受光素子の最小受光レベルよりも前記伝送路での損失に対応する所定量大きい所定のレベルに設定する発光工程を備えていることを特徴とする。   In the optical transceiver control method of the present invention, the output signal light power of the light emitting means is less than or equal to the maximum light reception level of the counter light receiving element connected via a predetermined transmission path and is less than the minimum light receiving level of the counter light receiving element. And a light emitting step of setting a predetermined level larger by a predetermined amount corresponding to the loss in the transmission path.

本発明によれば、伝送距離に応じて光送信レベルを調整可能な光通信装置間の伝送距離の測定において、距離測定信号の送信側での光送信レベルが受信側での受信に適切なレベルに設定され、受信側の受光素子にダメージを与えないようにすることが可能となる。   According to the present invention, in the measurement of the transmission distance between optical communication devices capable of adjusting the optical transmission level according to the transmission distance, the optical transmission level on the transmission side of the distance measurement signal is a level suitable for reception on the reception side. Therefore, it is possible to prevent damage to the light receiving element on the receiving side.

本発明の第1の実施の形態における光トランシーバの構成例を示す図である。It is a figure which shows the structural example of the optical transceiver in the 1st Embodiment of this invention. 本発明の第2の実施の形態における光トランシーバの構成例を示す図である。It is a figure which shows the structural example of the optical transceiver in the 2nd Embodiment of this invention.

本発明の第1の実施の形態について、図面を参照して説明する。   A first embodiment of the present invention will be described with reference to the drawings.

本実施の形態において、伝送距離に応じて光送信レベルを調整可能な光通信装置に搭載されていて、自装置と対向装置との間の伝送距離を測定し、測定結果にもとづいて自身の光送信レベルを設定する光トランシーバについて説明する。その中で、伝送距離の測定において、距離測定信号の送信側での光送信レベルを設定することについて説明する。   In this embodiment, it is mounted on an optical communication device capable of adjusting the optical transmission level according to the transmission distance, measures the transmission distance between the own device and the opposite device, and determines its own light based on the measurement result. An optical transceiver for setting a transmission level will be described. In the measurement of the transmission distance, setting the optical transmission level on the transmission side of the distance measurement signal will be described.

まず、本実施の形態における光トランシーバの構成について、図1を参照して説明する。   First, the configuration of the optical transceiver in this embodiment will be described with reference to FIG.

図1は本実施の形態における光トランシーバの構成例を示す。光トランシーバ100は、光モジュール110、コントロール部120を備える。   FIG. 1 shows a configuration example of an optical transceiver in the present embodiment. The optical transceiver 100 includes an optical module 110 and a control unit 120.

光モジュール110は、発光素子111、受光素子112を備える。発光素子111、受光素子112は、例えば、それぞれ、レーザダイオード、アバランシェフォトダイオードを備えた光学部品である。   The optical module 110 includes a light emitting element 111 and a light receiving element 112. The light emitting element 111 and the light receiving element 112 are, for example, optical components including a laser diode and an avalanche photodiode, respectively.

コントロール部120は、ドライバ121、コントローラ122、メモリ123を備える。   The control unit 120 includes a driver 121, a controller 122, and a memory 123.

光トランシーバの各部を説明する。   Each part of the optical transceiver will be described.

発光素子111は、光信号を送信する。   The light emitting element 111 transmits an optical signal.

受光素子112は、光信号を受信する。   The light receiving element 112 receives an optical signal.

ドライバ121は、発光素子111を駆動する。   The driver 121 drives the light emitting element 111.

コントローラ122は、ドライバ121の制御、伝送距離の算出などを行う。   The controller 122 performs control of the driver 121, calculation of a transmission distance, and the like.

メモリ123は、ドライバ121の駆動電流値などを保存する。   The memory 123 stores a drive current value of the driver 121 and the like.

次に、本実施の形態における光トランシーバ100の動作について、図1を参照して説明する。   Next, the operation of the optical transceiver 100 in the present embodiment will be described with reference to FIG.

なお、光トランシーバ100が搭載された光通信装置と同様の光通信装置とが対向動作し、自装置と対向装置とで同時的に同様の動作が行われるものとする。ただし、その動作の説明は自装置についてのみ行う。   It is assumed that an optical communication device similar to the optical communication device on which the optical transceiver 100 is mounted is opposed to the same device and the opposite device performs the same operation simultaneously. However, the operation will be described only for the own device.

まず、光トランシーバ100に外部より距離測定開始を示す信号が入力される。これにより、発光素子111の光出力を対向装置の受光素子の最大光受信レベルと同じレベルで行わせるバイアス電流と変調電流の値がドライバ121に設定される。なお、それらのバイアス電流と変調電流の値は予め対向装置の受光素子の最大光受信レベルの値にもとづいて算出されてメモリ123に保存されている。また、発光素子111の光出力は対向装置の受光素子の最大光受信レベル以下としてもよい。ドライバ121は設定された値のバイアス電流と変調電流で発光素子111を駆動し、発光素子111は光信号を送信する。一方、受光素子112は対向装置から送信された光信号を受信し、光受信レベルが測定される。このとき信号そのものの識別は不要である。コントローラ122は、例えば、次の式により、自装置と対向装置との間の伝送距離を算出する。   First, a signal indicating the start of distance measurement is input to the optical transceiver 100 from the outside. As a result, the bias current and the modulation current are set in the driver 121 so that the light output of the light emitting element 111 is performed at the same level as the maximum light reception level of the light receiving element of the opposing device. Note that the values of the bias current and the modulation current are calculated in advance based on the value of the maximum light reception level of the light receiving element of the opposing device and stored in the memory 123. The light output of the light emitting element 111 may be equal to or lower than the maximum light reception level of the light receiving element of the opposing device. The driver 121 drives the light emitting element 111 with the set bias current and modulation current, and the light emitting element 111 transmits an optical signal. On the other hand, the light receiving element 112 receives the optical signal transmitted from the opposite device, and measures the optical reception level. At this time, it is not necessary to identify the signal itself. For example, the controller 122 calculates the transmission distance between the own device and the opposite device by the following equation.

伝送距離[km]=((対向装置の)光送信レベル[dBm]−光受信レベル[dBm])/伝送損失[dB/km]
なお、伝送損失の値は、予めメモリ123に保存されており、例えば、想定される範囲での最小値としてもよい。また、伝送距離は、例えば、設計上の最大値を上限としてもよい。
伝送距離、ならびに発光素子111および対向装置の受光素子の特性に適したレベルの発光素子111の光出力を導くバイアス電流と変調電流の値が予めメモリ123に保存されている。ドライバ121は算出された伝送距離に対応した値のバイアス電流と変調電流で発光素子111を駆動し、発光素子111は光信号を送信する。
Transmission distance [km] = ((opposite device) optical transmission level [dBm]-optical reception level [dBm]) / transmission loss [dB / km]
Note that the transmission loss value is stored in the memory 123 in advance, and may be a minimum value in an assumed range, for example. Further, the transmission distance may be, for example, a design maximum value as an upper limit.
The values of the bias current and the modulation current that lead the light output of the light emitting element 111 at a level suitable for the transmission distance and the characteristics of the light emitting element 111 and the light receiving element of the counter device are stored in the memory 123 in advance. The driver 121 drives the light emitting element 111 with a bias current and a modulation current having values corresponding to the calculated transmission distance, and the light emitting element 111 transmits an optical signal.

以上のように、距離測定信号の光出力レベルを対向装置の受光素子の最大光受信レベル以下とすることで受光素子としてアバランシェフォトダイオードが用いられても距離測定信号の入力光により破壊されることはない。このように、伝送距離に応じて光送信レベルを調整可能な光通信装置間の伝送距離の測定において、距離測定信号の送信側での光送信レベルが受信側での受信に適切なレベルに設定され、受信側の受光素子にダメージを与えないようにすることが可能となる。   As described above, if the light output level of the distance measurement signal is set to be equal to or lower than the maximum light reception level of the light receiving element of the opposing device, even if an avalanche photodiode is used as the light receiving element, it is destroyed by the input light of the distance measuring signal. There is no. In this way, in the measurement of the transmission distance between optical communication devices that can adjust the optical transmission level according to the transmission distance, the optical transmission level on the transmission side of the distance measurement signal is set to a level appropriate for reception on the reception side. Thus, it is possible to prevent damage to the light receiving element on the receiving side.

次に、本発明の第2の実施の形態について、図面を参照して説明する。   Next, a second embodiment of the present invention will be described with reference to the drawings.

まず、本実施の形態の構成について、図2を参照して説明する。   First, the configuration of the present embodiment will be described with reference to FIG.

図2は本実施の形態における光トランシーバの構成例を示す。光トランシーバ200は、発光素子210を備える。   FIG. 2 shows a configuration example of the optical transceiver in this embodiment. The optical transceiver 200 includes a light emitting element 210.

発光素子210は、光信号を送信する。   The light emitting element 210 transmits an optical signal.

次に、本実施の形態における光トランシーバ200の動作について、図2を参照して説明する。   Next, the operation of the optical transceiver 200 in the present embodiment will be described with reference to FIG.

発光素子210は伝送路を介して接続された対向受光素子の最大光受信レベル以下のレベルに設定されたパワーの信号光を出力する。なお、出力信号光は対向受光素子に到達したときにパワーが対向受光素子の最小受光レベルよりも大きいとする。   The light emitting element 210 outputs signal light having a power set to a level equal to or lower than the maximum light receiving level of the counter light receiving element connected via the transmission path. It is assumed that the output signal light has a power higher than the minimum light receiving level of the counter light receiving element when it reaches the counter light receiving element.

以上によれば、伝送距離に応じて光送信レベルを調整可能な光通信装置間の伝送距離の測定において、距離測定信号の送信側での光送信レベルが受信側での受信に適切なレベルに設定され、受信側の受光素子にダメージを与えないようにすることが可能となる。   According to the above, in the measurement of the transmission distance between the optical communication devices that can adjust the optical transmission level according to the transmission distance, the optical transmission level on the transmission side of the distance measurement signal becomes a level suitable for reception on the reception side. It is possible to prevent the receiving side light receiving element from being damaged.

本発明は、光トランシーバおよび制御方法に利用可能である。   The present invention is applicable to an optical transceiver and a control method.

100 光トランシーバ
110 光モジュール
111 発光素子
112 受光素子
120 コントロール部
121 ドライバ
122 コントローラ
123 メモリ
200 光トランシーバ
210 発光素子
DESCRIPTION OF SYMBOLS 100 Optical transceiver 110 Optical module 111 Light emitting element 112 Light receiving element 120 Control part 121 Driver 122 Controller 123 Memory 200 Optical transceiver 210 Light emitting element

Claims (6)

出力信号光パワーが、所定の伝送路を介して接続された対向受光素子の最大光受信レベル以下でありかつ前記対向受光素子の最小受光レベルよりも前記伝送路での損失に対応する所定量大きい所定のレベルに設定された発光手段を備えていることを特徴とする光トランシーバ。   The output signal light power is equal to or less than the maximum light reception level of the counter light receiving element connected through the predetermined transmission path and larger than the minimum light reception level of the counter light receiving element by a predetermined amount corresponding to the loss in the transmission path. An optical transceiver comprising light emitting means set at a predetermined level. 対向発光素子と前記所定伝送路を介して接続された受光手段と、
前記受光手段で前記対向発光素子から受信した信号光のパワーレベルにもとづいて前記発光手段から出力する信号光のパワーレベルを決定するコントローラと
をさらに備えていることを特徴とする請求項1に記載の光トランシーバ。
A light receiving means connected to the opposing light emitting element via the predetermined transmission path;
2. The controller according to claim 1, further comprising a controller that determines a power level of the signal light output from the light emitting means based on a power level of the signal light received from the counter light emitting element by the light receiving means. Optical transceiver.
前記信号光パワーレベルの決定は、前記所定伝送路の伝送距離、または前記発光手段、前記対向受光素子、前記対向発光素子、前記受光手段の少なくとも1つの出力または入力特性をパラメータとして行われることを特徴とする請求項2に記載の光トランシーバ。   The determination of the signal light power level is performed by using the transmission distance of the predetermined transmission path or at least one output or input characteristic of the light emitting means, the counter light receiving element, the counter light emitting element, or the light receiving means as a parameter. The optical transceiver according to claim 2. 発光手段の出力信号光パワーを、所定の伝送路を介して接続された対向受光素子の最大光受信レベル以下でありかつ前記対向受光素子の最小受光レベルよりも前記伝送路での損失に対応する所定量大きい所定のレベルに設定する発光工程を備えていることを特徴とする光トランシーバの制御方法。   The output signal light power of the light emitting means is equal to or less than the maximum light reception level of the counter light receiving element connected via the predetermined transmission path and corresponds to the loss in the transmission path than the minimum light receiving level of the counter light receiving element. An optical transceiver control method comprising a light emitting step of setting a predetermined level larger by a predetermined amount. 対向発光素子と前記所定伝送路を介して接続する受光手段で前記対向発光素子から受信した信号光のパワーレベルにもとづいて前記発光工程で出力する信号光のパワーレベルを決定するコントロール工程をさらに備えていることを特徴とする請求項4に記載の光トランシーバの制御方法。   A control step of determining a power level of the signal light output in the light emission step based on a power level of the signal light received from the counter light emitting device by a light receiving means connected to the counter light emitting device via the predetermined transmission path; The method of controlling an optical transceiver according to claim 4. 前記信号光パワーレベルの決定は、前記所定伝送路の伝送距離、または前記発光手段、前記対向受光素子、前記対向発光素子、前記受光手段の少なくとも1つの出力または入力特性をパラメータとして行われることを特徴とする請求項5に記載の光トランシーバの制御方法。   The determination of the signal light power level is performed by using the transmission distance of the predetermined transmission path or at least one output or input characteristic of the light emitting means, the counter light receiving element, the counter light emitting element, or the light receiving means as a parameter. The method of controlling an optical transceiver according to claim 5.
JP2013160175A 2013-08-01 2013-08-01 Optical transceiver and control method Pending JP2015032937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013160175A JP2015032937A (en) 2013-08-01 2013-08-01 Optical transceiver and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013160175A JP2015032937A (en) 2013-08-01 2013-08-01 Optical transceiver and control method

Publications (1)

Publication Number Publication Date
JP2015032937A true JP2015032937A (en) 2015-02-16

Family

ID=52517935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013160175A Pending JP2015032937A (en) 2013-08-01 2013-08-01 Optical transceiver and control method

Country Status (1)

Country Link
JP (1) JP2015032937A (en)

Similar Documents

Publication Publication Date Title
US10236995B2 (en) Optical receiver sensitivity system
US9509370B2 (en) Optical transmission system and optical transmission device
US20150349911A1 (en) Optical receiver
JP6175709B2 (en) Method, apparatus, and communication node for suppressing output noise of PCIe optical fiber communication
JP5864025B2 (en) Burst optical receiver and bias voltage control method for APD of burst optical receiver
JP2015154186A (en) Optical receiver and controller and control method of optical receiver
JP2011029891A (en) Optical receiver and method for optical reception
JP2015032937A (en) Optical transceiver and control method
JP6127568B2 (en) Optical receiver, optical reception method, and optical communication system
JP2011142581A (en) Method and system for optical communication, and apparatus for receiving and transimitting optical signal
JP2010141683A (en) Optical transmission apparatus and dispersion compensator
US10951319B1 (en) Method of performing dynamic power optimization in fiber-optic communication system and related fiber-optic communication system
JP4879369B2 (en) Optical transmitter erroneous light emission prevention circuit
JP2015002473A (en) Optical power monitoring circuit, optical module, station-side device, and optical power monitoring method
JP2013197200A (en) Photoreceiver control method and communication control method
JP2011061790A (en) Optical network unit and method of operating the same
KR20220036646A (en) Method and Apparatus for Tracking in Optical Wireless Communication with beam forming function
JP2013070204A (en) Optical transceiver, optical transmission level setting method, and setting program
JP2009141448A (en) Optical transmission system
JP2012151739A (en) Optical communication device
JP4957567B2 (en) Optical receiver
US11070293B2 (en) Method and device for amplifying uplink light of passive optical network, and storage medium
CN109474350B (en) Optical module
JP2017183954A (en) Optical transceiver and optical signal strength control method
WO2019224995A1 (en) Optical transmission/reception device, optical communication device, control method, and control program