JP2009141448A - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
JP2009141448A
JP2009141448A JP2007313008A JP2007313008A JP2009141448A JP 2009141448 A JP2009141448 A JP 2009141448A JP 2007313008 A JP2007313008 A JP 2007313008A JP 2007313008 A JP2007313008 A JP 2007313008A JP 2009141448 A JP2009141448 A JP 2009141448A
Authority
JP
Japan
Prior art keywords
signal
optical
control signal
current
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007313008A
Other languages
Japanese (ja)
Inventor
Shinichiro Azuma
慎一郎 東
Ryoji Yanagimoto
良二 柳本
Shingo Kamiya
晋吾 紙谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007313008A priority Critical patent/JP2009141448A/en
Publication of JP2009141448A publication Critical patent/JP2009141448A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission system more appropriately coping with deterioration in transmission quality in a down stream, on the side of an optical transmitter. <P>SOLUTION: The optical transmission system is provided with: one or more optical receivers 20 each having a light receiving means 21 for converting an optical signal into an electric signal, a signal intensity detection means 25 for detecting signal intensity of the optical signal, and a control signal output means 26 for generating and outputting a first control signal C<SB>1</SB>including signal intensity information; and an optical transmitter 10 having an emission element 11 which generates the optical signal, a signal intensity information acquisition means 12 which accepts the first control signal C<SB>1</SB>from an optical receiver 20 which accepts the optical signal, a temperature detection means 13 for detecting temperature of the emission element 11 to generate a second control signal including temperature information R<SB>TEMP</SB>, a driving means for performing current control of the emission element 11 to control intensity of the optical signal based on a current control signal, and control means 12, 15 for generating the current control signal based on the signal intensity information R<SB>BIAS</SB>, R<SB>MOD</SB>. and the temperature information R<SB>TEMP</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光信号によるデータ通信を行う光伝送システムに関する。   The present invention relates to an optical transmission system that performs data communication using optical signals.

光伝送用基地局及び光ファイバ等の光媒体を介して情報を伝達する光伝送方式によるデータ通信は、電気伝送方式によるデータ通信の場合と比較して、基地局における信号の劣化が極めて少なく、伝送速度を極めて速くすることが可能であり、更に、伝送容量が大きい。このため、光伝送方式によるデータ通信は、従来、電話通信網やインターネット網等における大陸間長距離データ通信等の用途で用いられている。   Data communication by the optical transmission system that transmits information via an optical medium such as an optical transmission base station and an optical fiber, the signal degradation in the base station is extremely small compared to the data communication by the electric transmission system, The transmission speed can be made extremely fast, and the transmission capacity is large. For this reason, data communication by the optical transmission method has been conventionally used for applications such as intercontinental long-distance data communication in a telephone communication network, the Internet network, and the like.

更に、近年、一般家屋に設置されるパーソナルコンピュータ(パソコン)やテレビ、携帯電話機等の小型の端末機器において、伝送速度の高速化や伝送容量の大容量化が進んでおり、このような小型の端末機器における光伝送方式によるデータ通信のニーズが高まっている。より詳細には、例えば、パソコンやテレビでのデータ通信、ワンセグ対応機能を備える携帯電話機等では、表示画面上に表示する映像データのデータ容量が飛躍的に増大しており、これに伴って、数Gbpsの帯域が必要となってきている。   Furthermore, in recent years, in small terminal devices such as personal computers (personal computers), televisions, and mobile phones installed in ordinary houses, transmission speeds have been increased and transmission capacity has been increased. There is a growing need for data communication using optical transmission systems in terminal equipment. More specifically, for example, in a data communication with a personal computer or a TV, a mobile phone equipped with a one-segment support function, the data capacity of video data to be displayed on the display screen has been dramatically increased. A bandwidth of several Gbps is required.

また、電気伝送方式によるデータ通信では、EMI(Electro magnetic interference)と呼ばれる輻射ノイズが発生する。特に、携帯電話機等では、機器内における電気伝送方式のデータ通信により発生する輻射ノイズが比較的大きく、パソコンやテレビ等の家電機器等に与える影響が無視できない。このため、特に、携帯電話機等、発生する輻射ノイズの大きさが比較的大きい機器では、輻射ノイズの大きさが比較的小さく、発生頻度が比較的少ない光伝送方式によるデータ通信の導入が求められるようになってきている。   Further, in data communication using the electric transmission method, radiation noise called EMI (Electromagnetic Interference) is generated. In particular, in mobile phones and the like, radiation noise generated by electrical transmission data communication in the device is relatively large, and the influence on home appliances such as personal computers and televisions cannot be ignored. For this reason, in particular, in devices that generate a relatively large amount of radiation noise, such as a cellular phone, it is required to introduce data communication using an optical transmission method that has a relatively small amount of radiation noise and a relatively low frequency of occurrence. It has become like this.

光伝送における伝送品質を維持するための技術としては、例えば、光送信において、冷却加熱素子と感温素子を備えた発光素子(レーザモジュール)を用い、電源投入時や光出力断時には温度条件を一定にする制御を行い、これ以外の場合に光信号の波長を一定にする制御を行う光送受信装置がある(例えば、特許文献1参照)。   As a technique for maintaining transmission quality in optical transmission, for example, in light transmission, a light emitting element (laser module) equipped with a cooling heating element and a temperature sensitive element is used. There is an optical transmission / reception apparatus that performs control to make constant, and performs control to make the wavelength of an optical signal constant in other cases (see, for example, Patent Document 1).

また、光伝送における伝送品質を維持するための他の技術としては、例えば、端末側光送受信装置から基地局側光送受信装置への光送信において、受信した光信号を変換した電圧信号の強度に基づいて、基地局側光送受信装置と端末側光送受信装置の間の距離を求め、これに応じて、送信する光信号の強度を調節する端末側光送受信装置がある(例えば、特許文献2参照)。   As another technique for maintaining transmission quality in optical transmission, for example, in the optical transmission from the terminal side optical transceiver to the base station side optical transceiver, the intensity of the voltage signal obtained by converting the received optical signal is increased. Based on this, there is a terminal-side optical transmission / reception device that obtains the distance between the base-station-side optical transmission / reception device and the terminal-side optical transmission / reception device, and adjusts the intensity of the optical signal to be transmitted accordingly (for example, see Patent Document 2). ).

更に、光伝送における光送受信装置の信頼性を向上させるための技術として、例えば、光出力断時の保持回路からの出力による光送信用発光素子の破壊を防止するため、光送信用発光素子の近傍にモニタ用発光素子を設け、モニタ用発光素子を用いて光送信用発光素子の発光強度(光送信用発光素子の電流値または電圧値)をモニタし、発光強度が所定範囲内となるように、保持回路の出力調整を行う光送受信装置がある(例えば、特許文献3参照)。   Furthermore, as a technique for improving the reliability of the optical transmission / reception apparatus in optical transmission, for example, in order to prevent the destruction of the optical transmission light emitting element due to the output from the holding circuit when the optical output is interrupted, A monitor light emitting element is provided in the vicinity, and the light emission intensity of the light transmitting light emitting element (current value or voltage value of the light transmitting light emitting element) is monitored using the monitor light emitting element so that the light emission intensity falls within a predetermined range. In addition, there is an optical transceiver that adjusts the output of the holding circuit (see, for example, Patent Document 3).

ここで、図13は、従来技術に係る光伝送システムの一概略構成例を示している。ここでは、基地局側光送受信装置100が、複数の端末側光送受信装置200と光伝送方式によるデータ通信を可能に構成されている場合について示している。   Here, FIG. 13 shows an example of a schematic configuration of an optical transmission system according to the prior art. Here, a case where the base station side optical transmission / reception device 100 is configured to be able to perform data communication with a plurality of terminal side optical transmission / reception devices 200 by an optical transmission method is shown.

具体的には、基地局側光送受信装置100は、端末側光送受信装置200の光受信装置210に対し光信号をダウンストリームを介して出力する光送信装置110と、端末側光送受信装置200の光送信装置220から出力された光信号をアップストリームを介して受け付ける光受信装置120を備えて構成されている。   Specifically, the base station side optical transmission / reception device 100 includes an optical transmission device 110 that outputs an optical signal downstream to the optical reception device 210 of the terminal side optical transmission / reception device 200, and a terminal side optical transmission / reception device 200. The optical receiver 120 is configured to receive an optical signal output from the optical transmitter 220 via the upstream.

光送信装置110は、光信号を生成する発光素子111と、光信号の信号強度を検出し、信号強度検出用受光素子112から出力された電流信号を電圧信号に変換するTIA(Trance Impedance Amp)回路及びTIA回路から出力された電圧信号を増幅するAMP回路を介して、信号強度の検出結果を出力する信号強度検出用受光素子112と、発光素子111が光信号を出力するための最小電流を規定する閾値電流IBIAS及び光信号を変調するための変調電流IMODを制御するドライバ114と、閾値電流IBIAS及び変調電流IMODをドライバ114に供給するドライバ制御手段115と、信号強度検出用受光素子112から信号強度の検出結果を受け付けて、ドライバ制御手段115を制御するAPC(Automatic Phase Control)制御手段113と、を備えている。尚、発光素子111は、ここでは、フォトダイオードを用いて構成されている。 The optical transmission device 110 detects a signal intensity of the light emitting element 111 that generates an optical signal, and converts the current signal output from the signal intensity detecting light-receiving element 112 into a voltage signal (TIA (Transfer Impedance Amp)). A signal intensity detecting light receiving element 112 that outputs a signal intensity detection result through an AMP circuit that amplifies the voltage signal output from the circuit and the TIA circuit, and a minimum current for the light emitting element 111 to output an optical signal. A driver 114 for controlling a prescribed threshold current I BIAS and a modulation current I MOD for modulating an optical signal, driver control means 115 for supplying the threshold current I BIAS and a modulation current I MOD to the driver 114, and a signal intensity detection APC that receives the detection result of the signal intensity from the light receiving element 112 and controls the driver control means 115 And Automatic Phase Control) controller 113, and a. Here, the light emitting element 111 is configured using a photodiode.

光受信装置120は、光信号を電気信号に変換する受光素子121と、受光素子121からの電気信号(電流信号)を電圧信号に変換するTIA回路222と、TIA回路222から出力された電圧信号を増幅し外部に出力するAMP回路223と、を備えている。   The optical receiver 120 includes a light receiving element 121 that converts an optical signal into an electric signal, a TIA circuit 222 that converts an electric signal (current signal) from the light receiving element 121 into a voltage signal, and a voltage signal output from the TIA circuit 222. And an AMP circuit 223 that outputs the signal to the outside.

端末側光送受信装置200は、基地局側光送受信装置100の光送信装置110から光信号をダウンストリームを介して受け付ける光受信装置210と、基地局側光送受信装置100の光受信装置120から出力された光信号をアップストリームを介して受け付ける光送信装置220を備えて構成されている。   The terminal-side optical transceiver 200 receives an optical signal from the optical transmitter 110 of the base station-side optical transceiver 100 via the downstream, and outputs from the optical receiver 120 of the base-station optical transceiver 100. The optical transmission device 220 is configured to receive the received optical signal via the upstream.

光受信装置210は、光信号を電気信号に変換する受光素子211と、受光素子211からの電気信号(電流信号)を電圧信号に変換するTIA回路212と、TIA回路212から出力された電圧信号を増幅するAMP回路213と、AMP回路213から出力された電圧信号を増幅し外部に出力するAMP回路214と、AMP回路213から出力された電圧信号に基づいて、基地局側光送受信装置100との距離を示す距離情報、若しくは、ダウンストリームにおける光減衰量を示す光減衰情報を算出する距離推定手段215と、を備えている。   The optical receiver 210 includes a light receiving element 211 that converts an optical signal into an electric signal, a TIA circuit 212 that converts an electric signal (current signal) from the light receiving element 211 into a voltage signal, and a voltage signal output from the TIA circuit 212. An AMP circuit 213 that amplifies the voltage signal, an AMP circuit 214 that amplifies the voltage signal output from the AMP circuit 213 and outputs it to the outside, and the base station side optical transceiver 100 based on the voltage signal output from the AMP circuit 213 Distance estimation means 215 for calculating distance information indicating the distance of light or light attenuation information indicating the amount of light attenuation in the downstream.

光送信装置220は、光信号を生成する発光素子221と、発光素子111が光信号を出力するための最小電流を規定する閾値電流IBIAS及び光信号を変調するための変調電流IMODを制御するドライバ222と、閾値電流IBIAS及び変調電流IMODをドライバ114に供給するドライバ制御手段224と、距離推定手段215が算出した距離情報または光減衰情報に基づいてドライバ制御手段115を制御するAPC制御手段223と、を備えている。尚、発光素子221は、ここでは、フォトダイオードを用いて構成されている。 The optical transmitter 220 controls the light emitting element 221 that generates the optical signal, the threshold current I BIAS that defines the minimum current for the light emitting element 111 to output the optical signal, and the modulation current I MOD for modulating the optical signal. A driver 222 that controls the driver control means 115 based on the distance information or the light attenuation information calculated by the distance estimation means 215, the driver control means 224 that supplies the driver 114 with the threshold current I BIAS and the modulation current I MOD Control means 223. Here, the light emitting element 221 is configured using a photodiode.

特開平11−126940号公報Japanese Patent Laid-Open No. 11-126940 特開2005−318269号公報JP 2005-318269 A 特開2000−269896号公報JP 2000-269896 A

上述したように、近年、光伝送方式によるデータ通信は、携帯電話機等の小型端末機器等、用途が拡大しており、伝送品質の向上が求められている。   As described above, in recent years, data communication based on the optical transmission method has been used for small terminal devices such as mobile phones and the like, and improvement in transmission quality has been demanded.

しかしながら、上記特許文献1〜3に記載の光送受信装置では、光送信装置が、光送信装置から光受信装置への光信号の伝送経路(ダウンストリーム)における伝送品質の劣化に対応することは困難である。   However, in the optical transmission / reception apparatuses described in Patent Documents 1 to 3, it is difficult for the optical transmission apparatus to cope with transmission quality degradation in the transmission path (downstream) of the optical signal from the optical transmission apparatus to the optical reception apparatus. It is.

具体的には、特許文献1に記載の光送受信装置は、発光素子の温度条件に基づいて送信する光信号の波長を一定にする制御を行う、即ち、送信側の光送受信装置内での伝送条件のみを考慮して発光素子を制御するものである。従って、特許文献1に記載の光送受信装置は、装置内部の伝送条件における伝送品質の劣化に対応することはできるが、光送信装置と光受信装置の間の伝送経路における伝送品質の劣化に対応することは困難である。   Specifically, the optical transceiver described in Patent Document 1 performs control to make the wavelength of an optical signal to be transmitted constant based on the temperature condition of the light emitting element, that is, transmission within the optical transceiver on the transmission side. The light emitting element is controlled in consideration of only the conditions. Therefore, the optical transmission / reception device described in Patent Document 1 can cope with the degradation of transmission quality under the transmission conditions inside the device, but copes with the degradation of transmission quality in the transmission path between the optical transmission device and the optical reception device. It is difficult to do.

また、特許文献2に記載の光送受信装置は、光受信装置(端末側光送受信装置)が、光送信装置(基地局側光送受信装置)から光受信装置(端末側光送受信装置)への光信号の伝送経路(ダウンストリーム)における伝送品質の劣化に対応するものであり、光送信装置(基地局側光送受信装置)は、ダウンストリームにおける伝送品質の劣化に対応することはできない。   In addition, in the optical transmission / reception device described in Patent Document 2, the optical reception device (terminal-side optical transmission / reception device) transmits light from the optical transmission device (base station-side optical transmission / reception device) to the optical reception device (terminal-side optical transmission / reception device). This corresponds to the deterioration of the transmission quality in the signal transmission path (downstream), and the optical transmission device (base station side optical transmission / reception device) cannot cope with the deterioration of the transmission quality in the downstream.

より詳細には、伝送品質の劣化に対しより適切に対応するためには、光送信装置が、光送信装置から光受信装置までの伝送経路(ダウンストリーム)における伝送品質の劣化に基づいて、出力する光信号の信号強度を調節することが望ましい。しかし、特許文献2に記載の光送受信装置では、端末側光送受信装置(光受信装置)が、ダウンストリームにおける伝送品質の劣化に対応して光信号の強度を調整する構成となっている。このため、基地局側光送受信装置(光送信装置)は、ダウンストリーム及びアップストリームの何れの伝送経路についても伝送品質の劣化を検出することができない。従って、仮に、基地局側光送受信装置(光送信装置)に特許文献2の構成、即ち、アップストリームにおける伝送品質の劣化に対応して光信号の強度を調整する構成を構築したとしても、伝送経路における伝送品質の劣化を検出できないため、伝送経路における伝送品質の劣化を考慮した信号強度の調節を行うことは極めて困難である。   More specifically, in order to more appropriately cope with the deterioration of transmission quality, the optical transmission device outputs based on the transmission quality deterioration in the transmission path (downstream) from the optical transmission device to the optical reception device. It is desirable to adjust the signal intensity of the optical signal. However, the optical transmission / reception apparatus described in Patent Document 2 is configured such that the terminal-side optical transmission / reception apparatus (optical reception apparatus) adjusts the intensity of the optical signal in response to the deterioration in transmission quality in the downstream. For this reason, the optical transmission / reception apparatus on the base station side (optical transmission apparatus) cannot detect deterioration in transmission quality for any of the downstream and upstream transmission paths. Therefore, even if the base station side optical transmitter / receiver (optical transmitter) constructs the configuration of Patent Document 2, that is, the configuration of adjusting the intensity of the optical signal in response to the deterioration of the transmission quality in the upstream, Since it is impossible to detect transmission quality degradation in the path, it is extremely difficult to adjust the signal strength in consideration of transmission quality degradation in the transmission path.

即ち、特許文献2に記載の光送受信装置では、端末側光送受信装置(光受信装置)が受け付ける光信号の伝送品質を向上させることができない。このため、特許文献2に記載の光送受信装置では、光送信装置は、発光素子の温度条件やダウンストリームにおける信号劣化等を考慮して、ある程度マージンをとって発光素子を駆動する必要があるという問題があるという問題があった。   That is, the optical transmission / reception device described in Patent Document 2 cannot improve the transmission quality of the optical signal received by the terminal-side optical transmission / reception device (optical reception device). For this reason, in the optical transmission / reception apparatus described in Patent Document 2, it is necessary for the optical transmission apparatus to drive the light emitting element with a certain margin in consideration of the temperature condition of the light emitting element and downstream signal degradation. There was a problem that there was a problem.

また、特許文献3に記載の光送受信装置は、発光素子の破壊を防止するものであり、伝送経路における信号劣化等に対応することは困難である。   Moreover, the optical transmission / reception apparatus described in Patent Document 3 prevents destruction of the light emitting element, and it is difficult to cope with signal degradation in the transmission path.

従って、伝送経路(ダウンストリーム及びアップストリーム)における伝送品質の劣化に対し、光送信装置側においてより適切に対応することができる光伝送方式によるデータ通信が可能な光伝送システムが望まれている。   Therefore, there is a demand for an optical transmission system capable of performing data communication by an optical transmission method that can more appropriately cope with a deterioration in transmission quality in the transmission path (downstream and upstream) on the optical transmission device side.

本発明は上記の問題に鑑みてなされたものであり、その目的は、光伝送方式によるデータ通信において、伝送経路、特に、ダウンストリームにおける伝送品質の劣化に対し、光送信装置側において、より適切に対応することができる光伝送システムを提供する点にある。また、光伝送方式によるデータ通信において、伝送経路、特に、ダウンストリームにおける伝送品質の劣化に対し、より適切に対応することができる光送信装置を提供する。更に、光伝送方式によるデータ通信において、光送信装置側に対し伝送経路での伝送品質の劣化に対応するための情報を提供する機能を備えた光受信装置を提供する。光伝送方式によるデータ通信において、送信側信号経路での信号劣化等により適切に対応した発光素子の制御が可能な光送受信装置を提供する。   The present invention has been made in view of the above-described problems, and the object thereof is more appropriate on the optical transmission apparatus side against the deterioration of transmission quality in a transmission path, particularly downstream, in data communication by an optical transmission method. It is in the point which provides the optical transmission system which can respond to this. In addition, the present invention provides an optical transmission apparatus that can more appropriately cope with deterioration of transmission quality in a transmission path, particularly downstream, in data communication using an optical transmission scheme. Furthermore, in data communication using an optical transmission method, an optical receiver having a function of providing information for dealing with deterioration in transmission quality on a transmission path to the optical transmitter is provided. Provided is an optical transmission / reception apparatus capable of controlling a light emitting element appropriately adapted to signal degradation in a transmission-side signal path in data communication by an optical transmission method.

上記目的を達成するための本発明に係る光伝送システムは、光信号を電気信号に変換する受光手段と、前記電気信号に基づいて前記光信号の信号強度を検出する信号強度検出手段と、前記信号強度検出手段が検出した前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成し出力する制御信号出力手段と、を備えた光受信装置の1または複数と、前記光信号を生成する発光素子と、前記光信号を受け付けた前記光受信装置から前記第1制御信号を受け付ける信号強度情報取得手段と、前記発光素子の温度を検出し、前記発光素子の温度を示す温度情報を含む第2制御信号を生成する温度検出手段と、所定の電流制御信号に基づき、前記発光素子を電流制御して前記光信号の強度を制御する駆動手段と、前記第1制御信号の前記信号強度情報と前記第2制御信号の前記温度情報に基づいて、前記電流制御信号を生成する制御手段と、を備えた光送信装置と、を備えることを第1の特徴とする。   In order to achieve the above object, an optical transmission system according to the present invention includes a light receiving means for converting an optical signal into an electric signal, a signal intensity detecting means for detecting a signal intensity of the optical signal based on the electric signal, Control signal output means for generating and outputting a first control signal including signal intensity information indicating the signal intensity of the optical signal detected by the signal intensity detection means; A light-emitting element that generates the signal, signal intensity information acquisition means that receives the first control signal from the optical receiver that has received the optical signal, temperature information that detects the temperature of the light-emitting element and indicates the temperature of the light-emitting element Temperature detecting means for generating a second control signal including a driving means for controlling the intensity of the optical signal by controlling the current of the light emitting element based on a predetermined current control signal, and the signal of the first control signal. Wherein the intensity information on the basis of the temperature information of the second control signal, a first feature in that and a light transmitting device and a control means for generating said current control signal.

上記特徴の本発明に係る光伝送システムは、前記信号強度検出手段が、前記電気信号の電圧レベルを、前記受光手段が受信可能な前記光信号の信号強度以上の所定の信号強度を示す強度判定値と比較する比較回路を備え、前記制御信号出力手段が、前記比較回路において前記電圧レベルが所定期間以上継続して前記強度判定値を超えたことが検出された場合に加算するカウンタを備え、前記カウンタの値が所定の第1判定値を超えた場合に、前記第1制御信号を出力することを第2の特徴とする。   In the optical transmission system according to the present invention having the above-described characteristics, the signal strength detection unit indicates a voltage level of the electrical signal, and a strength determination indicating a predetermined signal strength equal to or higher than the signal strength of the optical signal that can be received by the light receiving unit. A comparison circuit for comparing with a value, and the control signal output means includes a counter for adding when the comparison circuit detects that the voltage level continuously exceeds the intensity determination value for a predetermined period or more, A second feature is that the first control signal is output when the value of the counter exceeds a predetermined first determination value.

上記特徴の本発明に係る光伝送システムは、前記光受信装置が、外部入力された前記第1判定値またはその相当値を受け付ける外部入力手段を備え、前記制御信号出力手段が、外部入力された前記第1判定値またはその相当値に基づいて、前記第1判定値を再設定することを第3の特徴とする。   In the optical transmission system according to the present invention having the above characteristics, the optical receiver includes an external input unit that receives the first determination value or an equivalent value that is externally input, and the control signal output unit is externally input. A third feature is that the first determination value is reset based on the first determination value or an equivalent value thereof.

上記第1の特徴の本発明に係る光伝送システムは、前記信号強度検出手段が、前記電気信号の電圧レベルを積分する積分回路を備え、前記制御信号出力手段が、前記積分回路の値が、所定の第2判定値を超えた場合に、前記第1制御信号を出力することを第4の特徴とする。   In the optical transmission system according to the first aspect of the present invention, the signal strength detection unit includes an integration circuit that integrates a voltage level of the electrical signal, and the control signal output unit has a value of the integration circuit, A fourth feature is that the first control signal is output when a predetermined second determination value is exceeded.

上記特徴の本発明に係る光伝送システムは、前記光受信装置が、外部入力された前記第2判定値またはその相当値を受け付ける外部入力手段を備え、前記制御信号出力手段が、外部入力された前記第2判定値またはその相当値に基づいて、前記第2判定値を再設定することを第5の特徴とする。   In the optical transmission system according to the present invention having the above characteristics, the optical receiver includes an external input unit that receives the second determination value or an equivalent value that is externally input, and the control signal output unit is externally input. A fifth feature is that the second determination value is reset based on the second determination value or an equivalent value thereof.

上記何れかの特徴の本発明に係る光伝送システムは、前記制御信号出力手段が、光信号に前記第1制御信号を多重化して、前記光送信装置に出力することを第6の特徴とする。   The optical transmission system according to the present invention having any one of the above characteristics is characterized in that the control signal output means multiplexes the first control signal into an optical signal and outputs the multiplexed signal to the optical transmitter. .

上記何れかの特徴の本発明に係る光伝送システムは、前記電流制御信号が、前記発光素子が前記光信号を出力するための最小電流を規定する閾値電流の値に基づいて規定されるバイアス電流の値を設定するためのバイアス電流情報と、前記発光素子の光信号を変調する変調電流の値を設定するための変調電流情報を含んで構成され、前記光送信装置の前記制御手段が、前記バイアス電流情報を0に設定し、前記変調電流情報を増加方向に変化させたときの前記第1制御信号の出力タイミングにおける前記変調電流値またはその相当値をバイアス電流指標として求めるバイアス電流指標算出処理と、前記バイアス電流情報を前記バイアス電流指標に基づいて設定し、前記変調電流情報を増加方向に変化させたときの前記第1制御信号の出力タイミングにおける前記変調電流値またはその相当値を変調電流指標として求める変調電流指標算出処理と、前記バイアス電流指標、前記変調電流指標、及び、前記温度情報に基づいて、前記バイアス電流及び前記変調電流の値を求め、前記電流制御信号を生成する電流制御信号生成処理と、を実行することを第7の特徴とする。   The optical transmission system according to the present invention having any one of the above characteristics is characterized in that the current control signal is defined based on a threshold current value that defines a minimum current for the light emitting element to output the optical signal. And bias current information for setting the value of the modulation current information for setting the value of the modulation current for modulating the optical signal of the light emitting element, the control means of the optical transmission device, Bias current index calculation processing for setting, as a bias current index, the modulation current value or the equivalent value at the output timing of the first control signal when the bias current information is set to 0 and the modulation current information is changed in the increasing direction. The bias current information is set based on the bias current index, and the output timing of the first control signal when the modulation current information is changed in the increasing direction. Modulation current index calculation processing for obtaining the modulation current value or its equivalent value as a modulation current index, and the bias current index, the modulation current index, and the temperature information based on the bias current and the modulation current. A seventh characteristic is that a current control signal generation process for obtaining a value and generating the current control signal is executed.

上記目的を達成するための本発明に係る光送信装置は、光信号を生成する発光素子と、前記光信号を受け付けて前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成する光受信装置から、前記第1制御信号を受け付ける信号強度情報取得手段と、前記発光素子の温度を検出し、前記発光素子の温度を示す温度情報を含む第2制御信号を生成する温度検出手段と、所定の電流制御信号に基づき、前記発光素子を電流制御して前記光信号の強度を制御する駆動手段と、前記第1制御信号の前記信号強度情報と前記第2制御信号の前記温度情報に基づいて、前記電流制御信号を生成する制御手段と、を備えることを特徴とする。   To achieve the above object, an optical transmission apparatus according to the present invention generates a first control signal including a light emitting element that generates an optical signal and signal intensity information that receives the optical signal and indicates the signal intensity of the optical signal. Signal intensity information acquisition means for receiving the first control signal from the optical receiver, and temperature detection means for detecting a temperature of the light emitting element and generating a second control signal including temperature information indicating the temperature of the light emitting element Driving means for controlling the intensity of the optical signal by controlling the current of the light emitting element based on a predetermined current control signal, the signal intensity information of the first control signal, and the temperature information of the second control signal. And a control means for generating the current control signal.

上記目的を達成するための本発明に係る光受信装置は、上記特徴の光送信装置から出力された光信号を受け付け、電気信号に変換する受光手段と、前記電気信号に基づいて前記光信号の信号強度を検出する信号強度検出手段と、前記信号強度検出手段が検出した前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成し、前記光送信装置に出力する制御信号出力手段と、を備えることを特徴とする。   In order to achieve the above object, an optical receiving apparatus according to the present invention receives an optical signal output from the optical transmitting apparatus having the above characteristics and converts it into an electrical signal, and an optical signal based on the electrical signal. A control signal output for generating a first control signal including signal strength detection means for detecting signal strength and signal strength information indicating the signal strength of the optical signal detected by the signal strength detection means, and outputting the first control signal to the optical transmission device And means.

上記目的を達成するための本発明に係る光送受信装置は、外部入力された光信号を電気信号に変換する受光手段と、前記電気信号に基づいて前記光信号の信号強度を検出する信号強度検出手段と、前記信号強度検出手段が検出した前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成し出力する制御信号出力手段と、を備えた光受信部と、光信号を生成する発光素子と、外部入力された前記第1制御信号を受け付ける信号強度情報取得手段と、前記発光素子の温度を検出し、前記発光素子の温度を示す温度情報を含む第2制御信号を生成する温度検出手段と、所定の電流制御信号に基づき、前記発光素子を電流制御して前記光信号の強度を制御する駆動手段と、前記第1制御信号の前記信号強度情報と前記第2制御信号の前記温度情報に基づいて、前記電流制御信号を生成する制御手段と、を備えた光送信部と、を備えることを特徴とする。   To achieve the above object, an optical transmission / reception apparatus according to the present invention includes a light receiving means for converting an externally input optical signal into an electric signal, and a signal intensity detection for detecting the signal intensity of the optical signal based on the electric signal. And an optical receiving unit comprising: a control signal output unit that generates and outputs a first control signal including signal strength information indicating the signal strength of the optical signal detected by the signal strength detection unit; A light emitting element to be generated, a signal intensity information acquisition means for receiving the first control signal input from the outside, a temperature of the light emitting element is detected, and a second control signal including temperature information indicating the temperature of the light emitting element is generated. Temperature detecting means for driving, driving means for controlling the intensity of the optical signal by controlling the current of the light emitting element based on a predetermined current control signal, the signal intensity information of the first control signal, and the second control signal Of the above Based on the degree information, characterized in that it and a light transmission unit and a control means for generating said current control signal.

上記特徴の光伝送システムによれば、光伝送方式によるデータ通信において、光受信装置が、信号強度検出手段により検出した信号強度を示す信号強度情報を光送信装置に対して出力し、光送信装置が、当該信号強度情報に基づいて発光素子を制御するように構成したので、光送信装置において、光送信装置から光受信装置への伝送経路における伝送品質の劣化を考慮して、光送信装置の発光素子の信号強度を調整することが可能になる。これにより、光送信装置側の対応により、光受信装置が受け付ける光信号の伝送品質を向上させることが可能になる。   According to the optical transmission system having the above characteristics, in data communication based on the optical transmission method, the optical receiving apparatus outputs signal intensity information indicating the signal intensity detected by the signal intensity detecting means to the optical transmitting apparatus, and the optical transmitting apparatus However, since the light emitting element is controlled based on the signal intensity information, in the optical transmission device, the degradation of the transmission quality in the transmission path from the optical transmission device to the optical reception device is considered. It becomes possible to adjust the signal intensity of the light emitting element. As a result, the transmission quality of the optical signal received by the optical receiving device can be improved by the response on the optical transmitting device side.

また、上記特徴の光伝送システムは、光送信装置が、従来の温度検出手段以外の他の装置を設置する必要がなく、光受信装置が、従来の信号強度検出手段以外の他の装置を設置する必要がないため、部品点数の大幅な増加を招くことがなく、装置の小型化を大きく阻害することがない。従って、上記特徴の光伝送システムは、特に、携帯電話やパソコン、テレビ等の映像機器において、同一機器内でのデータ通信等、比較的近距離の光伝送方式によるデータ通信を行う機器に有用である。   Further, in the optical transmission system having the above characteristics, it is not necessary for the optical transmission device to install other devices than the conventional temperature detection means, and the optical reception device installs other devices other than the conventional signal intensity detection means. Therefore, the number of parts is not significantly increased, and the downsizing of the apparatus is not greatly hindered. Therefore, the optical transmission system having the above characteristics is particularly useful for devices that perform data communication using a relatively short-distance optical transmission method, such as data communication within the same device, in video devices such as mobile phones, personal computers, and televisions. is there.

上記特徴の光送受信装置によれば、光伝送方式によるデータ通信において、光受信部が、信号強度検出手段により検出した信号強度を示す信号強度情報を他の外部光送受信装置に対して出力し、光送信部が、外部光送受信装置から出力された信号強度情報に基づいて発光素子を制御するように構成したので、本発明装置は、伝送経路における伝送品質の劣化に適切に対応することが可能になる。これによって、上記特徴の光伝送システムと同様の効果を期待でき、光受信装置が受け付ける光信号の伝送品質を向上させることが可能になる。   According to the optical transmission / reception device having the above characteristics, in data communication by the optical transmission method, the optical reception unit outputs signal strength information indicating the signal strength detected by the signal strength detection unit to another external optical transmission / reception device, Since the optical transmission unit is configured to control the light emitting element based on the signal intensity information output from the external optical transmission / reception device, the device of the present invention can appropriately cope with the deterioration of the transmission quality in the transmission path. become. As a result, the same effect as the optical transmission system having the above characteristics can be expected, and the transmission quality of the optical signal received by the optical receiving apparatus can be improved.

以下、本発明に係る光伝送システム(以下、適宜「本発明システム」と略称する)、光送信装置、光受信装置、光送受信装置の実施形態を図面に基づいて説明する。   Embodiments of an optical transmission system according to the present invention (hereinafter, abbreviated as “the present system” as appropriate), an optical transmission device, an optical reception device, and an optical transmission / reception device will be described below with reference to the drawings.

〈第1実施形態〉
本発明システムの第1実施形態について、図1〜図9を基に説明する。
<First Embodiment>
1st Embodiment of this invention system is described based on FIGS.

先ず、本発明システムの構成について、図1〜図8を基に説明する。ここで、図1は、本実施形態の本発明システム1の概略構成例を示している。   First, the configuration of the system of the present invention will be described with reference to FIGS. Here, FIG. 1 shows a schematic configuration example of the inventive system 1 of the present embodiment.

図1に示すように、本発明システム1は、光信号を生成し、光伝送経路31を介して出力する光送信装置10と、光送信装置10から出力された光信号を、光伝送経路31を介して受け付ける光受信装置20と、を備えて構成されている。尚、本実施形態では、本発明システム1が、小型端末機器の一例としての携帯電話機の内部に構築される場合を想定しており、光受信装置20及び光送信装置10は、夫々、異なる半導体チップに構築され、光受信装置20を備えた半導体チップと光送信装置10を備えた半導体チップが、同じ基板上に設置されている場合を想定して説明する。   As shown in FIG. 1, the system 1 of the present invention generates an optical signal and outputs the optical signal via an optical transmission path 31, and the optical signal output from the optical transmission apparatus 10 And an optical receiving device 20 that accepts the data via the receiver. In this embodiment, it is assumed that the system 1 of the present invention is built inside a mobile phone as an example of a small terminal device, and the optical receiver 20 and the optical transmitter 10 are different semiconductors. Description will be made assuming that the semiconductor chip built in the chip and provided with the optical receiver 20 and the semiconductor chip provided with the optical transmitter 10 are installed on the same substrate.

光受信装置20は、光信号を電気信号に変換する受光素子21(受光手段に相当)と、受光素子21から出力された電流信号を電圧信号に変換するTIA回路22と、TIA回路22からの出力信号を増幅するAMP回路23と、AMP回路23からの出力信号を増幅し外部(同一半導体チップ内の他の回路)に出力するAMP回路24と、AMP回路23からの出力信号に基づいて光信号の信号強度を検出する信号強度検出手段25と、信号強度検出手段25が検出した光信号の信号強度を示す信号強度情報を含む第1制御信号を生成し出力する受信側APCユニット26(制御信号出力手段を含む)と、を備えて構成されている。尚、本実施形態では、受光素子21として、フォトダイオードを想定して説明するが、これに限るものではない。   The optical receiver 20 includes a light receiving element 21 (corresponding to a light receiving means) that converts an optical signal into an electrical signal, a TIA circuit 22 that converts a current signal output from the light receiving element 21 into a voltage signal, and a TIA circuit 22 An AMP circuit 23 that amplifies the output signal, an AMP circuit 24 that amplifies the output signal from the AMP circuit 23 and outputs it to the outside (another circuit in the same semiconductor chip), and an optical signal based on the output signal from the AMP circuit 23 A signal strength detection unit 25 that detects the signal strength of the signal, and a reception-side APC unit 26 that generates and outputs a first control signal including signal strength information indicating the signal strength of the optical signal detected by the signal strength detection unit 25 (control) Including signal output means). In the present embodiment, a photodiode is described as the light receiving element 21, but the present invention is not limited to this.

信号強度検出手段25は、本実施形態では、AMP回路23から出力された電気信号の電圧レベルVPDIOを、受光素子21が受信可能な光信号の信号強度以上の所定の信号強度を示す強度判定値と比較する比較回路を備えて構成されている。 In the present embodiment, the signal strength detection means 25 determines the strength of the voltage level V PDIO of the electrical signal output from the AMP circuit 23 and indicates a predetermined signal strength equal to or higher than the signal strength of the optical signal that can be received by the light receiving element 21. A comparison circuit for comparing with the value is provided.

ここで、図2は、光受信装置20の信号強度検出手段25の概略構成例を示しており、図3は、信号強度検出手段25において、AMP回路23から出力された電圧信号の電圧レベルVPDIOに対する信号強度の検出結果を示す信号SDETの信号波形を示している。信号強度検出手段25は、図2に示すように、後述する受信側APCユニット26から強度判定値VLevelを設定するための参照信号RLevelを受け付け、参照信号RLevelをデジタルアナログ変換した強度判定値VLevelを出力するDAC回路251と、光信号の信号強度を示す電圧レベルVPDIOと強度判定値VLevelを比較するコンパレータ252(比較回路に相当)とを備えて構成されている。コンパレータ252は、図3に示すように、光信号の信号強度を示す電圧レベルVPDIOが強度判定値VLevelを超えた期間に対応するパルス幅を有する正のパルス信号SDETを出力する。 Here, FIG. 2 shows a schematic configuration example of the signal strength detection means 25 of the optical receiver 20, and FIG. 3 shows the voltage level V of the voltage signal output from the AMP circuit 23 in the signal strength detection means 25. It shows a signal waveform of the signal S DET indicating the detection result of the signal intensity for PDIO. As shown in FIG. 2, the signal strength detection means 25 receives a reference signal R Level for setting a strength determination value V Level from a receiving-side APC unit 26 described later, and performs strength determination by digital-analog conversion of the reference signal R Level. the DAC circuit 251 for outputting a value V level, is configured to include a comparator 252 for comparing the voltage level V PDIO and intensity determination value V level that indicates the signal intensity of the optical signal (corresponding to the comparison circuit). The comparator 252, as shown in FIG. 3, and outputs a positive pulse signal S DET having a pulse width corresponding to a period in which the voltage level V PDIO showing signal intensity of the optical signal exceeds the intensity determination value V Level.

受信側APCユニット26は、図1に示すように、光信号の信号強度を示す電圧レベルVPDIOが強度判定値VLevelを超えた場合に出力されるパルス信号SDETを受け付け、パルス信号SDETの出力回数をカウントするカウンタ261を備えて構成されている。更に、受信側APCユニット26は、カウンタ261の値が所定の第1判定値を超えた場合に、第1制御信号Cを出力するように構成されている。 Recipient APC unit 26, as shown in FIG. 1, accepts a pulse signal S DET to the voltage level V PDIO showing signal intensity of the optical signal is output if it exceeds an intensity determination value V Level, the pulse signal S DET The counter 261 for counting the number of outputs is provided. Furthermore, the receiving APC unit 26, when the value of the counter 261 exceeds the first determination value predetermined, and is configured to output a first control signal C 1.

尚、第1判定値は、強度判定値VLevel等に応じて適切に設定する。強度判定値VLevelは、受光素子21が受信可能な光信号の信号強度以上に設定されるため、半導体プロセスや光信号の周波数等に応じて適切に設定する。尚、パルス信号SDETの出力回数をカウントする構成にすることにより、特に、光信号の信号強度を示す電圧レベルVPDIOのピーク値と強度判定値VLevelの差が小さい場合に、ノイズの影響を軽減できる。 Note that the first determination value is appropriately set according to the intensity determination value V Level or the like. Since the intensity determination value V Level is set to be equal to or higher than the signal intensity of the optical signal that can be received by the light receiving element 21, it is appropriately set according to the semiconductor process, the frequency of the optical signal, and the like. Incidentally, by making the configuration for counting the number of output times of the pulse signal S DET, especially when the difference between the peak value of the voltage level V PDIO showing signal intensity of the optical signal and the intensity determination value V Level is small, the influence of noise Can be reduced.

光送信装置10は、図1に示すように、光信号を生成する発光素子11と、光信号を受け付けた光受信装置20から第1制御信号Cを受け付ける信号強度情報取得手段と、発光素子11の温度を検出し、発光素子11の温度を示す温度情報を含む第2制御信号を生成する温度検出手段13と、所定の電流制御信号(本実施形態では、バイアス電流IBIAS、変調電流IMOD)に基づき、発光素子11を電流制御して光信号の強度を制御するドライバ14(駆動手段に相当)と、第1制御信号Cの信号強度情報と第2制御信号の温度情報RTEMPに基づいて、電流制御信号を生成する制御手段と、を備えて構成されている。尚、本実施形態では、送信側APCユニット12とドライバ制御手段15が、信号強度情報取得手段及び制御手段として機能するように構成されている。 As shown in FIG. 1, the optical transmitter 10 includes a light emitting element 11 that generates an optical signal, a signal intensity information acquisition unit that receives a first control signal C 1 from the optical receiver 20 that receives the optical signal, and a light emitting element. 11 for detecting a temperature of the light emitting element 11 and generating a second control signal including temperature information indicating the temperature of the light emitting element 11, and a predetermined current control signal (in this embodiment, bias current I BIAS , modulation current I based on MOD), a driver 14 for controlling the intensity of the optical signal emitting element 11 current control to (corresponding to the drive means), the temperature information R TEMP signal strength information of the first control signal C 1 and the second control signal And a control means for generating a current control signal. In the present embodiment, the transmission side APC unit 12 and the driver control unit 15 are configured to function as a signal strength information acquisition unit and a control unit.

発光素子11は、本実施形態では、VCSEL(Vertical Cavity Surface EmittingLaser)11を想定して説明する。尚、本実施形態では、VCSEL11を想定しているが、LED(Light Emitting Diode)やLD(Laser Diode)や他の発光素子11を用いても良い。   In the present embodiment, the light-emitting element 11 will be described assuming a VCSEL (Vertical Cavity Surface Emitting Laser) 11. In this embodiment, the VCSEL 11 is assumed, but an LED (Light Emitting Diode), an LD (Laser Diode), or another light emitting element 11 may be used.

ここで、図4は、VCSEL11が光信号を出力するための最小電流を規定する閾値電流ITHの温度依存特性を示しており、図5は、VCSEL11に供給される駆動電流IVCSELとVCSEL11の光信号の出力値PVCSELの相関関係を示している。図4から分かるように、閾値電流ITHは、室温付近(約27度(摂氏))を下限として、V字型の温度特性を有している。また、図5(a)は、VCSEL11のIP変換特性を、図5(b)は、VCSEL11に供給される駆動電流IVCSELの例を、図5(c)は、図5b)に示す駆動電流IVCSELに対応する光信号の出力値PVCSELを示している。図5に示すように、駆動電流IVCSELが閾値電流ITHより大きい場合に、光信号の変調が可能になる。 Here, FIG. 4 shows the temperature dependence characteristics of the threshold current I TH that defines the minimum current for the VCSEL 11 to output an optical signal, and FIG. 5 shows the drive currents I VCSEL and VCSEL 11 supplied to the VCSEL 11. The correlation of the output value PVCSEL of an optical signal is shown. As can be seen from FIG. 4, the threshold current I TH has a V-shaped temperature characteristic with the lower limit being around room temperature (about 27 degrees Celsius). 5A shows the IP conversion characteristics of the VCSEL 11 , FIG. 5B shows an example of the drive current I VCSEL supplied to the VCSEL 11 , and FIG. 5C shows the drive current shown in FIG. 5B. The output value P VCSEL of the optical signal corresponding to I VCSEL is shown. As shown in FIG. 5, when the drive current I VCSEL is larger than the threshold current I TH , the optical signal can be modulated.

ドライバ14は、後述するドライバ制御手段15から、バイアス電流IBIASと光信号を変調する変調電流IMODを受け付けて、VCSEL11に供給する駆動電流IVCSELを生成し、VCSEL11に対する電流制御を行う。ここで、図6は、ドライバ14の概略回路構成例を示しており、図7は、図5は、VCSEL11に供給される駆動電流IVCSEL(バイアス電流IBIASと変調電流IMODの合計値)とVCSEL11の光信号の出力値PVCSELの相関関係を示している。 The driver 14 receives a bias current I BIAS and a modulation current I MOD that modulates an optical signal from a driver control unit 15 described later, generates a drive current I VCSEL to be supplied to the VCSEL 11 , and performs current control on the VCSEL 11. Here, FIG. 6 shows a schematic circuit configuration example of the driver 14, and FIG. 7 shows a drive current I VCSEL supplied to the VCSEL 11 (total value of the bias current I BIAS and the modulation current I MOD ). And the output value P VCSEL of the optical signal of the VCSEL 11 is shown.

より詳細には、ドライバ14は、図6に示すように、2つのカレントミラー回路を備えて構成されており、バイアス電流IBIASに応じた電流を常時VCSEL11に供給すると共に、送信データを示す信号VDATAの電圧レベルに基づいて、変調電流IMODに応じた電流のVCSEL11への供給(オン状態)及び供給停止(オフ状態)を切り替える。このようにして光信号を変調することで、VCSEL11が、駆動電流IVCSEL(バイアス電流IBIASと変調電流IMODの合計値)に比例した強度の光信号を出力する。尚、バイアス電流IBIASは、閾値電流ITHに応じて設定する。 More specifically, as shown in FIG. 6, the driver 14 includes two current mirror circuits, and constantly supplies a current corresponding to the bias current I BIAS to the VCSEL 11 and a signal indicating transmission data. based on the voltage level of V DATA, switch the supply to VCSEL11 current corresponding to the modulation current I MOD (on state) and supply stop (oFF state). By modulating the optical signal in this way, the VCSEL 11 outputs an optical signal having an intensity proportional to the drive current I VCSEL (the total value of the bias current I BIAS and the modulation current I MOD ). The bias current I BIAS is set according to the threshold current I TH .

尚、本実施形態では、VCSEL11に供給する駆動電流IVCSELを、バイアス電流IBIASと変調電流IMODに分けて制御している。これは、図5に示すように、仮に、バイアス電流IBIASを0に設定すると、変調電流IMODの値を駆動電流IVCSELの値にする必要があり、変調電流IMODの変動幅が相当大きくなる。この場合には、変調電流IMODが閾値電流ITHを超えるまでの時間に、パルス幅自体が変調される非線形現象が発生し、受信側でのBER(ビットエラーレート)を劣化させる要因となる。従って、バイアス電流IBIASを閾値電流ITHや発光素子11に求められる応答速度等を考慮して設定し、常時VCSEL11に供給することにより、BERの劣化防止、及び、消費電力の低減を図ることが可能になる。 In the present embodiment, the drive current I VCSEL supplied to the VCSEL 11 is controlled by being divided into the bias current I BIAS and the modulation current I MOD . This is because, as shown in FIG. 5, if, when the bias current I BIAS is set to 0, it is necessary to a value of the modulation current I MOD to the value of the drive current I VCSEL, corresponding variation width of the modulation current I MOD growing. In this case, a nonlinear phenomenon occurs in which the pulse width itself is modulated during the time until the modulation current I MOD exceeds the threshold current I TH , which becomes a factor of deteriorating the BER (bit error rate) on the receiving side. . Accordingly, the bias current I BIAS is set in consideration of the threshold current I TH and the response speed required for the light emitting element 11, and is constantly supplied to the VCSEL 11, thereby preventing BER deterioration and reducing power consumption. Is possible.

温度検出手段13は、VCSEL11の周囲の温度を観測する感温素子を備えて構成され、感温素子によって検出された温度を示す温度情報RTEMPを、後述するドライバ制御手段15に対して出力する。ここで、図8(a)は、VCSEL11の温度別(低温、室温、高温の場合別)のIP変換特性を、図8(b)は、VCSEL11のIP変換係数η(図8(a)におけるIP変換特性の近似式の傾き)の温度依存特性を、図8(c)は、閾値電流ITHの温度依存特性を夫々示している。図8(a)から分かるように、VCSEL11のIP変換特性は、温度が増加するにつれて傾きが小さくなる。即ち、図8(b)に示すように、VCSEL11のIP変換係数ηは、温度が増加するにつれて小さくなる。 The temperature detection unit 13 includes a temperature sensing element that observes the temperature around the VCSEL 11 and outputs temperature information R TEMP indicating the temperature detected by the temperature sensing element to the driver control unit 15 described later. . 8A shows the IP conversion characteristics for each temperature of the VCSEL 11 (low temperature, room temperature, and high temperature), and FIG. 8B shows the IP conversion coefficient η of the VCSEL 11 (in FIG. 8A). FIG. 8C shows the temperature-dependent characteristics of the approximate expression of the IP conversion characteristics, and FIG. 8C shows the temperature-dependent characteristics of the threshold current ITH . As can be seen from FIG. 8A, the slope of the IP conversion characteristics of the VCSEL 11 decreases as the temperature increases. That is, as shown in FIG. 8B, the IP conversion coefficient η of the VCSEL 11 decreases as the temperature increases.

送信側APCユニット12は、光受信装置20から信号強度情報を示す第1制御信号Cを受け付け、第1制御信号Cに基づいて、バイアス電流IBIASの値を設定するためのバイアス電流情報RBIASと、変調電流IMODの値を設定するための変調電流情報RMODを生成する。 The transmission-side APC unit 12 receives the first control signal C 1 indicating the signal strength information from the optical receiver 20, and bias current information for setting the value of the bias current I BIAS based on the first control signal C 1. and R BIAS, generates a modulation current information R MOD for setting the value of the modulation current I MOD.

ドライバ制御手段15は、送信側APCユニット12から、バイアス電流情報RBIASと変調電流情報RMODを、温度検出手段13から、温度情報RTEMPを夫々受け付け、電流制御信号として、バイアス電流IBIAS及び変調電流IMODを生成する。具体的には、バイアス電流IBIASは、バイアス電流情報RBIASに、閾値電流ITHの温度依存特性に対する温度補償量を加えて求める。温度補償量は、図4に示す閾値電流ITHの温度依存特性の近似式の傾きに基づいて設定する。尚、図4では、閾値電流ITHが、室温27[度]を下限値として略V字型の温度依存特性を有するため、簡単のために、温度が27[度]以下の場合と27[度]以上の場合の2つに分けて近似式の傾きを算出する。図4より、閾値電流ITHの温度依存特性の近似式の傾きは、室温27[度]以上の場合が0.0096≒0.01、室温27[度]より低い場合が−0.0105≒−0.01となる。以上より、バイアス電流IBIASは、以下の数1及び数2に示す一次の近似式で求められる。 The driver control means 15 receives the bias current information R BIAS and the modulation current information R MOD from the transmission side APC unit 12 and the temperature information R TEMP from the temperature detection means 13 respectively, and uses the bias current I BIAS and the current control signal as current control signals. A modulation current I MOD is generated. Specifically, the bias current I BIAS is obtained by adding the temperature compensation amount for the temperature dependence characteristic of the threshold current I TH to the bias current information R BIAS . The temperature compensation amount is set based on the slope of the approximate expression of the temperature dependence characteristic of the threshold current I TH shown in FIG. In FIG. 4, the threshold current I TH has a substantially V-shaped temperature-dependent characteristic with the room temperature 27 [degrees] as the lower limit, and for simplicity, the case where the temperature is 27 [degrees] or less and 27 [degrees]. Degree] The slope of the approximate expression is calculated in two cases. As shown in FIG. 4, the slope of the approximate expression of the temperature-dependent characteristic of the threshold current I TH is 0.0096≈0.01 when the room temperature is 27 [degrees] or more, and −0.0105≈when the slope is lower than the room temperature 27 [degrees]. -0.01. From the above, the bias current I BIAS can be obtained by the first-order approximation equation shown in the following equations 1 and 2.

[数1]
BIAS=0.01(273+RTEMP−300)+RBIAS(RTEMP≧27)
[Equation 1]
I BIAS = 0.01 (273 + R TEMP −300) + R BIAS (R TEMP ≧ 27)

[数2]
BIAS=−0.01(273+RTEMP−300)+RBIAS(RTEMP<27)
[Equation 2]
I BIAS = −0.01 (273 + R TEMP −300) + R BIAS (R TEMP <27)

尚、温度情報RTEMPは摂氏温度である。また、変調電流IMODについては、図8に基づき、以下の数3から求められる。 The temperature information R TEMP is a Celsius temperature. Further, the modulation current I MOD is obtained from the following equation 3 based on FIG.

[数3]
MOD=0.02(273+RTEMP−300)+RMOD
[Equation 3]
I MOD = 0.02 (273 + R TEMP −300) + R MOD

尚、図8に示すように、VCSEL11のIP変換係数η(変換効率)は温度上昇と共に低下するため、傾き0.02の温度係数で変調電流IMODを増加させることにより、温度依存特性を補償している。 As shown in FIG. 8, since the IP conversion coefficient η (conversion efficiency) of the VCSEL 11 decreases as the temperature rises, the temperature-dependent characteristic is compensated by increasing the modulation current I MOD with a temperature coefficient with a slope of 0.02. is doing.

本発明システム1のドライバ制御手段15は、伝送経路における伝送品質の劣化補償と温度補償の両方を考慮した数1〜数3を用いてバイアス電流IBIAS及び変調電流IMODを求め、VCSEL11の電流制御を行う。これにより、本発明システム1は、従来の光伝送システムにおけるバイアス電流IBIAS及び変調電流IMODの算出式を変更するのみで、従来の光伝送システムの制御アルゴリズムを利用して構築することが可能になる。従って、伝送経路における伝送品質の劣化補償と温度補償を別個に行う場合には複雑な制御が必要となるが、本発明システム1では、バイアス電流IBIAS及び変調電流IMODの算出式を変更するだけで良く、複雑な制御等を必要とすることなく、伝送経路における伝送品質の劣化補償と温度補償の両方を実現できる。 The driver control means 15 of the system 1 according to the present invention obtains the bias current I BIAS and the modulation current I MOD by using Equations 1 to 3 in consideration of both transmission quality degradation compensation and temperature compensation in the transmission path, and the current of the VCSEL 11 Take control. Thus, the inventive system 1 can be constructed using the control algorithm of the conventional optical transmission system only by changing the calculation formulas of the bias current I BIAS and the modulation current I MOD in the conventional optical transmission system. become. Therefore, complicated control is required when the transmission quality deterioration compensation and the temperature compensation are separately performed in the transmission path. In the system 1 of the present invention, the calculation formulas of the bias current I BIAS and the modulation current I MOD are changed. Therefore, it is possible to realize both transmission quality deterioration compensation and temperature compensation in the transmission path without requiring complicated control.

尚、本実施形態では、簡単のために、バイアス電流IBIASと変調電流IMODを求める数1〜数3を一次の近似式としたが、これに限るものではなく、より精密に、2次以上の近似式で求めるように構成しても良い。 In this embodiment, for the sake of simplicity, Equations 1 to 3 for obtaining the bias current I BIAS and the modulation current I MOD are first-order approximations. However, the present invention is not limited to this, and the second-order approximation is more precise. You may comprise so that it may obtain | require by the above approximate expression.

以下、送信側APCユニット12及びドライバ制御手段15におけるバイアス電流IBIAS及び変調電流IMODの設定方法について、図9を基に説明する。 Hereinafter, a setting method of the bias current I BIAS and the modulation current I MOD in the transmission side APC unit 12 and the driver control means 15 will be described with reference to FIG.

先ず、光送信装置10に対し、クロック信号を送信信号VDATAとして入力し、バイアス電流情報RBIASを求めるための前処理として、光送信装置10の送信側APCユニット12が、APC通信経路32を介して、光受信装置20の受信側APCユニット26に対し、カウンタ261を初期化するための初期化信号を出力する。続いて、送信側APCユニット12は、バイアス電流情報RBIAS及び変調電流情報RMODを0に設定する。更に、バイアス電流情報RBIASを求めるために、光送信装置10の送信側APCユニット12が、変調電流情報RMODを増加方向に変化させ、第1制御信号Cの出力タイミングにおける変調電流情報RMODの値(変調電流IMODの相当値)をバイアス電流指標として求める(バイアス電流指標算出処理に相当)。 First, as a pre-process for inputting the clock signal as the transmission signal V DATA to the optical transmission apparatus 10 and obtaining the bias current information R BIAS , the transmission side APC unit 12 of the optical transmission apparatus 10 uses the APC communication path 32. Then, an initialization signal for initializing the counter 261 is output to the reception side APC unit 26 of the optical receiver 20. Subsequently, the transmission side APC unit 12 sets the bias current information R BIAS and the modulation current information R MOD to 0. Further, in order to obtain the bias current information R BIAS , the transmission side APC unit 12 of the optical transmission device 10 changes the modulation current information R MOD in the increasing direction, and the modulation current information R at the output timing of the first control signal C 1. The value of MOD (equivalent value of modulation current I MOD ) is obtained as a bias current index (corresponding to bias current index calculation processing).

より詳細には、送信側APCユニット12は、時間T0でバイアス電流情報RBIAS及び変調電流情報RMODを0に設定し、一定期間毎に、変調電流情報RMODを1ずつ増加させる。このとき、変調電流情報RMODを1ずつ増加させるに伴って、図3に示すように、光受信装置20の信号強度検出手段25が受け付ける光信号の信号強度VPDIOの振幅が次第に大きくなる。光受信装置20が検出する光信号の信号強度VPDIOの振幅が大きくなり、ピーク値が強度判定値VLevelを超えるようになると、信号強度検出手段25からパルス信号SDETが出力される。受信側APCユニット26は、パルス信号SDETのカウント値が所定の第1判定値をこえると、制御信号Cを出力する。本実施形態では、図9に示すように、時間T1において、光受信装置20から制御信号Cが出力される。光送信装置10の送信側APCユニット12は、光受信装置20から制御信号Cが出力されると、このときの変調電流情報RMODの値“0x0a”をバイアス電流指標として設定する。これにより、閾値電流ITHに基づいて適切にバイアス電流指標を求めることができる。 More specifically, the transmitting-side APC unit 12 sets the bias current information R BIAS and the modulation current information R MOD to 0 at time T0, and increases the modulation current information R MOD by 1 every fixed period. At this time, as the modulation current information R MOD is increased by one, as shown in FIG. 3, the amplitude of the signal strength V PDIO of the optical signal received by the signal strength detection means 25 of the optical receiver 20 gradually increases. The amplitude of the signal strength V PDIO of the optical signal detected by the optical receiver 20 is increased, the peak value becomes to exceed the intensity determination value V Level, the pulse signal S DET from the signal strength detection means 25 is output. Recipient APC unit 26, the count value of the pulse signal S DET exceeds a first determination value predetermined, and outputs the control signal C 1. In the present embodiment, as shown in FIG. 9, at time T1, the control signal C 1 is output from the optical receiver 20. When the control signal C 1 is output from the optical receiver 20, the transmitting APC unit 12 of the optical transmitter 10 sets the modulation current information R MOD value “0x0a” at this time as a bias current index. Thereby, the bias current index can be appropriately obtained based on the threshold current ITH .

続いて、変調電流情報RMODを求めるための前処理として、図9に示すように、光送信装置10の送信側APCユニット12が、APC通信経路32を介して、光受信装置20の受信側APCユニット26に対し、カウンタ261を初期化するための初期化信号を出力する。引き続き、光送信装置10の送信側APCユニット12が、バイアス電流情報RBIASをバイアス電流指標に基づいて設定し、変調電流情報RMODを0に設定する。更に、変調電流情報RMODを求めるために、光送信装置10の送信側APCユニット12が、変調電流情報RMODを増加方向に変化させ、第1制御信号Cの出力タイミングにおける変調電流情報RMODの値(変調電流IMODの相当値)を変調電流指標として求める(変調電流指標算出処理に相当)。 Subsequently, as pre-processing for obtaining the modulation current information R MOD , as shown in FIG. 9, the transmission side APC unit 12 of the optical transmission apparatus 10 receives the reception side of the optical reception apparatus 20 via the APC communication path 32. An initialization signal for initializing the counter 261 is output to the APC unit 26. Subsequently, the transmission side APC unit 12 of the optical transmission apparatus 10 sets the bias current information R BIAS based on the bias current index, and sets the modulation current information R MOD to 0. Further, in order to obtain the modulation current information R MOD , the transmission side APC unit 12 of the optical transmission apparatus 10 changes the modulation current information R MOD in the increasing direction, and the modulation current information R at the output timing of the first control signal C 1. The MOD value (equivalent value of the modulation current I MOD ) is obtained as a modulation current index (corresponding to the modulation current index calculation process).

より詳細には、図9に示すように、光送信装置10の送信側APCユニット12が、時間T2でバイアス電流情報RBIASをバイアス電流指標0x0aに設定し、変調電流情報RMODを0に設定する。そして、一定期間毎に、変調電流情報RMODを1ずつ増加させる。これに伴って、上述したように、光受信装置20が検出する光信号の信号強度VPDIOの振幅が大きくなり、ピーク値が強度判定値VLevelを超えるようになると、光受信装置20の信号強度検出手段25からパルス信号SDETが出力される。光受信装置20の受信側APCユニット26は、パルス信号SDETのカウント値が所定の第1判定値をこえると、制御信号Cを出力する。本実施形態では、図9に示すように、時間T3において、光受信装置20から制御信号Cが出力される。光送信装置10の送信側APCユニット12は、時間T3において、光受信装置20から制御信号Cが出力されると、このときの変調電流情報RMODの値“0x1d”を変調電流指標とする。これにより、BERを十分に満たす変調電流情報RMODを求めることができる。 More specifically, as shown in FIG. 9, the transmission side APC unit 12 of the optical transmission apparatus 10 sets the bias current information R BIAS to the bias current index 0x0a and sets the modulation current information R MOD to 0 at time T2. To do. Then, the modulation current information R MOD is increased by 1 for each fixed period. Accordingly, as described above, when the amplitude of the signal intensity V PDIO of the optical signal detected by the optical receiver 20 increases and the peak value exceeds the intensity determination value V Level , the signal of the optical receiver 20 A pulse signal SDET is output from the intensity detector 25. Recipient APC unit of the optical receiver 20 26, the count value of the pulse signal S DET exceeds a first determination value predetermined, and outputs the control signal C 1. In the present embodiment, as shown in FIG. 9, at time T3, the control signal C 1 is output from the optical receiver 20. Sender APC unit 12 of the optical transmitter 10 at time T3, the control signal C 1 from the optical receiver 20 is output, the value "0x1d" of the modulation current information R MOD at this time the modulation current index . Thereby, the modulation current information R MOD that sufficiently satisfies the BER can be obtained.

引き続き、送信側APCユニット12は、バイアス電流指標、変調電流指標、及び、温度情報RTEMPに基づいて、バイアス電流IBIAS及び変調電流IMODの値を求め、電流制御信号を生成する(電流制御信号生成処理)。ここでは、バイアス電流情報RBIASの値を“0x0a”に、変調電流情報RMODの値を“0x1d”に設定し、これにより、バイアス電流IBIAS及び変調電流IMODの値を設定する。 Subsequently, the transmission-side APC unit 12 obtains values of the bias current I BIAS and the modulation current I MOD based on the bias current index, the modulation current index, and the temperature information R TEMP and generates a current control signal (current control signal). Signal generation processing). Here, the value of the bias current information R BIAS is set to “0x0a”, and the value of the modulation current information R MOD is set to “0x1d”, thereby setting the values of the bias current I BIAS and the modulation current I MOD .

〈別実施形態〉
〈1〉上記実施形態では、本発明システム1が携帯電話機に搭載される場合を想定して説明したが、これに限るものではない。パソコンやテレビ等の小型端末機器等、他の機器に搭載することも可能である。また、上記実施形態では、光送信装置10に対し1つの光受信装置20が設置されている場合を想定して説明したが、光送信装置10が、複数の光受信装置20と光伝送方式によるデータ通信を可能に構成されていても良い。
<Another embodiment>
<1> In the above embodiment, the system 1 of the present invention has been described on the assumption that the system 1 is mounted on a mobile phone. However, the present invention is not limited to this. It can also be installed in other devices such as small terminal devices such as personal computers and televisions. Moreover, although the said embodiment demonstrated the case where the one optical receiver 20 was installed with respect to the optical transmitter 10, the optical transmitter 10 is based on the some optical receiver 20 and an optical transmission system. Data communication may be configured.

更に、上記実施形態では、本発明システム1を構成する光受信装置20及び光送信装置10が、夫々、異なる半導体チップに構築されている場合について説明したが、図10に示すように、同一半導体チップ内に、光受信装置20(光受信部20’)及び光送信装置10(光送信部10’)の両方が構築されていても良い。尚、光受信部20’の構成は上記実施形態における光受信装置20と同じであり、光送信部10’の構成は上記実施形態における光送信装置10と同じである。   Further, in the above-described embodiment, the case where the optical receiver 20 and the optical transmitter 10 constituting the system 1 of the present invention are constructed in different semiconductor chips, respectively, as shown in FIG. Both the optical receiver 20 (optical receiver 20 ′) and the optical transmitter 10 (optical transmitter 10 ′) may be built in the chip. The configuration of the optical receiver 20 'is the same as that of the optical receiver 20 in the above embodiment, and the configuration of the optical transmitter 10' is the same as that of the optical transmitter 10 in the above embodiment.

〈2〉上記実施形態では、光受信装置20が、第1制御信号CをAPC通信により光送信装置10に出力するように構成したが、これに限るものではない。例えば、図11に示すように、同一半導体チップ内に、光受信部20’(光受信装置20)と光送信部10'(光送信装置10)が構築されている光送受信装置1Aの場合は、光送受信装置1Aの受信側APCユニット26が、光送受信装置1Aの光送信部10に第1制御信号Cを出力し、光送受信装置1Aの送信部10が光信号に制御信号C1を多重化して光送受信装置1Bに出力するように構成しても良い。このように構成すれば、装置構成を小さく押さえることを期待できる。また、別途設けた他の通信手段を用いても良い。 <2> In the above embodiment, the optical receiving apparatus 20, but the first control signal C 1 is configured to output to the optical transmission apparatus 10 by the APC communication, not limited to this. For example, as shown in FIG. 11, in the case of an optical transceiver 1A in which an optical receiver 20 ′ (optical receiver 20) and an optical transmitter 10 ′ (optical transmitter 10) are constructed in the same semiconductor chip. , recipient APC unit 26 of the optical transceiver apparatus 1A, the optical transmission section 10 of the optical transceiver 1A outputs a first control signal C 1, the transmission unit 10 of the optical transceiver 1A is a control signal C1 to the light signal multiplexing And may be configured to output to the optical transceiver 1B. If comprised in this way, it can be anticipated that an apparatus structure will be restrained small. Also, other communication means provided separately may be used.

〈3〉上記実施形態において、第1制御信号Cの出力タイミングを規定するカウンタ261の値(第1判定値)を、外部入力により再設定可能に構成しても良い。具体的には、例えば、図12に示すように、光受信装置20に、外部入力された第1判定値またはその相当値を受け付ける外部入力手段27を設け、受信側APCユニット26を、外部入力された第1判定値またはその相当値に基づいて、第1判定値を再設定するように構成する。 <3> In the above embodiment, the value of the counter 261 which defines a first output timing of the control signal C 1 (the first determination value), may be re-settable configuration by an external input. Specifically, for example, as shown in FIG. 12, the optical receiving device 20 is provided with an external input means 27 for receiving the first determination value or its equivalent value inputted externally, and the receiving side APC unit 26 is connected to the external input device. The first determination value is reset based on the first determination value or its equivalent value.

〈4〉上記実施形態では、光受信装置20の受信側APCユニット26が、信号SDETの出力回数をカウントするように構成されている場合について説明したが、これに限るものではない。 <4> In the above embodiment, the case has been described in which the reception-side APC unit 26 of the optical receiver 20 is configured to count the number of times of output of the signal SDET . However, the present invention is not limited to this.

例えば、受信側APCユニット26を、カウンタ261ではなく、電気信号の電圧レベルを積分する積分回路を用いて構成しても良い。この場合には、受信側APCユニット26を、積分回路の値が所定の第2判定値を超えた場合に、第1制御信号Cを出力するように構成する。尚、受信側APCユニット26を積分回路を用いて構成した場合も、カウンタ261を備えて構成した場合と同様に、特に、電圧信号VINの電圧レベル(ピーク値)と参照信号VLevelの電圧レベルの差が小さい場合に、ノイズの影響を軽減できる。 For example, the reception-side APC unit 26 may be configured using an integration circuit that integrates the voltage level of the electrical signal instead of the counter 261. In this case, the recipient APC unit 26, when the value of the integration circuit exceeds a predetermined second determination value, configured to output a first control signal C 1. Note that when the receiving side APC unit 26 is configured using an integrating circuit, the voltage level (peak value) of the voltage signal VIN and the voltage of the reference signal V Level are particularly the same as when configured with the counter 261. When the level difference is small, the influence of noise can be reduced.

尚、この場合には、第2制御信号の出力タイミングを規定する積分回路の値(第2判定値)を、外部入力により再設定可能に構成しても良い。具体的には、例えば、図12に示す光受信装置20の外部入力手段27を、外部入力された第2判定値またはその相当値を受け付けるように構成し、受信側APCユニット26を、外部入力された第2判定値またはその相当値に基づいて、第2判定値を再設定するように構成する。   In this case, an integration circuit value (second determination value) that defines the output timing of the second control signal may be configured to be reset by an external input. Specifically, for example, the external input unit 27 of the optical receiver 20 shown in FIG. 12 is configured to receive the second determination value or its equivalent value input from the outside, and the receiving side APC unit 26 is connected to the external input unit. The second determination value is reset based on the second determination value or its equivalent value.

本発明に係る光伝送システムの概略構成例を示す概略ブロック図Schematic block diagram showing a schematic configuration example of an optical transmission system according to the present invention 本発明に係る光伝送システムを構成する光受信装置の信号強度検出手段の概略構成例を示す概略ブロック図1 is a schematic block diagram showing a schematic configuration example of signal intensity detection means of an optical receiving device constituting an optical transmission system according to the present invention. 本発明に係る光伝送システムを構成する光受信装置の信号強度検出手段の動作例を説明する概略波形図Schematic waveform diagram for explaining an example of the operation of the signal intensity detecting means of the optical receiver constituting the optical transmission system according to the present invention. 本発明に係る光伝送システムを構成する光送信装置の発光素子の温度特性を示す概略部分波形図Schematic partial waveform diagram showing temperature characteristics of a light emitting element of an optical transmission apparatus constituting an optical transmission system according to the present invention 本発明に係る光伝送システムを構成する光送信装置の発光素子の電流特性を示す概略部分波形図Schematic partial waveform diagram showing current characteristics of light-emitting elements of an optical transmission apparatus constituting an optical transmission system according to the present invention 本発明に係る光伝送システムを構成する光送信装置のドライバの概略構成例を示す概略ブロック図1 is a schematic block diagram showing a schematic configuration example of a driver of an optical transmission device constituting an optical transmission system according to the present invention. 本発明に係る光伝送システムを構成する光送信装置の発光素子の電流特性を示す概略部分波形図Schematic partial waveform diagram showing current characteristics of light-emitting elements of an optical transmission apparatus constituting an optical transmission system according to the present invention 本発明に係る光伝送システムを構成する光送信装置の発光素子の温度特性を示す概略部分波形図Schematic partial waveform diagram showing temperature characteristics of a light emitting element of an optical transmission apparatus constituting an optical transmission system according to the present invention 本発明に係る光伝送システムの初期設定動作を示す概略部分波形図Schematic partial waveform diagram showing the initial setting operation of the optical transmission system according to the present invention 本発明に係る光伝送システムの別実施形態の概略構成例を示す概略ブロック図Schematic block diagram showing a schematic configuration example of another embodiment of the optical transmission system according to the present invention 本発明に係る光伝送システムの別実施形態の概略構成例を示す概略ブロック図Schematic block diagram showing a schematic configuration example of another embodiment of the optical transmission system according to the present invention 本発明に係る光伝送システムの別実施形態の概略構成例を示す概略ブロック図Schematic block diagram showing a schematic configuration example of another embodiment of the optical transmission system according to the present invention 従来技術に係る光伝送システムの概略構成例を示す概略ブロック図Schematic block diagram showing a schematic configuration example of a conventional optical transmission system

符号の説明Explanation of symbols

1 本発明に係る光伝送システム
1A 本発明に係る光送受信装置
1B 本発明に係る光送受信装置
10 本発明に係る光送信装置
10’ 光送信部
11 発光素子
12 送信側APCユニット
13 温度検出手段
14 ドライバ(駆動手段)
15 ドライバ制御手段
20 本発明に係る光受信装置
20’ 光受信部
21 受光素子(受光手段)
22 TIA回路
23 AMP回路
24 AMP回路
25 信号強度検出手段
26 受信側APCユニット
27 外部入力手段
31 光伝送経路
31’ 光伝送経路
32 APC通信経路
32’ APC通信経路
100 基地局側光送受信装置
110 光送信装置
111 発光素子
112 信号強度検出用受光素子
113 APC制御手段
114 ドライバ
115 ドライバ制御手段
120 光受信装置
121 受光素子
122 TIA回路
123 AMP回路
200 端末側光送受信装置
210 光受信装置
211 受光素子
212 TIA回路
213 AMP回路
214 AMP回路
215 距離推定手段
220 光送信装置
221 発光素子
222 ドライバ
223 APC制御手段
224 ドライバ制御手段
251 DAC回路
252 コンパレータ(比較回路)
261 カウンタ
301 ダウンストリーム
302 アップストリーム
DESCRIPTION OF SYMBOLS 1 Optical transmission system 1A concerning this invention Optical transmission / reception apparatus 1B concerning this invention Optical transmission / reception apparatus 10 concerning this invention Optical transmission apparatus 10 'concerning this invention Optical transmission part 11 Light emitting element 12 Transmission side APC unit 13 Temperature detection means 14 Driver (drive means)
15 Driver control means 20 Optical receiver 20 'according to the present invention Optical receiver 21 Light receiving element (light receiving means)
22 TIA circuit 23 AMP circuit 24 AMP circuit 25 Signal strength detection means 26 Reception side APC unit 27 External input means 31 Optical transmission path 31 ′ Optical transmission path 32 APC communication path 32 ′ APC communication path 100 Base station side optical transceiver 110 Light Transmitting device 111 Light emitting element 112 Light receiving element for signal intensity detection 113 APC control means 114 Driver 115 Driver control means 120 Optical receiving apparatus 121 Light receiving element 122 TIA circuit 123 AMP circuit 200 Terminal side optical transmission / reception apparatus 210 Optical receiving apparatus 211 Light receiving element 212 TIA Circuit 213 AMP circuit 214 AMP circuit 215 Distance estimation means 220 Optical transmission device 221 Light emitting element 222 Driver 223 APC control means 224 Driver control means 251 DAC circuit 252 Comparator (comparison circuit)
261 counter 301 downstream 302 upstream

Claims (10)

光信号を電気信号に変換する受光手段と、前記電気信号に基づいて前記光信号の信号強度を検出する信号強度検出手段と、前記信号強度検出手段が検出した前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成し出力する制御信号出力手段と、を備えた光受信装置の1または複数と、
前記光信号を生成する発光素子と、前記光信号を受け付けた前記光受信装置から前記第1制御信号を受け付ける信号強度情報取得手段と、前記発光素子の温度を検出し、前記発光素子の温度を示す温度情報を含む第2制御信号を生成する温度検出手段と、所定の電流制御信号に基づき、前記発光素子を電流制御して前記光信号の強度を制御する駆動手段と、前記第1制御信号の前記信号強度情報と前記第2制御信号の前記温度情報に基づいて、前記電流制御信号を生成する制御手段と、を備えた光送信装置と、を備えることを特徴とする光伝送システム。
Light receiving means for converting an optical signal into an electric signal, signal intensity detecting means for detecting the signal intensity of the optical signal based on the electric signal, and a signal indicating the signal intensity of the optical signal detected by the signal intensity detecting means Control signal output means for generating and outputting a first control signal including intensity information, or one or a plurality of optical receivers,
A light-emitting element that generates the optical signal; a signal intensity information acquisition unit that receives the first control signal from the optical receiver that receives the optical signal; and a temperature of the light-emitting element that detects the temperature of the light-emitting element. Temperature detecting means for generating a second control signal including temperature information indicating, driving means for controlling the intensity of the optical signal by controlling the current of the light emitting element based on a predetermined current control signal, and the first control signal An optical transmission system comprising: a control means for generating the current control signal based on the signal intensity information and the temperature information of the second control signal.
前記信号強度検出手段が、前記電気信号の電圧レベルを、前記受光手段が受信可能な前記光信号の信号強度以上の所定の信号強度を示す強度判定値と比較する比較回路を備え、
前記制御信号出力手段が、前記比較回路において前記電圧レベルが所定期間以上継続して前記強度判定値を超えたことが検出された場合に加算するカウンタを備え、前記カウンタの値が所定の第1判定値を超えた場合に、前記第1制御信号を出力することを特徴とする請求項1に記載の光伝送システム。
The signal intensity detection means comprises a comparison circuit for comparing the voltage level of the electrical signal with an intensity judgment value indicating a predetermined signal intensity equal to or higher than the signal intensity of the optical signal receivable by the light receiving means;
The control signal output means includes a counter that is added when it is detected in the comparison circuit that the voltage level continuously exceeds the intensity determination value for a predetermined period or longer, and the counter value is a predetermined first value. The optical transmission system according to claim 1, wherein the first control signal is output when a determination value is exceeded.
前記光受信装置が、外部入力された前記第1判定値またはその相当値を受け付ける外部入力手段を備え、
前記制御信号出力手段が、外部入力された前記第1判定値またはその相当値に基づいて、前記第1判定値を再設定することを特徴とする請求項2に記載の光伝送システム。
The optical receiver includes an external input unit that receives the first determination value or its equivalent value input from the outside,
The optical transmission system according to claim 2, wherein the control signal output unit resets the first determination value based on the first determination value or an equivalent value input from the outside.
前記信号強度検出手段が、前記電気信号の電圧レベルを積分する積分回路を備え、
前記制御信号出力手段が、前記積分回路の値が、所定の第2判定値を超えた場合に、前記第1制御信号を出力することを特徴とする請求項1に記載の光伝送システム。
The signal strength detecting means comprises an integrating circuit for integrating the voltage level of the electrical signal;
2. The optical transmission system according to claim 1, wherein the control signal output unit outputs the first control signal when a value of the integration circuit exceeds a predetermined second determination value. 3.
前記光受信装置が、外部入力された前記第2判定値またはその相当値を受け付ける外部入力手段を備え、
前記制御信号出力手段が、外部入力された前記第2判定値またはその相当値に基づいて、前記第2判定値を再設定することを特徴とする請求項4に記載の光伝送システム。
The optical receiving device includes external input means for receiving the second determination value or its equivalent value input from the outside,
5. The optical transmission system according to claim 4, wherein the control signal output unit resets the second determination value based on the second determination value or an equivalent value input from the outside. 6.
前記制御信号出力手段が、光信号に前記第1制御信号を多重化して、前記光送信装置に出力することを特徴とする請求項1〜5の何れか1項に記載の光伝送システム。   The optical transmission system according to claim 1, wherein the control signal output unit multiplexes the first control signal with an optical signal and outputs the multiplexed signal to the optical transmission device. 前記電流制御信号が、前記発光素子が前記光信号を出力するための最小電流を規定する閾値電流の値に基づいて規定されるバイアス電流の値を設定するためのバイアス電流情報と、前記発光素子の光信号を変調する変調電流の値を設定するための変調電流情報を含んで構成され、
前記光送信装置の前記制御手段が、
前記バイアス電流情報を0に設定し、前記変調電流情報を増加方向に変化させたときの前記第1制御信号の出力タイミングにおける前記変調電流値またはその相当値をバイアス電流指標として求めるバイアス電流指標算出処理と、
前記バイアス電流情報を前記バイアス電流指標に基づいて設定し、前記変調電流情報を増加方向に変化させたときの前記第1制御信号の出力タイミングにおける前記変調電流値またはその相当値を変調電流指標として求める変調電流指標算出処理と、
前記バイアス電流指標、前記変調電流指標、及び、前記温度情報に基づいて、前記バイアス電流及び前記変調電流の値を求め、前記電流制御信号を生成する電流制御信号生成処理と、を実行することを特徴とする請求項1〜6の何れか1項に記載の光伝送システム。
The current control signal includes bias current information for setting a bias current value defined based on a threshold current value defining a minimum current for the light emitting element to output the optical signal; and the light emitting element. Including modulation current information for setting the value of the modulation current for modulating the optical signal of
The control means of the optical transmitter is
Bias current index calculation for determining, as a bias current index, the modulation current value or the equivalent value at the output timing of the first control signal when the bias current information is set to 0 and the modulation current information is changed in the increasing direction. Processing,
The bias current information is set based on the bias current index, and the modulation current value or the equivalent value at the output timing of the first control signal when the modulation current information is changed in the increasing direction is used as the modulation current index. A modulation current index calculation process to be obtained;
Performing a current control signal generation process for determining the values of the bias current and the modulation current based on the bias current index, the modulation current index, and the temperature information, and generating the current control signal. The optical transmission system according to any one of claims 1 to 6, characterized in that
光信号を生成する発光素子と、
前記光信号を受け付けて前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成する光受信装置から、前記第1制御信号を受け付ける信号強度情報取得手段と、
前記発光素子の温度を検出し、前記発光素子の温度を示す温度情報を含む第2制御信号を生成する温度検出手段と、
所定の電流制御信号に基づき、前記発光素子を電流制御して前記光信号の強度を制御する駆動手段と、
前記第1制御信号の前記信号強度情報と前記第2制御信号の前記温度情報に基づいて、前記電流制御信号を生成する制御手段と、を備えることを特徴とする光送信装置。
A light emitting element for generating an optical signal;
Signal intensity information acquisition means for receiving the first control signal from an optical receiver that receives the optical signal and generates a first control signal including signal intensity information indicating the signal intensity of the optical signal;
Temperature detecting means for detecting a temperature of the light emitting element and generating a second control signal including temperature information indicating the temperature of the light emitting element;
Driving means for controlling the intensity of the optical signal by controlling the current of the light emitting element based on a predetermined current control signal;
An optical transmission apparatus comprising: control means for generating the current control signal based on the signal strength information of the first control signal and the temperature information of the second control signal.
請求項8に記載の光送信装置から出力された光信号を受け付け、電気信号に変換する受光手段と、
前記電気信号に基づいて前記光信号の信号強度を検出する信号強度検出手段と、
前記信号強度検出手段が検出した前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成し、前記光送信装置に出力する制御信号出力手段と、を備えることを特徴とする光受信装置。
A light receiving means for receiving an optical signal output from the optical transmission device according to claim 8 and converting it into an electrical signal;
Signal intensity detection means for detecting the signal intensity of the optical signal based on the electrical signal;
Control signal output means for generating a first control signal including signal intensity information indicating the signal intensity of the optical signal detected by the signal intensity detection means, and outputting the first control signal to the optical transmission device. Receiver device.
外部入力された光信号を電気信号に変換する受光手段と、
前記電気信号に基づいて前記光信号の信号強度を検出する信号強度検出手段と、
前記信号強度検出手段が検出した前記光信号の信号強度を示す信号強度情報を含む第1制御信号を生成し出力する制御信号出力手段と、を備えた光受信部と、
光信号を生成する発光素子と、
外部入力された前記第1制御信号を受け付ける信号強度情報取得手段と、
前記発光素子の温度を検出し、前記発光素子の温度を示す温度情報を含む第2制御信号を生成する温度検出手段と、
所定の電流制御信号に基づき、前記発光素子を電流制御して前記光信号の強度を制御する駆動手段と、
前記第1制御信号の前記信号強度情報と前記第2制御信号の前記温度情報に基づいて、前記電流制御信号を生成する制御手段と、を備えた光送信部と、を備えることを特徴とする光送受信装置。
A light receiving means for converting an externally input optical signal into an electrical signal;
Signal intensity detection means for detecting the signal intensity of the optical signal based on the electrical signal;
A control signal output unit that generates and outputs a first control signal including signal strength information indicating the signal strength of the optical signal detected by the signal strength detection unit;
A light emitting element for generating an optical signal;
Signal strength information acquisition means for receiving the first control signal inputted externally;
Temperature detecting means for detecting a temperature of the light emitting element and generating a second control signal including temperature information indicating the temperature of the light emitting element;
Driving means for controlling the intensity of the optical signal by controlling the current of the light emitting element based on a predetermined current control signal;
An optical transmitter comprising: control means for generating the current control signal based on the signal strength information of the first control signal and the temperature information of the second control signal. Optical transceiver.
JP2007313008A 2007-12-04 2007-12-04 Optical transmission system Withdrawn JP2009141448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007313008A JP2009141448A (en) 2007-12-04 2007-12-04 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007313008A JP2009141448A (en) 2007-12-04 2007-12-04 Optical transmission system

Publications (1)

Publication Number Publication Date
JP2009141448A true JP2009141448A (en) 2009-06-25

Family

ID=40871664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007313008A Withdrawn JP2009141448A (en) 2007-12-04 2007-12-04 Optical transmission system

Country Status (1)

Country Link
JP (1) JP2009141448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043630A1 (en) * 2010-09-28 2012-04-05 矢崎総業株式会社 Signal transmission device
JP2014053879A (en) * 2012-09-06 2014-03-20 E-Lambdanet Corp Tv optical transmission system configuration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043630A1 (en) * 2010-09-28 2012-04-05 矢崎総業株式会社 Signal transmission device
CN103155453A (en) * 2010-09-28 2013-06-12 矢崎总业株式会社 Signal transmission device
US9037003B2 (en) 2010-09-28 2015-05-19 Yazaki Corporation Signal transmission device
CN103155453B (en) * 2010-09-28 2016-03-09 矢崎总业株式会社 Device for signalling
JP2014053879A (en) * 2012-09-06 2014-03-20 E-Lambdanet Corp Tv optical transmission system configuration

Similar Documents

Publication Publication Date Title
US7265334B2 (en) Laser power control with automatic compensation
US7504610B2 (en) Optical modulation amplitude compensation system having a laser driver with modulation control signals
KR100858998B1 (en) Temperature Control For Coarse Wavelength Division Multiplexing Systems
US7381935B2 (en) Laser power control with automatic power compensation
EP2249492B1 (en) Modulation method, modulation program, recording medium, modulation device, and light transmitter
US8855484B2 (en) Method for controlling optical power and extinction ratio over entire temperature range
US20060108510A1 (en) Multiple parameter laser power control with automatic compensation
US20060108517A1 (en) Laser power control with automatic compensation
JP5049887B2 (en) Optical transmission equipment
WO2011156085A1 (en) Host device with multipurpose optics drive capabilities
US8483580B2 (en) Method and apparatus for adjusting the gain of an amplifier of an optical receiver module based on link bit error rate (BER) measurements
JP2013076776A (en) Optical transmitter and waveform compensation method
US7245828B2 (en) Extinction ratio determination using duty cycle modulation
JP2008113386A (en) Optical transmitter, optical receiver, and optical transmission system
JP2009141448A (en) Optical transmission system
CN110149148B (en) Communication system and optical transceiver device
KR100545589B1 (en) Apparatus for compensating charateristics of laser diode and optical transmitter comprising it
JP2005203536A (en) Optical transmitter
CN110741312A (en) Optical transmission device and optical transmission method
US7620329B2 (en) Laser power control with automatic compensation
US9306674B1 (en) Field-tunable devices for optical communication
US20110286751A1 (en) Optical transceiver and method for controlling the same
KR20110067777A (en) Optical transmitting/receiving control apparatus
US20080240732A1 (en) Optical communication module and control method thereof
JP7351673B2 (en) Optical fiber wireless communication receiving module and optical fiber wireless communication system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301