JP2015032494A - Solid electrolyte fuel cell and solid electrolyte fuel cell stack - Google Patents

Solid electrolyte fuel cell and solid electrolyte fuel cell stack Download PDF

Info

Publication number
JP2015032494A
JP2015032494A JP2013162106A JP2013162106A JP2015032494A JP 2015032494 A JP2015032494 A JP 2015032494A JP 2013162106 A JP2013162106 A JP 2013162106A JP 2013162106 A JP2013162106 A JP 2013162106A JP 2015032494 A JP2015032494 A JP 2015032494A
Authority
JP
Japan
Prior art keywords
fuel cell
layer
support
solid electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013162106A
Other languages
Japanese (ja)
Other versions
JP6268797B2 (en
Inventor
矢島 健太郎
Kentaro Yajima
健太郎 矢島
伸 三室
Shin Mimuro
伸 三室
宋 東
Azuma So
東 宋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013162106A priority Critical patent/JP6268797B2/en
Publication of JP2015032494A publication Critical patent/JP2015032494A/en
Application granted granted Critical
Publication of JP6268797B2 publication Critical patent/JP6268797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a solid electrolyte fuel cell good in bondability between an electrode and a solid electrolyte in a high temperature operation, improved in output, and suppressed in breakage; and a fuel cell stack.SOLUTION: A solid electrolyte fuel cell comprises a support 1, an intermediate layer 2, an air electrode layer 3 and a solid electrolyte layer 4 which are laminated in the order. A cell having a structure where a fuel electrode layer is laminated on the electrolyte layer 4 and the electrolyte layer 4 is sandwiched with the air electrode layer 3 and the fuel electrode layer is constituted. The cell has the intermediate layer 2 between the support 1 and the electrode layer 3. The temperature change of the thermal expansion coefficient of the intermediate layer 2 is similar or same to the temperature change of the thermal expansion coefficient of the solid electrolyte layer 4. A fuel cell stack is obtained by stacking the solid electrolyte fuel cells.

Description

本発明は、固体電解質型燃料電池及びこれを積層して成る固体電解質型燃料電池スタックに係り、更に詳細には、高温運転時における電極と固体電解質の接合性が良好で出力が向上し、高温運転時の破損を防止し得る固体電解質型燃料電池及び燃料電池スタックに関する。   The present invention relates to a solid oxide fuel cell and a solid oxide fuel cell stack formed by laminating the same, and more particularly, the electrode and the solid electrolyte have good bondability during high-temperature operation, and the output is improved. The present invention relates to a solid oxide fuel cell and a fuel cell stack that can prevent damage during operation.

従来より、燃料電池は化学エネルギーを電気化学的な反応により電気エネルギーに変換する装置であることが知られている。
このような燃料電池の1種である固体電解質型燃料電池では、燃料極、固体電解質及び空気極の各層を積層し、これを燃料電池の発電部として外部から水素や炭化水素等の燃料ガスを燃料極に供給し、且つ空気極には空気等の酸化剤ガスを供給して電気を発生させる仕組みとなっている。
Conventionally, it is known that a fuel cell is a device that converts chemical energy into electrical energy through an electrochemical reaction.
In a solid oxide fuel cell that is one type of such fuel cell, each layer of a fuel electrode, a solid electrolyte, and an air electrode is laminated, and this is used as a power generation part of the fuel cell to supply fuel gas such as hydrogen or hydrocarbon from the outside. The fuel electrode is supplied, and the air electrode is supplied with an oxidant gas such as air to generate electricity.

かかる固体電解質型燃料電池(SOFC)においては、電池(セル)を薄膜化して単位体積当たりの出力を増大するにはセルの機械的強度を向上する必要があり、基材となる支持体上面に一方の電極(例えば、燃料極)を形成し、更にこの電極の上面に固体電解質を形成し、更に固体電解質の上面に他方の電極(例えば、空気極)を形成した、いわゆるサポートセル構造が一般的に知られている(例えば、特許文献1参照)。   In such a solid oxide fuel cell (SOFC), in order to increase the output per unit volume by reducing the thickness of the battery (cell), it is necessary to improve the mechanical strength of the cell. A so-called support cell structure in which one electrode (for example, a fuel electrode) is formed, a solid electrolyte is formed on the upper surface of the electrode, and the other electrode (for example, an air electrode) is further formed on the upper surface of the solid electrolyte is generally used. (For example, refer to Patent Document 1).

この特許文献1では、緻密な金属基板上に金属酸化物を含む緻密な燃料極を形成するためのプロセスが開示されている。
ステップ(工程)は、金属基板に燃料極と連通する複数の貫通孔を形成するステップと、燃料極上に緻密な電解質を形成するステップと、電解質上に多孔質の空気極を形成するステップとに分割されており、これらのステップを経ることによりサポートセル構造が形成される。
In Patent Document 1, a process for forming a dense fuel electrode containing a metal oxide on a dense metal substrate is disclosed.
The steps include a step of forming a plurality of through holes communicating with the fuel electrode on the metal substrate, a step of forming a dense electrolyte on the fuel electrode, and a step of forming a porous air electrode on the electrolyte. The support cell structure is formed through these steps.

特開2008−226478号公報JP 2008-226478 A

しかしながら、このような従来のサポートセル構造にあっては、接合している一方の電極と固体電解質の熱膨張率が異なることから、特に高温運転時には熱膨張差によるセル歪が発生し、このセル歪は最悪の場合はセル破損を招き、燃料電池の出力を低下させる虞があった。
即ち、一般的には熱膨張率は固体電解質よりも電極の方が大きいため、高温運転時においては、セルは固体電解質側が凹むように反って湾曲し、接合不良を生じIR抵抗が増大してセル出力が低減し、最悪の場合にはセル破損を招くことがあった。
However, in such a conventional support cell structure, the cell expansion due to the difference in thermal expansion occurs particularly during high temperature operation, because the coefficient of thermal expansion of the joined electrode and the solid electrolyte are different. In the worst case, the distortion may cause cell breakage, which may reduce the output of the fuel cell.
That is, since the electrode generally has a larger coefficient of thermal expansion than the solid electrolyte, the cell bends so that the solid electrolyte side is recessed during high-temperature operation, resulting in poor bonding and increased IR resistance. The cell output is reduced, and in the worst case, the cell may be damaged.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、高温運転時における電極と固体電解質の接合性が良く、出力が向上し破損が抑制された固体電解質型燃料電池及び燃料電池スタックを提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is that the electrode and the solid electrolyte have good bondability during high temperature operation, the output is improved, and damage is suppressed. Another object of the present invention is to provide a solid oxide fuel cell and a fuel cell stack.

本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、所定の中間層を適切に配置することにより、上記目的が達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved by appropriately arranging a predetermined intermediate layer, and has completed the present invention.

即ち、本発明の固体電解質型燃料電池は、固体電解質層を燃料極層と空気極層で挟持した構造を有し、上記燃料極層及び上記空気極層の一方がガス透過性と導電性を有する支持体上に形成された支持体付き電極層である固体電解質型燃料電池である。
上記支持体付き電極層の支持体と電極層との間に、熱膨張率の温度依存性が上記固体電解質層と同等な非金属材料から成るガス透過性の中間層を有する、ことを特徴とする。
That is, the solid oxide fuel cell of the present invention has a structure in which a solid electrolyte layer is sandwiched between a fuel electrode layer and an air electrode layer, and one of the fuel electrode layer and the air electrode layer has gas permeability and conductivity. A solid oxide fuel cell which is an electrode layer with a support formed on a support having the support.
A gas-permeable intermediate layer made of a nonmetallic material having a temperature dependency of a thermal expansion coefficient equivalent to that of the solid electrolyte layer is provided between the support of the electrode layer with the support and the electrode layer. To do.

また、本発明の固体電解質型燃料電池スタックは、上述のような固体電解質型燃料電池を積層することによって構成されるものである。   Further, the solid oxide fuel cell stack of the present invention is configured by stacking the above solid oxide fuel cells.

本発明によれば、所定の中間層を適切に配置することとしたため、高温運転時における電極と固体電解質の接合性が良く、出力が向上し破損が抑制された固体電解質型燃料電池及び燃料電池スタックを提供することができる。   According to the present invention, since the predetermined intermediate layer is appropriately arranged, the solid electrolyte fuel cell and the fuel cell in which the electrode and the solid electrolyte are well bonded during high temperature operation, the output is improved, and the damage is suppressed. A stack can be provided.

本発明の固体電解質型燃料電池の一例を示す部分断面図である。It is a fragmentary sectional view showing an example of the solid oxide fuel cell of the present invention. 本発明の固体電解質型燃料電池の他の例において、支持体1、中間層2及び電極層3の接合状体を示す部分断面図である。4 is a partial cross-sectional view showing a joined body of a support 1, an intermediate layer 2, and an electrode layer 3 in another example of the solid oxide fuel cell of the present invention. FIG. 本発明の固体電解質型燃料電池の更に他の例を示す部分断面図である。It is a fragmentary sectional view showing other examples of a solid oxide fuel cell of the present invention. 支持体と中間層を示す顕微鏡写真である。It is a microscope picture which shows a support body and an intermediate | middle layer. 中間層の断面を示す顕微鏡写真である。It is a microscope picture which shows the cross section of an intermediate | middle layer. 平面度改善度の評価結果を示すグラフである。It is a graph which shows the evaluation result of a flatness improvement degree. 金属材料及びセラミックス材料の熱膨張率の温度変化を示すグラフである。It is a graph which shows the temperature change of the thermal expansion coefficient of a metal material and a ceramic material.

以下、本発明の固体電解質型燃料電池について説明する。
図1は、本発明の固体電解質型燃料電池の一例を示す部分断面図である。
同図において、この固体電解質型燃料電池は、支持体1、中間層2、電極層(空気極層)3及び固体電解質層4がこの順で積層されている(図1(A)参照)。
固体電解質層4上には、図示しない電極層(燃料極層)が積層されており、これにより、固体電解質層4を空気極層3と燃料極層(図示せず)とで挟んだ構造を有する固体電解質型燃料電池が構成されている。
Hereinafter, the solid oxide fuel cell of the present invention will be described.
FIG. 1 is a partial cross-sectional view showing an example of a solid oxide fuel cell of the present invention.
In this figure, in this solid oxide fuel cell, a support 1, an intermediate layer 2, an electrode layer (air electrode layer) 3, and a solid electrolyte layer 4 are laminated in this order (see FIG. 1A).
An electrode layer (fuel electrode layer) (not shown) is laminated on the solid electrolyte layer 4, and thereby a structure in which the solid electrolyte layer 4 is sandwiched between the air electrode layer 3 and the fuel electrode layer (not shown). The solid oxide fuel cell is configured.

なお、本例の固体電解質型燃料電池では、電極層3は支持体1を有する支持体付き電極層ということができ、この固体電解質型燃料電池はいわゆるサポートセル構造を採る電池の一種といい得る。
そして、この固体電解質型燃料電池では、支持体1と電極層3との間に中間層2を有しており、この中間層2の熱膨張率の温度依存性、換言すれば、熱膨張率の温度変化は、固体電解質層4の熱膨張率の温度変化と近似するか又は同一である。
In the solid oxide fuel cell of this example, the electrode layer 3 can be referred to as a support-equipped electrode layer having the support 1, and this solid oxide fuel cell can be said to be a kind of battery having a so-called support cell structure. .
In this solid oxide fuel cell, the intermediate layer 2 is provided between the support 1 and the electrode layer 3, and the temperature dependence of the thermal expansion coefficient of the intermediate layer 2, in other words, the thermal expansion coefficient. This temperature change is similar to or the same as the temperature change of the thermal expansion coefficient of the solid electrolyte layer 4.

よって、本例の固体電解質型燃料電池では、図1(B)に示すように、高温運転時において、電極層3の熱膨張がこれを挟持する固体電解質層4と中間層2とで規制されることになる。
具体的には、一般に、固体電解質層4の熱膨張率の方が電極層3の熱膨張率よりも大きいので、電極層3は固体電解質層4と中間層2に挟み込まれたまま圧縮保持されることになる。
Therefore, in the solid oxide fuel cell of this example, as shown in FIG. 1B, the thermal expansion of the electrode layer 3 is regulated by the solid electrolyte layer 4 and the intermediate layer 2 sandwiching the electrode layer 3 during high temperature operation. Will be.
Specifically, since the thermal expansion coefficient of the solid electrolyte layer 4 is generally larger than that of the electrode layer 3, the electrode layer 3 is compressed and held while being sandwiched between the solid electrolyte layer 4 and the intermediate layer 2. Will be.

このように、本例の固体電解質型燃料電池においては、電極層3の熱膨張が固体電解質層4と中間層2とで抑制されるので、電池全体(セル全体)としての歪みが抑制される。
従って、本例の固体電解質型燃料電池は、高温運転時においても固体電解質4と電極層3とが良好な接合性を維持でき、IR抵抗が増大しにくいので出力が低減しにくく、また熱歪みによるセル破損を有効に防止できる。
Thus, in the solid oxide fuel cell of this example, the thermal expansion of the electrode layer 3 is suppressed by the solid electrolyte layer 4 and the intermediate layer 2, so that distortion of the entire battery (entire cell) is suppressed. .
Therefore, the solid oxide fuel cell of this example can maintain good bonding properties between the solid electrolyte 4 and the electrode layer 3 even during high temperature operation, and the IR resistance is difficult to increase, so that the output is difficult to reduce, and thermal distortion Can effectively prevent cell damage.

なお、熱膨張率の温度依存性は、具体的には、550℃〜1250℃における熱膨張率の変化を意味し、この温度範囲における固体電解質層と中間層の熱膨張率変化がほぼ同じであることが望ましい。   The temperature dependence of the thermal expansion coefficient specifically means a change in the thermal expansion coefficient at 550 ° C. to 1250 ° C., and the change in the thermal expansion coefficient between the solid electrolyte layer and the intermediate layer in this temperature range is almost the same. It is desirable to be.

図2は、本発明の固体電解質型燃料電池の他の例において、支持体1、中間層2及び電極層3の接合状体を示す部分断面図である。
同図において、支持体1の一部は中間層2を貫通して電極層3に進入し、進入部1aを構成している。
FIG. 2 is a partial cross-sectional view showing a joined body of the support 1, the intermediate layer 2, and the electrode layer 3 in another example of the solid oxide fuel cell of the present invention.
In the figure, a part of the support 1 penetrates through the intermediate layer 2 and enters the electrode layer 3 to form an entry portion 1a.

サポートセル構造を有する固体電解質型燃料電池において、支持体1には導電性が必要とされ通例は導電性金属が使用されるが、本例において、支持体1の進入部1aは電極層3に進入して電気接続を確実にするとともに、中間層3が熱膨張して変形した場合でも支持体1(及び進入部1a)が追従して変形する。
よって、本例のような構成を採用すれば、支持体1は、中間層3の変形に伴って切断されることが防止され確実な電気接続が保証されるので、高温運転時においても集電体としての機能を十分に果たすことができる。
In a solid oxide fuel cell having a support cell structure, the support 1 needs to be electrically conductive, and usually a conductive metal is used. In this example, the entry portion 1 a of the support 1 is formed on the electrode layer 3. While entering and ensuring electrical connection, even when the intermediate layer 3 is thermally expanded and deformed, the support 1 (and the entry portion 1a) follows and deforms.
Therefore, if the configuration as in this example is adopted, the support 1 is prevented from being cut off as the intermediate layer 3 is deformed, and a reliable electrical connection is ensured. Can fully function as a body.

なお、本例において、進入部1aは、使用する中間層3の材質にもよるが、その一部又は全部において支持体1の構成材料が露出していることが好ましく、これにより、支持体1と電極層3との良好な導通性を確保し、支持体1の集電特性を向上させることができる。   In addition, in this example, although the entrance part 1a is based also on the material of the intermediate | middle layer 3 to be used, it is preferable that the constituent material of the support body 1 is exposed in the one part or all part. And good electrical conductivity between the electrode layer 3 and the current collecting characteristics of the support 1 can be improved.

図3は、本発明の固体電解質型燃料電池の更に他の例を示す部分断面図であり、図2と同様の状態を示している。
図2に示す例と同様に、支持体1の一部が中間層2を貫通して電極層3に進入し、進入部1bを構成しているが、本例では、進入部1bは導電性粒子によって形成されている。
また、図2に示す例と同様に、本例でも進入部1bの全部又は一部が露出した支持体構成材料によって形成されていることが望ましい。
FIG. 3 is a partial cross-sectional view showing still another example of the solid oxide fuel cell of the present invention, and shows the same state as FIG.
As in the example shown in FIG. 2, a part of the support 1 penetrates the intermediate layer 2 and enters the electrode layer 3 to form the entry portion 1 b. In this example, the entry portion 1 b is electrically conductive. It is formed by particles.
Further, similarly to the example shown in FIG. 2, in this example as well, it is desirable that the whole or a part of the entry portion 1 b is formed of the support constituent material.

次に、以上に説明した固体電解質型燃料電池の構成要素である空気極などの材質等について説明する。   Next, materials such as an air electrode that are constituent elements of the solid oxide fuel cell described above will be described.

まず、空気極としては、銀(Ag)や白金(Pt)などの金属系粉末粒子が用いられる場合もあるが、一般的には、LaSrMnO(LSM)やLaSrCoO(LSC)に代表されるペロブスカイト構造の酸化物粉末粒子が用いられる。
この空気極に必要な特性としては、酸化に強く、酸化剤ガス(典型的には空気や酸素)を透過し、電気伝導度が高く、酸素分子を酸素イオンに変換する触媒作用に優れていることが挙げられる。
First, metal powder particles such as silver (Ag) and platinum (Pt) may be used as the air electrode, but in general, a perovskite structure typified by LaSrMnO (LSM) or LaSrCoO (LSC) is used. The oxide powder particles are used.
The necessary characteristics of this air electrode are that it is resistant to oxidation, permeates oxidant gas (typically air or oxygen), has high electrical conductivity, and excels in its catalytic action to convert oxygen molecules into oxygen ions. Can be mentioned.

一方、燃料極には、ニッケル(Ni)やコバルト(Co)及びPtなどの貴金属や、Niと固体電解質のサーメットなどが一般的に用いられる。
この燃料極に要求される特性としては、還元雰囲気に強く、燃料ガスを透過し、電気伝導度が高く、水素分子をプロトンに変換する触媒作用に優れていることが挙げられる。
On the other hand, noble metals such as nickel (Ni), cobalt (Co) and Pt, cermet of Ni and solid electrolyte, etc. are generally used for the fuel electrode.
The characteristics required for this fuel electrode include that it is strong in a reducing atmosphere, permeates the fuel gas, has high electrical conductivity, and has an excellent catalytic action for converting hydrogen molecules into protons.

空気極では活性点となる三相界面において酸素ガス分子が酸素イオンと電子に分解し、酸素イオンは固体電解質層を通り燃料極に伝導し、さらに燃料極においては、同じく活性点となる三相界面において、固体電解質層より伝導してきた酸素イオンと燃料ガス分子、及び電子と反応する。   At the air electrode, oxygen gas molecules decompose into oxygen ions and electrons at the three-phase interface that becomes the active point, and the oxygen ions pass through the solid electrolyte layer to the fuel electrode, and at the fuel electrode, the three-phase also becomes the active point. At the interface, it reacts with oxygen ions, fuel gas molecules, and electrons conducted from the solid electrolyte layer.

上記固体電解質としては一般的に、YやNd、Sm、Gd及びScなどを固溶した安定化ジルコニアが用いられる他、CeO系固溶体、BiやLaGaOなどの無機酸化物が用いられる。
固体電解質層において特に重要なことは、電子を通さずにイオンを通す性能を有することであり、酸素イオンが発電の伝導体である場合には、酸素イオンの伝導特性が大きいことが望まれる。またガス不透過性であることも要求される。
As the solid electrolyte, in general, stabilized zirconia in which Y 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Gd 2 O 3, Sc 2 O 3, or the like is used as a solid solution is used, and a CeO 2 solid solution is used. Inorganic oxides such as Bi 2 O 3 and LaGaO 3 are used.
What is particularly important in the solid electrolyte layer is that it has the ability to pass ions without passing electrons, and when oxygen ions are power generation conductors, it is desirable that oxygen ions have a high conduction characteristic. It is also required to be gas impermeable.

次に、中間層の構成材料としては、上述のように固体電解質と同等な熱膨張率の温度依存性を有する非金属材料であれば十分であるが、簡略的には、固体電解質と同一又は同種の材料を選択すればよい。
例えば、固体電解質として所定の安定化ジルコニアを使用する場合には、中間層としても所定の安定化ジルコニアを選択すればよい。但し、この場合であっても、熱膨張率の温度依存性が同等であることが重要であり、ジルコニアにドープする安定化剤の濃度が多少異なっていても問題はない。
Next, as the constituent material of the intermediate layer, any non-metallic material having a temperature dependence of the coefficient of thermal expansion equivalent to that of the solid electrolyte as described above is sufficient. The same kind of material may be selected.
For example, when a predetermined stabilized zirconia is used as the solid electrolyte, the predetermined stabilized zirconia may be selected as the intermediate layer. However, even in this case, it is important that the temperature dependence of the thermal expansion coefficient is the same, and there is no problem even if the concentration of the stabilizer doped in zirconia is slightly different.

支持体は、電池の単位体積当たりの出力向上を目的として、電極の電子集電をも兼ねる導電材料によって形成されるが、電極へ燃料ガス又は酸化剤ガスを供給するためにはガス透過性も要求される。
よって、導電材料から成る不織布や多孔質構造体が支持体として挙げられる。また、支持体の材質としては、単体金属、合金及びセラミックス−金属混合材等が挙げられる。
The support is formed of a conductive material that also serves as an electrode current collector for the purpose of improving the output per unit volume of the battery. However, in order to supply fuel gas or oxidant gas to the electrode, the support is also gas permeable. Required.
Therefore, a nonwoven fabric made of a conductive material or a porous structure can be used as the support. Moreover, as a material of a support body, a single metal, an alloy, a ceramics-metal mixed material, etc. are mentioned.

次に、本発明の固体電解質型燃料電池の製造方法について説明する。
この固体電解質型燃料電池は、上述した各構成要素の構成材料を用い、従来公知の方法で製造することができる。
但し、本発明では、固体電解質基板などに電極構成材料の粒子を衝突させる成膜法を用いることが好ましい。
Next, the manufacturing method of the solid oxide fuel cell of this invention is demonstrated.
This solid oxide fuel cell can be manufactured by a conventionally known method using the constituent materials of the constituent elements described above.
However, in the present invention, it is preferable to use a film forming method in which particles of the electrode constituent material collide with a solid electrolyte substrate or the like.

即ち、粉末状の構成材料粒子にヘリウム(He)や窒素(N)などのキャリアガスで最適の流速を持たせ、この粉末流を固体電解質上などに衝突させる成膜法を用いることが好ましい。
この際、構成材料粒子の大きさは、サブミクロン〜5μmの範囲とすることが望ましい。5μmを超えると適切な薄膜化が困難になることがある。
このように、中間層を構成材料を噴霧させる方法によって形成すれば、高温焼結プロセスを適用する必要が無く、セルの製造コストを低減できる。
In other words, it is preferable to use a film forming method in which the powdery constituent material particles are given an optimum flow velocity with a carrier gas such as helium (He) or nitrogen (N 2 ), and this powder flow collides with a solid electrolyte or the like. .
At this time, the size of the constituent material particles is preferably in the range of submicron to 5 μm. When the thickness exceeds 5 μm, it may be difficult to form an appropriate thin film.
Thus, if the intermediate layer is formed by the method of spraying the constituent material, it is not necessary to apply a high temperature sintering process, and the manufacturing cost of the cell can be reduced.

このような衝突による成膜法としては、パウダージェットデポジション法、ウオームスプレー法、サーマルスプレー法、エアロゾルデポジション法及びコールドスプレー法等が挙げられる。
特に、中間層は支持体に中間層を構成する非金属材料粉末を噴霧する、上記のような成膜法より形成することが好ましい。
なお、図3に示したような構造は、支持体1として金属材料、例えばSUS製の不織布を用い、これに中間層構成材料を上記の方法で成膜した場合に形成される。
Examples of the film formation method by collision include a powder jet deposition method, a worm spray method, a thermal spray method, an aerosol deposition method, and a cold spray method.
In particular, the intermediate layer is preferably formed by the film forming method as described above, in which the nonmetallic material powder constituting the intermediate layer is sprayed on the support.
The structure shown in FIG. 3 is formed when a metal material, for example, a SUS non-woven fabric is used as the support 1 and the intermediate layer constituting material is formed into a film by the above method.

本発明の固体電解質型燃料電池スタックは、以上に説明した固体電解質型燃料電池をインターコネクターなどを用いて積層したものであり、上記の固体電解質型燃料電池に起因して優れた耐久性や出力特性を発揮する。   The solid oxide fuel cell stack of the present invention is obtained by stacking the solid oxide fuel cells described above using an interconnector or the like, and has excellent durability and output due to the solid oxide fuel cell. Demonstrate the characteristics.

以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.

(実施例1)
YSZ固体電解質層と熱膨張率の温度変化が近似するか又は同一である、YSZ中間層で電極層を挟持した。
支持体にはSUS製の金属不織布(線径φ5μm、最小開口径10μm)を用いた。超音速ノズルによって、YSZ粒子を高速のHeガスに乗せて支持体に吹き付け、支持体上に中間層を作製した(図4(A)参照)。
Example 1
The electrode layer was sandwiched between YSZ intermediate layers, in which the temperature change in the coefficient of thermal expansion was similar to or the same as that of the YSZ solid electrolyte layer.
A metal nonwoven fabric made of SUS (wire diameter φ5 μm, minimum opening diameter 10 μm) was used for the support. The YSZ particles were placed on a high-speed He gas by a supersonic nozzle and sprayed onto the support to produce an intermediate layer on the support (see FIG. 4A).

中間層の成膜後に断面を観察したところ、支持体上にYSZ層による中間層が形成され、支持体の一部の金属繊維が中間層を貫通して中間層に進入していた(図4(B)参照)。また、中間層に進入した金属繊維にはYSZ粒子が付着しておらず、金属が露出していることが確認された(図4(B)参照)。
なお、中間層(YSZ部)の断面を観察したところ、多孔質構造を採っていることが分かった(図5参照)
When the cross section was observed after the formation of the intermediate layer, an intermediate layer composed of a YSZ layer was formed on the support, and some metal fibers of the support penetrated the intermediate layer and entered the intermediate layer (FIG. 4). (See (B)). Moreover, it was confirmed that the YSZ particle | grains did not adhere to the metal fiber which entered the intermediate | middle layer, and the metal was exposed (refer FIG. 4 (B)).
In addition, when the cross section of the intermediate | middle layer (YSZ part) was observed, it turned out that the porous structure is taken (refer FIG. 5).

次に、上述のようにYSZの中間層を形成した金属不織布支持体の上に、LSCF(LaSrCoFe)ペーストをスクリーン印刷によって塗布し、次いで、100℃以上で乾燥させて空気極を形成した。
更に、空気極の上に、固体電解質としてのYSZペーストをスクリーン印刷によって塗布し、900℃以上で焼成し、上記のような支持体、中間層、空気極及び固体電解質がこの順で積層された層構造を有する片電極セルを得た。
得られた本例の片電極セルを断面観察したところ、中間層、電極及び固体電解質層の厚みは全て15μmであった。
なお、空気極を印刷した段階で、空気極と支持体の導通性をテスターで確認したところ、空気極と支持体は電気的に導通していることが分かった。
Next, an LSCF (LaSrCoFe) paste was applied by screen printing on the metal nonwoven fabric support on which the YSZ intermediate layer was formed as described above, and then dried at 100 ° C. or higher to form an air electrode.
Further, a YSZ paste as a solid electrolyte was applied on the air electrode by screen printing and baked at 900 ° C. or higher, and the support, the intermediate layer, the air electrode and the solid electrolyte were laminated in this order. A single electrode cell having a layer structure was obtained.
When the obtained one-electrode cell of this example was observed in cross section, the thickness of the intermediate layer, the electrode, and the solid electrolyte layer were all 15 μm.
In addition, when the air electrode was printed and the electrical conductivity between the air electrode and the support was confirmed by a tester, it was found that the air electrode and the support were electrically connected.

(比較例1)
中間層を形成しなかった以外は実施例1と同様の操作を繰り返し、本例の片電極セルを得た。
(Comparative Example 1)
A single electrode cell of this example was obtained by repeating the same operation as in Example 1 except that the intermediate layer was not formed.

(比較例2)
比較例として、YSZ固体電解質層と熱膨張率の温度変化が異なる、金属不織布と同金属種であるSUS430を中間層に用いて、それ以外は実施例1と同様の操作を繰り返し、本例の片電極セルを得た。
上記同様の導通確認を行い、空気極と支持体の導通を確認できた。
(Comparative Example 2)
As a comparative example, the same operation as in Example 1 was repeated except that SUS430, which is the same metal species as the metallic nonwoven fabric, has a temperature change in the coefficient of thermal expansion different from that of the YSZ solid electrolyte layer. A single electrode cell was obtained.
The same conduction check as described above was performed, and the conduction between the air electrode and the support was confirmed.

<性能評価>
(平面度変化)
上記の片電極セルを大気中750℃で1時間の温度に曝し、この熱履歴前後におけるセル表面の反りを測定し、平面度変化値として評価した。なお、上述のような構成の片電極セルは、熱履歴後には上方に反り上がる。即ち、支持体が突出する(固体電解質層が凹む)ように湾曲する。
この結果、実施例1の片電極セルの平面度変化値は平均で0.009μmであったのに対し、中間層を有さない比較例1の片電極セルの平面度変化値は平均で0.19μmであり、実施例1の片電極セルによれば、電極層の熱膨張がこれを挟持するYSZ固体電解質とYSZ中間層で規制されることで、熱履歴による反りが有効に抑制されることが分かる。
<Performance evaluation>
(Flatness change)
The single electrode cell was exposed to a temperature of 750 ° C. in the atmosphere for 1 hour, and the warpage of the cell surface before and after this thermal history was measured and evaluated as a flatness change value. Note that the single electrode cell having the above-described configuration warps upward after the thermal history. That is, the support is curved so that it protrudes (the solid electrolyte layer is recessed).
As a result, the flatness change value of the single electrode cell of Example 1 was 0.009 μm on average, whereas the flatness change value of the single electrode cell of Comparative Example 1 having no intermediate layer was 0 on average. .19 μm, and according to the single electrode cell of Example 1, the thermal expansion of the electrode layer is regulated by the YSZ solid electrolyte and the YSZ intermediate layer sandwiching the electrode layer, so that the warp due to the thermal history is effectively suppressed. I understand that.

(平面度改善度)
実施例1、比較例1及び2の片側電極セルについて、下記の手法で平面度改善度を算出した。
(1)中間層となるSUS430多孔質体の膨張係数を実測し、歪みを算出する。
(2)上記平面度変化の反り値から、中間層(YSZ)が無い場合における各部材、即ち支持体、LSFC電極層、YSZ電解質層の歪みを算出する。
この場合、各部材が熱膨張により変形したとすると、各部材歪みε=膨張係数×ΔTとなる。
(3)上記の(1)と(2)を組み合わせ、中間層が金属の場合のセル全体の歪み(ε)=反りを、多孔質支持体、15μm厚の中間層(SUS430)、15μm厚のLSCF電極層及び15μm厚のYSZ電解質層をこの順で積層した積層体モデルの各層が完全に接合していることを前提として算出する。
この場合、各部材内の内部応力σi=歪み(ε)×Ei(ヤング率)として計算する。
全体にかかる力は釣り合うから、各部材内の合計内部応力ΣをΣσiAi=0とし、実測値と整合するように収束計算して算出する。
(Flatness improvement)
For the one-side electrode cells of Example 1 and Comparative Examples 1 and 2, the degree of flatness improvement was calculated by the following method.
(1) Measure the expansion coefficient of the SUS430 porous material to be the intermediate layer and calculate the strain.
(2) The distortion of each member, that is, the support, the LSFC electrode layer, and the YSZ electrolyte layer when there is no intermediate layer (YSZ) is calculated from the warpage value of the change in flatness.
In this case, if each member is deformed by thermal expansion, each member strain ε = expansion coefficient × ΔT.
(3) Combining (1) and (2) above, the strain (ε) = warpage of the whole cell when the intermediate layer is a metal, the porous support, the intermediate layer (SUS430) having a thickness of 15 μm, the thickness of 15 μm The calculation is made on the assumption that the layers of the laminate model in which the LSCF electrode layer and the 15 μm-thick YSZ electrolyte layer are laminated in this order are completely joined.
In this case, the internal stress σi in each member is calculated as strain (ε) × Ei (Young's modulus).
Since the force applied to the whole is balanced, the total internal stress Σ in each member is set to ΣσiAi = 0 and is calculated by convergence calculation so as to match the actual measurement value.

得られた平面度改善度の結果を図6に示す。同図に示すように、実施例1の片側電極セルの平面度改善度は、中間層無しの比較例1に対して90%、中間層がSUS430である比較例2に対して70%の改善を示しており、優れた効果を奏することが明らかである。
なお、比較例2で中間層に用いたSUS430の金属材料は、YSZなどのセラミックス材料に比し、600℃以上で熱膨張率が急激に変化することも図7に併せて示す。
このように、熱膨張率が大きく変化する中間層は、固体電解質層と電極層との熱膨張率差を整合できず、再び歪が発生してセル破損を招き燃料電池セルの出力を低下させる虞があるのは言うまでもない。
The result of the obtained flatness improvement degree is shown in FIG. As shown in the figure, the flatness improvement degree of the one-side electrode cell of Example 1 is improved by 90% with respect to Comparative Example 1 without the intermediate layer and 70% with respect to Comparative Example 2 in which the intermediate layer is SUS430. It is clear that it has excellent effects.
In addition, FIG. 7 also shows that the metal material of SUS430 used for the intermediate layer in Comparative Example 2 changes abruptly at 600 ° C. or more as compared with ceramic materials such as YSZ.
As described above, the intermediate layer having a large change in the coefficient of thermal expansion cannot match the difference in coefficient of thermal expansion between the solid electrolyte layer and the electrode layer, and distortion occurs again, resulting in cell damage and reducing the output of the fuel cell. Needless to say, there is a fear.

以上、本発明を若干の実施形態及び実施例によって説明したが、本発明はこれらに限定されるものではなく、本発明の要旨の範囲内で種々の変形が可能である。   As mentioned above, although this invention was demonstrated with some embodiment and an Example, this invention is not limited to these, A various deformation | transformation is possible within the range of the summary of this invention.

1 支持体
1a,1b 進入部
2 中間層
3 電極層(空気極)
4 固体電解質層
DESCRIPTION OF SYMBOLS 1 Support body 1a, 1b Entrance part 2 Intermediate | middle layer 3 Electrode layer (air electrode)
4 Solid electrolyte layer

Claims (8)

固体電解質層を燃料極層と空気極層で挟持した構造を有し、上記燃料極層及び上記空気極層の一方がガス透過性と導電性を有する支持体上に形成された支持体付き電極層である固体電解質型燃料電池において、
上記支持体付き電極層の支持体と電極層との間に、熱膨張率の温度依存性が上記固体電解質層と同等な非金属材料から成るガス透過性の中間層を有する、ことを特徴とする固体電解質型燃料電池。
An electrode with a support having a structure in which a solid electrolyte layer is sandwiched between a fuel electrode layer and an air electrode layer, and one of the fuel electrode layer and the air electrode layer is formed on a support having gas permeability and conductivity. In a solid oxide fuel cell that is a layer,
A gas-permeable intermediate layer made of a nonmetallic material having a temperature dependency of a thermal expansion coefficient equivalent to that of the solid electrolyte layer is provided between the support of the electrode layer with the support and the electrode layer. Solid electrolyte fuel cell.
上記熱膨張率の温度依存性が550〜1250℃における熱膨張率の変化を意味することを特徴とする請求項1に記載の固体電解質型燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein the temperature dependence of the coefficient of thermal expansion means a change in coefficient of thermal expansion at 550 to 1250 ° C. 3. 上記支持体の一部が上記中間層を貫通して上記電極層に進入していることを特徴とする請求項1又は2に記載の固体電解質型燃料電池。   3. The solid oxide fuel cell according to claim 1, wherein a part of the support passes through the intermediate layer and enters the electrode layer. 4. 上記電極層に進入している支持体部分の全部又は一部では、支持体の構成材料が露出していることを特徴とする請求項3に記載の固体電解質型燃料電池。   4. The solid oxide fuel cell according to claim 3, wherein a constituent material of the support is exposed at all or a part of the support portion entering the electrode layer. 上記支持体が導電性を有する多孔質構造体から成ることを特徴とする請求項1〜4のいずれか1つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 4, wherein the support is made of a porous structure having conductivity. 上記支持体が導電性不織布であることを特徴とする請求項5に記載の固体電解質型燃料電池。   6. The solid oxide fuel cell according to claim 5, wherein the support is a conductive nonwoven fabric. 上記中間層が上記支持体に非金属材料粉末を噴霧することにより形成されたものである特徴とする請求項1〜6のいずれか1つの項に記載の固体電解質型燃料電池。   The solid oxide fuel cell according to any one of claims 1 to 6, wherein the intermediate layer is formed by spraying a nonmetallic material powder on the support. 請求項1〜7のいずれか1つの項に記載の固体電解質型燃料電池を積層して成ることを特徴とする固体電解質型燃料電池スタック。   A solid oxide fuel cell stack comprising the solid oxide fuel cells according to any one of claims 1 to 7 stacked.
JP2013162106A 2013-08-05 2013-08-05 Solid oxide fuel cell and solid oxide fuel cell stack Active JP6268797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013162106A JP6268797B2 (en) 2013-08-05 2013-08-05 Solid oxide fuel cell and solid oxide fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013162106A JP6268797B2 (en) 2013-08-05 2013-08-05 Solid oxide fuel cell and solid oxide fuel cell stack

Publications (2)

Publication Number Publication Date
JP2015032494A true JP2015032494A (en) 2015-02-16
JP6268797B2 JP6268797B2 (en) 2018-01-31

Family

ID=52517651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013162106A Active JP6268797B2 (en) 2013-08-05 2013-08-05 Solid oxide fuel cell and solid oxide fuel cell stack

Country Status (1)

Country Link
JP (1) JP6268797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009079A (en) * 2017-06-28 2019-01-17 京セラ株式会社 Cell, cell stack device, module, and module storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334706A (en) * 2001-05-08 2002-11-22 Nissan Motor Co Ltd Cell element layer base and cell plate for solid electrolyte type fuel cell
JP2005251562A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Solid oxide fuel cell, cell therefor and cell board
JP2008135360A (en) * 2006-10-24 2008-06-12 Ngk Insulators Ltd Thin plate for unit cell of solid oxide fuel battery
JP2009245654A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Manufacturing method for solid oxide fuel cell, and the solid oxide fuel cell
JP2012520553A (en) * 2009-03-16 2012-09-06 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー A fuel electrode-supported solid oxide fuel cell including a nanoporous layer having an inclined pore structure and a method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334706A (en) * 2001-05-08 2002-11-22 Nissan Motor Co Ltd Cell element layer base and cell plate for solid electrolyte type fuel cell
JP2005251562A (en) * 2004-03-04 2005-09-15 Nissan Motor Co Ltd Solid oxide fuel cell, cell therefor and cell board
JP2008135360A (en) * 2006-10-24 2008-06-12 Ngk Insulators Ltd Thin plate for unit cell of solid oxide fuel battery
JP2009245654A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Manufacturing method for solid oxide fuel cell, and the solid oxide fuel cell
JP2012520553A (en) * 2009-03-16 2012-09-06 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー A fuel electrode-supported solid oxide fuel cell including a nanoporous layer having an inclined pore structure and a method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009079A (en) * 2017-06-28 2019-01-17 京セラ株式会社 Cell, cell stack device, module, and module storage device

Also Published As

Publication number Publication date
JP6268797B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6677913B2 (en) Single fuel cell
US10270118B2 (en) Solid oxide fuel cell
CN107431216B (en) Electrochemical reaction unit and fuel cell stack
JP6434723B2 (en) Membrane electrode assembly, method for manufacturing membrane electrode assembly, fuel cell, and method for manufacturing fuel cell
US10084191B2 (en) Solid electrolyte laminate, method for manufacturing solid electrolyte laminate, and fuel cell
US20140178795A1 (en) Solid oxide fuel cell and method of manufacturing interconnector for solid oxide fuel cell
JP5443325B2 (en) Solid oxide fuel cell and single cell for solid oxide fuel cell
JP6504249B2 (en) Cell module for solid oxide fuel cell and solid oxide fuel cell using the same
JP6389133B2 (en) Fuel cell stack
JP6268797B2 (en) Solid oxide fuel cell and solid oxide fuel cell stack
JP5428178B2 (en) Method for producing solid oxide fuel cell and laminate
JP5717559B2 (en) Covered film member, current collecting member, and fuel cell apparatus
JP5117821B2 (en) Solid oxide fuel cell and method for producing the same
KR20160058275A (en) Metal-supported solid oxide fuel cell and method of manufacturing the same
JP5667100B2 (en) Method for producing solid oxide fuel cell
JP5657399B2 (en) Method for producing solid oxide electrochemical cell
JP6164542B2 (en) Current collector and method for producing current collector, electrode for solid oxide fuel cell with current collector, solid oxide fuel cell single cell, solid oxide fuel cell stack structure
JP2014123562A (en) Interconnect for solid oxide fuel cell and method for manufacturing the interconnect
JP2014007127A (en) Method for manufacturing single cell for solid oxide fuel cell, single cell for solid oxide fuel cell, and solid oxide fuel cell
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP2012009426A (en) Solid oxide type fuel cell
JP4373364B2 (en) Flat type solid oxide fuel cell stack
JP2018137204A (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP4373365B2 (en) Flat type solid oxide fuel cell stack
JP2014182882A (en) Electrode for solid oxide fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6268797

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151