JP2015030282A - Mechanism for power transmission of auxiliary machine and method for power transmission of auxiliary machine - Google Patents

Mechanism for power transmission of auxiliary machine and method for power transmission of auxiliary machine Download PDF

Info

Publication number
JP2015030282A
JP2015030282A JP2013158789A JP2013158789A JP2015030282A JP 2015030282 A JP2015030282 A JP 2015030282A JP 2013158789 A JP2013158789 A JP 2013158789A JP 2013158789 A JP2013158789 A JP 2013158789A JP 2015030282 A JP2015030282 A JP 2015030282A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
rotational speed
auxiliary machine
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013158789A
Other languages
Japanese (ja)
Other versions
JP6160339B2 (en
Inventor
嘉丈 武井
Yoshitake Takei
嘉丈 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013158789A priority Critical patent/JP6160339B2/en
Publication of JP2015030282A publication Critical patent/JP2015030282A/en
Application granted granted Critical
Publication of JP6160339B2 publication Critical patent/JP6160339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mechanism and method for power transmission of an auxiliary machine in which an output of an internal combustion engine is taken out when required by the auxiliary machine, and the auxiliary machine is driven by an optimal rotational speed with superior operating efficiency of the auxiliary machine, thereby contributing the improvement of fuel consumption of vehicles and contributing the decrease of restriction of a layout and space-saving.SOLUTION: A working fluid discharged from a fluid pump 12 connected to a crankshaft 11 of an internal combustion engine 10 through a power separating device 17 and driven by the power of the internal combustion engine 10 is made to flow into a fluid motor 14 connected to a rotating shaft 21 of the auxiliary machine 20 and driving the auxiliary machine 20, and the auxiliary machine 20 is driven by the power of the internal combustion engine 10. Also, the connection and separation of the power separating device 17 is controlled based on a rotational speed Ne of the internal combustion engine 10, and a return flow rate at the time when a portion of the working fluid discharged from the fluid pump 12 is returned to the fluid pump 12 without passing the fluid motor 14 is adjusted based on the rotational speed Ne of the internal combustion engine 10 or the rotational speed Na of the auxiliary machine 20.

Description

本発明は、必要なときに内燃機関のクランク軸から動力を取り出して、補機における運転効率が良い最適な回転数で補機を駆動することができる補機の動力伝達機構及び補機の動力伝達方法に関する。   The present invention relates to a power transmission mechanism for an auxiliary machine that can take out power from the crankshaft of an internal combustion engine when necessary, and drive the auxiliary machine at an optimum rotational speed with good operation efficiency in the auxiliary machine, and the power of the auxiliary machine It relates to the transmission method.

トラック等の商用車では、車両に搭載される内燃機関のACG(交流発電機)やウォーターポンプ等の回転機器である補機の駆動には、通常、車両内の設置スペース、コスト削減等の観点から、補機専用の駆動源を設けずに、内燃機関で発生する動力を用いている。この動力伝達にベルト式動力伝達機構や歯車を介しての歯車式動力伝達機構等を用いる場合は、内燃機関の回転数に比例した回転数で動力が補機に伝達され、補機の駆動力およびその出力が得られている。   In commercial vehicles such as trucks, driving of auxiliary equipment such as ACG (alternating current generator) of an internal combustion engine and water pump mounted on the vehicle is usually from the viewpoint of installation space in the vehicle and cost reduction. Therefore, the power generated in the internal combustion engine is used without providing a drive source dedicated to the auxiliary equipment. When a belt-type power transmission mechanism or a gear-type power transmission mechanism via gears is used for this power transmission, the power is transmitted to the auxiliary machine at a rotational speed proportional to the rotational speed of the internal combustion engine. And its output is obtained.

例えば、図6に示すように、内燃機関(エンジン:ENG)10Xのクランク軸11Xに設けたプーリ30と、補機(ACG等)20Xの駆動軸21Xに設けたプーリ31とを、タイミングベルト32で連結して、この補機のベルト式動力伝達機構1Xを用いて、内燃機関10Xの動力を補機20Xに伝達して駆動している。   For example, as shown in FIG. 6, a pulley 30 provided on a crankshaft 11X of an internal combustion engine (engine: ENG) 10X and a pulley 31 provided on a drive shaft 21X of an auxiliary machine (such as ACG) 20X are connected to a timing belt 32. And the power of the internal combustion engine 10X is transmitted to and driven by the auxiliary machine 20X using the belt type power transmission mechanism 1X of the auxiliary machine.

しかしながら、このような補機の動力伝達機構では、内燃機関のクランク軸の回転が直接かつ常時補機に伝達されているため、図7に示すように、内燃機関の回転数Neに応じて補機の回転数Naおよび出力が決定されてしまう。そのため、回転機械等の補機において運転効率の悪い回転数領域(図7の「未達領域」及び「過回転領域」)でも補機が運転されることになり、内燃機関の回転数Neが小さい「未達領域(Ne1<Ne<Ne3)」では補機の出力が必要量に達成せず不十分となり、逆に、内燃機関の回転数Neが大きい「過回転領域(Ne3<Ne<Ne2)」では補機の出力が必要量を超えて過大になるという問題がある。また、補機の回転数Naが高効率回転数Nabから離れると補機の運転効率が悪くエネルギーロスが大きくなるという問題もある。   However, in such a power transmission mechanism of an auxiliary machine, the rotation of the crankshaft of the internal combustion engine is transmitted directly and constantly to the auxiliary machine, so that the auxiliary power is compensated according to the rotational speed Ne of the internal combustion engine as shown in FIG. The machine speed Na and the output are determined. For this reason, the auxiliary machine is operated even in the rotation speed region where the operation efficiency is low (“unreachable region” and “overspeed region” in FIG. 7) in the auxiliary machine such as a rotary machine, and the rotation speed Ne of the internal combustion engine is In the small “not-reached region (Ne1 <Ne <Ne3)”, the output of the auxiliary machine does not reach the required amount and becomes insufficient, and conversely, the rotational speed Ne of the internal combustion engine is large “Overspeed region (Ne3 <Ne <Ne2). ) ”Has the problem that the output of the auxiliary machine exceeds the required amount and becomes excessive. In addition, when the rotation speed Na of the auxiliary machine is separated from the high-efficiency rotation speed Nab, there is a problem that the operation efficiency of the auxiliary machine is poor and the energy loss is increased.

また、補機の出力が不要で補機の駆動が不要な運転領域(Ne≦Ne1、又は、Ne2≦Ne)で、補機に動力を伝達する必要が無い場合でも、ベルト式動力伝達機構や歯車式動力伝達機構を介して、内燃機関から補機に動力が伝達されて補機が運転されてしまい、内燃機関の動力の一部を無駄に消費してしまうので、車両の走行に用いる動力や補機の駆動に必要な動力以外に、内燃機関で燃料を余分に消費することになる。その結果として、車両の燃費が悪くなるという問題が発生していた。   Even if there is no need to transmit power to the auxiliary machine in the operation region where the output of the auxiliary machine is unnecessary and the driving of the auxiliary machine is unnecessary (Ne ≦ Ne1 or Ne2 ≦ Ne), the belt type power transmission mechanism or Since the power is transmitted from the internal combustion engine to the auxiliary machine through the gear-type power transmission mechanism and the auxiliary machine is operated, and a part of the power of the internal combustion engine is wasted, the power used for traveling the vehicle In addition to the power required for driving the auxiliaries, the internal combustion engine consumes extra fuel. As a result, there has been a problem that the fuel consumption of the vehicle is deteriorated.

また、さらに、タイミングベルトや歯車を介しての動力伝達機構では、内燃機関周辺に補機を配置する必要があるため、狭いエンジンルーム内のレイアウトに大きな制約が生じるという問題もある。   Further, in the power transmission mechanism via the timing belt and the gear, since it is necessary to arrange an auxiliary machine around the internal combustion engine, there is a problem that a large restriction is imposed on a layout in a narrow engine room.

これに関連して、車載に搭載されたエンジンによって駆動される油圧ポンプと、この油圧ポンプによって発生された油圧によって駆動される可変容量油圧モータと、この油圧モータによって回転駆動される交流発電機と、前記エンジン、油圧モータ、もしくは交流発電機等の回転体の検出信号が供給され、前記油圧モータの容量および交流発電機の励磁電流制御を行う電子制御手段とを具備し、前記エンジンの低速回転時にあっても、前記交流発電機が一定周波数の電力を発生するように一定回転数で駆動制御する車両用交流発電装置が提案されている(例えば、特許文献1参照)。   In this connection, a hydraulic pump driven by an engine mounted on the vehicle, a variable capacity hydraulic motor driven by the hydraulic pressure generated by the hydraulic pump, and an AC generator rotated by the hydraulic motor, A low-speed rotation of the engine, comprising: an electronic control means for supplying a detection signal of a rotating body such as the engine, the hydraulic motor, or an AC generator, and controlling the capacity of the hydraulic motor and the excitation current of the AC generator Even in some cases, there has been proposed an AC generator for a vehicle that is driven and controlled at a constant rotational speed so that the AC generator generates electric power having a constant frequency (see, for example, Patent Document 1).

しかしながら、この車両用交流発電装置では、可変容量油圧モータを用いることで、交流発電機の回転数を一定回転数に維持しているが、車両の走行に用いる動力や補機の駆動に必要な動力以外で内燃機関の出力が消費されてしまうことによる、車両の燃費の悪化の問題を解決することはできない。   However, in this vehicle AC generator, the rotational speed of the AC generator is maintained at a constant rotational speed by using a variable displacement hydraulic motor. However, it is necessary for driving the motive power and auxiliary equipment used for traveling the vehicle. The problem of deterioration of the fuel consumption of the vehicle due to consumption of the output of the internal combustion engine other than power cannot be solved.

特開平03−169298号公報Japanese Patent Laid-Open No. 03-169298

本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関の出力で補機を駆動する補機の動力伝達機構において、補機が必要とするときに内燃機関の出力を取り出し、かつ、補機の運転効率が良い最適な回転数で補機を駆動することができて、車両の燃費の改善に寄与でき、しかも、レイアウトの制約を減少できて、省スペースに貢献することができる補機の動力伝達機構及び補機の動力伝達方法を提供することにある。   The present invention has been made in view of the above, and an object of the present invention is to provide an output of the internal combustion engine when the auxiliary machine requires it in a power transmission mechanism of the auxiliary machine that drives the auxiliary machine with the output of the internal combustion engine. The auxiliary machine can be driven at an optimal speed with good driving efficiency of the auxiliary machine, contributing to improved fuel efficiency of the vehicle, and reducing layout constraints, contributing to space saving. It is an object to provide a power transmission mechanism for an auxiliary machine and a power transmission method for the auxiliary machine.

上記の目的を達成するための本発明の補機の動力伝達機構は、内燃機関のクランク軸に動力切離装置を介して接続されて、前記内燃機関の動力により駆動される流体ポンプと、補機の回転軸に接続されて、前記補機を駆動する流体モータと、前記流体ポンプから吐出された作動流体を、前記流体モータを通過させてから前記流体ポンプに戻す流体モータ駆動用流路と、前記流体ポンプから吐出された前記作動流体を、前記流体モータを通過させずに前記流体ポンプに戻す戻し流路と、前記流体モータ駆動用流路と前記戻し流路の流量調整を行う戻し流量調整装置を有して構成され、前記内燃機関の回転数に基づいて前記動力切離装置の接続および切り離しを制御し、かつ、前記内燃機関の回転数又は前記補機の回転数に基づいて前記戻し流量調整装置を制御する制御装置を備えて構成される。   To achieve the above object, a power transmission mechanism of an auxiliary machine according to the present invention is connected to a crankshaft of an internal combustion engine through a power disconnecting device, and is driven by a fluid pump driven by the power of the internal combustion engine. A fluid motor connected to the rotary shaft of the machine and driving the auxiliary machine; a fluid motor driving flow path for returning the working fluid discharged from the fluid pump to the fluid pump after passing through the fluid motor; A return flow path for returning the working fluid discharged from the fluid pump to the fluid pump without passing through the fluid motor; and a return flow rate for adjusting a flow rate of the fluid motor drive flow path and the return flow path An adjusting device configured to control connection and disconnection of the power disconnecting device based on the rotational speed of the internal combustion engine, and based on the rotational speed of the internal combustion engine or the rotational speed of the auxiliary machine Return flow rate Configured with a control device for controlling the integer unit.

この構成によれば、内燃機関の回転数に基づいて動力切離装置の接続および切り離しを制御するので、内燃機関の動力で駆動される補機において、内燃機関の回転数に応じて、補機の運転効率が著しく悪い場合や不要な場合や安全性の面から補機への動力伝達を遮断し、また、補機が高い運転効率で駆動する場合には補機への動力伝達を行って、その駆動力分だけを内燃機関から伝達することができる。従って、補機の無駄な駆動を無くすことができ、この補機の無駄な駆動に基づく内燃機関の燃料噴射量を低減して、燃費の改善を図ることができる。   According to this configuration, since the connection and disconnection of the power disconnecting device are controlled based on the rotational speed of the internal combustion engine, the auxiliary equipment driven by the power of the internal combustion engine can be controlled according to the rotational speed of the internal combustion engine. If the operating efficiency of the machine is extremely bad or unnecessary, or from the viewpoint of safety, the power transmission to the auxiliary machine is cut off, and if the auxiliary machine is driven at a high operating efficiency, the power transmission to the auxiliary machine is performed. Only the driving force can be transmitted from the internal combustion engine. Accordingly, useless driving of the auxiliary machine can be eliminated, and the fuel injection amount of the internal combustion engine based on the useless driving of the auxiliary machine can be reduced, thereby improving the fuel consumption.

また、内燃機関の回転数又は前記補機の回転数に基づいて戻し流量調整装置を制御することにより、内燃機関からの動力が補機に必要な動力よりも大きい場合や、高い運転効率で補機を駆動できない場合には、高い運転効率で運転できるだけの動力だけを伝達できるように、流体モータへ流れる作動流体の流量を調整できるので、補機を高い運転効率で運転することができる。また、その一方で、戻し流量の分だけ流体ポンプの負荷を減少できるので、これにより、内燃機関の燃料噴射量を低減して、燃費の改善を図ることができる。   Further, by controlling the return flow rate adjusting device based on the rotational speed of the internal combustion engine or the rotational speed of the auxiliary machine, the power from the internal combustion engine is larger than the power required for the auxiliary machine, or it is compensated with high operating efficiency. When the machine cannot be driven, the flow rate of the working fluid flowing to the fluid motor can be adjusted so that only power that can be operated with high operating efficiency can be transmitted, so that the auxiliary machine can be operated with high operating efficiency. On the other hand, the load of the fluid pump can be reduced by the amount of the return flow rate, so that the fuel injection amount of the internal combustion engine can be reduced and the fuel consumption can be improved.

さらに、作動流体を用いて補機を駆動しているので、ベルト式動力伝達機構や歯車式動力伝達機構に比べて、レイアウト上の制約が少なくなり、エンジンルーム内での補機の配置の自由度が増加するので、内燃機関と補機を配置するスペースを小さくすることができ、省スペースに貢献できる。   Furthermore, since the auxiliary machine is driven using the working fluid, there are fewer layout restrictions compared to the belt-type power transmission mechanism and gear-type power transmission mechanism, and the placement of the auxiliary machine in the engine room is free. Since the degree increases, the space for arranging the internal combustion engine and the auxiliary machine can be reduced, which can contribute to space saving.

上記の補機の動力伝達機構において、前記制御装置が、前記内燃機関の回転数が予め設定した第1内燃機関回転数以下の場合、若しくは、前記第1内燃機関回転数より大きい予め設定した第2内燃機関回転数以上の場合に、前記動力切離装置を切り離し状態にする制御を行うと共に、前記内燃機関の回転数が前記第1内燃機関回転数より大きく、かつ、前記第2内燃機関回転数未満の場合に、前記動力切離装置を接続状態にする制御を行うと、補機の駆動が不要な場合や、内燃機関の回転数又は補機の回転数が補機の駆動に不適切な低回転数や高回転数の場合には、補機への動力伝達を遮断することができるので、補機の無駄な駆動に基づく内燃機関のエネルギーロスを低減でき、燃費の改善を図ることができる。   In the power transmission mechanism of the above-mentioned auxiliary machine, when the rotational speed of the internal combustion engine is equal to or lower than the first rotational speed of the first internal combustion engine, or when the rotational speed of the internal combustion engine is greater than the first rotational speed of the first internal combustion engine, 2 When the engine speed is equal to or higher than the internal combustion engine speed, the power disconnecting device is controlled to be disconnected, and the internal combustion engine speed is greater than the first internal combustion engine speed and the second internal combustion engine speed is increased. If the power disconnecting device is controlled to be in the connected state when the number is less than the number, the driving of the auxiliary machine is unnecessary, or the rotational speed of the internal combustion engine or the rotational speed of the auxiliary machine is inappropriate for driving the auxiliary machine. When the engine speed is low or high, power transmission to the auxiliary machine can be cut off, reducing the energy loss of the internal combustion engine based on unnecessary driving of the auxiliary machine and improving fuel efficiency. Can do.

また、上記の補機の動力伝達機構において、前記内燃機関の回転数が予め設定した第3内燃機関回転数よりも高い場合、又は、前記補機の回転数が予め設定した高効率回転数よりも高い場合には、前記補機の回転数が前記高効率回転数を維持するように、前記戻し流量調整装置で戻し流量を調整する制御を行うと、内燃機関のクランク軸から動力を取り出して補機を駆動することが必要で、内燃機関の回転数が補機の駆動に適した領域内にあるときにおいて、補機を高効率回転数で回転制御することができ、補機を高い運転効率で駆動できる。そのため、補機の駆動におけるエネルギーロスを小さくすることができ、内燃機関の燃費の改善を図ることができる。   Further, in the power transmission mechanism of the auxiliary machine, when the rotational speed of the internal combustion engine is higher than a preset third internal combustion engine speed, or when the rotational speed of the auxiliary machine is higher than a preset high efficiency rotational speed. If the control flow is adjusted so that the return flow rate adjustment device adjusts the return flow rate so that the rotation speed of the auxiliary machine maintains the high-efficiency rotation rate, power is extracted from the crankshaft of the internal combustion engine. When it is necessary to drive the auxiliary machine, and the rotational speed of the internal combustion engine is within a range suitable for driving the auxiliary machine, the auxiliary machine can be controlled to rotate at a high efficiency, and the auxiliary machine can be operated at high speed. Drive with efficiency. Therefore, the energy loss in driving the auxiliary machine can be reduced, and the fuel consumption of the internal combustion engine can be improved.

この高効率回転数は、補機が最も効率の高い状態で運転できる補機の回転数であり、補機の仕様の回転数と効率の関係から設定することができる。また、第3内燃機関回転数は、戻し流量調整装置で、戻し流量を予め設定した流量(例えば、ゼロ)にした場合に回転機器の回転数が予め設定した高効率回転数となる内燃機関の回転数として設定される。   This high-efficiency rotational speed is the rotational speed of the auxiliary machine that can be operated in a state in which the auxiliary machine has the highest efficiency, and can be set from the relationship between the rotational speed and the efficiency of the auxiliary machine specification. The third internal combustion engine rotational speed is the internal combustion engine speed at which the rotational speed of the rotating device is a preset high efficiency rotational speed when the return flow rate is set to a predetermined flow rate (for example, zero) by the return flow rate adjusting device. Set as number of revolutions.

また、上記の目的を達成するための本発明の補機の動力伝達方法は、内燃機関のクランク軸に動力切離装置を介して接続されて前記内燃機関の動力により駆動される流体ポンプから吐出された作動流体を、補機の回転軸に接続されて前記補機を駆動する流体モータに流して、前記内燃機関の動力で前記補機を駆動すると共に、前記動力切離装置の接続および切り離しを前記内燃機関の回転数に基づいて制御し、前記流体ポンプから吐出された前記作動流体の一部を前記流体モータを通過させずに前記流体ポンプに戻すときの戻し流量を前記内燃機関の回転数又は前記補機の回転数に基づいて調整することを特徴とする方法である。   In addition, in order to achieve the above object, the power transmission method of the auxiliary machine according to the present invention is a discharge from a fluid pump connected to a crankshaft of an internal combustion engine via a power disconnecting device and driven by the power of the internal combustion engine. The actuated working fluid is flowed to a fluid motor that is connected to a rotating shaft of an auxiliary machine and drives the auxiliary machine, and the auxiliary machine is driven by the power of the internal combustion engine, and the power disconnecting device is connected and disconnected. Is controlled based on the rotational speed of the internal combustion engine, and a return flow rate when returning a part of the working fluid discharged from the fluid pump to the fluid pump without passing through the fluid motor is And adjusting based on the number or the rotational speed of the auxiliary machine.

また、上記の補機の動力伝達方法において、前記内燃機関の回転数が予め設定した第1内燃機関回転数以下の場合、若しくは、前記第1内燃機関回転数より大きい予め設定した第2内燃機関回転数以上の場合に、前記動力切離装置を切り離し状態にすると共に、前記内燃機関の回転数が前記第1内燃機関回転数より大きく、かつ、前記第2内燃機関回転数未満の場合に、前記動力切離装置を接続状態にする。   Further, in the power transmission method for an auxiliary machine, when the rotation speed of the internal combustion engine is equal to or lower than a first rotation speed of the first internal combustion engine, or a second internal combustion engine set in advance larger than the rotation speed of the first internal combustion engine. When the rotational speed is equal to or higher than the rotational speed of the internal combustion engine is set to a disconnected state, and the rotational speed of the internal combustion engine is greater than the first internal combustion engine speed and less than the second internal combustion engine speed, The power disconnecting device is connected.

更に、上記の補機の動力伝達方法において、前記内燃機関の回転数が予め設定した第3内燃機関回転数よりも高い場合、又は、前記補機の回転数が予め設定した高効率回転数よりも高い場合には、前記補機の回転数が前記高効率回転数を維持するように、前記戻し流量を調整する。   Further, in the power transmission method for an auxiliary machine, when the rotational speed of the internal combustion engine is higher than a preset third internal combustion engine speed, or the auxiliary machine has a preset rotational speed higher than a preset high efficiency rotational speed. Is higher, the return flow rate is adjusted so that the rotational speed of the auxiliary machine maintains the high-efficiency rotational speed.

これらの方法によれば、それぞれ、対応する上記の補機の動力伝達機構と同様な効果を奏することができる。   According to these methods, the same effects as those of the corresponding power transmission mechanism of the auxiliary machine can be obtained.

本発明の補機の動力伝達機構及び補機の動力伝達方法によれば、内燃機関の回転数に応じて、補機への動力伝達を遮断及び接続して、補機が必要とするときに内燃機関の出力を取り出し、かつ、補機が高い運転効率で駆動する動力分だけ、内燃機関から動力を伝達することで、補機の無駄な駆動を無くすことができ、しかも、補機の運転効率が良い最適な回転数で補機を駆動することができるので、車両の燃費の改善に寄与でき、しかも、レイアウトの制約を減少できて、省スペースに貢献することができる。   According to the auxiliary power transmission mechanism and auxiliary power transmission method of the present invention, the power transmission to the auxiliary machine is cut off and connected according to the rotational speed of the internal combustion engine, and the auxiliary machine requires it. By extracting the output of the internal combustion engine and transmitting the power from the internal combustion engine by the amount of power that the auxiliary machine drives with high operating efficiency, unnecessary driving of the auxiliary machine can be eliminated and the operation of the auxiliary machine can be eliminated. Since the auxiliary machine can be driven at an optimal number of revolutions with high efficiency, it can contribute to the improvement of the fuel consumption of the vehicle, and the layout constraints can be reduced, thereby contributing to space saving.

本発明に係る実施の形態の補機の動力伝達機構の構成を模式的に示す図である。It is a figure which shows typically the structure of the power transmission mechanism of the auxiliary machine of embodiment which concerns on this invention. 図1における、流体モータを通過する流体モータ駆動用流路を示す図である。It is a figure which shows the flow path for fluid motor drive which passes a fluid motor in FIG. 図1における、流体モータを通過しない戻し流路を示す図である。It is a figure which shows the return flow path which does not pass a fluid motor in FIG. 図1における、予備流路を示す図である。It is a figure which shows the preliminary | backup channel in FIG. 本発明に係る実施の形態の補機の動力伝達機構における、エンジン回転数と回転機器の回転数との関係を示す図である。It is a figure which shows the relationship between an engine speed and the rotation speed of a rotation apparatus in the power transmission mechanism of the auxiliary machine of embodiment which concerns on this invention. 従来技術の補機のベルト式動力伝達機構の一例を示す図である。It is a figure which shows an example of the belt type power transmission mechanism of the auxiliary machine of a prior art. 従来技術の補機のベルト式動力伝達機構における問題を説明するための図である。It is a figure for demonstrating the problem in the belt type power transmission mechanism of the auxiliary machine of a prior art.

以下、本発明に係る実施の形態の補機の動力伝達機構及び補機の動力伝達方法について、図面を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an auxiliary machine power transmission mechanism and an auxiliary machine power transmission method according to embodiments of the present invention will be described with reference to the drawings.

図1に示すように、内燃機関(ENG)10の動力を回転機器(補機:ACG)20に伝達する補機の動力伝達機構1は、内燃機関10のクランク軸11に動力切離装置(クラッチ:C)17を介して接続され、かつ、内燃機関10の動力により駆動される油圧ポンプ(流体ポンプ:P)12と、ACGやウォーターポンプ等の回転機器で構成される補機20の回転軸21にフランジ22を介して接続され、かつ、補機20を駆動する油圧モータ(流体モータ:M)14と、リザーブタンク(T)15を有して構成される。   As shown in FIG. 1, an auxiliary power transmission mechanism 1 that transmits the power of an internal combustion engine (ENG) 10 to a rotating device (auxiliary machine: ACG) 20 is connected to a crankshaft 11 of the internal combustion engine 10 with a power disconnecting device ( Rotation of an auxiliary machine 20 composed of a hydraulic pump (fluid pump: P) 12 connected via a clutch (C) 17 and driven by the power of the internal combustion engine 10 and a rotating device such as an ACG or a water pump A hydraulic motor (fluid motor: M) 14 that is connected to the shaft 21 via a flange 22 and drives the auxiliary machine 20 and a reserve tank (T) 15 are configured.

また、油圧ポンプ12から吐出された作動流体を、油圧モータ14を通過させてからリザーブタンク15を経由して油圧ポンプ12に戻す油圧モータ駆動用流路(流体モータ駆動用流路)A(図2参照)と、油圧ポンプ12から吐出された作動流体を、油圧モータ14を通過させずにリザーブタンク15を経由して油圧ポンプ12に戻す戻し流路B(図3参照)と、油圧モータ駆動用流路Aと戻し流路Bの流量調整を行う戻し流量調整装置(V)13を有して構成される。   Further, a hydraulic motor driving flow path (fluid motor driving flow path) A (shown in FIG. 5) returns the working fluid discharged from the hydraulic pump 12 to the hydraulic pump 12 through the reserve tank 15 after passing through the hydraulic motor 14. 2), a return flow path B (see FIG. 3) for returning the working fluid discharged from the hydraulic pump 12 to the hydraulic pump 12 via the reserve tank 15 without passing through the hydraulic motor 14, and driving of the hydraulic motor And a return flow rate adjusting device (V) 13 for adjusting the flow rate of the flow path A and the return flow path B.

更に、好ましくは、戻し流量調整装置13が故障したときの予備の流路として、油圧ポンプ12と油圧モータ14の間を、戻し流量調整装置13を介さずに接続する予備流路C(図4参照)を備えると共に、通常時は予備流路Cを閉鎖し、戻し流量調整装置13が故障したときのみ予備流路Cを開放する三方弁16を設ける。   Further, preferably, as a backup channel when the return flow rate adjusting device 13 fails, a reserve channel C (FIG. 4) that connects the hydraulic pump 12 and the hydraulic motor 14 without the return flow rate adjusting device 13 interposed therebetween. And a three-way valve 16 that closes the preliminary flow path C during normal operation and opens the preliminary flow path C only when the return flow rate adjusting device 13 breaks down.

この予備流路Cと三方弁16を設けることで、戻し流量調整装置13が故障したときでも、三方弁16の操作により、油圧ポンプ12から吐出される作動流体を、戻し流量調整装置13を介さずに油圧モータ14に送って、内燃機関10の動力を補機20に伝達することができるので、運転効率は下がるが補機20を運転できる。これにより、戻し流量調整装置13の故障により補機20が運転停止することを回避できる。   By providing the preliminary flow path C and the three-way valve 16, even when the return flow rate adjusting device 13 breaks down, the working fluid discharged from the hydraulic pump 12 by operating the three-way valve 16 is passed through the return flow rate adjusting device 13. Since the power of the internal combustion engine 10 can be transmitted to the auxiliary machine 20 without being transmitted to the hydraulic motor 14, the auxiliary machine 20 can be operated although the operating efficiency is lowered. Thereby, it is possible to avoid the auxiliary machine 20 from being stopped due to a failure of the return flow rate adjusting device 13.

この実施の形態では作動流体として作動油を用いているが、この作動流体は非圧縮性流体であればよく、内燃機関10の潤滑油や油圧装置用の作動油や内燃機関10の冷却水等を用いることができる。また、リザーブタンク15を設けることで、保守点検時や戻し流量調整装置13が故障した際に、各流路A、B、C内の作動油の回収を容易に行うことができ、また、メンテナンス性を向上させることができる。なお、補機20と油圧モータ14をフランジ22を介して接続しているが、油圧モータ14の動力を補機20に伝達することができればよく、必ずしもフランジ22で接続する必要はない。   In this embodiment, the working oil is used as the working fluid. However, the working fluid may be an incompressible fluid, such as lubricating oil for the internal combustion engine 10, hydraulic oil for the hydraulic device, cooling water for the internal combustion engine 10, or the like. Can be used. In addition, by providing the reserve tank 15, it is possible to easily collect the hydraulic oil in each of the flow paths A, B, and C at the time of maintenance inspection or when the return flow rate adjusting device 13 breaks down. Can be improved. Although the auxiliary machine 20 and the hydraulic motor 14 are connected via the flange 22, it is only necessary that the power of the hydraulic motor 14 can be transmitted to the auxiliary machine 20, and it is not always necessary to connect the flange 22.

そして、図1に示すように、油圧ポンプ12、戻し流量調整装置13、油圧モータ14、三方弁16、動力切離装置17等の操作及び制御を行うための制御装置40aが設けられる。この制御装置40aは、通常は、内燃機関10の全般の制御や内燃機関10を搭載した車両の全般の制御を行う全体システム制御装置40に組み込まれて構成される。   As shown in FIG. 1, a control device 40a for operating and controlling the hydraulic pump 12, the return flow rate adjusting device 13, the hydraulic motor 14, the three-way valve 16, the power disconnecting device 17, and the like is provided. The control device 40a is normally configured to be incorporated in an overall system control device 40 that performs overall control of the internal combustion engine 10 and overall control of a vehicle in which the internal combustion engine 10 is mounted.

そして、この制御装置40aは、内燃機関10の回転数Neに基づいて動力切離装置17の切り離しを制御し、内燃機関10の回転数Neに基づいて動力切離装置17の接続を制御する。   The control device 40a controls the disconnection of the power disconnection device 17 based on the rotational speed Ne of the internal combustion engine 10, and controls the connection of the power disconnection device 17 based on the rotational speed Ne of the internal combustion engine 10.

つまり、図5に示すように、内燃機関10の回転数Neが予め設定した第1内燃機関回転数Ne1以下の場合(Ne≦Ne1)、若しくは、第1内燃機関回転数Ne1より大きい予め設定した第2内燃機関回転数Ne2以上の場合(Ne2≦Ne)に、動力切離装置17を切り離し状態にして、内燃機関10の動力が補機20に伝達されないようにして補機20の回転数Naをゼロとする。   That is, as shown in FIG. 5, when the rotational speed Ne of the internal combustion engine 10 is equal to or lower than the first internal combustion engine speed Ne1 set in advance (Ne ≦ Ne1), or set higher than the first internal combustion engine speed Ne1. When the second internal combustion engine speed Ne2 is greater than or equal to Ne2 (Ne2 ≦ Ne), the power disconnecting device 17 is disconnected and the power of the internal combustion engine 10 is not transmitted to the auxiliary machine 20 so that the rotational speed Na of the auxiliary machine 20 Is zero.

さらに、内燃機関10の回転数Neが第1内燃機関回転数Ne1より大きく、かつ、第2内燃機関回転数Ne2未満の場合(Ne1<Ne<Ne2)に、動力切離装置17を接続状態にする制御を行うように構成される。   Furthermore, when the rotational speed Ne of the internal combustion engine 10 is greater than the first internal combustion engine speed Ne1 and less than the second internal combustion engine speed Ne2 (Ne1 <Ne <Ne2), the power disconnecting device 17 is brought into the connected state. Configured to perform control.

それと共に、制御装置40aは、内燃機関10の回転数Ne又は補機の回転数Naに基づいて戻し流量調整装置13を制御するように構成される。つまり、内燃機関10の回転数Neが予め設定した第3内燃機関回転数Ne3よりも高い場合、又は、補機20の回転数Naが予め設定した高効率回転数Nabよりも高い場合には、補機20の回転数Naが高効率回転数Nabを維持するように、戻し流量調整装置13で、作動流体の戻し流量を調整する制御を行うように構成される。   At the same time, the control device 40a is configured to control the return flow rate adjusting device 13 based on the rotational speed Ne of the internal combustion engine 10 or the rotational speed Na of the auxiliary machine. That is, when the rotational speed Ne of the internal combustion engine 10 is higher than the preset third internal combustion engine rotational speed Ne3, or when the rotational speed Na of the auxiliary machine 20 is higher than the preset high-efficiency rotational speed Nab, The return flow rate adjusting device 13 is configured to control the return flow rate of the working fluid so that the rotation rate Na of the auxiliary machine 20 maintains the high-efficiency rotation rate Nab.

この戻し流量の制御は、例えば、内燃機関10の回転数Neを基にした戻し流量調整装置13の制御用数値を予めマップデータ等にしておき、このマップデータを参照しながら戻し流量調整装置13を制御することで行う。   The control of the return flow rate is performed, for example, by previously setting a numerical value for control of the return flow rate adjustment device 13 based on the rotational speed Ne of the internal combustion engine 10 as map data or the like, and referring to this map data. It is done by controlling.

あるいは、この戻し流量の制御は、補機20の回転数Naを回転数センサ(図示しない)等でモニターして、補機20の回転数Naが高効率回転数Nabを超えたら、戻し流量調整装置13の調整弁の弁開度を現状よりも少し開いて戻し流量を増加し、補機20の回転数Naが高効率回転数Nabより小さくなったら、戻し流量調整装置13の調整弁の弁開度を現状よりも少し閉じて戻し流量を減少するというフィードバック制御することで行う。   Alternatively, the return flow rate is controlled by monitoring the rotation speed Na of the auxiliary machine 20 with a rotation speed sensor (not shown) or the like and adjusting the return flow volume when the rotation speed Na of the auxiliary machine 20 exceeds the high efficiency rotation speed Nab. When the opening degree of the adjustment valve of the device 13 is slightly opened from the current state to increase the return flow rate, and the rotational speed Na of the auxiliary machine 20 becomes smaller than the high efficiency rotational speed Nab, the valve of the adjustment valve of the return flow rate adjustment device 13 This is performed by feedback control that the opening degree is slightly closed from the current state and the return flow rate is reduced.

この高効率回転数Nabは、補機20が最も効率の高い状態で運転できる補機20の回転数であり、補機20の仕様の回転数と効率の関係から設定することができる。また、第3内燃機関回転数Ne3は、戻し流量調整装置13で、戻し流量を予め設定した流量(例えば、ゼロ)にした場合に補機20の回転数Naが予め設定した高効率回転数Nabとなる内燃機関10の回転数として設定される。   The high-efficiency rotational speed Nab is the rotational speed of the auxiliary machine 20 that can be operated in a state where the auxiliary machine 20 has the highest efficiency, and can be set from the relationship between the rotational speed and the efficiency of the specifications of the auxiliary machine 20. Further, the third internal combustion engine rotational speed Ne3 is a high-efficiency rotational speed Nab preset by the rotational speed Na of the auxiliary machine 20 when the return flow rate adjusting device 13 sets the return flow rate to a preset flow rate (for example, zero). Is set as the rotational speed of the internal combustion engine 10.

つまり、内燃機関10の回転数Neが第3内燃機関回転数Ne3を超えた場合には、戻し流量調整装置13で戻し流量を予め設定した流量(例えば、ゼロ)にしたままの場合には、油圧モータ14で駆動される補機20の回転数Naは、例えば、図5に示すような回転数特性線Lxに沿って上昇し、過回転領域で、高効率回転数Nabを超えた回転数Naで駆動されることになり、補機(回転機器)20は運転効率の悪い回転数Naで運転することになる。   That is, when the rotational speed Ne of the internal combustion engine 10 exceeds the third internal combustion engine rotational speed Ne3, when the return flow rate is kept at a preset flow rate (for example, zero) by the return flow rate adjustment device 13, The rotational speed Na of the auxiliary machine 20 driven by the hydraulic motor 14 rises, for example, along the rotational speed characteristic line Lx as shown in FIG. 5 and exceeds the high-efficiency rotational speed Nab in the over-rotation region. It will be driven by Na, and the auxiliary machine (rotating device) 20 will drive | operate by the rotation speed Na with a bad operating efficiency.

これに対して、本発明では、内燃機関10の回転数Neが第3内燃機関回転数Ne3を超えた場合には、戻し流量調整装置13で戻し流量を調整して予め設定した流量(例えば、ゼロ)より増加することにより、油圧モータ14に流れる作動流体の流量を減少して、この油圧モータ14で駆動される補機20の回転数Naを、図5に示すように、回転数特性線(太線)Laに沿って高効率回転数Nabを維持するように制御する。これにより、補機(回転機器)20は、過回転領域に入ることを回避できて、運転効率の良い高効率回転数Nabで運転することになる。   On the other hand, in the present invention, when the rotational speed Ne of the internal combustion engine 10 exceeds the third internal combustion engine rotational speed Ne3, the return flow rate adjusting device 13 adjusts the return flow rate to set a flow rate (for example, 5), the flow rate of the working fluid flowing to the hydraulic motor 14 is decreased, and the rotational speed Na of the auxiliary machine 20 driven by the hydraulic motor 14 is set to a rotational speed characteristic line as shown in FIG. (Bold line) Control is performed so as to maintain the high-efficiency rotational speed Nab along La. As a result, the auxiliary machine (rotating device) 20 can avoid entering the over-rotation region and operates at a high-efficiency rotational speed Nab with good operating efficiency.

なお、油圧ポンプ12の容量と油圧モータ14の容量によっては、図5に示すように、従来技術の「未達領域」に相当する部分が発生するが、これらの容量を大きくして、内燃機関10の回転数Ne、即ち、油圧ポンプ12の回転数が小さくても、油圧モータ14の回転数、即ち、補機(回転機器)20の回転数Naが大きくなるように構成することで、回転数特性線(太線)La1を長破線La2、短破線La3、細線La4等に変化させることができ、「未達領域」に相当する部分を小さくすることができる。   Depending on the capacity of the hydraulic pump 12 and the capacity of the hydraulic motor 14, as shown in FIG. 5, a portion corresponding to the “unreachable region” of the prior art occurs. Even if the rotational speed Ne of 10, that is, the rotational speed of the hydraulic pump 12 is small, the rotational speed of the hydraulic motor 14, that is, the rotational speed Na of the auxiliary machine (rotating device) 20 is increased. The number characteristic line (thick line) La1 can be changed to a long broken line La2, a short broken line La3, a thin line La4, etc., and a portion corresponding to the “unreachable region” can be reduced.

そして、この補機の動力伝達機構1を用いた補機の動力伝達方法では、内燃機関10のクランク軸11に動力切離装置17を介して接続されて内燃機関10の動力により駆動される油圧ポンプ12から吐出された作動流体を、補機20の回転軸21に接続されて補機20を駆動する油圧モータ14に流して、内燃機関10の動力で補機20を駆動する。また、それと共に、動力切離装置17の接続および切り離しを内燃機関10の回転数Neに基づいて制御し、油圧ポンプ12から吐出された作動流体の一部を油圧モータ14を通過させずに油圧ポンプ12に戻すときの戻し流量を内燃機関10の回転数Ne又は補機20の回転数Naに基づいて調整する。   In the auxiliary power transmission method using the auxiliary power transmission mechanism 1, the hydraulic pressure is connected to the crankshaft 11 of the internal combustion engine 10 via the power disconnection device 17 and driven by the power of the internal combustion engine 10. The working fluid discharged from the pump 12 is supplied to the hydraulic motor 14 that is connected to the rotating shaft 21 of the auxiliary machine 20 and drives the auxiliary machine 20, and the auxiliary machine 20 is driven by the power of the internal combustion engine 10. At the same time, the connection and disconnection of the power disconnecting device 17 is controlled based on the rotational speed Ne of the internal combustion engine 10, and a part of the working fluid discharged from the hydraulic pump 12 is hydraulically passed without passing through the hydraulic motor 14. The return flow rate when returning to the pump 12 is adjusted based on the rotational speed Ne of the internal combustion engine 10 or the rotational speed Na of the auxiliary machine 20.

また、内燃機関10の回転数Neが予め設定した第1内燃機関回転数Ne1以下の場合、若しくは、第1内燃機関回転数Ne1より大きい予め設定した第2内燃機関回転数Ne2以上の場合に、動力切離装置17を切り離し状態にすると共に、内燃機関10の回転数Neが第1内燃機関回転数Ne1より大きく、かつ、第2内燃機関回転数Ne2未満の場合に、動力切離装置17を接続状態にする。   Further, when the rotational speed Ne of the internal combustion engine 10 is equal to or smaller than the first internal combustion engine rotational speed Ne1, or when the rotational speed Ne is equal to or larger than the second internal combustion engine rotational speed Ne2 that is larger than the first internal combustion engine rotational speed Ne1, When the power disconnecting device 17 is in the disconnected state and the rotational speed Ne of the internal combustion engine 10 is greater than the first internal combustion engine rotational speed Ne1 and less than the second internal combustion engine rotational speed Ne2, the power disconnecting device 17 is Connected.

更には、内燃機関10の回転数Neが予め設定した第3内燃機関回転数Ne3よりも高い場合、又は、補機20の回転数Naが予め設定した高効率回転数Nabよりも高い場合には、補機20の回転数Naが高効率回転数Nabを維持するように、戻し流量調整装置13で戻し流量を調整する。   Furthermore, when the rotational speed Ne of the internal combustion engine 10 is higher than the preset third internal combustion engine speed Ne3, or when the rotational speed Na of the auxiliary machine 20 is higher than the preset high-efficiency rotational speed Nab. The return flow rate adjustment device 13 adjusts the return flow rate so that the rotation rate Na of the auxiliary machine 20 maintains the high efficiency rotation rate Nab.

上記の補機の動力伝達機構1及び補機の動力伝達方法によれば、内燃機関10の回転数Neに基づいて動力切離装置17の接続および切り離しを制御するので、内燃機関10の動力で駆動される補機(回転機器)20において、内燃機関10の回転数Ne又は補機の回転数Naに応じて、補機20の運転効率が悪い場合に補機20への動力伝達を遮断し、また、内燃機関10の回転数Neに応じて、補機20が高効率で駆動する場合には補機20への動力伝達を行って、その駆動力分だけを内燃機関10から伝達することができる。従って、補機20の無駄な駆動を無くすことができ、この補機20の無駄な駆動に基づく内燃機関10内の燃料噴射量を低減して、燃費の改善を図ることができる。   According to the auxiliary power transmission mechanism 1 and the auxiliary power transmission method, the connection and disconnection of the power disconnecting device 17 are controlled based on the rotational speed Ne of the internal combustion engine 10. In the driven auxiliary machine (rotating equipment) 20, the transmission of power to the auxiliary machine 20 is interrupted when the operating efficiency of the auxiliary machine 20 is poor according to the rotational speed Ne of the internal combustion engine 10 or the rotational speed Na of the auxiliary machine. In addition, when the auxiliary machine 20 is driven with high efficiency according to the rotational speed Ne of the internal combustion engine 10, power is transmitted to the auxiliary machine 20 and only the driving force is transmitted from the internal combustion engine 10. Can do. Therefore, useless driving of the auxiliary machine 20 can be eliminated, and the fuel injection amount in the internal combustion engine 10 based on the useless driving of the auxiliary machine 20 can be reduced to improve fuel consumption.

また、内燃機関10の回転数Ne又は補機20の回転数Naに基づいて戻し流量調整装置13を制御することにより、内燃機関10からの動力が補機20に必要な動力よりも大きい場合や、高い運転効率で補機20を駆動できない場合には、補機20が高い運転効率で運転できるだけの必要な動力だけを伝達するように、油圧モータ(流体モータ)14への作動流体の量を調整できるので、補機20を高い運転効率で運転できる。また、その一方で、戻し流量の分だけ油圧ポンプ(流体ポンプ)12の負荷を減少できるので、内燃機関10の燃料噴射量を低減して、燃費の改善を図ることができる。   Further, by controlling the return flow rate adjusting device 13 based on the rotational speed Ne of the internal combustion engine 10 or the rotational speed Na of the auxiliary machine 20, the power from the internal combustion engine 10 is larger than the power required for the auxiliary machine 20, or When the auxiliary machine 20 cannot be driven with high operating efficiency, the amount of working fluid to the hydraulic motor (fluid motor) 14 is set so that the auxiliary machine 20 transmits only necessary power that can be operated with high operating efficiency. Since it can be adjusted, the auxiliary machine 20 can be operated with high operation efficiency. On the other hand, since the load of the hydraulic pump (fluid pump) 12 can be reduced by the return flow rate, the fuel injection amount of the internal combustion engine 10 can be reduced to improve the fuel consumption.

さらに、作動流体を用いて補機20を駆動しているので、ベルト式動力伝達機構や歯車式動力伝達機構に比べて、レイアウト上の制約が少なくなり、エンジンルーム内での補機20の配置の自由度が増加するので、内燃機関10と補機20を配置するスペースを小さくすることができ、省スペースに貢献できる。   Further, since the auxiliary machine 20 is driven using the working fluid, layout restrictions are reduced as compared with the belt type power transmission mechanism and the gear type power transmission mechanism, and the arrangement of the auxiliary machine 20 in the engine room is reduced. Therefore, the space in which the internal combustion engine 10 and the auxiliary machine 20 are arranged can be reduced, which can contribute to space saving.

また、内燃機関10の回転数Neが補機20の駆動に不適切な低回転数(Ne<Ne1)若しくは高回転数(Ne2<Ne)の場合には、補機20への動力伝達を遮断することができるので、補機20の無駄な駆動に基づく内燃機関10のエネルギーロスを低減でき、燃費の改善を図ることができる。   Further, when the rotational speed Ne of the internal combustion engine 10 is a low rotational speed (Ne <Ne1) or high rotational speed (Ne2 <Ne) inappropriate for driving the auxiliary machine 20, the power transmission to the auxiliary machine 20 is cut off. Therefore, energy loss of the internal combustion engine 10 based on useless driving of the auxiliary machine 20 can be reduced, and fuel consumption can be improved.

また、内燃機関10の回転数Neが補機20の駆動に適した領域内にあるときでも、補機20を高効率回転数Nabで回転制御することができるため、補機20を高い運転効率で駆動できる。そのため、補機20の駆動におけるエネルギーロスを減少することができるので、内燃機関10の燃費の改善を図ることができる。   Further, even when the rotational speed Ne of the internal combustion engine 10 is in a region suitable for driving the auxiliary machine 20, the auxiliary machine 20 can be controlled to rotate at the high-efficiency rotational speed Nab. It can be driven with. Therefore, the energy loss in driving the auxiliary machine 20 can be reduced, so that the fuel consumption of the internal combustion engine 10 can be improved.

従って、本発明の補機の動力伝達機構及び補機の動力伝達方法によれば、内燃機関10の回転数Neに応じて、補機20への動力伝達を遮断及び接続して、補機20が必要とするときに内燃機関10の出力を取り出し、かつ、補機20が高い運転効率で駆動する動力分だけ、内燃機関10から動力を伝達することで、補機20の無駄な駆動を無くすことができ、しかも、補機20の運転効率が良い最適な回転数Nabで補機20を駆動することができるので、車両の燃費の改善に寄与でき、しかも、レイアウトの制約を減少できて、省スペースに貢献することができる。   Therefore, according to the auxiliary power transmission mechanism and auxiliary power transmission method of the present invention, the power transmission to the auxiliary machine 20 is cut off and connected in accordance with the rotational speed Ne of the internal combustion engine 10, and the auxiliary machine 20 The output of the internal combustion engine 10 is taken out when necessary, and power is transmitted from the internal combustion engine 10 by the amount of power that the auxiliary machine 20 drives with high operating efficiency, thereby eliminating unnecessary driving of the auxiliary machine 20. In addition, since the auxiliary machine 20 can be driven at the optimum rotational speed Nab with good operating efficiency of the auxiliary machine 20, it can contribute to the improvement of the fuel consumption of the vehicle, and the layout constraint can be reduced. It can contribute to space saving.

1、1X 補機の動力伝達機構
10、10X 内燃機関(エンジン)
11 クランク軸
12 油圧ポンプ(流体ポンプ)
13 戻し流量調整装置
14 油圧モータ(流体モータ)
15 リザーブタンク
16 三方弁
17 動力切離装置(クラッチ)
20、20X 補機(回転機器:ACG)
21 回転軸
40a 制御装置
40 全体システム制御装置
A 油圧モータ駆動用流路
B 戻し流路
C 予備流路
La、La1、La2、La3、La4、Lx 補機の回転数特性線
Na 補機の回転数
Nab 補機の高効率回転数
Na1 第1補機回転数
Na2 第2補機回転数
Ne 内燃機関の回転数
Ne1 第1内燃機関回転数
Ne2 第2内燃機関回転数
Ne3 第3内燃機関回転数
1, 1X Auxiliary power transmission mechanism 10, 10X Internal combustion engine
11 Crankshaft 12 Hydraulic pump (fluid pump)
13 Return flow adjusting device 14 Hydraulic motor (fluid motor)
15 Reserve tank 16 Three-way valve 17 Power disconnection device (clutch)
20, 20X Auxiliary machine (Rotating equipment: ACG)
21 Rotating shaft 40a Control device 40 Overall system control device A Hydraulic motor drive flow path B Return flow path C Preliminary flow path La, La1, La2, La3, La4, Lx Auxiliary machine speed characteristic line Na Auxiliary machine speed High efficiency rotation speed of Nab auxiliary machine Na1 First auxiliary machine rotation speed Na2 Second auxiliary machine rotation speed Ne Internal combustion engine speed Ne1 First internal combustion engine speed Ne2 Second internal combustion engine speed Ne3 Third internal combustion engine speed

Claims (6)

内燃機関のクランク軸に動力切離装置を介して接続されて、前記内燃機関の動力により駆動される流体ポンプと、補機の回転軸に接続されて、前記補機を駆動する流体モータと、前記流体ポンプから吐出された作動流体を、前記流体モータを通過させてから前記流体ポンプに戻す流体モータ駆動用流路と、前記流体ポンプから吐出された前記作動流体を、前記流体モータを通過させずに前記流体ポンプに戻す戻し流路と、前記流体モータ駆動用流路と前記戻し流路の流量調整を行う戻し流量調整装置を有して構成され、
前記内燃機関の回転数に基づいて前記動力切離装置の接続および切り離しを制御し、かつ、前記内燃機関の回転数又は前記補機の回転数に基づいて前記戻し流量調整装置を制御する制御装置を備えたことを特徴とする補機の動力伝達機構。
A fluid pump connected to the crankshaft of the internal combustion engine via a power disconnecting device and driven by the power of the internal combustion engine; a fluid motor connected to the rotary shaft of the auxiliary machine and driving the auxiliary machine; The working fluid discharged from the fluid pump is passed through the fluid motor and then returned to the fluid pump, and the working fluid discharged from the fluid pump is passed through the fluid motor. Without a return flow path returning to the fluid pump, and a flow rate adjustment device for adjusting the flow rate of the fluid motor driving flow path and the return flow path,
A control device for controlling connection and disconnection of the power disconnecting device based on the rotational speed of the internal combustion engine and for controlling the return flow rate adjusting device based on the rotational speed of the internal combustion engine or the rotational speed of the auxiliary machine A power transmission mechanism for an auxiliary machine, comprising:
前記制御装置が、
前記内燃機関の回転数が予め設定した第1内燃機関回転数以下の場合、若しくは、前記第1内燃機関回転数より大きい予め設定した第2内燃機関回転数以上の場合に、前記動力切離装置を切り離し状態にする制御を行うと共に、
前記内燃機関の回転数が前記第1内燃機関回転数より大きく、かつ、前記第2内燃機関回転数未満の場合に、前記動力切離装置を接続状態にする制御を行うことを特徴とする請求項1に記載の補機の動力伝達機構。
The control device is
When the rotational speed of the internal combustion engine is less than or equal to a preset first internal combustion engine speed, or when the rotational speed is greater than or equal to a preset second internal combustion engine speed greater than the first internal combustion engine speed, And control to turn off
The power disconnecting device is controlled to be connected when the rotational speed of the internal combustion engine is larger than the first internal combustion engine rotational speed and less than the second internal combustion engine rotational speed. Item 2. A power transmission mechanism for an auxiliary machine according to Item 1.
前記制御装置が、
前記内燃機関の回転数が予め設定した第3内燃機関回転数よりも高い場合、又は、前記補機の回転数が予め設定した高効率回転数よりも高い場合には、前記補機の回転数が前記高効率回転数を維持するように、前記戻し流量調整装置で戻し流量を調整する制御を行うことを特徴とする請求項1又は2に記載の補機の動力伝達機構。
The control device is
When the rotational speed of the internal combustion engine is higher than a preset third internal combustion engine speed, or when the rotational speed of the auxiliary machine is higher than a preset high-efficiency rotational speed, the rotational speed of the auxiliary machine The power transmission mechanism for an auxiliary machine according to claim 1 or 2, wherein control for adjusting the return flow rate is performed by the return flow rate adjustment device so that the high-efficiency rotational speed is maintained.
内燃機関のクランク軸に動力切離装置を介して接続されて前記内燃機関の動力により駆動される流体ポンプから吐出された作動流体を、補機の回転軸に接続されて前記補機を駆動する流体モータに流して、前記内燃機関の動力で前記補機を駆動すると共に、
前記動力切離装置の接続および切り離しを前記内燃機関の回転数に基づいて制御し、
前記流体ポンプから吐出された前記作動流体の一部を前記流体モータを通過させずに前記流体ポンプに戻すときの戻し流量を前記内燃機関の回転数又は前記補機の回転数に基づいて調整することを特徴とする補機の動力伝達方法。
A working fluid discharged from a fluid pump connected to a crankshaft of the internal combustion engine via a power disconnecting device and driven by the power of the internal combustion engine is connected to a rotation shaft of the auxiliary machine to drive the auxiliary machine. Flowing through a fluid motor, driving the auxiliary machine with the power of the internal combustion engine,
Controlling the connection and disconnection of the power disconnection device based on the rotational speed of the internal combustion engine;
A return flow rate when returning a part of the working fluid discharged from the fluid pump to the fluid pump without passing through the fluid motor is adjusted based on the rotational speed of the internal combustion engine or the rotational speed of the auxiliary machine. A power transmission method for an auxiliary machine.
前記内燃機関の回転数が予め設定した第1内燃機関回転数以下の場合、若しくは、前記第1内燃機関回転数より大きい予め設定した第2内燃機関回転数以上の場合に、前記動力切離装置を切り離し状態にすると共に、
前記内燃機関の回転数が前記第1内燃機関回転数より大きく、かつ、前記第2内燃機関回転数未満の場合に、前記動力切離装置を接続状態にすることを特徴とする請求項4に記載の補機の動力伝達方法。
When the rotational speed of the internal combustion engine is less than or equal to a preset first internal combustion engine speed, or when the rotational speed is greater than or equal to a preset second internal combustion engine speed greater than the first internal combustion engine speed, In a disconnected state,
5. The power disconnecting device is brought into a connected state when the rotational speed of the internal combustion engine is larger than the first internal combustion engine rotational speed and less than the second internal combustion engine rotational speed. The power transmission method of the described auxiliary machine.
前記内燃機関の回転数が予め設定した第3内燃機関回転数よりも高い場合、又は、前記補機の回転数が予め設定した高効率回転数よりも高い場合には、前記補機の回転数が前記高効率回転数を維持するように、前記戻し流量を調整することを特徴とする請求項4又は5に記載の補機の動力伝達方法。   When the rotational speed of the internal combustion engine is higher than a preset third internal combustion engine speed, or when the rotational speed of the auxiliary machine is higher than a preset high-efficiency rotational speed, the rotational speed of the auxiliary machine 6. The auxiliary power transmission method according to claim 4 or 5, wherein the return flow rate is adjusted so as to maintain the high-efficiency rotational speed.
JP2013158789A 2013-07-31 2013-07-31 Auxiliary power transmission mechanism and auxiliary power transmission method Expired - Fee Related JP6160339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013158789A JP6160339B2 (en) 2013-07-31 2013-07-31 Auxiliary power transmission mechanism and auxiliary power transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013158789A JP6160339B2 (en) 2013-07-31 2013-07-31 Auxiliary power transmission mechanism and auxiliary power transmission method

Publications (2)

Publication Number Publication Date
JP2015030282A true JP2015030282A (en) 2015-02-16
JP6160339B2 JP6160339B2 (en) 2017-07-12

Family

ID=52516012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013158789A Expired - Fee Related JP6160339B2 (en) 2013-07-31 2013-07-31 Auxiliary power transmission mechanism and auxiliary power transmission method

Country Status (1)

Country Link
JP (1) JP6160339B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480728A (en) * 1987-09-24 1989-03-27 Honda Motor Co Ltd Automobile engine auxiliary control device
JPH02175336A (en) * 1988-12-27 1990-07-06 Nissan Motor Co Ltd Auxiliary unit drive device of car
JPH04325320A (en) * 1991-04-25 1992-11-13 Nissan Motor Co Ltd Auxiliary machine device
JP2005030348A (en) * 2003-07-10 2005-02-03 Nissan Motor Co Ltd Accessory drive control device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480728A (en) * 1987-09-24 1989-03-27 Honda Motor Co Ltd Automobile engine auxiliary control device
JPH02175336A (en) * 1988-12-27 1990-07-06 Nissan Motor Co Ltd Auxiliary unit drive device of car
JPH04325320A (en) * 1991-04-25 1992-11-13 Nissan Motor Co Ltd Auxiliary machine device
JP2005030348A (en) * 2003-07-10 2005-02-03 Nissan Motor Co Ltd Accessory drive control device of internal combustion engine

Also Published As

Publication number Publication date
JP6160339B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
US7951043B2 (en) Method and device for controlling the oil supply of an automatic gearbox and a starting element
CN102102758B (en) Hydraulic system of automatic transmission and operating method thereof and device carrying out operating method
CA2903923C (en) Hydraulic control system for vehicle
JP3578150B2 (en) Hydraulic supply device for hybrid vehicle
KR20120081144A (en) A power assisting systme
JP2000046166A (en) Working fluid supply system for automatic transmission
CN106481805A (en) Strengthen for automatic transmission, extend stop and start and the double pump system setting sail
JP2007247706A (en) Controller for driving device
CN104903622A (en) Hydraulically actuated continuously variable transmission for a vehicular drive line provided with an internal combustion engine
KR20130105593A (en) Device and vehicle or work machine
JP2011512289A (en) Dual pump design for hybrid electric automatic transmission
JP6160339B2 (en) Auxiliary power transmission mechanism and auxiliary power transmission method
JP4196834B2 (en) Pump device, automatic transmission and automobile
JP6244749B2 (en) Auxiliary power transmission mechanism and auxiliary power transmission method
JP2004092885A (en) Hydraulic pressure supply device for hybrid vehicle
US11981322B2 (en) Control device for vehicle drive device
JP3937948B2 (en) Control device and method for hybrid vehicle, and hybrid vehicle
JP2016112943A (en) Power transmission device of hybrid vehicle
JP2015014342A (en) Power transmission device of vehicle
CN111140313B (en) Multi-mode driving oil-gas separator control system and control method
JP2015090103A (en) Supercharger surplus power recovery device of internal combustion engine
CN111630275B (en) Pump device for vehicle and control device and method for pump device
JP2015004420A (en) Hydraulic pressure supplying system for power transmission device
JP2011235806A (en) Vehicle driving device
US20180187771A1 (en) Lubrication system for a gearbox of a transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6160339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees