JP2015028902A - Luminous lighting device - Google Patents

Luminous lighting device Download PDF

Info

Publication number
JP2015028902A
JP2015028902A JP2013218776A JP2013218776A JP2015028902A JP 2015028902 A JP2015028902 A JP 2015028902A JP 2013218776 A JP2013218776 A JP 2013218776A JP 2013218776 A JP2013218776 A JP 2013218776A JP 2015028902 A JP2015028902 A JP 2015028902A
Authority
JP
Japan
Prior art keywords
light
light source
illumination
emitted
phosphorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013218776A
Other languages
Japanese (ja)
Inventor
田中 英史
Hidefumi Tanaka
英史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013218776A priority Critical patent/JP2015028902A/en
Publication of JP2015028902A publication Critical patent/JP2015028902A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a luminous lighting device 1 that excites and accumulates sufficient storage light in a luminous body by a light source with low power consumption and that radiates sufficient illumination light to a predetermined periphery by converting the accumulated storage light to the illumination light.SOLUTION: A luminous lighting device includes: a power source part 2 that supplies electric power; a light source part 3 that comprises a light source 3-1 for radiating excitation light and a holding member 3-2 for holding the light source 3-1; a luminous body part 4 that excites and accumulates storage light when receiving the excitation light radiated from the light source 3-1 of the light source part 3 and that converts the accumulated storage light to illumination light to radiate the illumination light; and a shield part 5 that shields a predetermined range from the excitation light so that the excitation light radiated from the light source 3-1 of the light source part 3 cannot be radiated to the predetermined range.

Description

本発明は、蓄光材料を用いた蓄光型照明装置に係り、特に、光源からの励起光を蓄光と
して蓄積し、この蓄積した蓄光を可視光に変換して放射し照明光とすることにより、低電
力で長時間の照明を行うことができる蓄光型照明装置に関するものである。
The present invention relates to a phosphorescent illumination device using a phosphorescent material, and in particular, accumulates excitation light from a light source as phosphorescent light, converts the accumulated phosphorous light into visible light, and emits it as illumination light. The present invention relates to a phosphorescent illumination device capable of performing long-time illumination with electric power.

図8は、特許文献1に提示されている、従来の蓄光型照明装置の構成を説明するための
断面図である。
FIG. 8 is a cross-sectional view for explaining the configuration of a conventional phosphorescent illumination device presented in Patent Document 1.

この従来の蓄光型照明装置は、図8に示すように、照明器具100の近傍に着脱可能と
なされた蓄光体101を有している。照明器具100は、光源102と、この光源102
が取付けられるソケット103とから構成されている。光源102は、白熱灯や、発光管
などである。
As shown in FIG. 8, this conventional phosphorescent illumination device has a phosphorescent body 101 that is detachable in the vicinity of the luminaire 100. The luminaire 100 includes a light source 102 and the light source 102.
And a socket 103 to which is attached. The light source 102 is an incandescent lamp or an arc tube.

この蓄光型照明装置において、蓄光体101は、照明器具100の近傍に装着されてい
るときに、照明器具100からの照明光によって蓄光する。蓄光体101は、半透明材料
により形成されており、照明器具100の近傍に装着されたときに、照明器具100の光
源102を覆うようになっている。
In this phosphorescent illumination device, the phosphorescent body 101 accumulates light with illumination light from the illumination fixture 100 when it is mounted in the vicinity of the illumination fixture 100. The phosphorescent body 101 is made of a translucent material, and covers the light source 102 of the lighting fixture 100 when mounted in the vicinity of the lighting fixture 100.

この蓄光体101は、蓄光材料を含有する合成樹脂材料によって形成されている。蓄光
材料としては、例えば、粒径約55μmのストロンチウムアルミネートに希土類金属を結
合させた高輝度長残光型蓄光材料(アルミナタイプ)を用いることができる。この蓄光材
料の励起波長は、200nm乃至450nmであり、発光ピーク波長は、520nmであ
る。
The phosphorescent body 101 is made of a synthetic resin material containing a phosphorescent material. As the phosphorescent material, for example, a high luminance long afterglow phosphorescent material (alumina type) in which a rare earth metal is bonded to strontium aluminate having a particle size of about 55 μm can be used. The excitation wavelength of this phosphorescent material is 200 nm to 450 nm, and the emission peak wavelength is 520 nm.

この実施の形態において、蓄光体101は、円盤状の底板部及び円錐面状の側壁部とか
ら円錐台形状に構成されている。この蓄光体1の上端部は、底板部よりも大きな開口端と
なっており、照明器具100の光源102が挿入されるようになっている。
In this embodiment, the phosphorescent body 101 is formed in a truncated cone shape from a disk-shaped bottom plate portion and a conical surface-like side wall portion. The upper end portion of the luminous body 1 has a larger opening end than the bottom plate portion, and the light source 102 of the luminaire 100 is inserted therein.

この蓄光型照明器具において、蓄光体101が照明器具100の近傍に装着されている
ときには、照明器具101が通常の使用状態となされて照明光を発することにより、この
照明光による周囲の照明が行われるとともに、蓄光体101による蓄光が行われる。
In this phosphorescent luminaire, when the phosphorescent body 101 is mounted in the vicinity of the luminaire 100, the luminaire 101 is put into a normal use state and emits illuminating light. In addition, the phosphorescent body 101 performs phosphorescence.

このとき、照明器具101の光源102から発せられた照明光は、一部が蓄光体101
中の蓄光材料の励起に消費され、残部が蓄光体101を透過して、周囲を照明する。また
、蓄光材料が励起されることによって、蓄光体101からも照明光が発せられ、光源10
2から発せられ蓄光体101を透過する照明光とともに、周囲を照明することになる。そ
して、光源102が消灯されたときには、蓄光体101が発する照明光のみにより、周囲
の照明が行われる。
At this time, a part of the illumination light emitted from the light source 102 of the lighting fixture 101 is the phosphorescent body 101.
It is consumed by the excitation of the phosphorescent material inside, and the remainder transmits the phosphorescent body 101 to illuminate the surroundings. Further, when the phosphorescent material is excited, illumination light is also emitted from the phosphorescent body 101, and the light source 10.
The surrounding light is illuminated together with the illumination light emitted from 2 and transmitted through the phosphorescent body 101. When the light source 102 is turned off, the surrounding illumination is performed only with the illumination light emitted from the phosphorescent body 101.

この従来の蓄光型照明装置においては、蓄光体101の蓄光材料の励起強度を大きくす
るために蓄光材料の厚さを増加させると、蓄光体101の透過率が低下し、蓄光体101
を透過する照明光の強度が小さくなるので光源から発せられる照明光を増加させなければ
ならなかった。
In this conventional phosphorescent illumination device, when the thickness of the phosphorescent material is increased in order to increase the excitation intensity of the phosphorescent material of the phosphorescent body 101, the transmittance of the phosphorescent material 101 decreases, and the phosphorescent body 101
Since the intensity of the illumination light transmitted through the light source becomes small, the illumination light emitted from the light source must be increased.

また光源102から発せられる照明光では蓄光材料を励起させる励起光領域の波長の光
量は少なく照明に用いる可視光領域の波長の光量がほとんどであるため蓄光の励起量を十
分得ることは困難であった。
In addition, the illumination light emitted from the light source 102 has a small amount of light in the excitation light region that excites the phosphorescent material, and the amount of light in the visible light region used for illumination is almost all, so it is difficult to obtain a sufficient amount of excitation of the stored light. It was.

特開平2008−47376号公報JP 2008-47376 A

前述のような蓄光材料を用いた従来の蓄光型照明装置においては、蓄光体を半透明にし
て光源から発せられる照明光で蓄光を励起させるとともに蓄光体を透過して周辺を照明し
なければならず、十分な照明を行うためには、光源の消費電力を大きなものとしなければ
ならないという問題点があった。
また光源から発せられる照明光は可視光領域の波長帯の光がほとんどであり、蓄光体に
おける蓄光を励起させる領域の波長の光はわずかであり、十分な蓄光の励起を行うことは
困難であった。
In the conventional phosphorescent illumination device using the phosphorescent material as described above, the phosphorescent body must be translucent to excite the phosphorescence with the illumination light emitted from the light source and illuminate the surroundings through the phosphorescent body. However, in order to perform sufficient illumination, the power consumption of the light source has to be increased.
In addition, most of the illumination light emitted from the light source has a wavelength in the visible light region, and there is little light in the wavelength region that excites the stored light in the phosphor, which makes it difficult to excite the stored light sufficiently. It was.

そこで、本発明は、前述の実情に鑑みて提案されるものであって、消費電力の少ない光
源で蓄光体に蓄光を十分励起し、この蓄光を照明光に変換して十分な光量の照明を行うこ
とが出来る蓄光型照明装置を提供することを目的とする。
Therefore, the present invention is proposed in view of the above-described circumstances, and a light source with low power consumption sufficiently excites light storage in a phosphor, and converts this light storage into illumination light to provide a sufficient amount of illumination. An object of the present invention is to provide a phosphorescent illumination device that can be used.

本願発明における第1の発明は、光源から放射される励起光を蓄光として蓄積し、この
蓄積した蓄光を照明光に変換して放射し所定の範囲を照明する蓄光型照明装置1において
、電力を供給する電源部2と、励起光を放射する光源3−1と光源3−1を保持する保持
部材3−2とからなる光源部3と、光源部3の光源3−1から放射される励起光を受光す
ると蓄光を励起して蓄積しこの蓄積した蓄光を照明光に変換して放射する蓄光体部4と、
光源部3の光源3−1から放射される励起光が所定の範囲には放射されないよう遮蔽する
遮蔽部5と、から構成し、電源部2から光源部3に電力が供給されると光源部3の光源3
−1から励起光が放射され蓄光体部4に受光されて前記蓄光として蓄積されたのち蓄光体
部4において蓄積された蓄光が照明光に変換されて放射され所定の範囲を照明光のみで照
明することを特徴とする蓄光型照明装置1を提供するものである。
本願発明における第2の発明は、光源から放射される励起光を蓄光として蓄積し、この
蓄積した蓄光を照明光に変換して放射し所定の範囲を照明する蓄光型照明装置1において
、電力を供給する電源部2と、励起光を放射する光源3−1と光源3−1を保持する保持
部材3−2とからなる光源部3と、光源部3の光源3−1から放射される励起光の一部を
反射する透明部材からなる反射部6と、光源部3の光源3−1から放射される励起光の他
の一部を直接受光しかつ反射部6で反射された励起光の一部を同時に受光することにより
それぞれ蓄光を励起して蓄積しこの蓄積した蓄光を照明光に変換して放射する蓄光体部4
と、光源部3の光源3−1から放射される励起光が所定の範囲には放射されないよう遮蔽
する遮蔽部5と、から構成し、電源部2から光源部3に電力が供給されると光源部3の光
源3−1から励起光が放射され蓄光体部4に受光されて蓄光として蓄積されたのち蓄光体
部4において蓄積された蓄光が照明光に変換されて放射され反射部6を透過して所定の範
囲を照明光のみで照明することを特徴とする蓄光型照明装置1を提供するものである。
本願発明における第3の発明は、蓄光体部4を分割して順次励起光を照射し蓄積された
蓄光を順次照明光に変換して照明することを特徴とする第1の発明及び第2の発明に記載
された蓄光型照明装置1を提供するものである。
The first invention of the present invention is a phosphorescent illumination device 1 that accumulates excitation light emitted from a light source as accumulated light, converts the accumulated accumulated light into illumination light, and emits it to illuminate a predetermined range. A light source unit 3 including a power supply unit 2 to be supplied, a light source 3-1 that emits excitation light, and a holding member 3-2 that holds the light source 3-1, and excitation emitted from the light source 3-1 of the light source unit 3. When receiving light, the phosphor storage unit 4 that excites and accumulates the stored phosphor, converts the accumulated stored light into illumination light, and radiates it;
And a shielding unit 5 that shields the excitation light emitted from the light source 3-1 of the light source unit 3 from being emitted to a predetermined range. When power is supplied from the power source unit 2 to the light source unit 3, the light source unit Three light sources 3
Excitation light is emitted from -1 and received by the phosphor storage unit 4 and stored as the phosphor storage, and then the stored phosphor stored in the phosphor storage unit 4 is converted into illumination light and emitted to illuminate a predetermined range with only illumination light Thus, a phosphorescent illumination device 1 is provided.
According to a second aspect of the present invention, in the phosphorescent illumination device 1 that accumulates excitation light emitted from a light source as accumulated light, converts the accumulated accumulated light into illumination light, and emits it to illuminate a predetermined range. A light source unit 3 including a power supply unit 2 to be supplied, a light source 3-1 that emits excitation light, and a holding member 3-2 that holds the light source 3-1, and excitation emitted from the light source 3-1 of the light source unit 3. The reflection part 6 made of a transparent member that reflects a part of the light and the other part of the excitation light emitted from the light source 3-1 of the light source part 3 are directly received and reflected by the reflection part 6. A phosphorescent body portion 4 that excites and accumulates each of the stored phosphors by simultaneously receiving a part thereof, converts the accumulated phosphors into illumination light, and radiates them.
And the shielding unit 5 that shields the excitation light emitted from the light source 3-1 of the light source unit 3 from being emitted to a predetermined range, and when power is supplied from the power supply unit 2 to the light source unit 3. After the excitation light is emitted from the light source 3-1 of the light source unit 3 and received by the phosphor storage unit 4 and accumulated as the phosphorescence, the accumulated light accumulated in the phosphor storage unit 4 is converted into illumination light and emitted to be reflected by the reflection unit 6. The phosphorescent illumination device 1 is characterized in that it transmits and illuminates a predetermined range only with illumination light.
According to a third aspect of the present invention, the phosphorescent body portion 4 is divided, sequentially irradiated with excitation light, and the accumulated light is sequentially converted into illumination light for illumination. The phosphorescent illumination device 1 described in the invention is provided.

本発明によれば、電力を供給する電源部2と、励起光を放射する光源3−1と光源3−
1を保持する保持部材3−2とからなる光源部3と、光源部3の光源3−1から放射され
る励起光を受光すると蓄光を励起して蓄積しこの蓄積した蓄光を照明光に変換して放射す
る蓄光体部4と、光源部3の光源3−1から放射される励起光が所定の範囲には放射され
ないよう遮蔽する遮蔽部5と、から構成し、電源部2から光源部3に電力が供給されると
光源部3の光源3−1から励起光が放射され蓄光体部4に受光されて前記蓄光として蓄積
されたのち蓄光体部4において蓄積された蓄光が照明光に変換されて放射され所定の範囲
を照明光のみで照明することにより、消費電力の少ない光源で蓄光体に蓄光を十分励起し
、この蓄光を照明光に変換して十分な光量の照明を行う蓄光型照明装置1を提供すること
が出来る。
According to the present invention, the power supply unit 2 that supplies power, the light source 3-1 that emits excitation light, and the light source 3-
When receiving excitation light radiated from the light source 3-1 of the light source unit 3 and the light source 3-1 of the light source unit 3, the stored light is excited and accumulated, and the accumulated stored light is converted into illumination light. The light storage unit 4 that radiates and the shielding unit 5 that shields the excitation light emitted from the light source 3-1 of the light source unit 3 from being emitted to a predetermined range. 3 is supplied with the excitation light from the light source 3-1 of the light source unit 3, received by the phosphor storage unit 4, accumulated as the stored phosphor, and then stored in the phosphor storage unit 4 as illumination light. Light that is converted and emitted, and illuminates a predetermined range with only illumination light, so that the phosphor can sufficiently excite the phosphor with a light source with low power consumption, and this phosphor can be converted into illumination to illuminate with a sufficient amount of light. A mold illumination device 1 can be provided.

本発明の実施例を説明するための図であり、蓄光型照明装置1の側面を示す図である。It is a figure for demonstrating the Example of this invention, and is a figure which shows the side surface of the phosphorescent type illuminating device 1. FIG. 光源部2の側面の詳細を示す図である。FIG. 4 is a diagram showing details of a side surface of the light source unit 2. 励起光と照明光の反射状態を説明するためのガラス反射特性を示す図であり、縦方向に反射率(%)、横方向に入射角度(度)を示す。It is a figure which shows the glass reflection characteristic for demonstrating the reflective state of excitation light and illumination light, and shows a reflectance (%) in a vertical direction and an incident angle (degree) in a horizontal direction. 本発明の実施例における動作を説明するための図であり、図4(A)は励起光のほとんどを蓄光体部4に直接放射して蓄光を励起する図であり、図4(B)は励起光の一部を透明体部6で反射させてから蓄光体部4に放射するとともに励起光の他の一部を蓄光体部4に直接放射して蓄光を励起する図である。It is a figure for demonstrating the operation | movement in the Example of this invention, FIG. 4 (A) is a figure which radiates | emits most of excitation light directly to the light storage body part 4, and excites light storage, FIG.4 (B) is FIG. It is a figure which excites light storage by radiating | emitting the other part of excitation light directly to the luminous body part 4, while radiating to the luminous body part 4 after reflecting a part of excitation light with the transparent body part 6. FIG. 本発明の実施例における蓄光体部4を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the luminous body part 4 in the Example of this invention. 本発明の使用例において蓄光個所を分割して照明するLEDの発光例を説明するための図で、図5(A)は側面図、図5(B)は正面図を示し複数のLEDのうち最初の一個のみが発光した状態を示す図である。In the usage example of this invention, it is a figure for demonstrating the light emission example of LED which divides and illuminates a phosphorescent part, FIG. 5 (A) is a side view, FIG.5 (B) shows a front view, Among several LED It is a figure showing the state where only the first one emitted light. 本発明の使用例の発光順序による照明光の明るさを説明するための図であり、図7(A)は図6(B)の最初の一個が2回目で他は一回目、図7(B)は図6(B)の最初の一個が3回目他は2回目を示す図である。It is a figure for demonstrating the brightness of the illumination light by the light emission order of the example of use of this invention, FIG.7 (A) is the 1st one of FIG. FIG. 6B is a diagram showing the first one in FIG. 6B for the third time and the other one for the second time. 従来の蓄光型照明装置を説明するための図である。It is a figure for demonstrating the conventional phosphorescent type illuminating device.

本発明を実施するための最良の形態について、図1〜図5を用いて説明するが、本発明
はかかる実施形態に限定されるものではない。
The best mode for carrying out the present invention will be described with reference to FIGS. 1 to 5, but the present invention is not limited to such an embodiment.

次に実施例を説明すると、
図1に示すように、本発明の蓄光型照明装置1は、電力を供給する電源部2と、励起光
を放射する光源部3と、光源部3から放射される励起光を受光すると蓄光を励起して蓄積
しこの蓄積した蓄光を照明光に変換して放射する蓄光体部4と、光源部3から放射される
励起光が所定の範囲には放射されないよう遮蔽する遮蔽部5と、光源部3から放射される
励起光の一部を反射した後蓄光体部に放射する透明部材からなる反射部6と、から構成さ
れる。
Next, an example will be described.
As shown in FIG. 1, the phosphorescent illumination device 1 of the present invention stores a light when receiving a power source 2 that supplies power, a light source 3 that emits excitation light, and excitation light emitted from the light source 3. A phosphor storage unit 4 that excites and accumulates, converts the accumulated phosphor to illuminating light, and radiates; a shielding unit 5 that shields the excitation light emitted from the light source unit 3 from being emitted within a predetermined range; and a light source The reflection part 6 which consists of a transparent member which radiates | emits to the phosphorescent body part after reflecting a part of excitation light radiated | emitted from the part 3 is comprised.

電源部2は、電力源として携帯性を良くするために、乾電池或いは充電型のバッテリー
を用いる。更に屋外では風力、太陽光、等の携帯型小型発電装置を利用する。
The power supply unit 2 uses a dry cell or a rechargeable battery in order to improve portability as a power source. Furthermore, portable small power generators such as wind power and sunlight are used outdoors.

光源部3は、図2に示すように消費電力の大半を励起光として放射するLED、蛍光灯
、放電灯等の光源3−1と、光源3−1を保持するとともに電源部2からの電力を光源3
−1に供給するための電気配線路をプラスチックや金属等に形成する保持部材3−2とか
ら構成される。
光源3−1には放射される励起光の発光波長が選択しやすく放射角度を鋭角に出来るL
EDを用いると良い。このLEDを使用する場合は、図2に示すように放射の中心が位置
P0で略垂直方向となるよう保持部材3−2上に設置する。励起光の発光波長としては紫
外線(380nm)、紫色(400nm)等の可視光領域にはほとんど含まれない波長を
選択する。例えば紫外線に比べ比較的人体への影響の少ない紫色LEDとしてはLED
PARADISE INTERNET SHOP(通信販売店)から型名LP−R5UV
400が市販されている。このLEDは砲弾型で放射角度θは15度と鋭角である。この
LEDを用いる場合、駆動電圧が3.3Vなので、例えば電源部2は乾電池(1.5V仕
様のもの)3個を直列に接続し分圧調整して用いる。
As shown in FIG. 2, the light source unit 3 holds a light source 3-1 such as an LED, a fluorescent lamp, or a discharge lamp that radiates most of the power consumption as excitation light, and a power from the power source unit 2. The light source 3
-1 is formed of a holding member 3-2 for forming an electric wiring path for supplying to -1 in plastic, metal or the like.
For the light source 3-1, it is easy to select the emission wavelength of the emitted excitation light.
Use ED. When this LED is used, as shown in FIG. 2, it is installed on the holding member 3-2 so that the center of radiation is substantially vertical at the position P0. As the emission wavelength of the excitation light, a wavelength that is hardly included in the visible light region such as ultraviolet (380 nm), purple (400 nm), or the like is selected. For example, a purple LED that has relatively little effect on the human body compared to ultraviolet rays is an LED.
Model name LP-R5UV from PARADISE INTERNET SHOP
400 is commercially available. This LED is bullet-shaped and has a radiation angle θ of 15 degrees and an acute angle. When this LED is used, since the driving voltage is 3.3 V, for example, the power supply unit 2 uses three dry batteries (1.5 V specification) connected in series and adjusted in voltage.

蓄光体部4は、図5に示すようにプラスチック、金属、紙等の基材4−1に励起光を受
光すると蓄光を励起して蓄積しこの蓄積した蓄光を照明光に変換して放射する蓄光材料4
−2を塗布或いは接着して用いる。基材4−1は、励起光の受光側からのみ照明光を放射
する場合は不透明な白色かアルミ材を用いた鏡面反射とし、受光側の反対側にも放射する
場合は透明とする。蓄光材料4−2は蓄光として励起される波長範囲を青色光から短波長
側(略250nm〜略450nm)に設定し、蓄光を変換して放射する照明光の波長範囲
は青色光より長波長側(略450nm〜略650nm)に設定する。特に可視光帯の波長
の放射を大きくすれば照明光の放射効率が高くなる。蓄光材料4−2としては根本特殊化
学株式会社から蓄光インク、蓄光シート等がルミノーバの商品名で市販されている。
そして、蓄光体部4は下端を光源部3の保持部材3−2端の位置P0−1とし上端を透
明部材部6と接触する位置P4とする。
As shown in FIG. 5, when the phosphorescent body 4 receives excitation light on a base material 4-1 such as plastic, metal, paper, etc., the phosphorescent body 4 excites and accumulates the accumulated light, converts the accumulated light into illumination light, and radiates it. Phosphorescent material 4
-2 is applied or adhered. The base 4-1 is assumed to be an opaque white or specular reflection using an aluminum material when the illumination light is emitted only from the light receiving side of the excitation light, and transparent when it is also emitted to the opposite side of the light receiving side. In the phosphorescent material 4-2, the wavelength range excited as the phosphorescence is set from the blue light to the short wavelength side (approximately 250 nm to approximately 450 nm), and the wavelength range of the illumination light emitted by converting the phosphorescence is longer than the blue light. (Approximately 450 nm to approximately 650 nm). In particular, if the radiation having a wavelength in the visible light band is increased, the radiation efficiency of the illumination light is increased. As the phosphorescent material 4-2, phosphorescent ink, phosphorescent sheet and the like are commercially available from Nemoto Special Chemical Co., Ltd. under the trade name of Luminova.
And the phosphorescent body part 4 makes the lower end the position P0-1 of the holding member 3-2 end of the light source part 3, and makes the upper end the position P4 which contacts the transparent member part 6. FIG.

遮蔽部5は、不透明なプラスチック、金属、紙等から形成され、電源部2及び光源部3
を内蔵するとともに、光源部3から蓄光体部4に放射される励起光の波長はたとえ紫色で
あっても人の目に入ると障害を起こしやすいので光源部3の光源の高さ以上に遮蔽部5の
高さを高くして照明を行おうとする周辺から励起光を遮断する。
The shield 5 is made of opaque plastic, metal, paper, etc., and the power source 2 and the light source 3
In addition, the wavelength of the excitation light emitted from the light source unit 3 to the phosphor storage unit 4 is likely to cause a failure when entering the human eye even if the wavelength of the excitation light is purple. The height of the part 5 is increased to block the excitation light from the periphery where illumination is to be performed.

透明部材部6は、主に透明なガラス、プラスチック等から形成され、下端を光源部3の
保持部材3−2端の位置P02とし上端を蓄光体部4に接触する位置P4とすることによ
り光源部3の光源3−1から放射される励起光を蓄光体部4の方向に位置P2から位置P
4の間で反射させるとともに蓄光体部4で蓄積された蓄光を変換して放射された照明光を
透過させて所定の周辺を照明する。
The transparent member portion 6 is mainly formed of transparent glass, plastic or the like, and has a lower end as a position P02 at the end of the holding member 3-2 of the light source portion 3 and an upper end as a position P4 that contacts the phosphorescent body portion 4. The excitation light emitted from the light source 3-1 of the unit 3 is moved from the position P2 to the position P in the direction of the phosphor storage unit 4.
4, while reflecting the light stored in the phosphor storage unit 4 and transmitting the emitted illumination light to illuminate a predetermined periphery.

次に、図1を用いて動作を説明する。
図1において電源部2から光源部3に電力を供給すると、光源部3からは励起光R0が
放射角度θで光源部3の中心位置P0から蓄光体部4の位置P1と透明部材部6の位置P
2間に放射される。例えば励起光R0の一部は、透明部材部6の位置P2から位置P4の
間は透明部材部6で反射された後、蓄光体部4の位置P3から位置P4の間に放射され、
励起光R0の他の一部は、蓄光体部4の位置P1から位置P4までの範囲に直接放射され
る。よって励起光R0のほとんど全てが蓄光体部4に放射され蓄光として蓄積される。図
2に示すように光源3−1は放射の中心位置P0から上方へ垂直方向に放射されるよう保
持部材3−2に設置され、中心位置P0の位置から距離X1離れた保持部材部3−2端で
ある位置P01に蓄光体部4の下端を、中心位置P0の位置から距離X2離れた保持部材
部3−2の他の端である位置P02に透明部材部6の下端をそれぞれ設置し、蓄光体部4
と透明部材部6の上端は位置P4で接触するよう形成する。
そして、光源部3から水平方向に放射される励起光R0以外の漏えい光は遮蔽部5によ
って遮蔽される。
Next, the operation will be described with reference to FIG.
In FIG. 1, when power is supplied from the power supply unit 2 to the light source unit 3, the excitation light R0 is emitted from the light source unit 3 at the radiation angle θ from the center position P0 of the light source unit 3 to the position P1 of the phosphor storage unit 4 and the transparent member unit 6. Position P
Radiated between the two. For example, a part of the excitation light R0 is reflected between the transparent member portion 6 between the position P2 and the position P4 of the transparent member portion 6, and then radiated between the position P3 and the position P4 of the phosphorescent body portion 4,
The other part of the excitation light R0 is directly radiated to the range from the position P1 to the position P4 of the phosphor storage unit 4. Therefore, almost all of the excitation light R0 is radiated to the phosphor storage unit 4 and accumulated as the phosphorescence. As shown in FIG. 2, the light source 3-1 is installed on the holding member 3-2 so as to be vertically emitted from the center position P 0 of radiation, and the holding member portion 3-3 apart from the position of the center position P 0 by a distance X1. The lower end of the phosphor portion 4 is installed at the position P01 which is the second end, and the lower end of the transparent member portion 6 is installed at the position P02 which is the other end of the holding member portion 3-2 which is a distance X2 away from the center position P0. , Phosphorescent body part 4
And the upper end of the transparent member part 6 is formed so as to contact at the position P4.
Then, leakage light other than the excitation light R0 radiated in the horizontal direction from the light source unit 3 is shielded by the shielding unit 5.

次に、蓄光体部4に蓄積された蓄光は、図1に示されるように位置P1からはL0、位
置P3からはL1、位置P4からはL2として蓄光体部4の直角方向に準ずるように位置
P1〜位置P4の範囲でそれぞれ照明光に変換されて透明部材部6を経由し放射されるか
ら、光源部3から蓄光体部4へ斜め方向に放射される励起光とは混合されずに照明光のみ
で周辺を照明することが出来る。
Next, as shown in FIG. 1, the phosphorescence accumulated in the phosphor storage unit 4 conforms to the perpendicular direction of the phosphor storage unit 4 as L0 from the position P1, L1 from the position P3, and L2 from the position P4. Since it is converted into illumination light in the range of position P1 to position P4 and emitted through the transparent member part 6, it is not mixed with the excitation light emitted obliquely from the light source part 3 to the phosphor storage part 4. The surroundings can be illuminated only with illumination light.

このように、蓄光体部4に放射される励起光R0のほとんど全てが蓄光を励起して蓄積
され、この蓄積された蓄光は励起光R0の波長とは異なる可視光領域の波長の照明光に変
換されて蓄光体部4の励起光の受光面側から直接周辺を照明するから、発光効率は非常に
よく電源部2から供給される電力は少なくて済む。
また、光源部3から放射される励起光R0や水平方向の漏えい光は照明される周辺には
放射されないので、人の目に入ることはなく安全である。
In this way, almost all of the excitation light R0 emitted to the phosphor storage unit 4 is accumulated by exciting the accumulated light, and this accumulated light is converted into illumination light having a wavelength in the visible light region different from the wavelength of the excitation light R0. Since the light is converted and the periphery is directly illuminated from the light receiving surface side of the excitation light of the phosphor storage unit 4, the luminous efficiency is very good and the power supplied from the power supply unit 2 is small.
Further, since the excitation light R0 and the horizontal leakage light emitted from the light source unit 3 are not emitted to the illuminated surroundings, they are safe from entering human eyes.

次に、図3〜図5を用いてさらに詳細に説明する。
図3は透明体部6にガラスを用いた場合の反射特性であり、縦軸に反射率(%)を示し
横軸に入射角度(度)を示す。例えば透明体部6に入射角度45度で照明光が入射すると
反射率10%となりこれより入射角度が小さくなると反射率は下がり照明光のほとんどが
透明体部6を透過する。また透明体部6に入射角度75度で励起光R0が入射すると反射
率35%となりこれより入射角度が大きくなると反射率はさらに大きくなり入射角度が8
0度を越せば励起光R0のほとんどが反射される。
以下図3に示した反射特性を基本として次の説明を行う。
Next, it demonstrates still in detail using FIGS.
FIG. 3 shows the reflection characteristics when glass is used for the transparent body portion 6. The vertical axis represents the reflectance (%) and the horizontal axis represents the incident angle (degree). For example, when the illumination light is incident on the transparent body 6 at an incident angle of 45 degrees, the reflectance becomes 10%. When the incident angle becomes smaller than this, the reflectance decreases and most of the illumination light passes through the transparent body 6. Further, when the excitation light R0 is incident on the transparent body 6 at an incident angle of 75 degrees, the reflectance is 35%, and when the incident angle is larger than this, the reflectance is further increased and the incident angle is 8
If it exceeds 0 degrees, most of the excitation light R0 is reflected.
The following description will be made based on the reflection characteristics shown in FIG.

図4(A)は蓄光体部4をP01の位置からP2の位置に設置した状態を示す。そして
光源部3の光源3−1の中心位置P0から保持部材端P01までの距離X1を光源の直径
の略1.5倍に設定する。例えば光源3−1に直径5mmのLEDを用いる場合は距離X
1を略7.5mmとする。これは蓄光体部4と光源3−1が接触しないようかつ出来るだ
け光源との距離を短くするための目安である。
次にP1−1の位置は励起光R0の放射の端側を示すものであり、P2の位置は励起光
R0の放射の他の端側を示すものである。従って蓄光体部4には励起光R0が蓄光体部4
の太線で示されるP1−1からP2の範囲にすべて放射され蓄光を励起して蓄積される。
FIG. 4A shows a state in which the phosphorescent body portion 4 is installed from the position P01 to the position P2. The distance X1 from the center position P0 of the light source 3-1 of the light source unit 3 to the holding member end P01 is set to approximately 1.5 times the diameter of the light source. For example, when an LED having a diameter of 5 mm is used as the light source 3-1, the distance X
1 is approximately 7.5 mm. This is a guideline for shortening the distance from the light source as much as possible so that the luminous body portion 4 and the light source 3-1 do not come into contact with each other.
Next, the position of P1-1 indicates the end side of the emission of the excitation light R0, and the position of P2 indicates the other end side of the emission of the excitation light R0. Therefore, excitation light R0 is stored in phosphorescent body 4.
Are all radiated in the range of P1-1 to P2 indicated by the thick line of FIG.

一方、透明体部6は蓄光体部4とは反対側に距離X2(=X1)離された位置P02に
光源部3の水平方向に対し略直角になるよう設置する。そうするとP2の位置で蓄光体部
4と接触する。
On the other hand, the transparent body portion 6 is installed at a position P02 separated by a distance X2 (= X1) on the side opposite to the phosphorescent body portion 4 so as to be substantially perpendicular to the horizontal direction of the light source portion 3. If it does so, it will contact with the luminous body part 4 in the position of P2.

このように蓄光体部4と透明体部6を設置すると、光源部3の水平軸を基準とする垂直
軸に対する蓄光体部4の設置角度θ1は、蓄光体部4から蓄積された蓄光が変換されて直
角に放射される照明光Laが透明体部6に入射する入射角度θ2と等しくなる。
例えば、励起光R0の放射角度θを30度とすると、図からの実測値でθ1とθ2はと
もに28.3度となりほぼθに近い値である。従って透明体部6に照明光Laが入射する
入射角度θ2は28.3度であるから図2より反射率は10%以下であり照明光Laはほ
とんどが透明体部6を透過し周辺を照明する。
When the phosphorescent body portion 4 and the transparent body portion 6 are thus installed, the installation angle θ1 of the phosphorescent body portion 4 with respect to the vertical axis with respect to the horizontal axis of the light source portion 3 is converted from the phosphorescence accumulated from the phosphorescent body portion 4. Thus, the illumination light La emitted at a right angle becomes equal to the incident angle θ <b> 2 that enters the transparent body 6.
For example, if the radiation angle θ of the excitation light R0 is 30 degrees, θ1 and θ2 are both 28.3 degrees as measured values from the figure, and are close to θ. Accordingly, since the incident angle θ2 at which the illumination light La is incident on the transparent body 6 is 28.3 degrees, the reflectance is 10% or less from FIG. 2, and most of the illumination light La passes through the transparent body 6 and illuminates the surroundings. To do.

そして蓄光体部4の垂直軸に対する設置角度θ1は光源部3側から換算すると(90度
−θ1)となり約(90度−θ)となる。この蓄光体部4の設置角度θ1を励起光R0の
放射角度θより大きくすると蓄光体部4から放射される照明光Laが透明体部6に入射す
る角度θ2も大きくなり反射率が上昇して周辺を照明する光量が減少するとともに、遮蔽
部5で照明光Laの一部が遮蔽されるようになりさらに光量が減少する。
The installation angle θ1 with respect to the vertical axis of the phosphor portion 4 is (90 degrees−θ1) when converted from the light source section 3 side, and is about (90 degrees−θ). If the installation angle θ1 of the luminous body portion 4 is made larger than the emission angle θ of the excitation light R0, the angle θ2 at which the illumination light La emitted from the luminous body portion 4 is incident on the transparent body portion 6 is also increased and the reflectance is increased. As the amount of light that illuminates the surroundings decreases, a part of the illumination light La is shielded by the shielding unit 5 and the amount of light further decreases.

以上により、図4(A)に示すように光源部3に対し蓄光体部4の設置角度を(90度
−θ)とすれば、光源部3からの励起光R0は蓄光体部4にほとんど全てが放射されて蓄
光として蓄積され、この蓄積された蓄光が照明光に変換されて蓄光型照明装置1の透明体
部6を経由して放射され周辺を照明する。
As described above, if the installation angle of the luminous body portion 4 is set to (90 degrees−θ) with respect to the light source portion 3 as shown in FIG. 4A, the excitation light R0 from the light source portion 3 is almost not in the luminous body portion 4. All is emitted and stored as light storage, and this stored light storage is converted into illumination light and emitted through the transparent body 6 of the light storage type illumination device 1 to illuminate the surroundings.

次に、図4(B)を用いて蓄光体部4の蓄光面積を増加させて照明範囲を広げる例につ
いて説明する。
図4(B)は蓄光体部4をP01の位置から光源部3の中心位置P0とP2の位置を結
ぶ線に対して平行にして光源部3の位置P02から直角になるよう設置された透明体部6
と接触する位置P4に設置した状態を示す。
このように蓄光体部4と透明体部6を設置すると、蓄光体部4の位置P1から位置P3
には励起光R0が直接放射される。そして、蓄光体部4の位置P3から位置P4には励起
光R0が直接放射されるとともに透明体部6の位置P2から位置P4で反射された励起光
R0が反射光として放射される。従って図4(B)の太線部で示されるように、蓄光体部
4の位置P1から位置P4に放射される励起光R0のほとんどが蓄光を励起して蓄光体部
4に蓄積される。
Next, the example which expands the illumination range by increasing the luminous area of the luminous body part 4 using FIG. 4 (B) is demonstrated.
FIG. 4B is a diagram illustrating a case where the phosphorescent body 4 is placed parallel to a line connecting the positions of the center positions P0 and P2 of the light source unit 3 from the position P01 so as to be perpendicular to the position P02 of the light source unit 3. Body 6
The state installed in the position P4 which contacts is shown.
When the phosphorescent body portion 4 and the transparent body portion 6 are thus installed, the position P1 of the phosphorescent body portion 4 is changed to the position P3.
Is directly radiated with excitation light R0. Then, the excitation light R0 is directly radiated from the position P3 to the position P4 of the luminous body portion 4, and the excitation light R0 reflected from the position P2 of the transparent body portion 6 is radiated as reflected light. Therefore, as shown by the thick line portion in FIG. 4B, most of the excitation light R0 radiated from the position P1 to the position P4 of the luminous body portion 4 excites the luminous energy and accumulates in the luminous body portion 4.

この時、蓄光体部4の垂直軸に対する設置角度θ3は蓄光体部4から蓄積された蓄光が
変換されて直角に放射される照明光Lbが透明体部6に入射する入射角度θ4と等しくな
る。例えば、励起光R0の放射角度θを30度とすると、図からの実測値でθ3とθ4は
ともに15度となりθ/2である。従って透明体部6に照明光Lbが入射する入射角度θ
4は15度であるから図3より反射率は10%以下であり照明光Lbはほとんどが透明体
部6を透過する。
At this time, the installation angle θ3 with respect to the vertical axis of the phosphorescent body portion 4 is equal to the incident angle θ4 at which the illumination light Lb emitted from the phosphorescent body 4 after being converted from the phosphorescence accumulated from the phosphorescent body portion 4 is incident on the transparent body portion 6. . For example, if the radiation angle θ of the excitation light R0 is 30 degrees, θ3 and θ4 are both 15 degrees and θ / 2 as measured values from the figure. Accordingly, the incident angle θ at which the illumination light Lb is incident on the transparent body 6.
Since 4 is 15 degrees, the reflectance is 10% or less from FIG. 3, and most of the illumination light Lb is transmitted through the transparent body 6.

一方、位置P2において透明体部6に入射する励起光R0の入射角度θ5は(90度−
θ3)に等しいからθ3を15度とするとθ5は75度となり、図3より反射率約38%
となる。そして励起光R0の透明体部6への入射角度範囲は75度から図の実測値で略8
3度(位置P0から位置P4への励起光R0の入射角度)までとなるから位置P2から位
置P4間に照射された励起光R0は略50%以上は反射されて蓄光体部4へ放射され蓄光
を励起して蓄積される。この時、励起光R0の略1/4(透明体部4への入射角度範囲よ
り換算)が透明体部6で反射されるから蓄光として利用されるのはさらにこの略50%で
あるからおよそ1/8となる。従って励起光R0の全体に対し直接入射3/4+反射入射
1/8=0.875となり、略90%近くの励起光R0が蓄光用として利用される。
この蓄光体部4の垂直軸に対する設置角度θ3は光源部3側から換算すると(90度−
θ3)となり従って(90度−θ/2)となる。
On the other hand, the incident angle θ5 of the excitation light R0 incident on the transparent body 6 at the position P2 is (90 degrees −
Since θ3 is 15 degrees because θ3 is equal to θ3), θ5 becomes 75 degrees, and the reflectivity is about 38% from FIG.
It becomes. The incident angle range of the excitation light R0 to the transparent body portion 6 is from 75 degrees to about 8 as measured values in the figure.
Since it becomes 3 degrees (incident angle of the excitation light R0 from the position P0 to the position P4), the excitation light R0 irradiated between the position P2 and the position P4 is reflected by approximately 50% or more and is emitted to the phosphor storage unit 4. Accumulated by exciting phosphorescence. At this time, since approximately 1/4 of the excitation light R0 (converted from the incident angle range to the transparent body portion 4) is reflected by the transparent body portion 6, it is approximately 50% that is used as the light storage. 1/8. Therefore, direct incident 3/4 + reflected incident 1/8 = 0.875 with respect to the entire pumping light R0, and nearly 90% of the pumping light R0 is used for storing light.
When the installation angle θ3 with respect to the vertical axis of the luminous body portion 4 is converted from the light source portion 3 side (90 degrees −
θ3) and therefore (90 ° −θ / 2).

図4(B)に基づく蓄光型照明装置1の形状寸法は使用する光源を5φのLEDとする
とおよそ横15mm×縦56mmとなる。幅は使用するLEDの数量に応じて設定する。
例えば、LED4個を間隔5mmで使用するとすれば4個×(LED直径5mm+間隔5
mm)=40mmとなる。この形状であれば携帯性は十分あることが分かる。(電源部2
を除く)
蓄光体部4の設置角度θ3をθ/2より小さくすると、蓄光体部4への励起光R0の放
射角度と透明体部6への入射角度が大きくなり、励起光R0を蓄光する蓄光体部4及び反
射する透明体部6の面積が増加する。このため励起光R0の光量を増加させるとともに蓄
光型照明装置1の形状を大きくする必要があり、消費電力と携帯性を考えて形状を設定す
る。
The shape and size of the phosphorescent illumination device 1 based on FIG. 4B is approximately 15 mm wide × 56 mm long if the light source used is a 5φ LED. The width is set according to the number of LEDs used.
For example, if 4 LEDs are used at an interval of 5 mm, 4 LEDs × (LED diameter 5 mm + interval 5
mm) = 40 mm. It can be seen that this shape provides sufficient portability. (Power supply unit 2
except for)
When the installation angle θ3 of the luminous body portion 4 is smaller than θ / 2, the emission angle of the excitation light R0 to the luminous body portion 4 and the incident angle to the transparent body portion 6 are increased, and the luminous body portion that accumulates the excitation light R0. 4 and the area of the transparent body part 6 to be reflected increase. For this reason, it is necessary to increase the light quantity of the excitation light R0 and to increase the shape of the phosphorescent illumination device 1, and the shape is set in consideration of power consumption and portability.

このように透明体部6での反射を利用した蓄光体部4を設定することにより、光源は
そのままで照明範囲を広げることが出来る。
In this way, by setting the phosphorescent body portion 4 using the reflection from the transparent body portion 6, the illumination range can be expanded without changing the light source.

以上により、図4(B)に示すように光源部3と蓄光体部4間の設置角度を(90度−
θ/2)とすると光源部3からの励起光R0は蓄光体部4にほとんどが放射されて蓄光と
して蓄積され、この蓄積された蓄光が照明光に変換されて蓄光型照明装置1の透明体部6
から放射されて周辺を照明する。
As described above, as shown in FIG. 4B, the installation angle between the light source unit 3 and the phosphor storage unit 4 is (90 degrees −
θ / 2), most of the excitation light R0 from the light source unit 3 is radiated to the phosphor storage unit 4 and accumulated as phosphorescence. The accumulated phosphor is converted into illumination light, and the transparent body of the phosphorescent illumination device 1 is stored. Part 6
The surroundings are radiated from and illuminated.

一方、図4(A)においては蓄光体部4の設置角度θ1をθより大きくすると蓄光体部
4からの照明光Laが透明体部6に入射する角度θ2も大きくなり反射率が上昇して周辺
を照明する光量が減少するとともに遮蔽部5で照明光Laの一部が遮蔽されるようになり
さらに光量が減少し、図4(B)においては蓄光体部4の設置角度θ3をθ/2より小さ
くすると蓄光体部4及び透明体部6への励起光R0の放射角度が大きくなり励起光R0を
蓄光する蓄光体部4及び反射する透明体部6の面積が増加する。
On the other hand, in FIG. 4 (A), when the installation angle θ1 of the luminous body portion 4 is made larger than θ, the angle θ2 at which the illumination light La from the luminous body portion 4 enters the transparent body portion 6 also becomes larger and the reflectance increases. As the amount of light that illuminates the surrounding area decreases, a part of the illumination light La is shielded by the shielding unit 5 and the amount of light further decreases. In FIG. 4B, the installation angle θ3 of the phosphor storage unit 4 is set to θ / If it is smaller than 2, the radiation angle of the excitation light R0 to the phosphorescent body 4 and the transparent body 6 is increased, and the areas of the phosphorescent body 4 for storing the excitation light R0 and the transparent body 6 for reflection are increased.

従って、光源部3に対する蓄光体部4の設置角度を(90度−θ)から(90度−θ/
2)の範囲内で選択すれば、励起光R0のほとんどを蓄光に使用しかつ最適な大きさに蓄
光型照明装置1を設定することが出来る。
Therefore, the installation angle of the luminous body portion 4 with respect to the light source portion 3 is changed from (90 degrees −θ) to (90 degrees −θ /
If it is selected within the range of 2), most of the excitation light R0 can be used for light storage, and the phosphorescent illumination device 1 can be set to an optimum size.

また、励起光R0の放射角度θを45度より大きくすると蓄光体部4からの照明光La
が透明体部6に入射する角度θ2も大きくなり反射率が上昇して周辺を照明する光量が減
少するとともに遮蔽部5で照明光Laの一部が遮蔽されるようになりさらに光量が減少す
る。そして、励起光R0の放射角度θを10度より小さくすると蓄光体部4への励起光R
0の放射角度が大きくなり励起光R0を蓄光する蓄光体部4及び反射する透明体部6の面
積を増加しなければならない。
Further, when the radiation angle θ of the excitation light R0 is larger than 45 degrees, the illumination light La from the phosphorescent body portion 4 is obtained.
However, the angle θ2 incident on the transparent body 6 is also increased, the reflectance is increased, the amount of light that illuminates the surroundings is reduced, and a part of the illumination light La is shielded by the shielding unit 5, and the amount of light is further reduced. . When the radiation angle θ of the excitation light R0 is made smaller than 10 degrees, the excitation light R to the phosphor storage part 4 is obtained.
The area of the luminous body portion 4 that stores the excitation light R0 and the transparent body portion 6 that reflects the light must be increased as the radiation angle of 0 increases.

このため、励起光R0の放射角度θを10度から45度の範囲に選択すれば、励起光R
0のほとんどを蓄光に使用しかつ最適な大きさに蓄光型照明装置1を設定することが出来
る。
Therefore, if the radiation angle θ of the excitation light R0 is selected in the range of 10 degrees to 45 degrees, the excitation light R
Most of 0 can be used for phosphorescence and the phosphorescent illumination device 1 can be set to an optimum size.

そして、図5に示されるように励起光R0を蓄光材料4−2に斜め方向から放射しても
蓄光材料4−2には光量に応じた蓄光として蓄積され、この蓄積された蓄光は蓄光材料4
−2の直角方向を中心に照明光L0に方向変換されて放射される。
And even if it radiates | emits excitation light R0 to the phosphorescent material 4-2 from the diagonal direction as FIG. 5 shows, it accumulate | stores in the phosphorescent material 4-2 as a phosphorescent according to light quantity, and this accumulated phosphorous is stored in the phosphorescent material 4
The direction of the light is changed to the illumination light L0 around the right angle direction of -2.

このように蓄光体部4に励起光を斜め方向に入射して蓄光を励起して蓄積させても直角
方向を中心に蓄光を照明光に変換して放射することが出来るので、励起光の光源を照明光
の放射範囲の光路から容易に外すことが出来る。
Thus, even if excitation light is incident on the phosphor storage body 4 in an oblique direction to excite and accumulate the accumulated light, the accumulated light can be converted into illumination light and emitted around the perpendicular direction. Can be easily removed from the optical path in the radiation range of the illumination light.

以上説明してきたように、本発明による蓄光型照明装置1によれば、光源部3から蓄光
体部4の斜め方向に励起光を放射して蓄光を蓄積させた後この蓄積した蓄光を照明光に変
換して蓄光体部4の直角方向に放射して周辺を照明するので、励起光と照明光は異なる方
向となり、蓄光型照明装置1の周辺は励起光を含まない照明光のみとなるので目に安全な
照明を行うことが出来る。
また、励起光は照明光には使用されず蓄光体部4の蓄光の励起のみに使用され、この励
起された蓄光は可視光範囲の照明光のみに変換されるから、励起光は少なくて済みこの結
果低消費電力とすることが出来る。
更に、蓄光体部4では低消費電力でも十分な蓄光の蓄積が出来るので光源部3から一時
的に励起光を放射しなくても所定時間継続して照明光の放射を行うことが出来る。従って
間欠的に励起光を放射することで照明光を連続的に放射しながらさらに消費電力を減少さ
せることが出来る。
As described above, according to the phosphorescent illumination device 1 according to the present invention, after the excitation light is emitted from the light source unit 3 in the oblique direction of the phosphor storage unit 4 to accumulate the accumulated phosphor, the accumulated phosphor is used as the illumination light. Since the illumination light is emitted in the direction perpendicular to the phosphor storage unit 4 and illuminates the periphery, the excitation light and the illumination light are in different directions, and the periphery of the phosphorescent illumination device 1 is only the illumination light not including the excitation light. Eye-safe lighting can be performed.
Further, the excitation light is not used for the illumination light, but is used only for the excitation of the phosphorescence of the phosphor storage unit 4 and this excited accumulation is converted only to the illumination light in the visible light range, so that the excitation light can be reduced. As a result, low power consumption can be achieved.
Furthermore, since the phosphor storage unit 4 can accumulate sufficient phosphorescence even with low power consumption, the illumination light can be continuously emitted for a predetermined time without temporarily emitting excitation light from the light source unit 3. Therefore, by intermittently emitting excitation light, it is possible to further reduce power consumption while continuously emitting illumination light.

次に実際の使用例について図6、図7を用いて説明する。
図6(A)に示すように光源3−1から蓄光体部4に直接光Ld、反射光Lrが放射さ
れ蓄光として蓄積される。図6(B)は、蓄光体照明装置1に光源3−1としてLEDを
8個(Led1〜Led8)用いた例であり、その中のLed5に最初に電力を供給した
場合を示し、斜線部に示すようにS5の位置にLed5により励起光が放射され蓄光とし
て蓄積され次に照明光に変換されて放射される。
Next, an actual usage example will be described with reference to FIGS.
As shown in FIG. 6A, the light Ld and the reflected light Lr are directly emitted from the light source 3-1 to the phosphor storage unit 4 and accumulated as the phosphor. FIG. 6B shows an example in which eight LEDs (Led 1 to Led 8) are used as the light source 3-1 in the phosphor illuminator 1, and a case where power is first supplied to Led 5 therein is shown by hatching. As shown in FIG. 5, the excitation light is emitted by Led5 at the position of S5 and stored as accumulated light, and then converted into illumination light and emitted.

そして、図7(A)に示すように、例えば光源3−1をLed5、Led6、・・・・
・、Led4、Led5の順に一定期間(数秒〜数分程度)発光させる。そうすると、各
Ledで順番に放射された蓄光体部4の各位置(S5、S6、・・・・・、S4、S5)
には順次蓄光が蓄積され照明光を放射する。蓄光は時間とともに放射され減少するので図
7(A)の斜線部で疑似的に示されるように励起光が照射された直後は蓄光の放射による
照明光の量は多くそして時間とともに減少する。S5の位置では励起光が2回目の順番で
放射されたので前回の蓄光の残りに加算されて蓄光されるので照明光もその分多くなる。
図7(B)はS5の位置以外は2回目の励起光が順番に放射されS5のみが3回目とな
った例である。このように繰り返す回数を増やせば、全体に照明光の量はわずかずつでは
あるが増加する。
Then, as shown in FIG. 7A, for example, the light source 3-1 is replaced with Led5, Led6,.
-Light is emitted for a certain period (several seconds to several minutes) in the order of Led4 and Led5. If it does so, each position (S5, S6, ..., S4, S5) of the luminous body part 4 radiated | emitted in order by each Led
Sequentially accumulates light and emits illumination light. Since the accumulated light is radiated and decreased with time, the amount of illumination light due to the accumulated light is large and decreases with time immediately after the excitation light is irradiated, as shown in a pseudo manner in the shaded area in FIG. Since the excitation light is radiated in the second order at the position of S5, it is added to the remainder of the previous light storage and stored, so the illumination light also increases accordingly.
FIG. 7B shows an example in which the second excitation light is emitted in order, except for the position of S5, and only S5 is the third time. If the number of repetitions is increased in this way, the amount of illumination light increases slightly but overall.

従って、蓄光体部4を8分割して順次励起光を繰り返し照射することにより、蓄光体部
全体を同時に励起光を放射する場合に比較し使用する電力を1/8に削減できる。分割数
は蓄光体部4の大きさと使用する光源により適正化する。
また、蓄光体部4は一度蓄光すると10分程度は、励起光が照射されなくても周囲を視
角出来る程度には照明光を放射し続けるので、蓄光体部4を切り離して持ち運べば、電源
のいらない手軽な照明装置として利用できる。
Therefore, by dividing the phosphor storage part 4 into eight parts and sequentially irradiating the excitation light sequentially, the power used can be reduced to 1/8 compared to the case where the entire phosphor storage part is simultaneously emitted with the excitation light. The number of divisions is optimized depending on the size of the phosphor storage unit 4 and the light source used.
In addition, once the phosphorescent body portion 4 accumulates light, it continues to emit illumination light to such an extent that the surroundings can be viewed even without being irradiated with excitation light. Therefore, if the phosphorescent body portion 4 is separated and carried, It can be used as a simple lighting device that does not need to be used.

本発明は、低消費電力で長時間の照明を行うことが出来るので、夜間の案内板や庭照明
や門燈等に有効使用が可能である。特に、風力、水力、太陽光等により山や海等の屋外で
間欠的に電力を得られる場所での照明装置に有望であり、省エネであり環境にやさしい効
果がある。
Since the present invention can perform illumination for a long time with low power consumption, it can be effectively used for a guide board at night, garden illumination, a gate fence, and the like. In particular, it is promising for a lighting device in a place where electric power can be intermittently obtained outdoors such as in the mountains and the sea by wind, hydropower, sunlight, etc., and has an energy saving and environmentally friendly effect.

1 蓄光型照明装置
2 電源部
3 光源部
3−1 光源
3−2 保持部
4 蓄光体部
4−1 基体
4−2 蓄光材料
5 遮蔽部
6 透明体部
DESCRIPTION OF SYMBOLS 1 Light storage type illuminating device 2 Power supply part 3 Light source part 3-1 Light source 3-2 Holding part 4 Light storage part 4-1 Base 4-2 Light storage material 5 Shield part 6 Transparent body part

Claims (3)

光源から放射される励起光を蓄光として蓄積し、この蓄積した前記蓄光を照明光に変換
して放射し所定の範囲を照明する蓄光型照明装置において、
電力を供給する電源部と、
前記励起光を放射する前記光源と前記光源を保持する保持部材とからなる光源部と、
前記光源部の前記光源から放射される前記励起光を受光すると前記蓄光を励起して蓄積
しこの蓄積した前記蓄光を前記照明光に変換して放射する蓄光体部と、
前記光源部の前記光源から放射される前記励起光が前記所定の範囲には放射されないよ
う遮蔽する遮蔽部と、
から構成し、
前記電源部から前記光源部に前記電力が供給されると前記光源部の前記光源から前記励
起光が放射され前記蓄光体部に受光されて前記蓄光として蓄積されたのち前記蓄光体部に
おいて前記蓄積された前記蓄光が前記照明光に変換されて放射され前記所定の範囲を前記
照明光のみで照明することを特徴とする蓄光型照明装置。
In a phosphorescent illumination device that accumulates excitation light emitted from a light source as luminous energy, converts the accumulated luminous energy into illumination light, radiates, and illuminates a predetermined range,
A power supply for supplying power;
A light source unit comprising the light source that emits the excitation light and a holding member that holds the light source;
A phosphorescent body that excites and accumulates the phosphorescent light when receiving the excitation light emitted from the light source of the light source unit, converts the accumulated light into the illumination light, and radiates;
A shielding unit that shields the excitation light emitted from the light source of the light source unit from being emitted to the predetermined range;
Consisting of
When the power is supplied from the power supply unit to the light source unit, the excitation light is emitted from the light source of the light source unit, received by the phosphor storage unit, and stored as the phosphor storage, and then stored in the phosphor storage unit. The stored light is converted into the illumination light and emitted to illuminate the predetermined range with only the illumination light.
光源から放射される励起光を蓄光として蓄積し、この蓄積した前記蓄光を照明光に変換
して放射し所定の範囲を照明する蓄光型照明装置において、
電力を供給する電源部と、
前記励起光を放射する前記光源と前記光源を保持する保持部材とからなる光源部と、
前記光源部の前記光源から放射される前記励起光の一部を反射する透明部材からなる反
射部と、
前記光源部の前記光源から放射される前記励起光の他の一部を直接受光しかつ前記反射
部で反射された前記励起光の一部を同時に受光することによりそれぞれ前記蓄光を励起し
て蓄積しこの蓄積した前記蓄光を前記照明光に変換して放射する蓄光体部と、
前記光源部の前記光源から放射される前記励起光が前記所定の範囲には放射されないよ
う遮蔽する遮蔽部と、
から構成し、
前記電源部から前記光源部に前記電力が供給されると前記光源部の前記光源から前記励
起光が放射され前記蓄光体部に受光されて前記蓄光として蓄積されたのち前記蓄光体部に
おいて前記蓄積された前記蓄光が前記照明光に変換されて放射され前記反射部を透過して
前記所定の範囲を前記照明光のみで照明することを特徴とする蓄光型照明装置。
In a phosphorescent illumination device that accumulates excitation light emitted from a light source as luminous energy, converts the accumulated luminous energy into illumination light, radiates, and illuminates a predetermined range,
A power supply for supplying power;
A light source unit comprising the light source that emits the excitation light and a holding member that holds the light source;
A reflecting portion made of a transparent member that reflects a part of the excitation light emitted from the light source of the light source portion;
The other part of the excitation light emitted from the light source of the light source part is directly received and the part of the excitation light reflected by the reflection part is simultaneously received to excite and accumulate the accumulated light respectively. And the phosphorescent body portion that converts the accumulated phosphorescence into the illumination light and radiates it, and
A shielding unit that shields the excitation light emitted from the light source of the light source unit from being emitted to the predetermined range;
Consisting of
When the power is supplied from the power supply unit to the light source unit, the excitation light is emitted from the light source of the light source unit, received by the phosphor storage unit, and stored as the phosphor storage, and then stored in the phosphor storage unit. The stored light illuminating device, wherein the stored light is converted into the illumination light and emitted, passes through the reflection portion, and illuminates the predetermined range with only the illumination light.
蓄光体部を分割して順次励起光を照射し蓄積された蓄光を順次照明光に変換して照明す
ることを特徴とする請求項1及び請求項2に記載された蓄光型照明装置。
3. The phosphorescent illumination device according to claim 1, wherein the phosphorescent part is divided and sequentially irradiated with excitation light, and the accumulated light is sequentially converted into illumination light for illumination.
JP2013218776A 2013-07-05 2013-10-22 Luminous lighting device Pending JP2015028902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218776A JP2015028902A (en) 2013-07-05 2013-10-22 Luminous lighting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013141221 2013-07-05
JP2013141221 2013-07-05
JP2013218776A JP2015028902A (en) 2013-07-05 2013-10-22 Luminous lighting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016004744U Continuation JP3207931U (en) 2013-07-05 2016-09-29 Luminous illumination device

Publications (1)

Publication Number Publication Date
JP2015028902A true JP2015028902A (en) 2015-02-12

Family

ID=52492503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218776A Pending JP2015028902A (en) 2013-07-05 2013-10-22 Luminous lighting device

Country Status (1)

Country Link
JP (1) JP2015028902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019012A (en) * 2017-07-12 2019-02-07 日本電気硝子株式会社 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019012A (en) * 2017-07-12 2019-02-07 日本電気硝子株式会社 Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device
JP7004235B2 (en) 2017-07-12 2022-01-21 日本電気硝子株式会社 Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device

Similar Documents

Publication Publication Date Title
US9739444B2 (en) Light emitting diode (LED) based lighting systems
JP3159653U (en) Lighting fixture
JP5880908B2 (en) LED bulb
KR20060034676A (en) The luminous device using light emitting diodes
CN102410496A (en) Light source condensation device and fixture thereof
US20180106451A1 (en) Laser car lamp
KR101055519B1 (en) Lighting assembly and equalizer with same
JP2008159554A (en) Light-emitting illumination equipment
JP3207931U (en) Luminous illumination device
JP2012028095A (en) Fluorescent rod system
JP2015028902A (en) Luminous lighting device
JP2010103060A (en) Display device
JP2010153238A (en) Light-storage illuminating body
CN201344430Y (en) LED industrial and mining lamp
KR20140128542A (en) Led tubular light for sign
JP2006328927A (en) Delineator light
JP2013218828A (en) Lighting device
KR20110115060A (en) Led lamp having wide angle lighting
CN201351870Y (en) Lighting lamp structure
CN202074293U (en) Light emitting diode (LED) lamp with excellent light distribution effect
CN202629676U (en) Light emitting diode (LED) bulb capable of emitting light at large angles
CN215340418U (en) Lighting system
JP2011003353A (en) Light storage lighting system
JP2011096443A (en) Luminous lighting system
JP2002251903A (en) Led luminaire