JP2015026642A - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
JP2015026642A
JP2015026642A JP2013153730A JP2013153730A JP2015026642A JP 2015026642 A JP2015026642 A JP 2015026642A JP 2013153730 A JP2013153730 A JP 2013153730A JP 2013153730 A JP2013153730 A JP 2013153730A JP 2015026642 A JP2015026642 A JP 2015026642A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
lower electrode
electrode layer
layer
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013153730A
Other languages
Japanese (ja)
Inventor
誠司 小栗
Seiji Oguri
誠司 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2013153730A priority Critical patent/JP2015026642A/en
Publication of JP2015026642A publication Critical patent/JP2015026642A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve photoelectric conversion efficiency of a photoelectric conversion device by decreasing electric resistance between photoelectric conversion cells.SOLUTION: A photoelectric conversion device 11 includes: a substrate 1; a first lower electrode layer 2a and a second lower electrode layer 2b spaced from each other and disposed in one direction on the substrate 1; a photoelectric conversion layer PE disposed from above the first lower electrode layer 2a to above the second lower electrode layer 2b; a conductive film 5 that has a first portion 5a covering an upper surface of the photoelectric conversion layer PE, a second portion 5b connected to the first portion 5a and covering a side face of the photoelectric conversion layer PE, and a third portion 5c connected to the second portion 5b and covering a part of the second lower electrode layer 2b; and an auxiliary conductor 6 that is disposed in a range from a surface of the second portion 5b by way of a surface of the third portion 5c to a portion of an upper surface of the second electrode layer 2b not covered with the conductive film 5.

Description

本発明は、複数の光電変換セルが電気的に接続された光電変換装置に関する。   The present invention relates to a photoelectric conversion device in which a plurality of photoelectric conversion cells are electrically connected.

太陽光発電などに使用される光電変換装置として、基板の上に複数の光電変換セルが設けられたものがある(例えば、特許文献1など)。   As a photoelectric conversion device used for solar power generation or the like, there is one in which a plurality of photoelectric conversion cells are provided on a substrate (for example, Patent Document 1).

このような光電変換装置は、ガラスなどの基板の上に、金属電極などの下部電極層と、光吸収層と、バッファ層と、透明導電膜とを、この順に積層した光電変換セルが、平面的に複数並設されて構成されている。複数の光電変換セルは、隣り合う一方の光電変換セルの透明導電膜と他方の下部電極層とが接続導体で接続されることで、電気的に直列接続されている。   In such a photoelectric conversion device, a photoelectric conversion cell in which a lower electrode layer such as a metal electrode, a light absorption layer, a buffer layer, and a transparent conductive film are laminated in this order on a substrate such as glass is a flat surface. Thus, a plurality of them are arranged side by side. The plurality of photoelectric conversion cells are electrically connected in series by connecting the transparent conductive film of one adjacent photoelectric conversion cell and the other lower electrode layer with a connection conductor.

特開2000−299486号公報JP 2000-299486 A

光電変換装置には光電変換効率の向上が常に要求される。上記光電変換装置において、光電変換セル間の電気抵抗が大きく、光電変換効率を十分に高めることが困難である。   A photoelectric conversion device is always required to improve photoelectric conversion efficiency. In the photoelectric conversion device, electrical resistance between the photoelectric conversion cells is large, and it is difficult to sufficiently increase the photoelectric conversion efficiency.

本発明の一つの目的は、光電変換セル間の電気抵抗を小さくすることによって、光電変換装置の光電変換効率を向上させることにある。   One object of the present invention is to improve the photoelectric conversion efficiency of a photoelectric conversion device by reducing the electrical resistance between photoelectric conversion cells.

本発明の一態様に係る光電変換装置は、基板と、該基板上に互いに間隔をあけて一方向に配置された第1の下部電極層および第2の下部電極層と、前記第1の下部電極層上から前記第2の下部電極層上にかけて配置された光電変換層と、該光電変換層の上面を覆う第1部位、該第1部位に接続しているとともに前記光電変換層の側面を覆う第2部位および該第2部位に接続しているとともに前記第2の下部電極層の一部を覆う第3部位を有する導電膜と、前記第2部位の表面から前記第3部位の表面を経て前記第2の下部電極層の上面の前記導電膜に覆われていない部位にかけて配置された補助導体とを具備する。   A photoelectric conversion device according to one embodiment of the present invention includes a substrate, a first lower electrode layer and a second lower electrode layer that are spaced apart from each other and disposed in one direction, and the first lower electrode layer. A photoelectric conversion layer disposed from the electrode layer to the second lower electrode layer, a first portion covering the upper surface of the photoelectric conversion layer, connected to the first portion and a side surface of the photoelectric conversion layer A conductive film having a second part to be covered and a third part that is connected to the second part and covers a part of the second lower electrode layer; and a surface of the third part from a surface of the second part. And an auxiliary conductor disposed over a portion of the upper surface of the second lower electrode layer not covered with the conductive film.

本発明によれば、光電変換によって生じた電力の損失を低減して、光電変換効率を高めることができる。   According to the present invention, it is possible to reduce power loss caused by photoelectric conversion and increase photoelectric conversion efficiency.

第1実施形態に係る光電変換装置の斜視図である。1 is a perspective view of a photoelectric conversion device according to a first embodiment. 図1の光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus of FIG. 図1の光電変換装置の平面図である。It is a top view of the photoelectric conversion apparatus of FIG. 第2実施形態に係る光電変換装置の斜視図である。It is a perspective view of the photoelectric conversion apparatus which concerns on 2nd Embodiment.

以下に本発明の一実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

<第1実施形態に係る光電変換装置の構成>
図1は、本発明の第1実施形態に係る光電変換装置の一例を示す斜視図であり、図2はその断面図である。また、図3は図1の光電変換装置を上面側から見た平面図である。光電変換装置11は、基板1上に複数の光電変換セル10が並べられて互いに電気的に接続されている。なお、図1〜3には、光電変換セル10の配列方向(図1の図面視左右方向)をX軸方向とする右手系のXYZ座標系を付している。また、図1〜3においては図示の都合上、2つの光電変換セル10a、10bのみを示しているが、実際の光電変換装置11においては、図面のX軸方向、あるいはさらにY軸方向に、多数の光電変換セル10が平面的に(二次元的に)配設されていてもよい。
<Configuration of Photoelectric Conversion Device According to First Embodiment>
FIG. 1 is a perspective view showing an example of a photoelectric conversion apparatus according to the first embodiment of the present invention, and FIG. 2 is a sectional view thereof. FIG. 3 is a plan view of the photoelectric conversion device of FIG. In the photoelectric conversion device 11, a plurality of photoelectric conversion cells 10 are arranged on the substrate 1 and are electrically connected to each other. 1 to 3 have a right-handed XYZ coordinate system in which the X-axis direction is the direction in which the photoelectric conversion cells 10 are arranged (the horizontal direction in the drawing in FIG. 1). 1 to 3 show only two photoelectric conversion cells 10a and 10b for convenience of illustration, but in the actual photoelectric conversion device 11, in the X-axis direction of the drawing, or further in the Y-axis direction, A large number of photoelectric conversion cells 10 may be arranged two-dimensionally (two-dimensionally).

図1〜3において、基板1上に複数の下部電極層2が平面配置されている。隣接する下部電極層2のうち、一方の下部電極層2a(以下、第1の下部電極層2aともいう)上から他方の下部電極層2b(以下、第2の下部電極層2bともいう)上にかけて、光電変換層PEが設けられている。また、この光電変換層PEの上面から側面を経て第2の下部電極層2b上にかけて導電膜5が設けられている。この導電膜5は、光電変換層PEの上面を覆う第1部位5aと、この第1部位5aに接続しているとともに光電変換層PEの側面を覆う第2部位5bと、この第2部位5bに接続しているとともに第2の下部電極層2bの一部を覆う第3部位5cとを有している。そして、導電膜5の第2部位5bの表面から第3部位5cの表面を経て第2の下部電極層2bの上面の上記導電膜5(第3部位5c)に覆われていない部位にかけて補助導体6が設けられている。   1 to 3, a plurality of lower electrode layers 2 are arranged in a plane on a substrate 1. Among the adjacent lower electrode layers 2, one upper electrode layer 2 a (hereinafter also referred to as the first lower electrode layer 2 a) to the other lower electrode layer 2 b (hereinafter also referred to as the second lower electrode layer 2 b). A photoelectric conversion layer PE is provided. A conductive film 5 is provided from the upper surface of the photoelectric conversion layer PE through the side surface to the second lower electrode layer 2b. The conductive film 5 includes a first part 5a that covers the upper surface of the photoelectric conversion layer PE, a second part 5b that is connected to the first part 5a and covers the side surface of the photoelectric conversion layer PE, and the second part 5b. And a third portion 5c that covers a part of the second lower electrode layer 2b. The auxiliary conductor extends from the surface of the second portion 5b of the conductive film 5 to the portion of the upper surface of the second lower electrode layer 2b that is not covered by the conductive film 5 (third portion 5c) through the surface of the third portion 5c. 6 is provided.

これら、第1下部電極層2、光電変換層PEおよび上部電極層として機能する第1部位5aによって1つの光電変換セル10が構成されている。そして、隣接する光電変換セル10における一方の光電変換セル10aの第1部位5aと、他方の光電変換セル10bの第2の下部電極層2bとは、第2部位5b、第3部位5cおよび補助導体6によって電気的に接続されており、このような構成によって、隣接する光電変換セル10同士が直列接続された光電変換装置11となる。ここで、第2部位5b、第3部位5cおよび補助導体6は、隣接する光電変換セル10a、10b同士を電気的に接続するための接続導体として機能する。   One photoelectric conversion cell 10 is composed of the first lower electrode layer 2, the photoelectric conversion layer PE, and the first portion 5a functioning as the upper electrode layer. And the 1st site | part 5a of one photoelectric conversion cell 10a in the adjacent photoelectric conversion cell 10 and the 2nd lower electrode layer 2b of the other photoelectric conversion cell 10b are the 2nd site | part 5b, the 3rd site | part 5c, and auxiliary | assistant. It is electrically connected by the conductor 6, and with such a configuration, the photoelectric conversion device 11 in which the adjacent photoelectric conversion cells 10 are connected in series is obtained. Here, the 2nd site | part 5b, the 3rd site | part 5c, and the auxiliary conductor 6 function as a connection conductor for electrically connecting adjacent photoelectric conversion cell 10a, 10b.

接続導体が上記のように第2部位5b、第3部位5cおよび補助導体6によって構成されていることによって、隣接する光電変換セル10a、10b同士の電気的な接続を、接続信頼性が高いとともに電力損失の低いものとすることができる。その結果、光電変換装置11の光電変換効率が高くなる。つまり、第2部位5bおよび第3部位5cは、光電変換セル10aの上部電極層として機能する第1部位5aと連続するように形成されており、これによって、第1部位5aと第2の下部電極層2bとの電気的な接続が信頼性の高いものとなる。一方、補助導体6は、第2部位5bおよび第3部位に接続されているとともに、第3部位5cを介さずに直接、第2の下部電極層2bに接続する部位を有していることによって、第1部位5aと第2の下部電極層2bとを接続する接続導体の電気抵抗を低くして電力損失を低減することができる。   Since the connection conductor is constituted by the second portion 5b, the third portion 5c, and the auxiliary conductor 6 as described above, the electrical connection between the adjacent photoelectric conversion cells 10a and 10b is high in connection reliability. The power loss can be low. As a result, the photoelectric conversion efficiency of the photoelectric conversion device 11 is increased. That is, the second part 5b and the third part 5c are formed so as to be continuous with the first part 5a functioning as the upper electrode layer of the photoelectric conversion cell 10a, and thereby the first part 5a and the second lower part are formed. The electrical connection with the electrode layer 2b is highly reliable. On the other hand, the auxiliary conductor 6 is connected to the second part 5b and the third part and has a part directly connected to the second lower electrode layer 2b without going through the third part 5c. The power loss can be reduced by lowering the electrical resistance of the connecting conductor connecting the first portion 5a and the second lower electrode layer 2b.

なお、本実施形態における光電変換装置11は、第1の半導体層3に対して第2の半導体層4側から光が入射されるものを想定しているが、これに限定されず、基板1側から光が入射されるものであってもよい。   In addition, although the photoelectric conversion apparatus 11 in this embodiment assumes what light injects with respect to the 1st semiconductor layer 3 from the 2nd semiconductor layer 4 side, it is not limited to this, The board | substrate 1 The light may be incident from the side.

基板1は、光電変換セル10を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。基板1としては、例えば、厚さ1〜4mm程度の青板ガラス(ソーダライムガラス)を用いることができる。   The substrate 1 is for supporting the photoelectric conversion cell 10. Examples of the material used for the substrate 1 include glass, ceramics, resin, and metal. As the substrate 1, for example, blue plate glass (soda lime glass) having a thickness of about 1 to 4 mm can be used.

下部電極層2(第1の下部電極層2aおよび第2の下部電極層2b)は、基板1上に設けられた、Mo、Al、TiまたはAu等の導電体である。下部電極層2は、スパッタリング法または蒸着法などの公知の薄膜形成手法を用いて、0.2μm〜1μm程度の厚みに形成される。第1の下部電極層2aおよび第2の下部電極層2bの間隔は、例えば、20〜200μmとされ得る。   The lower electrode layer 2 (the first lower electrode layer 2a and the second lower electrode layer 2b) is a conductor such as Mo, Al, Ti, or Au provided on the substrate 1. The lower electrode layer 2 is formed to a thickness of about 0.2 μm to 1 μm using a known thin film forming method such as sputtering or vapor deposition. The distance between the first lower electrode layer 2a and the second lower electrode layer 2b can be set to 20 to 200 μm, for example.

光電変換層PEは、例えば0.5〜5μm程度の厚みを有する半導体層である。光電変換層PEは光照射によって生じた電子とホールを良好に分離可能なものが用いられ、例えば、一方導電型の半導体層の表面に不純物元素をドープして表面を他方導電型に変化させたもの、あるいは、一方導電型の半導体層に他方導電型の半導体層を積層したもの等が挙げられる。なお、一方導電型および他方導電型とは、一方導電型がp型であれば他方導電型がn型であり、その逆であってもよい。本実施形態では、光電変換層PEが一方導電型(p型)の第1の半導体層3と他方導電型(n型)の第2の半導体層4とが積層された例を示している。   The photoelectric conversion layer PE is a semiconductor layer having a thickness of about 0.5 to 5 μm, for example. As the photoelectric conversion layer PE, one that can satisfactorily separate electrons and holes generated by light irradiation is used. For example, the surface of one conductivity type semiconductor layer is doped with an impurity element to change the surface to the other conductivity type. Or a semiconductor layer in which the other conductive type semiconductor layer is stacked on the one conductive type semiconductor layer. The one conductivity type and the other conductivity type may be the other conductivity type if the one conductivity type is p type, and vice versa. In the present embodiment, an example is shown in which the photoelectric conversion layer PE is formed by laminating a first semiconductor layer 3 of one conductivity type (p type) and a second semiconductor layer 4 of the other conductivity type (n type).

第1の半導体層3の材料としては特に限定されず、金属カルコゲナイドや非晶質シリコン等が用いられ得る。比較的高い光電変換効率を有するという観点で、例えば、I−III
−VI族化合物、I−II−IV−VI族化合物およびII−VI族化合物等の金属カルコゲナイドが第1の半導体層3の材料として用いられてもよい。
The material of the first semiconductor layer 3 is not particularly limited, and metal chalcogenide, amorphous silicon, or the like can be used. From the viewpoint of having a relatively high photoelectric conversion efficiency, for example, I-III
Metal chalcogenides such as a -VI group compound, an I-II-IV-VI group compound, and a II-VI group compound may be used as the material of the first semiconductor layer 3.

I−III−VI族化合物とは、11族元素(I−B族元素ともいう)と13族元素(III−B族元素ともいう)と16族元素(VI-B族元素ともいう)との化合物である。I−III−VI族化合物としては、例えば、CuInSe(二セレン化銅インジウム、CISともいう)、Cu(In,Ga)Se(二セレン化銅インジウム・ガリウム、CIGSともいう)、Cu(In,Ga)(Se,S)(二セレン・イオウ化銅インジウム・ガリウム、CIGSSともいう)等が挙げられる。あるいは、第1の半導体層3は、薄膜の二セレン・イオウ化銅インジウム・ガリウム層を表面層として有する二セレン化銅インジウム・ガリウム等の多元化合物半導体薄膜にて構成されていてもよい。I−III−VI族化合物は
光吸収係数が比較的高く、第1の半導体層3が薄くても良好な光電変換効率が得られる。
An I-III-VI group compound is a group 11 element (also referred to as a group IB element), a group 13 element (also referred to as a group III-B element), and a group 16 element (also referred to as a VI-B group element). A compound. Examples of the I-III-VI group compound include CuInSe 2 (also referred to as copper indium selenide, CIS), Cu (In, Ga) Se 2 (also referred to as copper indium selenide / gallium, CIGS), Cu ( In, Ga) (Se, S) 2 (also referred to as diselene, copper indium sulphide, gallium, or CIGSS). Alternatively, the first semiconductor layer 3 may be composed of a multi-component compound semiconductor thin film such as copper indium selenide / gallium having a thin film of selenide / copper indium sulfide / gallium as a surface layer. The I-III-VI group compound has a relatively high light absorption coefficient, and good photoelectric conversion efficiency can be obtained even if the first semiconductor layer 3 is thin.

I−II−IV−VI族化合物とは、I−B族元素とII−B族元素(12族元素ともいう)とIV−B族元素(14族元素ともいう)とVI−B族元素との化合物半導体である。I−II−IV−VI族化合物としては、例えば、CuZnSnS(CZTSともいう)、CuZnSnS4−xSe(CZTSSeともいう。なお、xは0より大きく4より小さい数である。)、およびCuZnSnSe(CZTSeともいう)等が挙げられる。 The I-II-IV-VI group compound includes an IB group element, an II-B group element (also referred to as a group 12 element), an IV-B group element (also referred to as a group 14 element), and a VI-B group element. It is a compound semiconductor. Examples of the I-II-IV-VI group compound include Cu 2 ZnSnS 4 (also referred to as CZTS) and Cu 2 ZnSnS 4-x Se x (also referred to as CZTSSe. Note that x is a number greater than 0 and smaller than 4. And Cu 2 ZnSnSe 4 (also referred to as CZTSe).

II−VI族化合物とは、II−B族元素とVI−B族元素との化合物半導体である。II−VI族化合物としてはCdTe等が挙げられる。   The II-VI group compound is a compound semiconductor of a II-B group element and a VI-B group element. CdTe etc. are mentioned as a II-VI group compound.

第2の半導体層4としては、CdS、ZnS、ZnO、In、InSe、In(OH,S)、(Zn,In)(Se,OH)、および(Zn,Mg)O等が挙げられる。この場合、第2の半導体層4は、例えばケミカルバスデポジション(CBD)法やスパッタリング法等で5〜200nmの厚みで形成される。なお、In(OH,S)とは、InとOHとSとを主に含む化合物をいう。(Zn,In)(Se,OH)は、ZnとInとSeとOHとを主に含む化合物をいう。(Zn,Mg)Oは、ZnとMgとOとを主に含む化合物をいう。 The second semiconductor layer 4 includes CdS, ZnS, ZnO, In 2 S 3 , In 2 Se 3 , In (OH, S), (Zn, In) (Se, OH), and (Zn, Mg) O. Etc. In this case, the second semiconductor layer 4 is formed with a thickness of 5 to 200 nm by, for example, a chemical bath deposition (CBD) method or a sputtering method. In (OH, S) refers to a compound mainly containing In, OH, and S. (Zn, In) (Se, OH) refers to a compound mainly containing Zn, In, Se, and OH. (Zn, Mg) O refers to a compound mainly containing Zn, Mg and O.

導電膜5は、第2の半導体層4よりも電気抵抗率の低い層であり、光電変換層PEで生じた電荷を良好に取り出す機能を有する。光電変換効率をより高めるという観点からは、導電膜5の電気抵抗率が1Ω・cm未満でシート抵抗が50Ω/□以下であってもよい。   The conductive film 5 is a layer having a lower electrical resistivity than the second semiconductor layer 4 and has a function of favorably extracting charges generated in the photoelectric conversion layer PE. From the viewpoint of further increasing the photoelectric conversion efficiency, the electrical resistivity of the conductive film 5 may be less than 1 Ω · cm and the sheet resistance may be 50 Ω / □ or less.

導電膜5は、光電変換層PEよりも薄い0.05〜3μm程度の厚みの薄膜であり、スパッタリング法、蒸着法または化学的気相成長(CVD)法等の薄膜形成方法によって形成され得る。導電膜5は、例えば、ZnO、InおよびSnO等の金属酸化物半導体等が採用され得る。これらの金属酸化物半導体には、Al、B、Ga、InおよびF等のうちの何れかの元素が含まれても良い。このような元素が含まれた金属酸化物半導体の具体例としては、例えば、AZO(Aluminum Zinc Oxide)、GZO(Gallium Zinc Oxide)、IZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)、FTO(Fluorine
tin Oxide)等がある。
The conductive film 5 is a thin film having a thickness of about 0.05 to 3 μm thinner than the photoelectric conversion layer PE, and can be formed by a thin film forming method such as a sputtering method, a vapor deposition method, or a chemical vapor deposition (CVD) method. For the conductive film 5, for example, a metal oxide semiconductor such as ZnO, In 2 O 3 and SnO 2 can be adopted. These metal oxide semiconductors may contain any element of Al, B, Ga, In, F, and the like. Specific examples of the metal oxide semiconductor containing such an element include, for example, AZO (Aluminum Zinc Oxide), GZO (Gallium Zinc Oxide), IZO (Indium Zinc Oxide), ITO (Indium Tin Oxide), FTO ( Fluorine
tin Oxide).

導電膜5は、第1部位5a、第2部位5bおよび第3部位5cを有している。第3部位5cは、図3に示すように、第2の下部電極層2b上に光電変換層PEに沿って帯状に形成されており、第2の下部電極層2bの一部を露出させている。   The conductive film 5 has a first part 5a, a second part 5b, and a third part 5c. As shown in FIG. 3, the third portion 5c is formed in a strip shape on the second lower electrode layer 2b along the photoelectric conversion layer PE, and exposes a part of the second lower electrode layer 2b. Yes.

このような第1部位5a、第2部位5bおよび第3部位5cを有する導電膜5は以下のようにして作製することができる。先ず、下部電極層2上に光電変換層PEを形成した後、この光電変換層PEの一部をメカニカルスクライブ加工やレーザースクライブ加工によって除去し、第2部位5b、第3部位5cおよび補助導体6を形成するための溝部Pを形成する。そして、光電変換層PE上および溝部Pの内面(光電変換層PEの側面および光電変換層PEを切削して露出した下部電極層2上)に対して、薄膜形成方法によって導電膜5を形成する。その後、溝部P内の下部電極層2上に形成されている導電膜5の一部をメカニカルスクライブ加工やレーザースクライブ加工によって除去し、下部電極層2を露出させることによって、第1部位5a、第2部位5bおよび第3部位5cを形成することができる。   The conductive film 5 having the first part 5a, the second part 5b, and the third part 5c can be manufactured as follows. First, after forming the photoelectric conversion layer PE on the lower electrode layer 2, a part of the photoelectric conversion layer PE is removed by mechanical scribe processing or laser scribe processing, and the second portion 5b, the third portion 5c, and the auxiliary conductor 6 are removed. A groove portion P for forming is formed. Then, the conductive film 5 is formed on the photoelectric conversion layer PE and on the inner surface of the groove P (on the side surface of the photoelectric conversion layer PE and the lower electrode layer 2 exposed by cutting the photoelectric conversion layer PE) by a thin film forming method. . Thereafter, a part of the conductive film 5 formed on the lower electrode layer 2 in the groove P is removed by mechanical scribe processing or laser scribe processing, and the lower electrode layer 2 is exposed, whereby the first portion 5a, Two sites 5b and a third site 5c can be formed.

なお、メカニカルスクライブ加工とは、針状の加工ツールやドリル等で対象物を切削する加工方法である。また、レーザースクライブ加工とは、レーザー光を照射することによって対象物を除去する加工方法である。   Mechanical scribing is a processing method of cutting an object with a needle-like processing tool or a drill. Laser scribing is a processing method for removing an object by irradiating a laser beam.

補助導体6は、図1〜図3に示すように、第2部位5bの表面から第3部位5cの表面を経て第2の下部電極層2bの上面の第3部位5cに覆われていない部位にかけて設けられている。補助導体6はAg等の金属粉が樹脂バインダー等に分散された金属ペーストをパターン状に印刷し、これを加熱することによって形成できる。   1-3, the auxiliary conductor 6 is not covered with the third portion 5c on the upper surface of the second lower electrode layer 2b from the surface of the second portion 5b through the surface of the third portion 5c. It is provided over. The auxiliary conductor 6 can be formed by printing a metal paste in which a metal powder such as Ag is dispersed in a resin binder or the like in a pattern and heating it.

補助導体6は、第3部位5cを挟んで第2の下部電極層2bと接続している部位の面積が、第3部位5cを挟まずに直接第2の下部電極層2bと接続している部位の面積の0.3〜10倍程度とすることができる。   The area of the auxiliary conductor 6 connected to the second lower electrode layer 2b across the third portion 5c is directly connected to the second lower electrode layer 2b without the third portion 5c interposed therebetween. It can be about 0.3 to 10 times the area of the part.

図1〜図3において、補助導体6は複数の副補助導体6a〜6cから成り、これらの複数の副補助導体6a〜6cが、光電変換セル10a、10bの配列方向(X軸方向)に直交する方向(Y軸方向)に沿って互いに間隔をあけて並んでいる。このような構成によって、隣接する光電変換セル10a、10b同士の電気的な接続を良好にしつつ、副補助導体同士の間から光が光電変換層PE内に良好に入射されやすくなり、光電変換効率が向上する。なお、副補助導体同士の間隔は、例えば1〜5mmとすることができる。   1 to 3, the auxiliary conductor 6 includes a plurality of sub auxiliary conductors 6a to 6c, and the plurality of sub auxiliary conductors 6a to 6c are orthogonal to the arrangement direction (X-axis direction) of the photoelectric conversion cells 10a and 10b. Are arranged along the direction (Y-axis direction). With such a configuration, light is easily incident on the photoelectric conversion layer PE from between the auxiliary auxiliary conductors while improving the electrical connection between the adjacent photoelectric conversion cells 10a and 10b. Will improve. In addition, the space | interval of sub-auxiliary conductors can be 1-5 mm, for example.

第1部位5aの上面には、図1〜図3に示すように、帯状に延びるとともに上記補助導体6に接続している集電電極8がさらに設けられていてもよい。集電電極8は、第1部位5aの導電性をさらに高めるためのものである。光電変換装置11が、第1部位5aを通して光電変換層PE内に光が入射するように使用する構成である場合、光電変換層PEへの光透過率を高めるとともに良好な導電性を有するという観点から、集電電極8は、50
〜400μmの幅を有していてもよい。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。
As shown in FIGS. 1 to 3, a current collecting electrode 8 that extends in a strip shape and is connected to the auxiliary conductor 6 may be further provided on the upper surface of the first portion 5 a. The current collecting electrode 8 is for further increasing the conductivity of the first portion 5a. In the case where the photoelectric conversion device 11 is configured to be used so that light enters the photoelectric conversion layer PE through the first portion 5a, the viewpoint of increasing the light transmittance to the photoelectric conversion layer PE and having good conductivity. Therefore, the collector electrode 8 is 50
It may have a width of ˜400 μm. The current collecting electrode 8 may have a plurality of branched portions.

集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペーストをパターン状に印刷し、これを加熱することによって形成できる。   The current collecting electrode 8 can be formed, for example, by printing a metal paste in which a metal powder such as Ag is dispersed in a resin binder or the like in a pattern and heating it.

<第2実施形態に係る光電変換装置の構成>
上記一実施形態では、補助導体6が複数の副補助導体6a〜6cから成る例を示したが、これに限定されない。例えば、図4の第2実施形態に係る光電変換装置21のように、補助導体26が光電変換層PEに沿ってY方向に帯状に延びるように形成されていてもよい。なお、図4の第2実施形態に係る光電変換装置21において、第1実施形態に係る光電変換装置11と同じ構成のものには同じ符号を付しており、詳細な説明は省略する。このような構成によって、第2部位5b、第3部位5cおよび補助導体26で構成される接続導体の電気抵抗をより低減できる。つまり、隣接する光電変換セル20a、20b間における電力損失をさらに低減して、光電変換装置21の光電変換効率をさらに高めることができる。
<Configuration of Photoelectric Conversion Device According to Second Embodiment>
In the above-described embodiment, the example in which the auxiliary conductor 6 includes the plurality of sub auxiliary conductors 6a to 6c has been described. However, the embodiment is not limited thereto. For example, as in the photoelectric conversion device 21 according to the second embodiment in FIG. 4, the auxiliary conductor 26 may be formed to extend in a strip shape in the Y direction along the photoelectric conversion layer PE. In addition, in the photoelectric conversion apparatus 21 which concerns on 2nd Embodiment of FIG. 4, the same code | symbol is attached | subjected to the thing of the same structure as the photoelectric conversion apparatus 11 which concerns on 1st Embodiment, and detailed description is abbreviate | omitted. With such a configuration, it is possible to further reduce the electrical resistance of the connection conductor formed by the second portion 5b, the third portion 5c, and the auxiliary conductor 26. That is, the power loss between the adjacent photoelectric conversion cells 20a and 20b can be further reduced, and the photoelectric conversion efficiency of the photoelectric conversion device 21 can be further increased.

なお、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更が施されることは何等差し支えない。   Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.

1:基板
2:下部電極層
2a:第1の下部電極層
2b:第2の下部電極層
PE:光電変換層
3:第1の半導体層
4:第2の半導体層
5:導電膜
5a:第1部位
5b:第2部位
5c:第3部位
6、26:補助導体
6a、6b、6c:副補助導体
8:集電電極
10、20:光電変換セル
11、21:光電変換装置
1: substrate 2: lower electrode layer 2a: first lower electrode layer 2b: second lower electrode layer PE: photoelectric conversion layer 3: first semiconductor layer 4: second semiconductor layer 5: conductive film 5a: first 1 part 5b: 2nd part 5c: 3rd part 6, 26: Auxiliary conductor 6a, 6b, 6c: Sub auxiliary conductor 8: Current collecting electrode 10, 20: Photoelectric conversion cell 11, 21: Photoelectric conversion device

Claims (4)

基板と、
該基板上に互いに間隔をあけて一方向に配置された第1の下部電極層および第2の下部電極層と、
前記第1の下部電極層上から前記第2の下部電極層上にかけて配置された光電変換層と、該光電変換層の上面を覆う第1部位、該第1部位に接続しているとともに前記光電変換層の側面を覆う第2部位および該第2部位に接続しているとともに前記第2の下部電極層の一部を覆う第3部位を有する導電膜と、
前記第2部位の表面から前記第3部位の表面を経て前記第2の下部電極層の上面の前記導電膜に覆われていない部位にかけて配置された補助導体と
を具備する光電変換装置。
A substrate,
A first lower electrode layer and a second lower electrode layer disposed on the substrate in a direction spaced apart from each other;
The photoelectric conversion layer disposed from above the first lower electrode layer to the second lower electrode layer, a first portion covering the upper surface of the photoelectric conversion layer, connected to the first portion and the photoelectric conversion layer A conductive film having a second part covering the side surface of the conversion layer and a third part connected to the second part and covering a part of the second lower electrode layer;
A photoelectric conversion device comprising: an auxiliary conductor disposed from a surface of the second part through a surface of the third part to a part of the upper surface of the second lower electrode layer that is not covered with the conductive film.
前記補助導体は複数の副補助導体から成り、該複数の副補助導体が前記一方向に直交する方向に沿って互いに間隔をあけて並んでいる、請求項1に記載の光電変換装置。   2. The photoelectric conversion device according to claim 1, wherein the auxiliary conductor includes a plurality of sub auxiliary conductors, and the plurality of sub auxiliary conductors are arranged at intervals from each other along a direction orthogonal to the one direction. 前記第1部位上に、帯状に延びるとともに前記補助導体に接続している集電電極をさらに具備する、請求項1または2に記載の光電変換装置。   3. The photoelectric conversion device according to claim 1, further comprising a collecting electrode extending in a strip shape and connected to the auxiliary conductor on the first portion. 4. 前記第3部位は前記光電変換層に沿って帯状に延びている、請求項1乃至3のいずれかに記載の光電変換装置。   The photoelectric conversion device according to claim 1, wherein the third portion extends in a strip shape along the photoelectric conversion layer.
JP2013153730A 2013-07-24 2013-07-24 Photoelectric conversion device Withdrawn JP2015026642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153730A JP2015026642A (en) 2013-07-24 2013-07-24 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153730A JP2015026642A (en) 2013-07-24 2013-07-24 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2015026642A true JP2015026642A (en) 2015-02-05

Family

ID=52491099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153730A Withdrawn JP2015026642A (en) 2013-07-24 2013-07-24 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2015026642A (en)

Similar Documents

Publication Publication Date Title
JP5901773B2 (en) THIN FILM SOLAR MODULE INCLUDING SERIAL CONNECTION AND METHOD FOR SERIALLY CONNECTING A plurality of thin film solar cells
JP6258884B2 (en) Photoelectric conversion device
JP2011103425A (en) Photoelectric converter
KR101063721B1 (en) Solar cell and manufacturing method thereof
WO2014002646A1 (en) Method for manufacturing photoelectric conversion device
JP2016103582A (en) Photoelectric conversion device
JP2015026642A (en) Photoelectric conversion device
JP2014067745A (en) Method for manufacturing photoelectric conversion device
JPWO2013099947A1 (en) Photoelectric conversion device
KR101765922B1 (en) Solar cell apparatus and method of fabricating the same
EP2876692A1 (en) Solar cell and method for manufacturing the same
JP6346058B2 (en) Photoelectric conversion device
JP2016171186A (en) Photoelectric conversion device
JP2016157808A (en) Photoelectric conversion device
JP2015225970A (en) Photoelectric conversion device
JP5988373B2 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
JP2016157805A (en) Photoelectric conversion device
JP2014049484A (en) Photoelectric conversion device
JP2016122743A (en) Photoelectric conversion device
JP2015176890A (en) Method of manufacturing photoelectric conversion device
JP6224532B2 (en) Photoelectric conversion device
JP2014127508A (en) Photoelectric conversion device and method of manufacturing the same
KR101349432B1 (en) Photovoltaic apparatus and method of fabricating the same
EP2876695A1 (en) Solar cell
JP2013175498A (en) Photoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160805