JP2015026555A - All-solid type secondary battery, and method for manufacturing the same - Google Patents

All-solid type secondary battery, and method for manufacturing the same Download PDF

Info

Publication number
JP2015026555A
JP2015026555A JP2013156338A JP2013156338A JP2015026555A JP 2015026555 A JP2015026555 A JP 2015026555A JP 2013156338 A JP2013156338 A JP 2013156338A JP 2013156338 A JP2013156338 A JP 2013156338A JP 2015026555 A JP2015026555 A JP 2015026555A
Authority
JP
Japan
Prior art keywords
current collector
fuse
secondary battery
solid
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013156338A
Other languages
Japanese (ja)
Other versions
JP6194672B2 (en
Inventor
亮治 伊藤
Ryoji Ito
亮治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013156338A priority Critical patent/JP6194672B2/en
Publication of JP2015026555A publication Critical patent/JP2015026555A/en
Application granted granted Critical
Publication of JP6194672B2 publication Critical patent/JP6194672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid type secondary battery easy to downsize and having the function of automatically disconnecting a cell with a short circuit occurring therein from other cells, which can be manufactured at a relatively low cost.SOLUTION: An all-solid type secondary battery 10 comprises: cells 18 each having a structure in which a solid electrolyte is sandwiched between first and second electrodes; a first current collector 12 connected with first electrodes of the cells 18; a second current collector 16 connected with second electrodes of the cells 18; and fuses 17. The fuses 17 are disposed between the cells 18 and either the first current collector 12 or the second current collector 16 respectively, and formed from the same material as that of any of the first electrode, the second electrode, the first current collector 12 and the second current collector 16.

Description

本発明は、全固体二次電池及びその製造方法に関する。   The present invention relates to an all solid state secondary battery and a method for manufacturing the same.

近年、ノート型PC(パーソナルコンピュータ)、携帯電話及びスマートフォン等の携帯型電子機器が広く普及している。そして、それらの携帯型電子機器の電源には、主にリチウムイオン二次電池が使用されている。   2. Description of the Related Art In recent years, portable electronic devices such as notebook PCs (personal computers), mobile phones, and smartphones have become widespread. And the lithium ion secondary battery is mainly used for the power supply of those portable electronic devices.

ところで、リチウムイオン二次電池は、電解質に有機溶媒を使用しているため、取扱いを間違うと爆発や火災のおそれがある。そのため、有機溶媒を含まない固体電解質を用いることで安全性を高めた全固体二次電池が注目されている。   By the way, since the lithium ion secondary battery uses an organic solvent for the electrolyte, there is a risk of explosion or fire if handled incorrectly. For this reason, attention has been focused on all-solid-state secondary batteries that have improved safety by using a solid electrolyte that does not contain an organic solvent.

特開平8−50920号公報JP-A-8-50920 特開平5−151993号公報Japanese Patent Laid-Open No. 5-151993

ショートが発生したセルを他のセルから自動的に切り離す機能を備え、比較的低いコストで製造でき、小型化が容易な全固体二次電池及びその製造方法を提供することを目的とする。   An object of the present invention is to provide an all-solid-state secondary battery that has a function of automatically separating a short-circuited cell from other cells, can be manufactured at a relatively low cost, and can be easily downsized, and a method for manufacturing the same.

開示の技術の一観点によれば、第1の電極と第2の電極との間に固体電解質を挟んだ構造のセルと、前記セルの前記第1の電極に接続される第1の集電体と、前記セルの前記第2の電極に接続される第2の集電体と、前記第1の集電体及び前記第2の集電体のいずれか一方と前記セルとの間に配置され、前記第1の電極、前記第2の電極、前記第1の集電体及び前記第2の集電体のうちのいずれかと同一材料により形成されたヒューズとを有する全固体二次電池が提供される。   According to one aspect of the disclosed technology, a cell having a structure in which a solid electrolyte is sandwiched between a first electrode and a second electrode, and a first current collector connected to the first electrode of the cell A second current collector connected to the second electrode of the cell, and between the first current collector and the second current collector and the cell And an all solid state secondary battery having a fuse formed of the same material as any one of the first electrode, the second electrode, the first current collector, and the second current collector. Provided.

開示の技術の他の一観点によれば、基板上に第1の集電体を形成する工程と、前記基板の上に、第1の電極と、前記第1の電極上に配置された固体電解質と、前記固体電解質の上に配置された第2の電極とを形成する工程と、前記基板上に第2の集電体を形成する工程とを有し、前記第1の集電体と前記第1の電極との間を電気的に接続するヒューズを、前記第1の集電体及び前記第1の電極のいずれか一方と同一材料により形成する全固体二次電池の製造方法が提供される。   According to another aspect of the disclosed technology, a step of forming a first current collector on a substrate, a first electrode on the substrate, and a solid disposed on the first electrode A step of forming an electrolyte and a second electrode disposed on the solid electrolyte; and a step of forming a second current collector on the substrate; and the first current collector, Provided is a method for manufacturing an all-solid-state secondary battery, in which a fuse that is electrically connected to the first electrode is formed of the same material as one of the first current collector and the first electrode. Is done.

前記一観点に係る全固体二次電池によれば、セルにショートが発生するとヒューズに大きな電流が流れ、ヒューズが溶断する。これにより、ショートが発生したセルが他のセルから自動的に切り離され、ショートが発生した電池を救済できる。また、ヒューズは、第1の電極、第2の電極、第1の集電体及び第2の集電体のいずれかと同一材料により形成され、第1の電極又は第2の電極と第1の集電体又は第2の集電体との間に配置されている。このため、電池の小型化が容易であるとともに、製造コストの上昇が抑制される。   According to the all solid state secondary battery according to the above aspect, when a short circuit occurs in the cell, a large current flows through the fuse, and the fuse is blown. Thereby, the cell in which the short circuit has occurred is automatically disconnected from the other cells, and the battery in which the short circuit has occurred can be relieved. The fuse is formed of the same material as any of the first electrode, the second electrode, the first current collector, and the second current collector, and the first electrode or the second electrode and the first electrode It arrange | positions between the electrical power collector or the 2nd electrical power collector. For this reason, it is easy to downsize the battery, and an increase in manufacturing cost is suppressed.

前記他の一観点に係る全固体二次電池の製造方法によれば、上記の構造の全固体二次電池を容易に製造することができる。   According to the method for manufacturing an all solid state secondary battery according to the other aspect, the all solid state secondary battery having the above structure can be easily manufactured.

図1は、実施形態に係る全固体二次電池の模式平面図である。FIG. 1 is a schematic plan view of an all solid state secondary battery according to an embodiment. 図2は、実施形態に係る全固体二次電池の層構造を表わした模式図である。FIG. 2 is a schematic diagram showing the layer structure of the all-solid-state secondary battery according to the embodiment. 図3は、ヒューズと、負極及び負極集電体の連結部との接続部を示す模式平面図である。FIG. 3 is a schematic plan view showing a connection portion between the fuse and the connecting portion of the negative electrode and the negative electrode current collector. 図4は、溶断したヒューズを示す模式平面図である。FIG. 4 is a schematic plan view showing the blown fuse. 図5は、実施形態に係る全固体二次電池の製造方法を示す図(その1)である。Drawing 5 is a figure (the 1) showing the manufacturing method of the all-solid-state secondary battery concerning an embodiment. 図6は、実施形態に係る全固体二次電池の製造方法を示す図(その2)である。FIG. 6 is a diagram (part 2) illustrating the method for manufacturing the all-solid-state secondary battery according to the embodiment. 図7は、実施形態に係る全固体二次電池の製造方法を示す図(その3)である。FIG. 7 is a diagram (No. 3) illustrating the method for manufacturing the all-solid-state secondary battery according to the embodiment. 図8は、実施形態に係る全固体二次電池の製造方法を示す図(その4)である。FIG. 8 is a diagram (part 4) illustrating the method for manufacturing the all-solid-state secondary battery according to the embodiment. 図9は、実施形態に係る全固体二次電池の製造方法を示す図(その5)である。FIG. 9 is a diagram (part 5) illustrating the method for manufacturing the all-solid-state secondary battery according to the embodiment. 図10は、ヒューズに流れる電流とヒューズが溶断するまでの時間(溶断時間)との関係を示す図である。FIG. 10 is a diagram illustrating the relationship between the current flowing through the fuse and the time until the fuse blows (melting time). 図11は、充電を開始してからの時間(経過時間)と、ヒューズに流れる電流及びセルに印加される電圧との関係を示す図である。FIG. 11 is a diagram showing the relationship between the time (elapsed time) from the start of charging, the current flowing through the fuse and the voltage applied to the cell. 図12は、ヒューズを、正極集電体と同じ材料により同じ成膜工程で形成した全固体二次電池の平面図である。FIG. 12 is a plan view of an all-solid-state secondary battery in which a fuse is formed of the same material as that of the positive electrode current collector in the same film forming process. 図13は、ヒューズを、負極集電体と同じ材料により同じ成膜工程で形成した全固体二次電池の平面図である。FIG. 13 is a plan view of an all solid state secondary battery in which a fuse is formed of the same material as that of the negative electrode current collector in the same film forming process.

以下、実施形態について説明する前に、実施形態の理解を容易にするための予備的事項について説明する。   Hereinafter, before describing the embodiment, a preliminary matter for facilitating understanding of the embodiment will be described.

全固体二次電池は、正極と負極との間にLiPON(リン酸リチウムオキシナイトライド)又はLiPO(リチウムポリマー)等の固体電解質を挟んだ構造を有する。   The all solid state secondary battery has a structure in which a solid electrolyte such as LiPON (lithium phosphate oxynitride) or LiPO (lithium polymer) is sandwiched between a positive electrode and a negative electrode.

このような全固体二次電池において大きな電池容量を得るには、セルの面積を大きくすることが最も簡便である。しかし、1つのセルだけで電池を形成した場合、セル内に一箇所でもショートが発生すると、その電池は使用できなくなってしまう。   In order to obtain a large battery capacity in such an all-solid secondary battery, it is easiest to increase the cell area. However, when a battery is formed with only one cell, the battery cannot be used if a short circuit occurs even at one location in the cell.

そこで、複数の小さなセルを並列接続して電池を形成することが考えられる。このような電池では、例えば各セルの電圧又は電流を常時監視してショートの有無を判定し、ショートの発生を検知した場合はショートの発生したセルを他のセルから電気的に切り離すことで、電池を救済することができる。   Therefore, it is conceivable to form a battery by connecting a plurality of small cells in parallel. In such a battery, for example, the voltage or current of each cell is constantly monitored to determine the presence or absence of a short circuit, and when the occurrence of a short circuit is detected, the cell in which the short circuit occurs is electrically disconnected from other cells, The battery can be saved.

しかしながら、携帯型電子機器の電源として使用される二次電池に複数のセルの電圧又は電流を常時監視する機能を組み込むことは、コストの点だけでなく、電池サイズが大きくなってしまうため、現実的ではない。   However, incorporating a function of constantly monitoring the voltage or current of a plurality of cells into a secondary battery used as a power source for a portable electronic device is not only a matter of cost but also increases the battery size. Not right.

以下の実施形態では、ショートが発生したセルを他のセルから自動的に切り離す機能を備え、比較的低いコストで製造でき、小型化が容易な全固体二次電池及びその製造方法について説明する。   In the following embodiments, an all-solid-state secondary battery that has a function of automatically separating a short-circuited cell from other cells, can be manufactured at a relatively low cost, and can be easily reduced in size, and a manufacturing method thereof will be described.

(実施形態)
図1は実施形態に係る全固体二次電池の模式平面図、図2は同じくその全固体二次電池の層構造を表わした模式図である。
(Embodiment)
FIG. 1 is a schematic plan view of an all solid state secondary battery according to the embodiment, and FIG. 2 is a schematic view showing the layer structure of the all solid state secondary battery.

本実施形態に係る全固体二次電池10は、基板11と、基板11上に配置された複数のセル18と、それらのセル18を電気的に並列接続する正極集電体12及び負極集電体16と、各セル18と負極集電体16との間に配置されたヒューズ17とを有する。   The all-solid-state secondary battery 10 according to the present embodiment includes a substrate 11, a plurality of cells 18 disposed on the substrate 11, and a positive electrode current collector 12 and a negative electrode current collector that electrically connect these cells 18 in parallel. And a fuse 17 arranged between each cell 18 and the negative electrode current collector 16.

なお、正極誘電体12及び負極集電体16のいずれか一方が第1の集電体に対応し、他方が第2の集電体に対応する。   Note that one of the positive electrode dielectric 12 and the negative electrode current collector 16 corresponds to the first current collector, and the other corresponds to the second current collector.

基板11は、表面が絶縁性の矩形状の板材である。本実施形態では、基板11として、例えば表面が絶縁膜で覆われたシリコン基板又はガラス基板を使用している。   The substrate 11 is a rectangular plate having an insulating surface. In the present embodiment, for example, a silicon substrate or a glass substrate whose surface is covered with an insulating film is used as the substrate 11.

基板11の上には、正極集電体12が所定のパターンで形成されている。本実施形態に係る全固体二次電池では、正極集電体12がAl(アルミニウム)又はPt(白金)等の導電体膜により形成されている。この正極集電体12は、基板11の第1の辺(図1では下側の辺)に沿って直線状に配置された連絡部12aと、連絡部12aから垂直に延びる複数の連結部12bとを有する。   On the substrate 11, a positive electrode current collector 12 is formed in a predetermined pattern. In the all solid state secondary battery according to the present embodiment, the positive electrode current collector 12 is formed of a conductor film such as Al (aluminum) or Pt (platinum). The positive electrode current collector 12 includes a connecting portion 12a arranged linearly along a first side (lower side in FIG. 1) of the substrate 11, and a plurality of connecting portions 12b extending vertically from the connecting portion 12a. And have.

セル18は、図2に示すように、正極13と、固体電解質14と、負極15とを基板11側からこの順に積層した構造を有する。そして、図1のように、正極13の一部が正極集電体12の連結部12bに重なり、正極13と連結部12bとが電気的に接続されている。   As shown in FIG. 2, the cell 18 has a structure in which a positive electrode 13, a solid electrolyte 14, and a negative electrode 15 are stacked in this order from the substrate 11 side. As shown in FIG. 1, a part of the positive electrode 13 overlaps the connecting portion 12b of the positive electrode current collector 12, and the positive electrode 13 and the connecting portion 12b are electrically connected.

なお、正極13及び負極15のいずれか一方が第1の電極に対応し、他方が第2の電極に対応する。   One of the positive electrode 13 and the negative electrode 15 corresponds to the first electrode, and the other corresponds to the second electrode.

セル18を構成する正極13、固体電解質14及び負極15の材料は特に限定されない。例えば正極13は、LiCoO2、LiMnO2又はLiFePo4等により形成することができる。また、固体電解質14は、LiPON又はLiPO等により形成することができる。更に、負極15は、Li(リチウム)、LiTiO2、カーボン又はLiAl等により形成することができる。 The materials of the positive electrode 13, the solid electrolyte 14, and the negative electrode 15 constituting the cell 18 are not particularly limited. For example, the positive electrode 13 can be formed of LiCoO 2 , LiMnO 2, LiFePo 4, or the like. Further, the solid electrolyte 14 can be formed of LiPON, LiPO, or the like. Furthermore, the negative electrode 15 can be formed of Li (lithium), LiTiO 2 , carbon, LiAl, or the like.

本実施形態では、正極13がLiCoO2により形成され、固体電解質14がLiPONにより形成され、負極16がLiにより形成されているものとする。 In the present embodiment, it is assumed that the positive electrode 13 is formed of LiCoO 2 , the solid electrolyte 14 is formed of LiPON, and the negative electrode 16 is formed of Li.

負極集電体16も、基板11上に所定のパターンで形成されている。本実施形態では、負極集電体16も、正極集電体12と同様に、Al(アルミニウム)又はPt(白金)等の導電体膜により形成されているものとする。負極集電体16は、前述の第1の辺に対向する第2の辺(図1では上側の辺)に沿って直線状に配置された連絡部16aと、連絡部16aから垂直に延びる連結部16bとを有する。   The negative electrode current collector 16 is also formed on the substrate 11 in a predetermined pattern. In the present embodiment, the negative electrode current collector 16 is also formed of a conductor film such as Al (aluminum) or Pt (platinum), like the positive electrode current collector 12. The negative electrode current collector 16 includes a connecting portion 16a arranged in a straight line along the second side (the upper side in FIG. 1) facing the first side, and a connection extending vertically from the connecting portion 16a. Part 16b.

図1のように、正極集電体12の連結部12bと負極集電体16の連結部16bとは、基板11の長手方向(図1では横方向)に沿って交互に配置されている。   As shown in FIG. 1, the connecting portions 12 b of the positive electrode current collector 12 and the connecting portions 16 b of the negative electrode current collector 16 are alternately arranged along the longitudinal direction (lateral direction in FIG. 1) of the substrate 11.

ヒューズ17は、負極15と負極集電体16の連結部16bとの間を電気的に接続している。本実施形態では、ヒューズ17は負極15と同じ材料(Li)により形成されており、その幅はセル18でショートが発生したときにヒューズ17に流れる電流により溶断するように細くなっている。   The fuse 17 electrically connects the negative electrode 15 and the connecting portion 16 b of the negative electrode current collector 16. In the present embodiment, the fuse 17 is formed of the same material (Li) as the negative electrode 15, and the width thereof is narrowed so as to be blown by a current flowing through the fuse 17 when a short circuit occurs in the cell 18.

図3は、ヒューズ17と、負極15及び負極集電体16の連結部16bとの接続部を示す模式平面図である。   FIG. 3 is a schematic plan view showing a connection portion between the fuse 17 and the connecting portion 16 b of the negative electrode 15 and the negative electrode current collector 16.

この図3に示すように、ヒューズ17の負極15と接続する部分は半円形状であり、負極15に近づくほどヒューズ17の幅が太くなっている。また、ヒューズ17の負極集電体16と接続する部分も半円形状であり、負極集電体16に近づくほどヒューズ17の幅は太くなっている。以下、ヒューズ17の負極集電体16側の端部の半円形の部分を接続部19aと呼び、負極15側の端部の半円形の部分を接続部19bと呼ぶ。   As shown in FIG. 3, the portion of the fuse 17 that is connected to the negative electrode 15 has a semicircular shape, and the width of the fuse 17 increases as it approaches the negative electrode 15. Further, the portion of the fuse 17 connected to the negative electrode current collector 16 is also semicircular, and the width of the fuse 17 increases as it approaches the negative electrode current collector 16. Hereinafter, the semicircular portion at the end of the fuse 17 on the negative electrode current collector 16 side is referred to as a connection portion 19a, and the semicircular portion at the end of the negative electrode 15 side is referred to as a connection portion 19b.

本実施形態では、ヒューズ17の中央部の幅が0.2mm、長さが3mm、接続部19a,19bの半径が0.5mmとする。   In the present embodiment, the width of the center portion of the fuse 17 is 0.2 mm, the length is 3 mm, and the radii of the connection portions 19a and 19b are 0.5 mm.

上述の構造を有する本実施形態の全固体二次電池10において、充電時には直流電源(図示せず)を正極集電体12と負極集電体16とに接続する。   In the all solid state secondary battery 10 of the present embodiment having the above-described structure, a DC power source (not shown) is connected to the positive electrode current collector 12 and the negative electrode current collector 16 during charging.

このとき、各セル18が正常な場合は、ヒューズ17に流れる電流は比較的少ないので、ヒューズ17が溶断することはない。しかし、セル18にショートが発生すると、ショートが発生したセル18にヒューズ17を介して大きな電流が流れる。そのため、ヒューズ17は、ジュール熱により発熱して溶断する。   At this time, if each cell 18 is normal, the current flowing through the fuse 17 is relatively small, so the fuse 17 does not blow. However, when a short circuit occurs in the cell 18, a large current flows through the fuse 17 through the cell 18 in which the short circuit has occurred. Therefore, the fuse 17 generates heat due to Joule heat and melts.

図4は、溶断したヒューズを示す模式平面図である。   FIG. 4 is a schematic plan view showing the blown fuse.

ヒューズ17に大きな電流が流れると、ヒューズ17の中央部分が溶融して液体になる。そして、液体になったLiには表面張力が働くので、液体のLiは接続部19a及び接続部19b側にそれぞれ引張られ、セル18と負極集電体16とが電気的に切断される。図4中の符号17aは、溶融したヒューズ(液体のLi)である。このようにして、ショートが発生したセル18は負極集電体16から自動的に切り離される。   When a large current flows through the fuse 17, the central portion of the fuse 17 melts and becomes liquid. And since surface tension acts on Li which became liquid, the Li of liquid is pulled to the connection part 19a and the connection part 19b side, respectively, and the cell 18 and the negative electrode collector 16 are electrically cut | disconnected. Reference numeral 17a in FIG. 4 is a melted fuse (liquid Li). In this way, the cell 18 in which the short circuit has occurred is automatically disconnected from the negative electrode current collector 16.

なお、接続部19a及び接続部19bの形状は半円に限定されず、三角形状又はその他の形状であってもよい。接続部19a及び接続部19bがなく、ヒューズ17の幅がヒューズ17の長さ方向全体で均一であってもよい。しかし、表面張力を強く働かせてセル18と負極集電体16との間を確実に切り離すためには、本実施形態のようにヒューズ17の両端に幅広の接続部19a,19bを設けることが好ましい。   In addition, the shape of the connection part 19a and the connection part 19b is not limited to a semicircle, A triangle shape or another shape may be sufficient. The connecting portion 19a and the connecting portion 19b are not provided, and the width of the fuse 17 may be uniform throughout the length direction of the fuse 17. However, in order to reliably cut the cell 18 and the negative electrode current collector 16 by exerting strong surface tension, it is preferable to provide wide connection portions 19a and 19b at both ends of the fuse 17 as in the present embodiment. .

本実施形態に係る全固体二次電池10は、電解質に有機溶媒を含まないため、爆発や火災のおそれがなく、安全性が高い。また、本実施形態に係る全固体二次電池は、セル18と負極集電体16との間にヒューズ17を配置しているので、ショートが発生したセル18は他のセル18から自動的に切り離される。このため、ショートが発生した電池を救済できる。   Since the all-solid-state secondary battery 10 according to this embodiment does not contain an organic solvent in the electrolyte, there is no risk of explosion or fire, and safety is high. Moreover, since the all-solid-state secondary battery according to the present embodiment has the fuse 17 disposed between the cell 18 and the negative electrode current collector 16, the cell 18 in which the short circuit has occurred is automatically assigned from the other cells 18. Disconnected. For this reason, a battery in which a short circuit has occurred can be relieved.

更に、本実施形態に係る全固体二次電池10は、セル18と負極集電体16との間に小さなヒューズ17を配置するだけであるので、電池の小型化が容易である。   Furthermore, since the all-solid-state secondary battery 10 according to the present embodiment only has a small fuse 17 disposed between the cell 18 and the negative electrode current collector 16, the battery can be easily downsized.

なお、本実施形態では、基板11の上に正極集電体12、正極13、固体電解質14、負極15及び負極集電体16を下からこの順に配置している。しかし、基板11の上に負極集電体16、負極15、固体電解質14、正極13及び正極集電体12を下からこの順で配置してもよい。   In the present embodiment, the positive electrode current collector 12, the positive electrode 13, the solid electrolyte 14, the negative electrode 15, and the negative electrode current collector 16 are arranged on the substrate 11 in this order from the bottom. However, the negative electrode current collector 16, the negative electrode 15, the solid electrolyte 14, the positive electrode 13, and the positive electrode current collector 12 may be disposed on the substrate 11 in this order from the bottom.

以下、本実施形態に係る全固体二次電池10の製造方法について説明する。   Hereinafter, the manufacturing method of the all-solid-state secondary battery 10 according to the present embodiment will be described.

図5〜図9は、本実施形態に係る全固体二次電池10の製造方法を示す図である。図5(a)〜図9(a)は製造方法を工程順に示す平面図であり、図5(b)〜図9(b)は各工程における層構造を示す模式図である。   5-9 is a figure which shows the manufacturing method of the all-solid-state secondary battery 10 which concerns on this embodiment. FIG. 5A to FIG. 9A are plan views showing the manufacturing method in the order of steps, and FIG. 5B to FIG. 9B are schematic views showing the layer structure in each step.

まず、図5(a),(b)に示す構造を形成するまでの工程を説明する。   First, steps required until the structure shown in FIGS. 5A and 5B is formed will be described.

基板11の上に、所定のパターン(正極集電体12のパターン)の開口部が設けられたメタルマスク(図示せず)を配置する。その後、基板11の上側に例えばTiを10nmの厚さにスパッタして下地膜(図示せず)を形成し、続けて下地膜の上に例えばPt又はAlを100nmの厚さにスパッタして正極集電体12を形成する。次いで、正極集電体12の形成に使用したメタルマスクを除去する。   On the substrate 11, a metal mask (not shown) provided with openings of a predetermined pattern (pattern of the positive electrode current collector 12) is disposed. Thereafter, for example, Ti is sputtered to a thickness of 10 nm on the upper side of the substrate 11 to form a base film (not shown), and then Pt or Al is sputtered to a thickness of 100 nm on the base film, for example. The current collector 12 is formed. Next, the metal mask used to form the positive electrode current collector 12 is removed.

次に、図6(a),(b)に示す構造を形成するまでの工程を説明する。   Next, steps required until a structure shown in FIGS.

上述の工程で正極集電体12を形成した後、基板11の上に所定のパターン(正極13のパターン)が設けられたメタルマスク(図示せず)を配置する。その後、基板11の上側に例えばLiCoO2を2.5μmの厚さにスパッタして、正極13を形成する。正極13は、その一部が正極集電体12と重なる位置に形成する。次いで、正極13の形成に使用したメタルマスクを除去する。 After the positive electrode current collector 12 is formed in the above-described process, a metal mask (not shown) provided with a predetermined pattern (pattern of the positive electrode 13) is disposed on the substrate 11. Thereafter, for example, LiCoO 2 is sputtered to a thickness of 2.5 μm on the upper side of the substrate 11 to form the positive electrode 13. The positive electrode 13 is formed at a position where a part thereof overlaps with the positive electrode current collector 12. Next, the metal mask used for forming the positive electrode 13 is removed.

次に、図7(a),(b)に示す構造を形成するまでの工程を説明する。   Next, steps required until a structure shown in FIGS. 7A and 7B is formed will be described.

上述の工程で正極13を形成した後、基板11の上に所定のパターン(固体電解質14のパターン)が設けられたメタルマスク(図示せず)を配置する。その後、基板11の上側に例えばLiPONを0.3μmの厚さに蒸着して、固体電解質14を形成する。固体電解質14は、正極13と負極15とが直接接触することがないように、正極13の全体を覆うように形成する。次いで、固体電解質14の形成に使用したメタルマスクを除去する。   After forming the positive electrode 13 in the above-described process, a metal mask (not shown) provided with a predetermined pattern (a pattern of the solid electrolyte 14) is disposed on the substrate 11. Thereafter, for example, LiPON is vapor-deposited to a thickness of 0.3 μm on the upper side of the substrate 11 to form the solid electrolyte 14. The solid electrolyte 14 is formed so as to cover the entire positive electrode 13 so that the positive electrode 13 and the negative electrode 15 are not in direct contact with each other. Next, the metal mask used for forming the solid electrolyte 14 is removed.

次に、図8(a),(b)に構造を形成するまでの工程を説明する。   Next, steps required until a structure is formed in FIGS.

上述の工程で固体電解質14を形成した後、基板11の上に所定のパターン(負極15のパターン)のメタルマスク(図示せず)を配置する。その後、基板11の上側にLiを例えば2.0μmの厚さに蒸着して、負極15を形成する。次いで、負極15の形成に使用したメタルマスクを除去する。   After the solid electrolyte 14 is formed by the above-described process, a metal mask (not shown) having a predetermined pattern (pattern of the negative electrode 15) is disposed on the substrate 11. Thereafter, Li is vapor-deposited to a thickness of, for example, 2.0 μm on the upper side of the substrate 11 to form the negative electrode 15. Next, the metal mask used for forming the negative electrode 15 is removed.

続けて、基板11の上に所定のパターン(ヒューズ17のパターン)のメタルマスク(図示せず)を配置する。その後、基板11の上側にLiを例えば0.3μmの厚さに蒸着して、ヒューズ17を形成する。次いで、ヒューズ17の形成に使用したメタルマスクを除去する。   Subsequently, a metal mask (not shown) having a predetermined pattern (a pattern of the fuse 17) is disposed on the substrate 11. Thereafter, Li is vapor-deposited on the upper side of the substrate 11 to a thickness of, for example, 0.3 μm to form the fuse 17. Next, the metal mask used for forming the fuse 17 is removed.

なお、この例では負極15の厚さとヒューズ17の厚さとが大きく異なるため、負極15とヒューズ17とをそれぞれ別のメタルマスクを用いて形成している。しかし、負極15の厚さとヒューズ17の厚さとが同じでよい場合は、負極15とヒューズ17とを同じメタルマスクを用いて形成してもよい。   In this example, since the thickness of the negative electrode 15 and the thickness of the fuse 17 are greatly different, the negative electrode 15 and the fuse 17 are formed using different metal masks. However, when the thickness of the negative electrode 15 and the thickness of the fuse 17 may be the same, the negative electrode 15 and the fuse 17 may be formed using the same metal mask.

次に、図9(a),(b)に示す構造を形成するまでの工程を説明する。   Next, steps required until a structure shown in FIGS.

上述の工程で負極15及びヒューズ17を形成した後、基板11の上に所定のパターン(負極集電体16のパターン)の開口部を有するメタルマスク(図示せず)を配置する。その後、基板11の上側に例えばTiを10nmの厚さにスパッタして下地膜(図示せず)を形成し、続けて基板11の上側にPt又はAlを例えば100nmの厚さにスパッタして負極集電体16を形成する。次いで、負極集電体16の形成に使用したメタルマスクを除去する。このようにして、本実施形態に係る全固体二次電池が完成する。   After forming the negative electrode 15 and the fuse 17 in the above-described process, a metal mask (not shown) having an opening of a predetermined pattern (pattern of the negative electrode current collector 16) is disposed on the substrate 11. Thereafter, for example, Ti is sputtered to a thickness of 10 nm on the upper side of the substrate 11 to form a base film (not shown), and then Pt or Al is sputtered to the upper side of the substrate 11 to a thickness of, for example, 100 nm. The current collector 16 is formed. Next, the metal mask used to form the negative electrode current collector 16 is removed. In this way, the all solid state secondary battery according to the present embodiment is completed.

上述の製造方法によれば、負極15とヒューズ17とを同一材料により同一の成膜工程で形成するので、製造コストの上昇が抑制される。   According to the manufacturing method described above, since the negative electrode 15 and the fuse 17 are formed of the same material and in the same film forming step, an increase in manufacturing cost is suppressed.

(実験)
以下、本実施形態に係る全固体二次電池を実際に製造し、直流電源から4.1Vの電圧を印加して充電を行った際の電流及び電圧の変化を調べた結果について説明する。
(Experiment)
Hereinafter, the results of examining the changes in current and voltage when the all-solid-state secondary battery according to this embodiment is actually manufactured and charged by applying a voltage of 4.1 V from a DC power supply will be described.

図1に示す構造の全固体二次電池10を製造した。この全固体二次電池10は、正極集電体11及び負極集電体12と、一辺が5mmの正方形のセル17と、セル17と負極集電体16との間に配置されたヒューズ17とを有する。   An all-solid secondary battery 10 having the structure shown in FIG. 1 was manufactured. The all-solid-state secondary battery 10 includes a positive electrode current collector 11 and a negative electrode current collector 12, a square cell 17 having a side of 5 mm, a fuse 17 disposed between the cell 17 and the negative electrode current collector 16, Have

セル17の正極13は厚さが2.5μmのLiCoO2層からなり、固体電解質14は厚さが0.3μmのLiPON層からなり、負極15は厚さが2.0μmのLi層からなる。また、1セル当たりの充放電容量は約30μAhである。 The positive electrode 13 of the cell 17 is made of a LiCoO 2 layer having a thickness of 2.5 μm, the solid electrolyte 14 is made of a LiPON layer having a thickness of 0.3 μm, and the negative electrode 15 is made of a Li layer having a thickness of 2.0 μm. The charge / discharge capacity per cell is about 30 μAh.

ヒューズ17は、負極15と同様にLi層からなる。ヒューズ17の長さは3mm、幅は0.2mm、厚さは0.3μmである。また、ヒューズ17の抵抗値Rは4.7Ω、熱容量Pは1.7×10-5J/K、熱拡散Hは1.7×10-6J/(k・sec)である。 The fuse 17 is made of a Li layer like the negative electrode 15. The fuse 17 has a length of 3 mm, a width of 0.2 mm, and a thickness of 0.3 μm. The resistance value R of the fuse 17 is 4.7Ω, the heat capacity P is 1.7 × 10 −5 J / K, and the thermal diffusion H is 1.7 × 10 −6 J / (k · sec).

図10は、ヒューズに流れる電流とヒューズが溶断するまでの時間(溶断時間)との関係を示す図である。ヒューズ17に電流(I)が流れたときに発生するジュール発熱量はR×I2より求まり、これを熱容量Pと熱拡散Hとで除算すれば、単位時間の温度変化が求まる。図10の溶断時間は、このようにしてヒューズの温度がLiの溶融温度を超えるまでの時間を計算した結果を示している。 FIG. 10 is a diagram illustrating the relationship between the current flowing through the fuse and the time until the fuse blows (melting time). The amount of Joule heat generated when the current (I) flows through the fuse 17 is obtained from R × I 2. By dividing this by the heat capacity P and the thermal diffusion H, the temperature change per unit time can be obtained. The fusing time in FIG. 10 shows the result of calculating the time until the fuse temperature exceeds the melting temperature of Li in this way.

図11(a),(b)は、横軸に充電を開始してからの時間(経過時間)をとり、縦軸にヒューズ17に流れる電流及びセル18に印加される電圧をとって、それらの関係を示す図である。図11(a)は正常なセルに電圧を印加したときの電流及び電圧の変化を示し、図11(b)はショートが発生したセルに電圧を印加したときの電流及び電圧の変化を示している。   In FIGS. 11A and 11B, the horizontal axis represents the time (elapsed time) after the start of charging, and the vertical axis represents the current flowing through the fuse 17 and the voltage applied to the cell 18. It is a figure which shows the relationship. 11A shows changes in current and voltage when voltage is applied to a normal cell, and FIG. 11B shows changes in current and voltage when voltage is applied to a cell in which a short circuit has occurred. Yes.

図11(a)からわかるように、正常なセルでは、電圧の印加を開始したときに最大電流(0.05mA)が流れ、その後時間の経過とともにセルに流れ込む電流は減少した。   As can be seen from FIG. 11A, in a normal cell, the maximum current (0.05 mA) flowed when voltage application was started, and then the current flowing into the cell decreased with the passage of time.

一方、ショートが発生したセルでは、図11(b)に示すように、ショートが発生した直後(電圧の印加を開始してから約1分後)に約30mAもの電流が流れた。この場合、図10からわかるようにヒューズ17は約0.79秒で溶断する。   On the other hand, in the cell where the short circuit occurred, as shown in FIG. 11B, a current of about 30 mA flowed immediately after the short circuit occurred (about 1 minute after the start of voltage application). In this case, as can be seen from FIG. 10, the fuse 17 is blown in about 0.79 seconds.

(変形例)
上述の実施形態では、ヒューズ17を負極15と同じ材料により形成している。しかし、ヒューズ17は、正極集電体12、正極13、又は負極集電体16と同じ材料により形成してもよい。
(Modification)
In the above-described embodiment, the fuse 17 is formed of the same material as the negative electrode 15. However, the fuse 17 may be formed of the same material as the positive electrode current collector 12, the positive electrode 13, or the negative electrode current collector 16.

図12は、ヒューズ17を、正極集電体12と同一材料により同一の成膜工程で形成した全固体二次電池10aの平面図である。また、図13は、ヒューズ17を、負極集電体16と同一材料により同一の成膜工程で形成した全固体二次電池10bの平面図である。これらの図12,図13において、図1,図9に対応するものには図1,図9と同一符号を付している。   FIG. 12 is a plan view of an all-solid-state secondary battery 10a in which the fuse 17 is formed of the same material as that of the positive electrode current collector 12 in the same film forming process. FIG. 13 is a plan view of the all-solid-state secondary battery 10b in which the fuse 17 is formed of the same material as that of the negative electrode current collector 16 in the same film forming process. 12 and 13, the same reference numerals as those in FIGS. 1 and 9 are assigned to the components corresponding to those in FIGS.

これらの全固体二次電池10a,10bにおいても、前述の実施形態と同様に、電解質に有機溶媒を含まないため、爆発や火災のおそれがなく、安全性が高い。また、ショートが発生したセル18が他のセル18から自動的に切り離されるため、ショートが発生した電池が救済される。更に、セル18と負極集電体16との間に小さなヒューズ17を配置するだけであるので、電池の小型化が容易である。更にまた、ヒューズ17を正極集電体12又は負極集電体16と同一材料により同一の成膜工程で製造できるので、製造コストの上昇が回避される。   In these all solid state secondary batteries 10a and 10b, as in the above-described embodiment, since the electrolyte does not contain an organic solvent, there is no risk of explosion or fire, and safety is high. Further, since the cell 18 in which the short circuit has occurred is automatically disconnected from the other cells 18, the battery in which the short circuit has occurred is relieved. Further, since only a small fuse 17 is disposed between the cell 18 and the negative electrode current collector 16, the battery can be easily downsized. Furthermore, since the fuse 17 can be manufactured with the same material as the positive electrode current collector 12 or the negative electrode current collector 16 in the same film forming process, an increase in manufacturing cost is avoided.

以上の諸実施形態に関し、更に以下の付記を開示する。   The following additional notes are disclosed with respect to the above embodiments.

(付記1)第1の電極と第2の電極との間に固体電解質を挟んだ構造のセルと、
前記セルの前記第1の電極に接続される第1の集電体と、
前記セルの前記第2の電極に接続される第2の集電体と、
前記第1の集電体及び前記第2の集電体のいずれか一方と前記セルとの間に配置され、前記第1の電極、前記第2の電極、前記第1の集電体及び前記第2の集電体のうちのいずれかと同一材料により形成されたヒューズと
を有することを特徴とする全固体二次電池。
(Supplementary note 1) a cell having a structure in which a solid electrolyte is sandwiched between a first electrode and a second electrode;
A first current collector connected to the first electrode of the cell;
A second current collector connected to the second electrode of the cell;
The first electrode, the second electrode, the first current collector, and the first current collector are disposed between one of the first current collector and the second current collector and the cell. An all-solid-state secondary battery comprising: a fuse formed of the same material as any one of the second current collectors.

(付記2)前記ヒューズは、前記セルにショートが発生したときに前記ヒューズに流れる電流により溶断することを特徴とする付記1に記載の全固体二次電池。   (Additional remark 2) The said fuse fuses by the electric current which flows through the said fuse when the short circuit generate | occur | produces in the said cell, The all-solid-state secondary battery of Additional remark 1 characterized by the above-mentioned.

(付記3)前記ヒューズの両端部が、中央部よりも幅広であることを特徴とする付記1又は2に記載の全固体二次電池。   (Additional remark 3) The all-solid-state secondary battery of Additional remark 1 or 2 characterized by the both ends of the said fuse being wider than a center part.

(付記4)前記固体電解質が、LiPON又はLiPOを含んで構成されていることを特徴とする付記1乃至3のいずれか1項に記載の全固体二次電池。   (Additional remark 4) The said solid electrolyte is comprised including LiPON or LiPO, The all-solid-state secondary battery of any one of Additional remark 1 thru | or 3 characterized by the above-mentioned.

(付記5)前記第1の電極が、Li、LiTiO2、カーボン、及びLiAlのいずれか1種により形成されていることを特徴とする付記1乃至4のいずれか1項に記載の全固体二次電池。 (Supplementary note 5) The all-solid-state secondary electrode according to any one of supplementary notes 1 to 4, wherein the first electrode is formed of any one of Li, LiTiO 2 , carbon, and LiAl. Next battery.

(付記6)前記第2の電極が、LiCoO2、LiMnO2及びLiFePo4のいずれか1種により形成されていることを特徴とする付記1乃至5のいずれか1項に記載の全固体二次電池。 (Appendix 6) The all-solid secondary according to any one of appendices 1 to 5, wherein the second electrode is made of any one of LiCoO 2 , LiMnO 2 and LiFePo 4. battery.

(付記7)基板上に第1の集電体を形成する工程と、
前記基板の上に、第1の電極と、前記第1の電極上に配置された固体電解質と、前記固体電解質の上に配置された第2の電極とを形成する工程と、
前記基板上に第2の集電体を形成する工程とを有し、
前記第1の集電体と前記第1の電極との間を電気的に接続するヒューズを、前記第1の集電体及び前記第1の電極のいずれか一方と同一材料により形成することを特徴とする全固体二次電池の製造方法。
(Appendix 7) forming a first current collector on a substrate;
Forming on the substrate a first electrode, a solid electrolyte disposed on the first electrode, and a second electrode disposed on the solid electrolyte;
Forming a second current collector on the substrate,
Forming a fuse for electrically connecting the first current collector and the first electrode with the same material as one of the first current collector and the first electrode; A method for producing an all-solid secondary battery.

(付記8)前記ヒューズは、前記セルにショートが発生したときに前記ヒューズに流れる電流により溶断するサイズに形成することを特徴とする付記7に記載の全固体二次電池の製造方法。   (Supplementary note 8) The method for manufacturing an all-solid-state secondary battery according to Supplementary note 7, wherein the fuse is formed in a size that is blown by a current flowing through the fuse when a short circuit occurs in the cell.

(付記9)前記ヒューズは、その両端が中央部よりも幅広となるように形成することを特徴とする付記7又は8に記載の全固体二次電池の製造方法。   (Additional remark 9) The said fuse is formed so that the both ends may become wider than a center part, The manufacturing method of the all-solid-state secondary battery of Additional remark 7 or 8 characterized by the above-mentioned.

10,10a,10b…全固体二次電池、11…基板、12…正極集電体、13…正極、14…固体電解質、15…負極、16…負極集電体、17…ヒューズ、18…セル。   DESCRIPTION OF SYMBOLS 10, 10a, 10b ... All-solid-state secondary battery, 11 ... Board | substrate, 12 ... Positive electrode collector, 13 ... Positive electrode, 14 ... Solid electrolyte, 15 ... Negative electrode, 16 ... Negative electrode collector, 17 ... Fuse, 18 ... Cell .

Claims (5)

第1の電極と第2の電極との間に固体電解質を挟んだ構造のセルと、
前記セルの前記第1の電極に接続される第1の集電体と、
前記セルの前記第2の電極に接続される第2の集電体と、
前記第1の集電体及び前記第2の集電体のいずれか一方と前記セルとの間に配置され、前記第1の電極、前記第2の電極、前記第1の集電体及び前記第2の集電体のうちのいずれかと同一材料により形成されたヒューズと
を有することを特徴とする全固体二次電池。
A cell having a structure in which a solid electrolyte is sandwiched between a first electrode and a second electrode;
A first current collector connected to the first electrode of the cell;
A second current collector connected to the second electrode of the cell;
The first electrode, the second electrode, the first current collector, and the first current collector are disposed between one of the first current collector and the second current collector and the cell. An all-solid-state secondary battery comprising: a fuse formed of the same material as any one of the second current collectors.
前記ヒューズは、前記セルにショートが発生したときに前記ヒューズに流れる電流により溶断することを特徴とする請求項1に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1, wherein the fuse is blown by a current flowing through the fuse when a short circuit occurs in the cell. 前記ヒューズの両端部が、中央部よりも幅広であることを特徴とする請求項1又は2に記載の全固体二次電池。   The all-solid-state secondary battery according to claim 1, wherein both end portions of the fuse are wider than a central portion. 前記固体電解質が、LiPON又はLiPOを含んで構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の全固体二次電池。   The all-solid-state secondary battery according to any one of claims 1 to 3, wherein the solid electrolyte includes LiPON or LiPO. 基板上に第1の集電体を形成する工程と、
前記基板の上に、第1の電極と、前記第1の電極上に配置された固体電解質と、前記固体電解質の上に配置された第2の電極とを形成する工程と、
前記基板上に第2の集電体を形成する工程とを有し、
前記第1の集電体と前記第1の電極との間を電気的に接続するヒューズを、前記第1の集電体及び前記第1の電極のいずれか一方と同一材料により形成することを特徴とする全固体二次電池の製造方法。
Forming a first current collector on a substrate;
Forming on the substrate a first electrode, a solid electrolyte disposed on the first electrode, and a second electrode disposed on the solid electrolyte;
Forming a second current collector on the substrate,
Forming a fuse for electrically connecting the first current collector and the first electrode with the same material as one of the first current collector and the first electrode; A method for producing an all-solid secondary battery.
JP2013156338A 2013-07-29 2013-07-29 All-solid secondary battery and manufacturing method thereof Active JP6194672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156338A JP6194672B2 (en) 2013-07-29 2013-07-29 All-solid secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156338A JP6194672B2 (en) 2013-07-29 2013-07-29 All-solid secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015026555A true JP2015026555A (en) 2015-02-05
JP6194672B2 JP6194672B2 (en) 2017-09-13

Family

ID=52491057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156338A Active JP6194672B2 (en) 2013-07-29 2013-07-29 All-solid secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6194672B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170046514A (en) * 2015-10-21 2017-05-02 주식회사 엘지화학 Electrode assembly
US20180294527A1 (en) * 2017-04-06 2018-10-11 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10581109B2 (en) 2017-03-30 2020-03-03 International Business Machines Corporation Fabrication method of all solid-state thin-film battery
WO2020139802A3 (en) * 2018-12-27 2020-08-06 Sion Power Corporation Electrochemical devices and related articles, components, configurations, and methods
US10903672B2 (en) 2017-03-30 2021-01-26 International Business Machines Corporation Charge method for solid-state lithium-based thin-film battery
US10944128B2 (en) 2017-03-30 2021-03-09 International Business Machines Corporation Anode structure for solid-state lithium-based thin-film battery
CN112470336A (en) * 2018-07-20 2021-03-09 戴森技术有限公司 Energy storage device
US11322804B2 (en) * 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2596664B (en) * 2018-07-20 2022-12-07 Dyson Technology Ltd Energy storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314969A (en) * 1992-05-12 1993-11-26 Yuasa Corp Manufacture of battery
JP2004311073A (en) * 2003-04-02 2004-11-04 Matsushita Electric Ind Co Ltd Energy device with overcurrent protection and its manufacturing method
JP2007115661A (en) * 2005-09-21 2007-05-10 Sumitomo Electric Ind Ltd Thin film lithium cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314969A (en) * 1992-05-12 1993-11-26 Yuasa Corp Manufacture of battery
JP2004311073A (en) * 2003-04-02 2004-11-04 Matsushita Electric Ind Co Ltd Energy device with overcurrent protection and its manufacturing method
JP2007115661A (en) * 2005-09-21 2007-05-10 Sumitomo Electric Ind Ltd Thin film lithium cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170046514A (en) * 2015-10-21 2017-05-02 주식회사 엘지화학 Electrode assembly
KR102052003B1 (en) 2015-10-21 2019-12-04 주식회사 엘지화학 Electrode assembly
US10950887B2 (en) 2017-03-30 2021-03-16 International Business Machines Corporation Anode structure for solid-state lithium-based thin-film battery
US10944128B2 (en) 2017-03-30 2021-03-09 International Business Machines Corporation Anode structure for solid-state lithium-based thin-film battery
US10581109B2 (en) 2017-03-30 2020-03-03 International Business Machines Corporation Fabrication method of all solid-state thin-film battery
US10903672B2 (en) 2017-03-30 2021-01-26 International Business Machines Corporation Charge method for solid-state lithium-based thin-film battery
US10629957B2 (en) 2017-04-06 2020-04-21 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10644355B2 (en) * 2017-04-06 2020-05-05 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10644356B2 (en) 2017-04-06 2020-05-05 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10673097B2 (en) * 2017-04-06 2020-06-02 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US10622680B2 (en) 2017-04-06 2020-04-14 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US20180294528A1 (en) * 2017-04-06 2018-10-11 International Business Machines Corporation High charge rate, large capacity, solid-state battery
US20180294527A1 (en) * 2017-04-06 2018-10-11 International Business Machines Corporation High charge rate, large capacity, solid-state battery
CN112470336B (en) * 2018-07-20 2023-05-02 戴森技术有限公司 Energy storage device
CN112470336A (en) * 2018-07-20 2021-03-09 戴森技术有限公司 Energy storage device
WO2020139802A3 (en) * 2018-12-27 2020-08-06 Sion Power Corporation Electrochemical devices and related articles, components, configurations, and methods
US11322804B2 (en) * 2018-12-27 2022-05-03 Sion Power Corporation Isolatable electrodes and associated articles and methods
US11637353B2 (en) 2018-12-27 2023-04-25 Sion Power Corporation Electrodes, heaters, sensors, and associated articles and methods
CN113261155A (en) * 2018-12-27 2021-08-13 赛昂能源有限公司 Electrochemical devices and related articles, components, configurations, and methods
US11728528B2 (en) 2018-12-27 2023-08-15 Sion Power Corporation Isolatable electrodes and associated articles and methods

Also Published As

Publication number Publication date
JP6194672B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6194672B2 (en) All-solid secondary battery and manufacturing method thereof
KR102272264B1 (en) Battery module having short connecting part
CN100472850C (en) Electrode and rechargeable battery therewith
US11121439B2 (en) Secondary battery
KR100305101B1 (en) Explosion-proof secondary battery
CN103066339B (en) Integrated units voltage sensing circuit device for fusing
EP2273588B1 (en) Battery pack and manufacturing method for the same
CN103534839A (en) Part for secondary battery, method for manufacturing same, and secondary battery and multi-battery system manufactured using the part
JP5952673B2 (en) Protective element and battery pack
CN103988277A (en) Protective element, protective element fabrication method, and battery module equipped with the protective element
JP5952674B2 (en) Protective element and battery pack
KR20080025437A (en) Secondary battery capable of adjusting position of electrode terminal and having improved safety
US10056600B2 (en) Battery pack
JP6081096B2 (en) Protective element and battery pack
KR20140125657A (en) Rechargeable battery
WO2014010460A1 (en) Protection element
JP2015103521A (en) Secondary battery
KR20150045737A (en) Battery Module
WO2020200155A1 (en) Modularly designed pole pieces and battery thereof
CN106611832A (en) Battery cell
KR20150032086A (en) Rechargeable battery having safty member
JPH0850920A (en) Square type lithium secondary cell
KR102332338B1 (en) Battery pack
KR101949614B1 (en) Assembled battery
KR20170053886A (en) Protective Circuit For Secondary Battery and Method For Controlling Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6194672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150