JP2015026032A - Variable power optical system, optical device, and method for manufacturing variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing variable power optical system Download PDF

Info

Publication number
JP2015026032A
JP2015026032A JP2013157111A JP2013157111A JP2015026032A JP 2015026032 A JP2015026032 A JP 2015026032A JP 2013157111 A JP2013157111 A JP 2013157111A JP 2013157111 A JP2013157111 A JP 2013157111A JP 2015026032 A JP2015026032 A JP 2015026032A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
distance
end state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013157111A
Other languages
Japanese (ja)
Other versions
JP6281200B2 (en
Inventor
幸介 町田
Kosuke Machida
幸介 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013157111A priority Critical patent/JP6281200B2/en
Priority to CN201480042932.0A priority patent/CN105452929B/en
Priority to PCT/JP2014/069448 priority patent/WO2015016112A1/en
Publication of JP2015026032A publication Critical patent/JP2015026032A/en
Priority to US15/004,879 priority patent/US10670848B2/en
Application granted granted Critical
Publication of JP6281200B2 publication Critical patent/JP6281200B2/en
Priority to US16/878,599 priority patent/US20200278521A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system which achieves quick and silent AF without enlarging a lens barrel by reducing the size and weight of a lens group for focusing, and in which the variation in aberrations when varying power from a wide angle end state to a telephoto end state and when focusing from an infinite object to a short distance object is excellently suppressed, and to provide an optical device and a method for manufacturing the variable power optical system.SOLUTION: A variable power optical system ZL to be used in an optical device such as a camera 1, includes, in order from the object side: a first lens group G1 having a positive refractive power; a second lens group G2 having a negative refractive power; a third lens group G3 having a positive refractive power; a fourth lens group G4 having a positive refractive power; and a rear lens group GR including at least one lens group. When varying power from a wide angle end state to a telephoto end state, the distances between the lens groups are changed. When focusing from infinity to a short distance object, the third lens group G3 moves along the optical axis.

Description

本発明は、変倍光学系、光学装置及び変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、IF(インナー・フォーカス)方式の導入で、合焦レンズ群の軽量化がなされた写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable power optical system suitable for a photographic camera, an electronic still camera, a video camera, etc. in which a focusing lens group has been reduced in weight by introducing an IF (inner focus) system has been proposed (for example, a patent) Reference 1).

特許第4876509号公報Japanese Patent No. 4876509

しかしながら、従来の変倍光学系において、AF(オート・フォーカス)時の十分な静粛性を実現するためには合焦レンズ群の軽量化が、不十分であり、また、合焦レンズ群の重量が大きいために、高速にAFを行おうとすると、大きなモータやアクチュエータが必要となり、鏡筒が大型化してしまうという課題があった。   However, in a conventional variable magnification optical system, the weight of the focusing lens group is insufficient to achieve sufficient silence during AF (auto focus), and the weight of the focusing lens group Therefore, when performing AF at a high speed, a large motor and actuator are required, and there is a problem that the lens barrel becomes large.

本発明はこのような課題に鑑みてなされたものであり、合焦レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系、光学装置及びこの変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem. By reducing the size and weight of the focusing lens group, high-speed AF without increasing the size of the lens barrel and quietness during AF are realized. Further, a variable power optical system, an optical apparatus, and the variable power system that satisfactorily suppress aberration fluctuations during zooming from the wide-angle end state to the telephoto end state and aberration fluctuations during focusing from an object at infinity to a short distance object. It is an object of the present invention to provide a method for manufacturing a double optical system.

前記課題を解決するために、本発明に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、少なくとも1つのレンズ群を含む後続レンズ群と、を有し、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化し、第4レンズ群と後続レンズ群との間隔が変化し、後続レンズ群が複数のレンズ群から構成されるときは、複数のレンズ群の各々の間隔が変化し、無限遠から近距離物体への合焦に際し、第3レンズ群が光軸に沿って移動し、次式の条件を満足することを特徴とする。
0.60 < f3/f4 < 1.30
但し、
f3:第3レンズ群の焦点距離
f4:第4レンズ群の焦点距離
In order to solve the above problems, a variable magnification optical system according to the present invention includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refraction. A third lens group having a power, a fourth lens group having a positive refractive power, and a subsequent lens group including at least one lens group, and upon zooming from the wide-angle end state to the telephoto end state, The distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, the distance between the third lens group and the fourth lens group changes, and the fourth When the distance between the lens group and the subsequent lens group changes and the subsequent lens group is composed of a plurality of lens groups, the distance between each of the plurality of lens groups changes, and when focusing from infinity to a close object, The third lens group moves along the optical axis and satisfies the following condition:
0.60 <f3 / f4 <1.30
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group

このような変倍光学系は、広角端状態から望遠端状態への変倍に際し、第1レンズ群が物体方向に移動することが好ましい。   In such a variable magnification optical system, it is preferable that the first lens unit moves in the object direction when changing magnification from the wide-angle end state to the telephoto end state.

また、このような変倍光学系は、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が増大し、第2レンズ群と第3レンズ群との間隔が減少し、第3レンズ群と第4レンズ群との間隔が増大し、第4レンズ群と第5レンズ群との間隔が増大することが好ましい。   Also, in such a variable magnification optical system, the distance between the first lens group and the second lens group is increased during the magnification change from the wide-angle end state to the telephoto end state, and the second lens group and the third lens group Preferably, the distance between the third lens group and the fourth lens group is increased, and the distance between the fourth lens group and the fifth lens group is increased.

また、このような変倍光学系において、第3レンズ群は、1つの正レンズ、もしくは、1つの正の屈折力を有する接合レンズのみで構成されていることが好ましい。   In such a variable magnification optical system, it is preferable that the third lens group is composed of only one positive lens or one cemented lens having a positive refractive power.

また、このような変倍光学系は、第3レンズ群の最も物体側の面が非球面であることが好ましい。   In such a variable magnification optical system, it is preferable that the most object side surface of the third lens group is an aspherical surface.

また、このよう変倍光学系において、非球面は、光軸から離れるに従い正の屈折力が弱くなる形状であることが好ましい。   In such a variable magnification optical system, it is preferable that the aspherical surface has a shape in which the positive refractive power decreases as the distance from the optical axis increases.

また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.11 < (−f2)/f1 < 0.19
但し、
f2:第2レンズ群の焦点距離
f1:第1レンズ群の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
0.11 <(− f2) / f1 <0.19
However,
f2: Focal length of the second lens group f1: Focal length of the first lens group

また、このような変倍光学系は、次式の条件を満足することが好ましい。
3.00 < f1/fw < 6.00
但し、
f1:第1レンズ群の焦点距離
fw:広角端状態における全系の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
3.00 <f1 / fw <6.00
However,
f1: Focal length of the first lens unit fw: Focal length of the entire system in the wide-angle end state

また、このような変倍光学系は、後続レンズ群の少なくとも一部を光軸と直交する方向の成分を持つように移動させることが好ましい。   Further, in such a variable magnification optical system, it is preferable to move at least a part of the subsequent lens group so as to have a component in a direction orthogonal to the optical axis.

また、本発明に係る光学装置は、上述の変倍光学系のいずれかを備えたことを特徴とする。   An optical apparatus according to the present invention includes any one of the above-described variable magnification optical systems.

また、本発明に係る変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、少なくとも1つのレンズ群を含む後続レンズ群と、を有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化し、第4レンズ群と後続レンズ群との間隔が変化し、後続レンズ群が複数のレンズ群から構成されるときは、複数のレンズ群の各々の間隔が変化するように配置し、無限遠から近距離物体への合焦に際し、第3レンズ群が光軸に沿って移動するように配置し、次式の条件を満足するように配置することを特徴とする。
0.60 < f3/f4 < 1.30
但し、
f3:第3レンズ群の焦点距離
f4:第4レンズ群の焦点距離
The variable magnification optical system manufacturing method according to the present invention has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method of manufacturing a variable magnification optical system having a third lens group, a fourth lens group having a positive refractive power, and a subsequent lens group including at least one lens group, from a wide-angle end state to a telephoto end state During zooming, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group. Is changed, when the interval between the fourth lens group and the subsequent lens group is changed, and when the subsequent lens group is composed of a plurality of lens groups, it is arranged so that the interval between each of the plurality of lens groups is changed, The third lens group moves along the optical axis when focusing from infinity to a close object Arranged, characterized in that arranged so as to satisfy the condition of following equation.
0.60 <f3 / f4 <1.30
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group

本発明によれば、合焦レンズ群を小型軽量化することで、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた変倍光学系、光学装置及びこの変倍光学系の製造方法を提供することができる。   According to the present invention, by reducing the size and weight of the focusing lens group, high-speed AF without increasing the size of the lens barrel and quietness at the time of AF are realized, and further, from the wide-angle end state to the telephoto end state A variable magnification optical system, an optical apparatus, and a method of manufacturing the variable magnification optical system, which can satisfactorily suppress aberration fluctuation during zooming and aberration fluctuation during focusing from an object at infinity to a short distance object Can do.

第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example. 第1実施例に係る変倍光学系の無限遠合焦時の諸収差図であって、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 4 is a diagram illustrating various aberrations of the variable magnification optical system according to the first example when focusing on infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows telephoto. Indicates the end state. 第1実施例に係る変倍光学系の近距離合焦時の諸収差図であって、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 4 is a diagram illustrating various aberrations of the zoom optical system according to the first example when focusing at short distance, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows telephoto. Indicates the end state. 第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example. 第2実施例に係る変倍光学系の無限遠合焦時の諸収差図であって、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 when focusing at infinity, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows telephoto. Indicates the end state. 第2実施例に係る変倍光学系の近距離合焦時の諸収差図であって、(a)は広角端状態を示し、(b)は中間焦点距離状態を示し、(c)は望遠端状態を示す。FIG. 6 is a diagram illustrating various aberrations when the zooming optical system according to Example 2 is in focus at short distance, where (a) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows telephoto. Indicates the end state. 上記変倍光学系を搭載するカメラの断面図である。It is sectional drawing of the camera carrying the said variable magnification optical system. 上記変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the said variable magnification optical system.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、本実施形態に係る変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、少なくとも1つのレンズ群を含む後続レンズ群GRと、を有して構成されている。また、この変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と後続レンズ群GRとの間隔が変化し、さらに、後続レンズ群GRが複数のレンズ群から構成されるときは、この複数のレンズ群の各々の間隔が変化させることで、変倍時の良好な収差補正を図ることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, A third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and a subsequent lens group GR including at least one lens group are configured. In addition, in the zoom optical system ZL, when the zoom is changed from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the second lens group G2 and the third lens are changed. The distance between the group G3 changes, the distance between the third lens group G3 and the fourth lens group G4 changes, the distance between the fourth lens group G4 and the subsequent lens group GR changes, and further, the subsequent lens group GR. Is composed of a plurality of lens groups, it is possible to achieve good aberration correction at the time of zooming by changing the interval between the plurality of lens groups.

この変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が増大することで、所定の変倍比を確保することができる。さらに、この変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1を物体方向に移動させる構成とすることで、広角端状態でのレンズ全長の短縮と、第1レンズ群の有効径の縮小ができ、変倍光学系ZLの小型化を図ることができる。   In the variable magnification optical system ZL, the distance between the first lens group G1 and the second lens group G2 increases during the magnification change from the wide-angle end state to the telephoto end state, and the second lens group G2 and the third lens group G3. , The distance between the third lens group G3 and the fourth lens group G4 is increased, and the distance between the fourth lens group G4 and the fifth lens group G5 is increased. Can be secured. Furthermore, the zoom optical system ZL is configured to move the first lens group G1 in the object direction when zooming from the wide-angle end state to the telephoto end state, thereby reducing the total lens length in the wide-angle end state. The effective diameter of the first lens group can be reduced, and the variable magnification optical system ZL can be reduced in size.

また、この変倍光学系ZLは、無限遠物体から近距離物体への合焦時に、第3レンズ群G3が光軸に沿って移動するように構成されている。このような構成にすることで、ピント合わせの際の像の大きさの変化を抑えることができ、また、球面収差等の収差変動を良好に抑えることができる。なお、以降の説明においては、この第3レンズ群G3を「合焦レンズ群」とも呼ぶ。   The variable magnification optical system ZL is configured such that the third lens group G3 moves along the optical axis when focusing from an object at infinity to an object at a short distance. By adopting such a configuration, it is possible to suppress a change in the image size during focusing, and it is possible to satisfactorily suppress aberration fluctuations such as spherical aberration. In the following description, the third lens group G3 is also referred to as a “focus lens group”.

また、この変倍光学系ZLは、以下に示す条件式(1)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (1).

0.60 < f3/f4 < 1.30 (1)
但し、
f3:第3レンズ群G3の焦点距離
f4:第4レンズ群G4の焦点距離
0.60 <f3 / f4 <1.30 (1)
However,
f3: Focal length of the third lens group G3 f4: Focal length of the fourth lens group G4

条件式(1)は、無限遠物体から近距離物体への合焦時の収差変動の抑制と諸収差の良好な補正に適した第4レンズ群G4の焦点距離に対する第3レンズ群G3の焦点距離を規定するものである。この条件式(1)の上限値を上回ると、第4レンズ群G4の屈折力が大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。また、第3レンズ群G3の屈折力が小さくなり、無限遠物体から近距離物体への合焦時の第3レンズ群G3の移動量が大きくなるため、レンズ全長の大型化につながってしまう。なお、条件式(1)の上限値を1.10に設定することで、本願の効果をより確実なものにすることができる。一方、この条件式(1)の下限値を下回ると、第3レンズ群G3の屈折力が大きくなり、無限遠物体から近距離物体への合焦時の収差変動が大きくなってしまう。なお、条件式(1)の下限値を0.80に設定することで、本願の効果をより確実なものにすることができる。   Conditional expression (1) indicates that the focal point of the third lens group G3 with respect to the focal length of the fourth lens group G4, which is suitable for suppressing aberration fluctuations during focusing from an object at infinity to an object at a short distance and correcting various aberrations favorably. It defines the distance. If the upper limit of conditional expression (1) is exceeded, the refractive power of the fourth lens group G4 will increase, and it will be difficult to correct various aberrations including spherical aberration. In addition, the refractive power of the third lens group G3 decreases, and the amount of movement of the third lens group G3 during focusing from an object at infinity to an object at a short distance increases, leading to an increase in the total lens length. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (1) to 1.10. On the other hand, if the lower limit of conditional expression (1) is not reached, the refractive power of the third lens group G3 becomes large, and the aberration fluctuation at the time of focusing from an object at infinity to an object at short distance becomes large. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (1) to 0.80.

また、この変倍光学系ZLは、合焦レンズ群である第3レンズ群G3が1枚の正レンズ、もしくは、1つの正の屈折力を有する接合レンズのみで構成されていることが望ましい。この構成により、合焦レンズ群が軽量化され、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現することができる。   In the zoom optical system ZL, it is desirable that the third lens group G3, which is a focusing lens group, is composed of only one positive lens or one cemented lens having a positive refractive power. With this configuration, the focusing lens group is reduced in weight, and high-speed AF and quietness during AF can be achieved without increasing the size of the lens barrel.

また、この変倍光学系ZLは、合焦レンズ群である第3レンズ群G3の最も物体側の面が非球面であることが望ましい。このとき、その非球面形状が、光軸から離れるに従い正の屈折力を弱くするような形状であるとさらに望ましい。この構成により、合焦レンズ群の軽量化と無限遠物体から近距離物体への合焦時の収差変動の抑制が両立でき、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現することができる。   In the variable magnification optical system ZL, it is desirable that the most object side surface of the third lens group G3 which is a focusing lens group is an aspherical surface. At this time, it is more desirable that the aspherical shape be a shape that weakens the positive refractive power as the distance from the optical axis increases. With this configuration, it is possible to achieve both weight reduction of the focusing lens group and suppression of aberration fluctuations when focusing from an object at infinity to a close object, high-speed AF without increasing the size of the lens barrel, and AF Silence can be realized.

また、この変倍光学系ZLは、以下に示す条件式(2)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (2).

0.11 < (−f2)/f1 < 0.19 (2)
但し、
f2:第2レンズ群G2の焦点距離
f1:第1レンズ群G1の焦点距離
0.11 <(− f2) / f1 <0.19 (2)
However,
f2: Focal length of the second lens group G2 f1: Focal length of the first lens group G1

条件式(2)は、十分な変倍比を確保し、良好な光学性能を実現するための第1レンズ群G1の焦点距離に対する第2レンズ群G2の焦点距離を規定するものである。この条件式(2)の上限値を上回ると、第1レンズ群G1の屈折力が強くなり、望遠端における球面収差の劣化が著しくなる。また、広角端における倍率色収差の劣化も顕著となるため好ましくない。なお、条件式(2)の上限値を0.16とすることで、本願の効果をより確実なものとすることができる。一方、この条件式(2)の下限値を下回ると、第2レンズ群G2の屈折力が強くなり、広角端における軸外収差、特に像面湾曲と非点収差の補正が困難となる。なお、条件式(2)の下限値を0.14に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (2) defines the focal length of the second lens group G2 with respect to the focal length of the first lens group G1 in order to ensure a sufficient zoom ratio and realize good optical performance. If the upper limit value of conditional expression (2) is exceeded, the refractive power of the first lens group G1 becomes strong, and the spherical aberration at the telephoto end is significantly deteriorated. Further, the deterioration of lateral chromatic aberration at the wide-angle end becomes remarkable, which is not preferable. In addition, the effect of this application can be made more reliable by making the upper limit of conditional expression (2) 0.16. On the other hand, if the lower limit of conditional expression (2) is not reached, the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct off-axis aberrations, particularly field curvature and astigmatism, at the wide-angle end. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (2) to 0.14.

また、この変倍光学系ZLは、以下に示す条件式(3)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (3).

3.00 < f1/fw < 6.00 (3)
但し、
f1:第1レンズ群G1の焦点距離
fw:広角端状態における全系の焦点距離
3.00 <f1 / fw <6.00 (3)
However,
f1: Focal length of the first lens group G1 fw: Focal length of the entire system in the wide-angle end state

条件式(3)は、広角端状態における変倍光学系ZLの焦点距離に対する第1レンズ群G1の適正な焦点距離を規定するものである。この条件式(3)を満足することにより、レンズ全長の小型化と、像面湾曲、歪曲収差、及び球面収差の良好な補正を両立することができる。条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が大きくなり、球面収差をはじめとする諸収差を補正することが困難となる。なお、条件式(3)の下限値を4.00に設定することで、本願の効果をより確実なものとすることができる。一方、この条件式(3)の上限値を上回ると、第1レンズ群G1の屈折力が小さくなり、レンズ全長の小型化が困難となる。なお、条件式(3)の上限値を5.00に設定することで、本願の効果をより確実なものとすることができる。   Conditional expression (3) defines an appropriate focal length of the first lens group G1 with respect to the focal length of the variable magnification optical system ZL in the wide-angle end state. By satisfying this conditional expression (3), it is possible to achieve both a reduction in the overall lens length and good correction of curvature of field, distortion, and spherical aberration. If the lower limit of conditional expression (3) is not reached, the refractive power of the first lens group G1 will increase, making it difficult to correct various aberrations including spherical aberration. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (3) to 4.00. On the other hand, if the upper limit value of the conditional expression (3) is exceeded, the refractive power of the first lens group G1 becomes small, and it becomes difficult to reduce the total lens length. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (3) to 5.00.

また、この変倍光学系ZLは、後続レンズ群GRの少なくとも一部を光軸と直交する方向の成分を持つように移動させることによって、手ブレ等による結像位置の変位を補正するレンズ群を有することが望ましい。この構成により、効果的に手ブレ等による結像位置の変位を補正することができる。   The variable magnification optical system ZL is a lens group that corrects displacement of the imaging position due to camera shake or the like by moving at least a part of the subsequent lens group GR so as to have a component in a direction orthogonal to the optical axis. It is desirable to have With this configuration, it is possible to effectively correct the displacement of the imaging position due to camera shake or the like.

次に、本実施形態に係る変倍光学系ZLを備えた光学装置であるカメラを図7に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る変倍光学系ZLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。   Next, a camera that is an optical device including the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. This camera 1 is a so-called mirrorless camera of interchangeable lens provided with a variable magnification optical system ZL according to the present embodiment as a photographing lens 2. In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Further, when a release button (not shown) is pressed by the photographer, an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. In the present embodiment, an example of a mirrorless camera has been described. However, a variable power optical system ZL according to the present embodiment is applied to a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a finder optical system. Even when the camera is mounted, the same effect as the camera 1 can be obtained.

このように、本実施形態に係る光学装置は、上述した構成の変倍光学系ZLを備えることにより、鏡筒を大型化することなく高速なAF、及び、AF時の静粛性を実現し、さらに、広角端状態から望遠端状態への変倍時、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた光学装置を実現することができる。   As described above, the optical apparatus according to the present embodiment includes the variable magnification optical system ZL having the above-described configuration, thereby realizing high-speed AF without increasing the size of the lens barrel and quietness during AF, Furthermore, it is possible to realize an optical apparatus that can satisfactorily suppress aberration fluctuations during zooming from the wide-angle end state to the telephoto end state and during focusing from an object at infinity to a short-distance object.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

本実施形態では、5群以上の構成の変倍光学系ZLを示したが、以上の構成条件等は、6群、7群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the present embodiment, the variable magnification optical system ZL having a configuration of five groups or more is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as the sixth group and the seventh group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、前述のように第3レンズ群G3を合焦レンズ群とするのが好ましい。   Alternatively, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is preferable that the third lens group G3 is a focusing lens group as described above.

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、前述のように後続レンズ群GRの少なくとも一部を防振レンズ群とするのが好ましい。   In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, as described above, it is preferable that at least a part of the subsequent lens group GR is an anti-vibration lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、第3レンズ群G3の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop S is preferably disposed in the vicinity of the third lens group G3. However, the role of the aperture stop S may be substituted by a lens frame without providing a member as an aperture stop.

さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態の変倍光学系ZLは、変倍比が5〜15倍程度である。   The variable magnification optical system ZL of the present embodiment has a variable magnification ratio of about 5 to 15 times.

以下、本実施形態に係る変倍光学系ZLの製造方法の概略を、図8を参照して説明する。まず、各レンズを配置して第1〜第4レンズ群G1〜G4及び後続レンズ群GRをそれぞれ準備する(ステップS100)。また、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化し、第4レンズ群G4と後続レンズ群GRとの間隔が変化するように配置する(ステップS200)。また、無限遠から近距離物体への合焦に際し、第3レンズ群G3が光軸に沿って移動するように配置する(ステップS300)。さらにまた、各レンズ群G1〜G4,GRが、前述の条件式(1)を満足するように配置する(ステップS400)。   Hereinafter, an outline of a method for manufacturing the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. First, each lens is arranged to prepare the first to fourth lens groups G1 to G4 and the subsequent lens group GR, respectively (step S100). Further, upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the third lens group G3 changes. The distance between the third lens group G3 and the fourth lens group G4 is changed, and the distance between the fourth lens group G4 and the subsequent lens group GR is changed (Step S200). Further, the third lens group G3 is arranged so as to move along the optical axis when focusing from infinity to a close object (step S300). Furthermore, the lens groups G1 to G4 and GR are arranged so as to satisfy the conditional expression (1) (step S400).

具体的には、本実施形態では、例えば図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側に凸面を向けた負メニスカスレンズの物体側の面にプラスチック樹脂で形成された非球面が設けられた負レンズL21、両凹形状の負レンズL22、両凸形状の正レンズL23、及び、両凹形状の負レンズL24を配置して第2レンズ群G2とし、物体側レンズ面が非球面形状である正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合レンズを配置して第3レンズ群G3とし、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズを配置して第4レンズ群G4とし、物体側レンズ面が非球面形状である負レンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合負レンズをからなる第5レンズ群G5、並びに、両凸形状の正レンズL61、及び、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合正レンズからなる第6レンズ群を配置して後続レンズ群GRとする。このように準備した各レンズ群を上述の手順で配置して変倍光学系ZLを製造する。   Specifically, in the present embodiment, for example, as illustrated in FIG. 1, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 in order from the object side; A positive meniscus lens L13 having a convex surface facing the object side is arranged as the first lens group G1, and an aspheric surface made of plastic resin is provided on the object side surface of the negative meniscus lens having a convex surface facing the object side. A negative lens L21, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24 are arranged to form the second lens group G2, and the object side lens surface is aspherical. A cemented lens of a positive lens L31 and a negative meniscus lens L32 having a concave surface facing the object side is arranged to form a third lens group G3, and a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens. The fourth lens unit G4 is formed by arranging a cemented positive lens with L42, and includes a cemented negative lens of a negative lens L51 having an aspheric object side lens surface and a positive meniscus lens L52 having a convex surface facing the object side. The fifth lens group G5, and a sixth lens group including a biconvex positive lens L61 and a cemented positive lens of a biconvex positive lens L62 and a negative meniscus lens L63 having a concave surface facing the object side are arranged. Thus, the subsequent lens group GR is obtained. The lens groups thus prepared are arranged in the above-described procedure to manufacture the variable magnification optical system ZL.

以下、本願の各実施例を、図面に基づいて説明する。なお、図1及び図4は、各実施例に係る変倍光学系ZL(ZL1,ZL2)の構成及び屈折力配分を示す断面図である。また、これらの変倍光学系ZL1,ZL2の断面図の下部には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群G1〜G4,GR(G5,G6)の光軸に沿った移動方向が矢印で示されている。   Hereinafter, each example of the present application will be described with reference to the drawings. 1 and 4 are cross-sectional views showing the configuration and refractive power distribution of the variable magnification optical system ZL (ZL1, ZL2) according to each example. Further, in the lower part of the sectional views of these variable magnification optical systems ZL1 and ZL2, each lens group G1 to G4, GR (G5, G6) when changing magnification from the wide-angle end state (W) to the telephoto end state (T) is shown. The direction of movement along the optical axis is indicated by arrows.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をKとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), K is the conic constant, and An is the nth-order aspherical coefficient, it is expressed by the following equation (a). . In the following examples, “E−n” indicates “× 10 −n ”.

S(y)=(y2/r)/{1+(1−K×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 (a)
S (y) = (y 2 / r) / {1+ (1−K × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*印を付している。   In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the right side of the surface number.

[第1実施例]
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1に示す変倍光学系ZL1は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、後続レンズ群GRとから構成されている。また、後続レンズ群GRは、物体側から順に、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example. The zoom optical system ZL1 shown in FIG. 1 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive The lens unit includes a third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a subsequent lens group GR. The subsequent lens group GR includes, in order from the object side, a fifth lens group G5 having a negative refractive power and a sixth lens group G6 having a positive refractive power.

この変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズの物体側の面にプラスチック樹脂で形成された非球面が設けられた負レンズL21、両凹形状の負レンズL22、両凸形状の正レンズL23、及び、両凹形状の負レンズL24から構成されている。また、第3レンズ群G3は、物体側から順に、物体側レンズ面が非球面形状である正レンズL31と物体側に凹面を向けた負メニスカスレンズL32との接合レンズから構成されている。また、第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズから構成されている。また、第5レンズ群G5は、物体側から順に、物体側レンズ面が非球面形状である負レンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合負レンズから構成されている。また、第6レンズ群G6は、物体側から順に、両凸形状の正レンズL61、及び、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合正レンズから構成されている。   In the variable magnification optical system ZL1, the first lens group G1 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface. The second lens group G2 includes, in order from the object side, a negative lens L21 provided with an aspheric surface made of plastic resin on the object side surface of a negative meniscus lens having a convex surface facing the object side, and a biconcave shape. The lens includes a negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. The third lens group G3 includes, in order from the object side, a cemented lens of a positive lens L31 having an aspheric object side lens surface and a negative meniscus lens L32 having a concave surface facing the object side. The fourth lens group G4 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42. The fifth lens group G5 includes, in order from the object side, a cemented negative lens of a negative lens L51 having an aspheric object side lens surface and a positive meniscus lens L52 having a convex surface facing the object side. The sixth lens group G6 includes, in order from the object side, a biconvex positive lens L61, and a cemented positive lens of a biconvex positive lens L62 and a negative meniscus lens L63 with a concave surface facing the object side. Has been.

この第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が物体方向へ移動する。なお、このとき、開口絞りSは第4レンズ群G4一体に(同じ移動量で)移動する。   In the zoom optical system ZL1 according to the first example, the air gap between the first lens group G1 and the second lens group G2 increases when zooming from the wide-angle end state to the telephoto end state, and the second lens group. The air gap between G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases. Each lens group from the first lens group G1 to the sixth lens group G6 moves in the object direction so that the air gap between the fifth lens group G5 and the sixth lens group G6 decreases and increases. At this time, the aperture stop S moves together with the fourth lens group G4 (with the same movement amount).

また、この第1実施例に係る変倍光学系ZL1は、合焦レンズ群である第3レンズ群G3を光軸に沿って像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。   In addition, the variable magnification optical system ZL1 according to the first example moves the third lens group G3 that is a focusing lens group from the long-distance object to the short-distance object by moving the third lens group G3 along the optical axis in the image plane direction. Is focused.

また、この第1実施例に係る変倍光学系ZL1は、第5レンズ群G5を光軸と直交する方向の成分を持つように移動させることによって、手ブレ等による結像位置の変位を補正する。 The variable magnification optical system ZL1 according to the first example corrects the displacement of the imaging position due to camera shake or the like by moving the fifth lens group G5 so as to have a component in a direction orthogonal to the optical axis. To do.

以下の表1に、第1実施例に係る変倍光学系ZL1の諸元の値を掲げる。この表1において、全体諸元におけるfは全系の焦点距離、FNOはFナンバー、2ωは画角、Ymaxは最大像高、及び、TLは全長をそれぞれ表している。ここで、全長TLは、無限遠合焦時のレンズ面の第1面から像面Iまでの光軸上の距離を表している。また、レンズデータにおける第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄nd及び第5欄νdは、d線(λ=587.6nm)に対する屈折率及びアッベ数を示している。また、曲率半径∞は平面を示し、空気の屈折率1.00000は省略してある。なお、表1に示す面番号1〜29は、図1に示す番号1〜29に対応している。また、レンズ群焦点距離は第1〜第6レンズ群G1〜G6の各々の始面と焦点距離を示している。   Table 1 below lists values of specifications of the variable magnification optical system ZL1 according to the first example. In Table 1, f in the overall specifications represents the focal length of the entire system, FNO represents the F number, 2ω represents the angle of view, Ymax represents the maximum image height, and TL represents the total length. Here, the total length TL represents the distance on the optical axis from the first surface of the lens surface to the image plane I when focusing on infinity. In the lens data, the first column m indicates the order (surface number) of the lens surfaces from the object side along the traveling direction of the light beam, the second column r indicates the curvature radius of each lens surface, and the third column. d is the distance on the optical axis from each optical surface to the next optical surface (surface interval). The fourth column nd and the fifth column νd are the refractive index and Abbe number for the d-line (λ = 587.6 nm). Is shown. Further, the radius of curvature ∞ indicates a plane, and the refractive index of air 1.000 is omitted. The surface numbers 1 to 29 shown in Table 1 correspond to the numbers 1 to 29 shown in FIG. The lens group focal length indicates the start surface and focal length of each of the first to sixth lens groups G1 to G6.

ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Here, the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this. The description of these symbols and the description of the specification table are the same in the following embodiments.

(表1)第1実施例
[全体諸元]
変倍比=7.44
広角端状態 中間焦点距離状態 望遠端状態
f = 18.5 〜 69.5 〜 137.5
FNO = 3.37 〜 5.07 〜 5.87
2ω = 78.10 〜 22.38 〜 11.42
Ymax= 14.25 〜 14.25 〜 14.25
TL = 149.23 〜 191.09 〜 211.23

[レンズデータ]
m r d nd νd
物面 ∞
1 198.0585 2.000 1.84666 23.78
2 71.0593 8.436 1.59319 67.90
3 -281.2745 0.100
4 64.3516 4.808 1.81600 46.62
5 209.7899 d5
6* 91.7725 0.150 1.55389 38.23
7 87.5466 1.200 1.77250 49.61
8 13.5061 5.769
9 -35.0552 1.000 1.81600 46.62
10 42.8672 0.839
11 31.6462 5.245 1.84666 23.78
12 -26.4739 0.392
13 -23.1802 1.000 1.88300 40.76
14 937.7494 d14
15 ∞ d15 開口絞りS
16* 28.1133 5.000 1.48749 70.40
17 -30.8336 1.000 1.84666 23.78
18 -46.1545 d18
19 34.2511 1.000 2.00069 25.45
20 23.7294 5.400 1.49782 82.51
21 -34.5514 d21
22* -77.1085 1.400 1.77250 49.61
23 17.7029 2.768 1.84666 23.78
24 31.2636 d24
25 182.8242 3.970 1.57221 46.67
26 -34.4813 0.100
27 37.3517 6.951 1.48749 70.40
28 -21.1812 1.300 1.90265 35.70
29 -119.3320 BF
像面 ∞

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 85.560
第2レンズ群 6 -13.001
第3レンズ群 16 42.405
第4レンズ群 19 45.251
第5レンズ群 22 -30.006
第6レンズ群 25 44.754
(Table 1) First Example [Overall Specifications]
Scaling ratio = 7.44
Wide-angle end state Intermediate focal length state Telephoto end state f = 18.5 to 69.5 to 137.5
FNO = 3.37 to 5.07 to 5.87
2ω = 78.10-22.38-11.42
Ymax = 14.25 to 14.25 to 14.25
TL = 149.23-191.09-211.23

[Lens data]
m r d nd νd
Object ∞
1 198.0585 2.000 1.84666 23.78
2 71.0593 8.436 1.59319 67.90
3 -281.2745 0.100
4 64.3516 4.808 1.81600 46.62
5 209.7899 d5
6 * 91.7725 0.150 1.55389 38.23
7 87.5466 1.200 1.77250 49.61
8 13.5061 5.769
9 -35.0552 1.000 1.81600 46.62
10 42.8672 0.839
11 31.6462 5.245 1.84666 23.78
12 -26.4739 0.392
13 -23.1802 1.000 1.88300 40.76
14 937.7494 d14
15 ∞ d15 Aperture stop S
16 * 28.1133 5.000 1.48749 70.40
17 -30.8336 1.000 1.84666 23.78
18 -46.1545 d18
19 34.2511 1.000 2.00069 25.45
20 23.7294 5.400 1.49782 82.51
21 -34.5514 d21
22 * -77.1085 1.400 1.77250 49.61
23 17.7029 2.768 1.84666 23.78
24 31.2636 d24
25 182.8242 3.970 1.57221 46.67
26 -34.4813 0.100
27 37.3517 6.951 1.48749 70.40
28 -21.1812 1.300 1.90265 35.70
29 -119.3320 BF
Image plane ∞

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 85.560
Second lens group 6 -13.001
Third lens group 16 42.405
Fourth lens group 19 45.251
5th lens group 22 -30.006
6th lens group 25 44.754

この第1実施例に係る変倍光学系ZL1において、第6面、第16面及び第22面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the zoom optical system ZL1 according to the first example, the sixth surface, the sixteenth surface, and the twenty-second surface are formed in an aspherical shape. The following Table 2 shows aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

(表2)
[非球面データ]
K A4 A6 A8 A10
第 6面 11.2598 6.09566E-06 -4.17845E-08 1.53230E-10 -3.43299E-13
第16面 -0.5485 -1.67764E-05 1.74753E-08 -1.42820E-10 0.00000E+00
第22面 0.6725 8.48847E-06 -1.22182E-08 1.81567E-10 0.00000E+00
(Table 2)
[Aspherical data]
K A4 A6 A8 A10
6th surface 11.2598 6.09566E-06 -4.17845E-08 1.53230E-10 -3.43299E-13
16th surface -0.5485 -1.67764E-05 1.74753E-08 -1.42820E-10 0.00000E + 00
22nd surface 0.6725 8.48847E-06 -1.22182E-08 1.81567E-10 0.00000E + 00

この第1実施例に係る変倍光学系ZL1において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d5、第2レンズ群G2と開口絞りSとの軸上空気間隔d14、開口絞りSと第3レンズ群G3との軸上空気間隔d15、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d18、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d21、第5レンズ群G5と第6レンズ群G6との軸上空気間隔d24、及び、バックフォーカスBFは、上述したように、変倍に際して変化する。次の表3に無限遠合焦時及び近距離合焦時のそれぞれにおける広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔及びバックフォーカスの値を示す。なお、バックフォーカスBFは、最も像側のレンズ面(図1における第29面)から像面Iまでの光軸上の距離を示している。この説明は以降の実施例においても同様である。   In the variable magnification optical system ZL1 according to the first example, the axial air distance d5 between the first lens group G1 and the second lens group G2, the axial air distance d14 between the second lens group G2 and the aperture stop S, The axial air gap d15 between the aperture stop S and the third lens group G3, the axial air gap d18 between the third lens group G3 and the fourth lens group G4, and the axes of the fourth lens group G4 and the fifth lens group G5 The upper air interval d21, the on-axis air interval d24 between the fifth lens group G5 and the sixth lens group G6, and the back focus BF change as described above. Table 3 below shows the values of the variable interval and the back focus at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto end state when focusing on infinity and focusing on a short distance. Note that the back focus BF indicates the distance on the optical axis from the most image side lens surface (the 29th surface in FIG. 1) to the image surface I. This description is the same in the following embodiments.

(表3)
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
広角端 中間 望遠端 広角端 中間 望遠端
f 18.5 69.5 137.5 18.5 69.5 137.5
d5 1.500 28.095 44.228 1.500 28.095 44.228
d14 21.923 5.441 3.000 21.923 5.441 3.000
d15 6.423 4.512 2.000 6.862 4.833 2.504
d18 3.063 4.974 7.486 2.624 4.653 6.982
d21 2.500 6.346 7.564 2.500 6.346 7.564
d24 10.064 6.218 5.000 10.064 6.218 5.000
BF 38.02 69.76 76.21 38.02 69.76 76.21
(Table 3)
[Variable interval data]
Infinity focusing state Short-distance focusing state Wide-angle end Intermediate Telephoto end Wide-angle end Intermediate Telephoto end f 18.5 69.5 137.5 18.5 69.5 137.5
d5 1.500 28.095 44.228 1.500 28.095 44.228
d14 21.923 5.441 3.000 21.923 5.441 3.000
d15 6.423 4.512 2.000 6.862 4.833 2.504
d18 3.063 4.974 7.486 2.624 4.653 6.982
d21 2.500 6.346 7.564 2.500 6.346 7.564
d24 10.064 6.218 5.000 10.064 6.218 5.000
BF 38.02 69.76 76.21 38.02 69.76 76.21

次の表4に、この第1実施例に係る変倍光学系ZL1における各条件式対応値を示す。なお、この表4において、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f3は第3レンズ群G3の焦点距離を、f4は第4レンズ群G4の焦点距離を、fwはこの変倍光学系ZL1の全系の焦点距離を、それぞれ表している。以上の符号の説明は以降の実施例においても同様である。   Table 4 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL1 according to the first example. In Table 4, f1 is the focal length of the first lens group G1, f2 is the focal length of the second lens group G2, f3 is the focal length of the third lens group G3, and f4 is the fourth lens group G4. Fw represents the focal length of the entire variable magnification optical system ZL1. The description of the above symbols is the same in the following embodiments.

(表4)
[条件対応値]
(1)f3/f4 = 0.937
(2)(−f2)/f1= 0.152
(3)f1/fw = 4.627
(Table 4)
[Conditional value]
(1) f3 / f4 = 0.937
(2) (−f2) /f1=0.152
(3) f1 / fw = 4.627

このように、この第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(3)を全て満足している。   Thus, the variable magnification optical system ZL1 according to the first example satisfies all the conditional expressions (1) to (3).

この第1実施例に係る変倍光学系ZL1の、広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図を図2に示し、広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図を図3に示す。各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。また、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。これらの各収差図より、この第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。   FIG. 2 shows various aberration diagrams of the variable magnification optical system ZL1 according to the first example when focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, and shows the wide-angle end state and the intermediate focal length state. FIG. 3 is a diagram showing various aberrations when focusing at a short distance in the telephoto end state. In each aberration diagram, FNO represents an F number, NA represents a numerical aperture, and Y represents an image height. The spherical aberration diagram shows the F-number or numerical aperture value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma diagram shows the value of each image height. . d represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Also, in the aberration diagrams of the respective examples shown below, the same reference numerals as those of the present example are used. From these respective aberration diagrams, the variable magnification optical system ZL1 according to the first example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.

[第2実施例]
図4は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図4に示す変倍光学系ZL2は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、後続レンズ群GRとから構成されている。また、後続レンズ群GRは、物体側から順に、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
[Second Embodiment]
FIG. 4 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example. The zoom optical system ZL2 shown in FIG. 4 includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive The lens unit includes a third lens group G3 having a refractive power, a fourth lens group G4 having a positive refractive power, and a subsequent lens group GR. The subsequent lens group GR includes, in order from the object side, a fifth lens group G5 having a negative refractive power and a sixth lens group G6 having a positive refractive power.

この変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。また、第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズの物体側の面にプラスチック樹脂で形成された非球面が設けられた負レンズL21、両凹形状の負レンズL22、両凸形状の正レンズL23、及び、両凹形状の負レンズL24から構成されている。また、第3レンズ群G3は、物体側レンズ面が非球面形状である正レンズL31で構成されている。また、第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合正レンズで構成されている。また、第5レンズ群G5は、物体側から順に、物体側レンズ面が非球面形状である負レンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合負レンズで構成されている。また、第6レンズ群G6は、物体側から順に、両凸形状の正レンズL61、及び、両凸形状の正レンズL62と物体側に凹面を向けた負メニスカスレンズL63との接合正レンズで構成されている。   In the variable magnification optical system ZL2, the first lens group G1 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L11 having a convex surface directed toward the object side and a biconvex positive lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface. The second lens group G2 includes, in order from the object side, a negative lens L21 provided with an aspheric surface made of plastic resin on the object side surface of a negative meniscus lens having a convex surface facing the object side, and a biconcave shape. The lens includes a negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. The third lens group G3 includes a positive lens L31 having an aspheric object side lens surface. The fourth lens group G4 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42. The fifth lens group G5 includes, in order from the object side, a cemented negative lens of a negative lens L51 having an aspheric object side lens surface and a positive meniscus lens L52 having a convex surface facing the object side. The sixth lens group G6 includes, in order from the object side, a biconvex positive lens L61, and a cemented positive lens of a biconvex positive lens L62 and a negative meniscus lens L63 having a concave surface facing the object side. Has been.

この第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大し、第5レンズ群G5と第6レンズ群G6との空気間隔が減少するように、第1レンズ群G1から第6レンズ群G6の各レンズ群が物体方向へ移動する。なお、このとき、開口絞りSは第4レンズ群G4一体に(同じ移動量で)移動する。   In the zoom optical system ZL2 according to the second example, the air gap between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group. The air gap between G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the air gap between the fourth lens group G4 and the fifth lens group G5 increases. Each lens group from the first lens group G1 to the sixth lens group G6 moves in the object direction so that the air gap between the fifth lens group G5 and the sixth lens group G6 decreases and increases. At this time, the aperture stop S moves together with the fourth lens group G4 (with the same movement amount).

また、この第2実施例に係る変倍光学系ZL2は、合焦レンズ群である第3レンズ群G3を光軸に沿って像面方向へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。   Further, the variable magnification optical system ZL2 according to the second example moves the third lens group G3 that is a focusing lens group from the long-distance object to the short-distance object by moving in the image plane direction along the optical axis. Is focused.

また、この第2実施例に係る変倍光学系ZL2は、第5レンズ群G5を光軸と直交する方向の成分を持つように移動させることによって、手ブレ等による結像位置の変位を補正する。 The variable magnification optical system ZL2 according to the second example corrects the displacement of the imaging position due to camera shake or the like by moving the fifth lens group G5 so as to have a component in a direction orthogonal to the optical axis. To do.

以下の表5に、第2実施例に係る変倍光学系ZL2の諸元の値を掲げる。なお、表5に示す面番号1〜28は、図4に示す番号1〜28に対応している。   Table 5 below lists values of specifications of the variable magnification optical system ZL2 according to the second example. The surface numbers 1 to 28 shown in Table 5 correspond to the numbers 1 to 28 shown in FIG.

(表5)第2実施例
[全体諸元]
変倍比=7.41
広角端状態 中間焦点距離状態 望遠端状態
f = 18.5 〜 70.1 〜 137.2
FNO = 3.45 〜 5.13 〜 5.89
2ω = 78.06 〜 22.18 〜 11.50
Ymax= 14.25 〜 14.25 〜 14.25
TL = 150.24 〜 192.79 〜 211.18

[レンズデータ]
m r d nd νd
物面 ∞
1 164.7224 2.000 1.84666 23.78
2 69.2610 9.569 1.49782 82.51
3 -215.6328 0.100
4 59.9128 5.133 1.77250 49.61
5 210.3577 d5
6* 151.4197 0.150 1.55389 38.23
7 141.4818 1.200 1.77250 49.61
8 13.4456 5.852
9 -46.9540 1.000 1.81600 46.62
10 50.1225 0.500
11 27.2349 5.330 1.84666 23.78
12 -29.7129 0.313
13 -26.7614 1.000 1.88300 40.76
14 69.1420 d14
15 ∞ d15 開口絞りS
16* 28.2763 4.500 1.49782 82.51
17 -63.7625 d17
18 41.6479 1.000 1.84666 23.78
19 25.3852 6.300 1.48749 70.40
20 -26.7000 d20
21* -67.5835 1.400 1.77250 49.61
22 18.4411 2.600 1.85026 32.35
23 30.5414 d23
24 126.3398 3.816 1.54282 48.67
25 -47.7988 0.100
26 42.8945 7.746 1.48749 70.40
27 -20.5949 1.300 1.90265 35.70
28 -57.7623 BF
像面 ∞

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 85.126
第2レンズ群 6 -12.427
第3レンズ群 16 40.000
第4レンズ群 18 41.836
第5レンズ群 21 -28.132
第6レンズ群 24 43.839
(Table 5) Second Example [Overall Specifications]
Scaling ratio = 7.41
Wide-angle end state Intermediate focal length state Telephoto end state f = 18.5 to 70.1 to 137.2
FNO = 3.45 to 5.13 to 5.89
2ω = 78.06-22.18-11.50
Ymax = 14.25 to 14.25 to 14.25
TL = 150.24 to 192.79 to 211.18

[Lens data]
m r d nd νd
Object ∞
1 164.7224 2.000 1.84666 23.78
2 69.2610 9.569 1.49782 82.51
3 -215.6328 0.100
4 59.9128 5.133 1.77250 49.61
5 210.3577 d5
6 * 151.4197 0.150 1.55389 38.23
7 141.4818 1.200 1.77250 49.61
8 13.4456 5.852
9 -46.9540 1.000 1.81600 46.62
10 50.1225 0.500
11 27.2349 5.330 1.84666 23.78
12 -29.7129 0.313
13 -26.7614 1.000 1.88300 40.76
14 69.1420 d14
15 ∞ d15 Aperture stop S
16 * 28.2763 4.500 1.49782 82.51
17 -63.7625 d17
18 41.6479 1.000 1.84666 23.78
19 25.3852 6.300 1.48749 70.40
20 -26.7000 d20
21 * -67.5835 1.400 1.77250 49.61
22 18.4411 2.600 1.85026 32.35
23 30.5414 d23
24 126.3398 3.816 1.54282 48.67
25 -47.7988 0.100
26 42.8945 7.746 1.48749 70.40
27 -20.5949 1.300 1.90265 35.70
28 -57.7623 BF
Image plane ∞

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 85.126
Second lens group 6 -12.427
Third lens group 16 40.000
4th lens group 18 41.836
5th lens group 21 -28.132
6th lens group 24 43.839

この第2実施例に係る変倍光学系ZL2において、第6面、第16面及び第21面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち円錐定数K及び各非球面定数A4〜A10の値を示す。   In the variable magnification optical system ZL2 according to the second example, the sixth surface, the sixteenth surface, and the twenty-first surface are formed in an aspherical shape. Table 6 below shows the aspheric data, that is, the values of the conic constant K and the aspheric constants A4 to A10.

(表6)
[非球面データ]
K A4 A6 A8 A10
第 6面 3.5648 8.42661E-06 -5.67193E-08 2.35593E-10 -4.71958E-13
第16面 -0.6804 -2.20261E-05 1.26254E-08 -2.16161E-10 0.00000E+00
第21面 1.4368 7.94766E-06 4.75605E-09 1.24853E-10 0.00000E+00
(Table 6)
[Aspherical data]
K A4 A6 A8 A10
6th surface 3.5648 8.42661E-06 -5.67193E-08 2.35593E-10 -4.71958E-13
16th surface -0.6804 -2.20261E-05 1.26254E-08 -2.16161E-10 0.00000E + 00
Side 21 1.4368 7.94766E-06 4.75605E-09 1.24853E-10 0.00000E + 00

この第2実施例に係る変倍光学系ZL2において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d5、第2レンズ群G2と開口絞りSとの軸上空気間隔d14、開口絞りSと第3レンズ群G3との軸上空気間隔d15、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d17、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d20、第5レンズ群G5と第6レンズ群G6との軸上空気間隔d23、及び、バックフォーカスBFは、上述したように、変倍に際して変化する。次の表7に無限遠合焦時及び近距離合焦時のそれぞれにおける広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔及びバックフォーカスの値を示す。   In the variable magnification optical system ZL2 according to the second example, the axial air distance d5 between the first lens group G1 and the second lens group G2, the axial air distance d14 between the second lens group G2 and the aperture stop S, The axial air gap d15 between the aperture stop S and the third lens group G3, the axial air gap d17 between the third lens group G3 and the fourth lens group G4, and the axes of the fourth lens group G4 and the fifth lens group G5 The upper air gap d20, the axial air gap d23 between the fifth lens group G5 and the sixth lens group G6, and the back focus BF change as described above. Table 7 below shows the values of the variable interval and the back focus at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto end state when focusing on infinity and focusing on a short distance.

(表7)
[可変間隔データ]
無限遠合焦状態 近距離合焦状態
広角端 中間 望遠端 広角端 中間 望遠端
f 18.5 70.1 137.2 18.5 70.1 137.2
d5 1.500 29.460 43.956 1.500 29.460 43.956
d14 21.129 6.175 3.000 21.129 6.175 3.000
d15 5.970 3.536 2.000 6.367 3.851 2.459
d17 3.062 5.497 7.033 2.665 5.182 6.573
d20 2.500 6.941 8.730 2.500 6.941 8.730
d23 11.230 6.789 5.000 11.230 6.789 5.000
BF 38.02 67.56 74.63 38.02 67.56 74.63
(Table 7)
[Variable interval data]
Infinity focusing state Short-distance focusing state Wide-angle end Intermediate Telephoto end Wide-angle end Intermediate Telephoto end f 18.5 70.1 137.2 18.5 70.1 137.2
d5 1.500 29.460 43.956 1.500 29.460 43.956
d14 21.129 6.175 3.000 21.129 6.175 3.000
d15 5.970 3.536 2.000 6.367 3.851 2.459
d17 3.062 5.497 7.033 2.665 5.182 6.573
d20 2.500 6.941 8.730 2.500 6.941 8.730
d23 11.230 6.789 5.000 11.230 6.789 5.000
BF 38.02 67.56 74.63 38.02 67.56 74.63

次の表8に、この第2実施例に係る変倍光学系ZL2における各条件式対応値を示す。   Table 8 below shows values corresponding to the conditional expressions in the variable magnification optical system ZL2 according to the second example.

(表4)
[条件対応値]
(1)f3/f4 = 0.956
(2)(−f2)/f1= 0.146
(3)f1/fw = 4.602
(Table 4)
[Conditional value]
(1) f3 / f4 = 0.956
(2) (−f2) /f1=0.146
(3) f1 / fw = 4.602

このように、この第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(3)を全て満足している。   Thus, the zoom optical system ZL2 according to the second example satisfies all the conditional expressions (1) to (3).

この第2実施例に係る変倍光学系ZL2の、広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図を図5に示し、広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図を図6に示す。これらの各収差図より、この第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。   FIG. 5 shows various aberration diagrams of the variable magnification optical system ZL2 according to the second example when focusing at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state, and shows the wide-angle end state and the intermediate focal length state. FIG. 6 is a diagram showing various aberrations when focusing at a short distance in the telephoto end state. From these respective aberration diagrams, the variable magnification optical system ZL2 according to the second example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that the imaging performance is excellent even during focusing.

1 カメラ(光学装置) ZL(ZL1,ZL2) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群
G4 第4レンズ群 GR 後続レンズ群
1 Camera (Optical Device) ZL (ZL1, ZL2) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group GR Subsequent lens group

Claims (11)

物体側から順に、
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
正の屈折力を有する第3レンズ群と、
正の屈折力を有する第4レンズ群と、
少なくとも1つのレンズ群を含む後続レンズ群と、を有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記後続レンズ群との間隔が変化し、前記後続レンズ群が複数のレンズ群から構成されるときは、前記複数のレンズ群の各々の間隔が変化し、
無限遠から近距離物体への合焦に際し、前記第3レンズ群が光軸に沿って移動し、
次式の条件を満足することを特徴とする変倍光学系。
0.60 < f3/f4 < 1.30
但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
From the object side,
A first lens group having a positive refractive power;
A second lens group having negative refractive power;
A third lens group having positive refractive power;
A fourth lens group having a positive refractive power;
A subsequent lens group including at least one lens group;
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, When the distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the subsequent lens group changes, and the subsequent lens group is composed of a plurality of lens groups, The interval between each of the plurality of lens groups changes,
When focusing from infinity to a close object, the third lens group moves along the optical axis,
A variable magnification optical system characterized by satisfying the following condition:
0.60 <f3 / f4 <1.30
However,
f3: Focal length of the third lens group f4: Focal length of the fourth lens group
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群が物体方向に移動することを特徴とする請求項1に記載の変倍光学系。   2. The zoom optical system according to claim 1, wherein the first lens unit moves in the object direction when zooming from the wide-angle end state to the telephoto end state. 広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が減少し、前記第3レンズ群と前記第4レンズ群との間隔が増大し、前記第4レンズ群と前記第5レンズ群との間隔が増大することを特徴とする請求項1または2に記載の変倍光学系。   Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, the distance between the second lens group and the third lens group decreases, 3. The variable power optical system according to claim 1, wherein a distance between the third lens group and the fourth lens group is increased, and a distance between the fourth lens group and the fifth lens group is increased. system. 前記第3レンズ群は、1つの正レンズ、もしくは、1つの正の屈折力を有する接合レンズのみで構成されていることを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。   The zoom lens according to any one of claims 1 to 3, wherein the third lens group includes only one positive lens or one cemented lens having a positive refractive power. Optical system. 前記第3レンズ群の最も物体側の面が非球面であることを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。   5. The variable magnification optical system according to claim 1, wherein the most object side surface of the third lens group is an aspherical surface. 前記非球面は、光軸から離れるに従い正の屈折力が弱くなる形状であることを特徴とする請求項5に記載の変倍光学系。   6. The variable magnification optical system according to claim 5, wherein the aspherical surface has a shape in which the positive refractive power becomes weaker as the distance from the optical axis increases. 次式の条件を満足することを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。
0.11 < (−f2)/f1 < 0.19
但し、
f2:前記第2レンズ群の焦点距離
f1:前記第1レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 6, wherein a condition of the following formula is satisfied.
0.11 <(− f2) / f1 <0.19
However,
f2: focal length of the second lens group f1: focal length of the first lens group
次式の条件を満足することを特徴とする請求項1〜7のいずれか一項に記載の変倍光学系。
3.00 < f1/fw < 6.00
但し、
f1:前記第1レンズ群の焦点距離
fw:広角端状態における全系の焦点距離
The zoom lens system according to any one of claims 1 to 7, wherein a condition of the following formula is satisfied.
3.00 <f1 / fw <6.00
However,
f1: Focal length of the first lens group fw: Focal length of the entire system in the wide-angle end state
前記後続レンズ群の少なくとも一部を光軸と直交する方向の成分を持つように移動させることを特徴とする請求項1〜8のいずれか一項に記載の変倍光学系。   9. The variable magnification optical system according to claim 1, wherein at least a part of the subsequent lens group is moved so as to have a component in a direction orthogonal to the optical axis. 請求項1〜9のいずれか一項に記載の変倍光学系を備えたことを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、少なくとも1つのレンズ群を含む後続レンズ群と、を有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記後続レンズ群との間隔が変化し、前記後続レンズ群が複数のレンズ群から構成されるときは、前記複数のレンズ群の各々の間隔が変化するように配置し、
無限遠から近距離物体への合焦に際し、前記第3レンズ群が光軸に沿って移動するように配置し、
次式の条件を満足するように配置することを特徴とする変倍光学系の製造方法。
0.60 < f3/f4 < 1.30
但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power A variable magnification optical system having a group and a subsequent lens group including at least one lens group,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, When the distance between the third lens group and the fourth lens group changes, the distance between the fourth lens group and the subsequent lens group changes, and the subsequent lens group is composed of a plurality of lens groups, Arranged so that the interval between each of the plurality of lens groups changes,
When focusing from infinity to a short distance object, the third lens group is arranged to move along the optical axis,
A method of manufacturing a variable magnification optical system, wherein the zoom lens is disposed so as to satisfy the condition of the following formula.
0.60 <f3 / f4 <1.30
However,
f3: Focal length of the third lens group f4: Focal length of the fourth lens group
JP2013157111A 2013-07-29 2013-07-29 Variable magnification optical system and optical apparatus Active JP6281200B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013157111A JP6281200B2 (en) 2013-07-29 2013-07-29 Variable magnification optical system and optical apparatus
CN201480042932.0A CN105452929B (en) 2013-07-29 2014-07-23 Variable-power optical system, Optical devices and the method for manufacturing variable-power optical system
PCT/JP2014/069448 WO2015016112A1 (en) 2013-07-29 2014-07-23 Variable power optical system, optical device and method for manufacturing variable power optical system
US15/004,879 US10670848B2 (en) 2013-07-29 2016-01-22 Variable power optical system, optical device and method for manufacturing variable power optical system
US16/878,599 US20200278521A1 (en) 2013-07-29 2020-05-19 Variable power optical system, optical device and method for manufacturing variable power optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013157111A JP6281200B2 (en) 2013-07-29 2013-07-29 Variable magnification optical system and optical apparatus

Publications (2)

Publication Number Publication Date
JP2015026032A true JP2015026032A (en) 2015-02-05
JP6281200B2 JP6281200B2 (en) 2018-02-21

Family

ID=52490714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013157111A Active JP6281200B2 (en) 2013-07-29 2013-07-29 Variable magnification optical system and optical apparatus

Country Status (1)

Country Link
JP (1) JP6281200B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120712A (en) * 2017-12-28 2019-07-22 株式会社タムロン Zoom lens and imaging apparatus
JPWO2020157905A1 (en) * 2019-01-31 2021-10-07 株式会社ニコン Manufacturing method of variable magnification optical system, optical equipment and variable magnification optical system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048525A (en) * 1996-08-01 1998-02-20 Nikon Corp Variable power optical system
JPH10268194A (en) * 1997-03-26 1998-10-09 Tochigi Nikon:Kk Zoom lens
JPH1172705A (en) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk Zoom lens provided with two and more focusing lens groups
JP2006301474A (en) * 2005-04-25 2006-11-02 Sony Corp Zoom lens and imaging apparatus
JP2012212088A (en) * 2011-03-31 2012-11-01 Nikon Corp Zoom lens, optical device, and zoom lens manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048525A (en) * 1996-08-01 1998-02-20 Nikon Corp Variable power optical system
JPH10268194A (en) * 1997-03-26 1998-10-09 Tochigi Nikon:Kk Zoom lens
JPH1172705A (en) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk Zoom lens provided with two and more focusing lens groups
JP2006301474A (en) * 2005-04-25 2006-11-02 Sony Corp Zoom lens and imaging apparatus
JP2012212088A (en) * 2011-03-31 2012-11-01 Nikon Corp Zoom lens, optical device, and zoom lens manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019120712A (en) * 2017-12-28 2019-07-22 株式会社タムロン Zoom lens and imaging apparatus
JPWO2020157905A1 (en) * 2019-01-31 2021-10-07 株式会社ニコン Manufacturing method of variable magnification optical system, optical equipment and variable magnification optical system
JP7211440B2 (en) 2019-01-31 2023-01-24 株式会社ニコン Variable Magnification Optical System and Optical Equipment

Also Published As

Publication number Publication date
JP6281200B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
WO2014208091A1 (en) Variable magnification optical system, optical device and method for manufacturing variable magnification optical system
WO2015016112A1 (en) Variable power optical system, optical device and method for manufacturing variable power optical system
JP2018010219A (en) Variable power optical system, optical instrument, and manufacturing method for variable power optical system
WO2015015792A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP6237147B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6237146B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2012042549A (en) Variable power optical system, optical apparatus having the same and method for manufacturing variable power optical system
JP6467804B2 (en) Zoom lens and optical apparatus
JP6281200B2 (en) Variable magnification optical system and optical apparatus
JP6620998B2 (en) Variable magnification optical system and optical apparatus
WO2014034728A1 (en) Variable-magnification optical system, optical device having same variable-magnification optical system, and method for manufacturing variable-magnification optical system
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6232805B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6232806B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6281199B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6372058B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6601471B2 (en) Variable magnification optical system and optical apparatus
JP2018045261A (en) Variable magnification optical system, and optical device
JP6260075B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
WO2024034428A1 (en) Optical system, optical device, and method for manufacturing optical system
JP6497597B2 (en) Magnification optical system and optical equipment
JPWO2016194811A1 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180108

R150 Certificate of patent or registration of utility model

Ref document number: 6281200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250