JP2015025707A - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP2015025707A
JP2015025707A JP2013154617A JP2013154617A JP2015025707A JP 2015025707 A JP2015025707 A JP 2015025707A JP 2013154617 A JP2013154617 A JP 2013154617A JP 2013154617 A JP2013154617 A JP 2013154617A JP 2015025707 A JP2015025707 A JP 2015025707A
Authority
JP
Japan
Prior art keywords
conductor
current
measured
probe
measurement probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013154617A
Other languages
Japanese (ja)
Other versions
JP2015025707A5 (en
Inventor
野間 辰次
Tatsuji Noma
辰次 野間
船戸 裕樹
Hiroki Funato
裕樹 船戸
ウンベルト パオレッティ
Umbereto Paoletti
ウンベルト パオレッティ
彩 大前
Aya Omae
彩 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013154617A priority Critical patent/JP2015025707A/en
Publication of JP2015025707A publication Critical patent/JP2015025707A/en
Publication of JP2015025707A5 publication Critical patent/JP2015025707A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a current measuring device for accurately measuring a common mode current flowing through a wide conductor by a simple method.SOLUTION: A measurement probe 3 detects, as inductive voltage, a magnetic flux 30 generated by a current 20 flowing through a conductor 2 to be measured using a cylindrical loop antenna. The length of the measurement probe 3 is set substantially equal to the width of the conductor 2 to be measured. A slit 4 is formed in the longitudinal direction at a side surface position of the measurement probe 3, and a feeding point 5 for detecting the inductive voltage from the loop antenna is disposed at a substantially center position of the slit in the longitudinal direction. The inductive voltage detected by the measurement probe 3 is transmitted to signal processing sections 8, 9, and 10 via the feeding point 5, and is converted into a current value.

Description

本発明は、電子機器内のケーブル等を流れる電流を測定するのに好適な電流測定装置に関する。   The present invention relates to a current measuring device suitable for measuring a current flowing through a cable or the like in an electronic device.

近年の電子機器では、構成部品がモジュール化され、それらをケーブルやコネクタ等で接続して信号や電力の伝送を行っている。また、電子機器の高速化・高機能化に従い、EMC(Electromagnetic Compatibility)対策が重要となっている。すなわち、電子機器の放出する電磁ノイズは、各モジュール間に流れる電流(コモンモード成分)により発生するが、ノイズ放射メカニズムの解明のため、ケーブルやコネクタを流れる電流の測定が必要となっている。   In recent electronic devices, component parts are modularized, and signals and power are transmitted by connecting them with cables and connectors. In addition, with the increase in speed and functionality of electronic devices, EMC (Electromagnetic Compatibility) measures have become important. In other words, electromagnetic noise emitted from electronic devices is generated by current (common mode component) flowing between the modules, but in order to clarify the noise radiation mechanism, it is necessary to measure the current flowing through cables and connectors.

一般に導体内を流れる電流を測定するには、カレントトランスやループアンテナが用いられ、電流が発生する磁界(磁束)を測定して電流値に換算して求めている。しかし、カレントトランスはリング状の測定器で導体を挟む構造であり、幅広のケーブル等には使用困難である。これに対しループアンテナは、導体を挟むことなく片側に設置して測定できるメリットがある。例えば特許文献1には、4本のループアンテナを用いて各ループアンテナの出力を合成することで、コモンモード、ノーマルモードの電流を求める装置が開示されている。   In general, a current transformer or a loop antenna is used to measure a current flowing in a conductor, and a magnetic field (magnetic flux) generated by the current is measured and converted into a current value. However, the current transformer has a structure in which a conductor is sandwiched between ring-shaped measuring instruments and is difficult to use for a wide cable or the like. On the other hand, the loop antenna has an advantage that it can be installed and measured on one side without interposing a conductor. For example, Patent Document 1 discloses a device that obtains currents in a common mode and a normal mode by synthesizing outputs of respective loop antennas using four loop antennas.

特開平8−68837号公報JP-A-8-68837

電子機器に実装されるフラットケーブルや多ピンコネクタのような幅広の導体の電流を測定するためには、導体の片側に設置して測定できるループアンテナ方式が適している。しかし特許文献1に開示される測定装置では、4本のループアンテナと出力を合成する回路とが必要であり、カレントトランス方式に比べて構成が複雑になる。また、ループアンテナ方式では線状のアンテナと導体との距離により測定感度が変化するので、特に幅広導体を流れる電流が一様でない場合(多芯ケーブル、多ピンコネクタ)などには、アンテナの設置位置や電流分布により測定誤差を生じやすい。   In order to measure the current of a wide conductor such as a flat cable or a multi-pin connector mounted on an electronic device, a loop antenna system that can be installed and measured on one side of the conductor is suitable. However, the measurement apparatus disclosed in Patent Document 1 requires four loop antennas and a circuit for combining outputs, and the configuration is complicated compared to the current transformer method. In addition, since the measurement sensitivity varies depending on the distance between the linear antenna and the conductor in the loop antenna method, the antenna is installed especially when the current flowing through the wide conductor is not uniform (multi-core cable, multi-pin connector). Measurement errors are likely to occur due to position and current distribution.

本発明の目的は、幅広な導体を流れるコモンモード電流を簡便な方法でより正確に測定する電流測定装置を提供することである。   An object of the present invention is to provide a current measuring apparatus that measures a common mode current flowing through a wide conductor more accurately by a simple method.

本発明は、幅広な被測定導体を流れる電流を測定する電流測定装置において、被測定導体を流れる電流により発生する磁束を筒状のループアンテナにより誘起電圧として検出する測定プローブと、測定プローブにて検出した誘起電圧を電流値に換算する信号処理部とを備え、測定プローブの長さは被測定導体の幅に略等しくしたことを特徴とする。   The present invention relates to a current measuring apparatus for measuring a current flowing through a wide measured conductor, a measuring probe for detecting magnetic flux generated by the current flowing through the measured conductor as an induced voltage by a cylindrical loop antenna, and a measuring probe. A signal processing unit that converts the detected induced voltage into a current value, and the length of the measurement probe is substantially equal to the width of the conductor to be measured.

ここで、測定プローブには長手方向にスリットを形成し、スリットは被測定導体から見て測定プローブの側面位置に設けてあり、スリットの長手方向の略中央位置には、ループアンテナからの誘起電圧を検出して前記信号処理部に伝送する給電点を設けた。
また、測定プローブの長手方向の形状は、被測定導体を流れる電流により発生する磁束の流線の曲率を有することが好ましい。
Here, a slit is formed in the longitudinal direction in the measurement probe, and the slit is provided at a side surface position of the measurement probe as viewed from the conductor to be measured. An induced voltage from the loop antenna is provided at a substantially central position in the longitudinal direction of the slit. A feeding point for detecting the signal and transmitting it to the signal processing unit is provided.
Moreover, it is preferable that the shape of the measurement probe in the longitudinal direction has a curvature of a flow line of magnetic flux generated by a current flowing through the conductor to be measured.

本発明によれば、幅広な導体を流れるコモンモード電流を簡便な方法でより正確に測定することができる。   According to the present invention, a common mode current flowing through a wide conductor can be measured more accurately by a simple method.

本発明による電流測定装置の一実施例を示す構成図。The block diagram which shows one Example of the current measuring apparatus by this invention. 測定プローブ3の形状と電流測定の原理を説明する図。The figure explaining the shape of the measurement probe 3, and the principle of an electric current measurement. 測定プローブ3の他の形状を示す図。The figure which shows the other shape of the measurement probe 3. FIG. 測定プローブの第1の例(実施例1)を示す図。The figure which shows the 1st example (Example 1) of a measurement probe. 各導体に流すテスト電流の値を示す表。The table | surface which shows the value of the test electric current sent through each conductor. 図4の測定プローブによる測定結果を示す図。The figure which shows the measurement result by the measurement probe of FIG. 測定プローブの第2の例(実施例2)を示す図。The figure which shows the 2nd example (Example 2) of a measurement probe. 図7の測定プローブによる測定結果を示す図。The figure which shows the measurement result by the measurement probe of FIG. 測定プローブの製造工程の一例を示す図(実施例3)。The figure which shows an example of the manufacturing process of a measurement probe (Example 3).

図1は、本発明による電流測定装置の一実施例を示す構成図である。
電流測定装置1は、フラットケーブル等の幅のある被測定導体2(以下、単に「導体」と呼ぶ)を流れる電流20を測定するもので、測定プローブ3(以下、単に「プローブ」と呼ぶ)と、信号処理部であるプリアンプ8、スペクトラムアナライザ9及びパーソナルコンピュータ(PC)10を備える。
FIG. 1 is a block diagram showing an embodiment of a current measuring apparatus according to the present invention.
The current measuring apparatus 1 measures a current 20 flowing through a conductor to be measured 2 having a width such as a flat cable (hereinafter simply referred to as “conductor”), and a measurement probe 3 (hereinafter simply referred to as “probe”). And a preamplifier 8, a spectrum analyzer 9, and a personal computer (PC) 10 as signal processing units.

プローブ3には導電材からなる筒状のループアンテナを用いており、導体2を流れる電流20が作る磁束により発生する誘起電圧を検出する。誘起電圧と電流20との関係はプローブ3の形状と設定位置により一義に決まるので、予め換算式を求めておき、換算式を用いることで電流20を測定することができる。また、プローブ3のループアンテナに貫通する磁束は、導体2を流れる電流の総和値で決まるから、測定されるのはコモンモード電流(同位相成分)である。   The probe 3 uses a cylindrical loop antenna made of a conductive material, and detects an induced voltage generated by a magnetic flux generated by the current 20 flowing through the conductor 2. Since the relationship between the induced voltage and the current 20 is uniquely determined by the shape of the probe 3 and the set position, the conversion equation is obtained in advance, and the current 20 can be measured by using the conversion equation. Further, since the magnetic flux penetrating the loop antenna of the probe 3 is determined by the total value of the current flowing through the conductor 2, it is the common mode current (in-phase component) that is measured.

本実施例のプローブ3は、筒状のループアンテナの長手方向にスリット4を設けてループの一箇所を開放させ、スリット4の長手方向の略中央位置には誘起電圧の検出端となる給電点5を設ける。給電点5での検出電圧は、同軸ケーブル6、コネクタ7を介して、信号処理部に伝送する。プローブ3の検出信号は微弱であるので、プリアンプ8では検出信号を増幅し、スペクトラムアナライザ9では検出信号の所定の周波数成分を抽出してS/N比を改善する。PC10は、信号周波数毎に誘起電圧と導体電流との換算式を格納し、これを用いて導体2を流れるコモンモード電流値を算出する。   In the probe 3 of this embodiment, a slit 4 is provided in the longitudinal direction of a cylindrical loop antenna to open one part of the loop, and a feeding point that serves as a detection end of an induced voltage at a substantially central position in the longitudinal direction of the slit 4. 5 is provided. The detection voltage at the feeding point 5 is transmitted to the signal processing unit via the coaxial cable 6 and the connector 7. Since the detection signal of the probe 3 is weak, the preamplifier 8 amplifies the detection signal, and the spectrum analyzer 9 extracts a predetermined frequency component of the detection signal to improve the S / N ratio. The PC 10 stores a conversion formula between the induced voltage and the conductor current for each signal frequency, and calculates the common mode current value flowing through the conductor 2 using this.

図2は、測定プローブ3の形状と電流測定の原理を説明する図であり、(a)は正面図、(b)は側面図である。
測定プローブ3は、幅広の被測定導体2の内部を拡がって流れる電流20の総和値により作られる磁束を検出する。導体2内を流れる電流20は、導体2の周囲に略楕円状の磁束30を発生し、この磁束の一部がプローブ3の筒状ループアンテナに鎖交する。電流20は高周波電流であり、ループアンテナの給電点5には鎖交する磁束量と周波数で決まる誘起電圧eが生じる。プローブ3の長手方向は電流20の方向(導体2の長手方向)と直交させて配置する。プローブ3の長さを電流20の幅(導体2の幅)にほぼ等しくすることで、導体内を流れる電流の総和を精度良く検出することができる。
2A and 2B are diagrams for explaining the shape of the measurement probe 3 and the principle of current measurement. FIG. 2A is a front view and FIG. 2B is a side view.
The measuring probe 3 detects a magnetic flux generated by the total value of the currents 20 that flow in the wide conductor 2 to be measured. The current 20 flowing in the conductor 2 generates a substantially elliptical magnetic flux 30 around the conductor 2, and a part of this magnetic flux is linked to the cylindrical loop antenna of the probe 3. The current 20 is a high-frequency current, and an induced voltage e determined by the amount of magnetic flux interlinked and the frequency is generated at the feeding point 5 of the loop antenna. The longitudinal direction of the probe 3 is arranged so as to be orthogonal to the direction of the current 20 (longitudinal direction of the conductor 2). By making the length of the probe 3 substantially equal to the width of the current 20 (the width of the conductor 2), the total sum of the currents flowing in the conductor can be accurately detected.

従来のように線状のループアンテナの場合、アンテナの検出感度はアンテナと電流の距離に依存し、幅広の導体内を流れる電流を精度良く測定するのは困難であった。すなわち、幅広の導体内を電流が不均一に流れるような場合、アンテナの設置位置により測定値が変化し、コモンモード電流を精度良く測定するのは困難であった。これに対し本実施例では、線状のループアンテナではなく筒状のループアンテナを用いている。これにより、導体内の電流が不均一でアンテナの各位置で検出される誘起電圧が異なっていても、導電材の筒状ループアンテナ内で平均化される。よって、導体内の電流が例えば幅方向の端部に偏って流れるような場合や、導体が多芯ケーブルで各芯線を流れる電流が異なる場合でも、導体内の総和電流値(コモンモード電流)を精度良く検出することができる。逆に言えば、多芯ケーブル内に往復する電流で総和値がゼロの電流(ディファレンシャルモード電流)が流れている場合には、筒状ループアンテナ内で誘起電圧がキャンセルされるのでディファレンシャルモード電流を検出しないもの(不感応)となる。このように、筒状のループアンテナはコモンモード電流の測定に好適なものである。   In the case of a conventional linear loop antenna, the detection sensitivity of the antenna depends on the distance between the antenna and the current, and it is difficult to accurately measure the current flowing in the wide conductor. That is, when the current flows unevenly in the wide conductor, the measured value changes depending on the installation position of the antenna, and it is difficult to accurately measure the common mode current. In contrast, in this embodiment, a cylindrical loop antenna is used instead of a linear loop antenna. Thereby, even if the electric current in a conductor is non-uniform | heterogenous and the induced voltage detected in each position of an antenna differs, it averages within the cylindrical loop antenna of an electrically-conductive material. Therefore, the total current value (common mode current) in the conductor is calculated even when the current in the conductor flows, for example, biased toward the end in the width direction, or when the current flowing through each core wire is different in a multicore cable. It can be detected with high accuracy. In other words, if a current that is reciprocating in the multicore cable and a current with a total value of zero (differential mode current) flows, the induced voltage is canceled in the cylindrical loop antenna, so the differential mode current is Not detected (insensitive). Thus, the cylindrical loop antenna is suitable for measuring the common mode current.

なお、プローブ3の長さが導体2の幅よりも大幅に大きくなると、導体幅より外側の部分ではアンテナに鎖交する磁束が減少して誘起電圧が低下し、導体幅の部分で発生した有効な検出電圧を低下させてしまう。このことから、プローブ3の長さは導体2の幅にほぼ等しくするのが良い。   When the length of the probe 3 is significantly larger than the width of the conductor 2, the magnetic flux interlinked with the antenna is reduced in the portion outside the conductor width, and the induced voltage is reduced. The detection voltage will be lowered. For this reason, the length of the probe 3 is preferably substantially equal to the width of the conductor 2.

プローブ3内に形成するスリット4の位置は、導体2と対向しない位置、好ましくは導体2から見てプローブ3の側面位置に設ける。これは、スリット4からの磁束の流入・流出をなくすためである。すなわち、スリット4を導体2側に対向させて設けると、導体側から斜め成分の磁束がスリット4を介してループアンテナ内に流入し、測定誤差の原因となる。これを避けるため、導体側からの斜め成分の磁束が少ないプローブ3の側面位置にスリット4を設ける。これにより、導体側からの斜め成分の磁束は、プローブ3の導電材のシールド作用で遮蔽され流入できない。その結果、導体2の電流により発生した磁束30は、ほぼプローブ3の両端の開口部から流入・流出し、測定精度が向上する。同様に、スリット4を導体2から見てプローブ3の背面側に設けると、プローブ内の磁束の一部がスリット4から流出するので、好ましくない。   The position of the slit 4 formed in the probe 3 is provided at a position not facing the conductor 2, preferably at a side position of the probe 3 when viewed from the conductor 2. This is to eliminate the inflow / outflow of magnetic flux from the slit 4. That is, if the slit 4 is provided facing the conductor 2, the oblique component magnetic flux flows from the conductor side through the slit 4 into the loop antenna, causing measurement errors. In order to avoid this, the slit 4 is provided at the side surface position of the probe 3 where the magnetic flux of the oblique component from the conductor side is small. Thereby, the oblique component magnetic flux from the conductor side is shielded by the shielding action of the conductive material of the probe 3 and cannot flow. As a result, the magnetic flux 30 generated by the current of the conductor 2 flows in and out from the openings at both ends of the probe 3 and the measurement accuracy is improved. Similarly, providing the slit 4 on the back side of the probe 3 when viewed from the conductor 2 is not preferable because a part of the magnetic flux in the probe flows out of the slit 4.

本実施例ではプローブ3の断面形状を円形としたが、これに限らず、四角形や長方形でも良く、その断面積は周波数や、電流値などの測定条件に応じて決定する。   In the present embodiment, the cross-sectional shape of the probe 3 is circular. However, the cross-sectional shape is not limited to this, and may be a quadrangle or a rectangle. The cross-sectional area is determined according to measurement conditions such as frequency and current value.

図3は、測定プローブ3の他の形状を示す図(正面図)である。前記図2では、測定プローブ3のループアンテナを直線状としたが、この例ではループアンテナを曲線状としている。その曲率は、導体2の電流20が作る磁束30の流線の曲率に合わせた形状とする。ここに磁束30の流線形状は、電流分布を仮定して、その時発生する各位置での磁界成分を計算することで求めることができる。   FIG. 3 is a view (front view) showing another shape of the measurement probe 3. In FIG. 2, the loop antenna of the measurement probe 3 is linear, but in this example, the loop antenna is curved. The curvature is a shape that matches the curvature of the streamline of the magnetic flux 30 created by the current 20 of the conductor 2. Here, the streamline shape of the magnetic flux 30 can be obtained by assuming a current distribution and calculating the magnetic field component at each position generated at that time.

プローブ3の形状を磁束30の流線に沿った形状とすることにより、磁束はプローブ3の両端の開口部から流入・流出し、プローブ3に磁束30を最も効率よく貫通させることができるので測定精度が向上する。
以下、測定プローブの具体例と測定結果を説明する。
By measuring the shape of the probe 3 along the flow line of the magnetic flux 30, the magnetic flux flows in and out from the openings at both ends of the probe 3, so that the magnetic flux 30 can penetrate the probe 3 most efficiently. Accuracy is improved.
Hereinafter, specific examples of measurement probes and measurement results will be described.

図4は、測定プローブの第1の例(実施例1)を示す図であり、ループアンテナを直線状とした場合(図2)に相当する。(a)は正面図、(b)は側面図、(c)は正面寸法図、(d)は側面寸法図である。測定対象として導体2は複数の導体からなる多芯ケーブルを想定し、各導体21〜27にそれぞれ電流を流す。測定プローブ3は直線状であり、その長さ(10mm)は導体21〜27の全体をカバーするものとし、導体2からの距離(高さ)は5mm、ループの大きさ(断面直径)は1.4mmとした。またプローブ3の側面にはスリット4を設け、その幅は0.2mmである。   FIG. 4 is a diagram illustrating a first example (Example 1) of the measurement probe, and corresponds to a case where the loop antenna is linear (FIG. 2). (A) is a front view, (b) is a side view, (c) is a front dimension diagram, and (d) is a side dimension diagram. As the measurement object, the conductor 2 is assumed to be a multi-core cable composed of a plurality of conductors, and a current is passed through each of the conductors 21 to 27. The measurement probe 3 is linear, its length (10 mm) covers the entire conductors 21 to 27, the distance (height) from the conductor 2 is 5 mm, and the loop size (cross-sectional diameter) is 1. 4 mm. Moreover, the slit 4 is provided in the side surface of the probe 3, and the width | variety is 0.2 mm.

図5は、各導体に流すテスト電流の値を示す表である。電流モードとして、所望信号レベルを評価するコモンモード(C0)と、不要信号レベルを評価するディファレンシャルモード(D1〜D6)とを設けた。電流値の単位は相対値で示す。電流値は各モードにおいて、エネルギーが同じとなるように、各導体に流れる電流の自乗和が1となる値に決めた。コモンモードC0では、簡単のために全ての導体に同一方向に同一電流を流す場合とした。コモンモードC0を評価することで、電磁ノイズに対する解析能力を評価することができる。一方ディファレンシャルモードでは、一部の導体に往復方向の電流が流れる場合を想定している。例えばモードD1では、導体22に往路電流、導体23に復路電流を流し、各モードD1〜D6では、電流を流す導体の組み合わせを変えている。ディファレンシャルモードでは往復方向の電流となるので、いずれも同一方向の総電流はゼロとなり、本来電磁ノイズの発生には寄与しない。従って、ディファレンシャルモードを評価することで、不要な信号がどれほど含まれるかを把握することができる。   FIG. 5 is a table showing values of test currents flowing through the conductors. As the current mode, a common mode (C0) for evaluating a desired signal level and a differential mode (D1 to D6) for evaluating an unnecessary signal level are provided. The unit of current value is expressed as a relative value. The current value was determined to be a value at which the sum of squares of the currents flowing through the conductors was 1 so that the energy was the same in each mode. In the common mode C0, for the sake of simplicity, the same current is supplied to all conductors in the same direction. By evaluating the common mode C0, it is possible to evaluate the analysis capability for electromagnetic noise. On the other hand, in the differential mode, it is assumed that a current in a reciprocating direction flows through some conductors. For example, in mode D1, the forward current is passed through the conductor 22 and the return current is passed through the conductor 23. In each of the modes D1 to D6, the combination of conductors through which the current is passed is changed. In the differential mode, since the current is in the reciprocating direction, the total current in the same direction is zero in any case, and does not contribute to the generation of electromagnetic noise. Therefore, it is possible to grasp how much unnecessary signals are included by evaluating the differential mode.

図6は、図4の測定プローブによる測定結果を示す図であり、図5の各電流モードについて示す。縦軸に誘起電圧(相対値)を、横軸に周波数を示す。
電流モードがコモンモードC0での測定レベルを基準にすると、ディファレンシャルモードの測定レベルはいずれも基準レベルより20dB以上低くなっている。ディファレンシャルモードの中でモードD3のレベルが他より高いのは、電流分布の偏りが大きいためと考えられる。よって、所望信号(コモンモード電流)を測定する際、不要信号(ディファレンシャルモード電流)のレベルは十分低く、障害となることはなく十分な精度が得られることが分かる。
FIG. 6 is a diagram showing measurement results obtained by the measurement probe of FIG. 4 and shows each current mode of FIG. The vertical axis represents the induced voltage (relative value), and the horizontal axis represents the frequency.
When the current mode is based on the measurement level in the common mode C0, the differential mode measurement level is 20 dB or more lower than the reference level. The reason why the level of the mode D3 is higher than the others in the differential mode is considered to be because the current distribution is large. Therefore, it can be seen that when measuring the desired signal (common mode current), the level of the unnecessary signal (differential mode current) is sufficiently low, and sufficient accuracy can be obtained without causing an obstacle.

図7は、測定プローブの第2の例(実施例2)を示す図であり、ループアンテナを曲線状とした場合(図3)に相当する。(a)は正面図、(b)は側面図、(c)は正面寸法図、(d)は側面寸法図である。測定対象としての導体2は実施例1(図4)と同じで、複数の導体21〜27からなる多芯ケーブルを想定する。   FIG. 7 is a diagram showing a second example (Example 2) of the measurement probe, and corresponds to a case where the loop antenna is curved (FIG. 3). (A) is a front view, (b) is a side view, (c) is a front dimension diagram, and (d) is a side dimension diagram. The conductor 2 as the measurement target is the same as that of the first embodiment (FIG. 4), and a multicore cable including a plurality of conductors 21 to 27 is assumed.

本例の測定プローブ3は円弧状であり、その長さは導体21〜27の全体をカバーするものとし、導体2からの最大距離(高さ)は5mm、ループの大きさ(断面直径)は1.4mmとした。またプローブ3の側面にはスリット4を設け、その幅は0.2mmである。   The measurement probe 3 of this example is arcuate, and its length covers the entire conductors 21 to 27. The maximum distance (height) from the conductor 2 is 5 mm, and the size of the loop (cross-sectional diameter) is It was set to 1.4 mm. Moreover, the slit 4 is provided in the side surface of the probe 3, and the width | variety is 0.2 mm.

図8は、図7の測定プローブによる測定結果を示す図であり、図5の各電流モードについて示す。縦軸に誘起電圧(相対値)を、横軸に周波数を示す。この場合も、コモンモードC0での測定レベルに対し、ディファレンシャルモードの測定レベルはいずれも20dB以上低いレベルとなっている。特にモードD4,D6においては、実施例1の結果(図6)よりも低下しており、ループアンテナを曲線状にした効果と考えられる。   FIG. 8 is a diagram showing a measurement result by the measurement probe of FIG. 7, and shows each current mode of FIG. The vertical axis represents the induced voltage (relative value), and the horizontal axis represents the frequency. Also in this case, the measurement level in the differential mode is 20 dB or more lower than the measurement level in the common mode C0. In particular, in modes D4 and D6, it is lower than the result of FIG. 1 (FIG. 6), which is considered to be an effect of making the loop antenna curved.

実施例3では、測定プローブの製造工程を説明する。ここでは、実施例2(図7)のプローブの場合について述べる。   In Example 3, the manufacturing process of the measurement probe will be described. Here, the case of the probe of Example 2 (FIG. 7) will be described.

図9は、測定プローブの製造工程の一例を示す図である。
S101では、測定対象となる導体の幅、プローブとの距離(高さ)、信号周波数等の測定条件を入力する。
S102では、導体に所定電流を流した時に周囲に発生する磁束の形状(曲率)を計算する。
FIG. 9 is a diagram illustrating an example of a manufacturing process of the measurement probe.
In S101, measurement conditions such as the width of the conductor to be measured, the distance (height) from the probe, and the signal frequency are input.
In S102, the shape (curvature) of the magnetic flux generated around when a predetermined current is passed through the conductor is calculated.

S103では、プローブの高さ位置における磁束の形状(曲率)から、プローブの形状を決定する。以上の計算は、例えばパソコン等を用いて実行し、プローブの形状を3Dデータとして保存する。
S104では、樹脂材等を用いてプローブの母体を立体的に造形する。例えば3Dプリンタを用いれば、パソコンに保存した3Dデータを設計図として、液状の樹脂に紫外線などを照射し少しずつ硬化させていくことで、立体物を作成することができる。
In S103, the shape of the probe is determined from the shape (curvature) of the magnetic flux at the height position of the probe. The above calculation is executed using, for example, a personal computer, and the probe shape is stored as 3D data.
In S104, the base of the probe is three-dimensionally formed using a resin material or the like. For example, if a 3D printer is used, a 3D object can be created by using 3D data stored in a personal computer as a design drawing and irradiating the liquid resin with ultraviolet rays or the like to gradually cure the resin.

S105では、プローブ母体の表面に印刷、蒸着等で金属導体を形成する。このとき、スリットとしてプローブの長手方向に金属導体の非形成部を残す。
S106では、プローブにコネクタ等を取り付けて完成させる。
上記の工程によれば、磁束の曲率に合わせた形状の測定プローブを簡単に作ることができる。
In S105, a metal conductor is formed on the surface of the probe matrix by printing, vapor deposition, or the like. At this time, a non-formed portion of the metal conductor is left as a slit in the longitudinal direction of the probe.
In S106, the connector is attached to the probe and completed.
According to said process, the measurement probe of the shape match | combined with the curvature of magnetic flux can be made easily.

以上述べた各実施例においては、被測定導体としてケーブル等を流れるコモンモード電流の測定について説明したが、測定対象はこれに限らず、幅広のバスバーや筐体表面を流れる電流を測定することもできる。   In each of the embodiments described above, the measurement of the common mode current flowing through the cable or the like as the conductor to be measured has been described, but the measurement target is not limited to this, and the current flowing through the wide bus bar or the housing surface may be measured. it can.

1…電流測定装置、
2…被測定導体、
3…測定プローブ、
4…スリット、
5…給電点、
6…同軸ケーブル、
7…コネクタ、
8…プリアンプ、
9…スペクトラムアナライザ、
10…パーソナルコンピュータ、
20…電流、
30…磁束。
1 ... Current measuring device,
2 ... conductor to be measured,
3 ... Measurement probe,
4 ... Slit,
5 ... Feed point,
6 ... Coaxial cable,
7 ... Connector,
8 ... Preamp,
9 ... Spectrum analyzer,
10 ... Personal computer,
20 ... Current,
30: Magnetic flux.

Claims (5)

幅広な被測定導体を流れる電流を測定する電流測定装置において、
前記被測定導体を流れる電流により発生する磁束を筒状のループアンテナにより誘起電圧として検出する測定プローブと、
該測定プローブにて検出した誘起電圧を電流値に換算する信号処理部とを備え、
前記測定プローブの長さは前記被測定導体の幅に略等しくしたことを特徴とする電流測定装置。
In a current measuring device that measures the current flowing through a wide conductor to be measured,
A measurement probe for detecting a magnetic flux generated by a current flowing through the conductor to be measured as an induced voltage by a cylindrical loop antenna;
A signal processing unit that converts the induced voltage detected by the measurement probe into a current value;
The current measuring apparatus is characterized in that the length of the measuring probe is substantially equal to the width of the conductor to be measured.
請求項1に記載の電流測定装置において、
前記測定プローブの長さは、前記被測定導体の幅より外側の部分で誘起される電圧により、前記被測定導体の幅の部分で発生した有効な検出電圧を低下させない長さとしたことを特徴とする電流測定装置。
The current measuring device according to claim 1,
The length of the measurement probe is such that the effective detection voltage generated in the width portion of the measured conductor is not reduced by the voltage induced in the portion outside the width of the measured conductor. Current measuring device.
請求項1に記載の電流測定装置において、
前記測定プローブには長手方向にスリットを形成し、該スリットは前記被測定導体から見て前記測定プローブの側面位置に設けてあり、
該スリットの長手方向の略中央位置には、前記ループアンテナからの誘起電圧を検出して前記信号処理部に伝送する給電点を設けたことを特徴とする電流測定装置。
The current measuring device according to claim 1,
The measurement probe is formed with a slit in the longitudinal direction, and the slit is provided at a side surface position of the measurement probe when viewed from the conductor to be measured.
A current measuring device characterized in that a feeding point for detecting an induced voltage from the loop antenna and transmitting it to the signal processing unit is provided at a substantially central position in the longitudinal direction of the slit.
請求項1に記載の電流測定装置において、
前記測定プローブの長手方向の形状は、前記被測定導体を流れる電流により発生する磁束の流線の曲率を有することを特徴とする電流測定装置。
The current measuring device according to claim 1,
The shape of the measurement probe in the longitudinal direction has a curvature of a streamline of magnetic flux generated by a current flowing through the conductor to be measured.
請求項1に記載の電流測定装置において、
前記被測定導体が複数の導体である場合、当該装置により各導体を流れる電流の総和値であるコモンモード電流を測定することを特徴とする電流測定装置。
The current measuring device according to claim 1,
When the conductor to be measured is a plurality of conductors, the apparatus measures a common mode current which is a total value of currents flowing through the conductors by the apparatus.
JP2013154617A 2013-07-25 2013-07-25 Current measuring device Pending JP2015025707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154617A JP2015025707A (en) 2013-07-25 2013-07-25 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154617A JP2015025707A (en) 2013-07-25 2013-07-25 Current measuring device

Publications (2)

Publication Number Publication Date
JP2015025707A true JP2015025707A (en) 2015-02-05
JP2015025707A5 JP2015025707A5 (en) 2016-02-04

Family

ID=52490479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154617A Pending JP2015025707A (en) 2013-07-25 2013-07-25 Current measuring device

Country Status (1)

Country Link
JP (1) JP2015025707A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102925U (en) * 1972-03-06 1973-12-03
JPS5652903A (en) * 1979-10-04 1981-05-12 Nippon Telegr & Teleph Corp <Ntt> Loop antenna
JPH01321373A (en) * 1988-06-24 1989-12-27 Mitsubishi Electric Corp Highly accurate current sensor
JPH0868837A (en) * 1994-08-30 1996-03-12 Nec Corp Apparatus for measuring high frequency field distribution in the vicinity of cable
JP2002040057A (en) * 2000-07-28 2002-02-06 Miyachi Technos Corp Current detection coil and current detection method
JP2009002788A (en) * 2007-06-21 2009-01-08 Panasonic Corp Electromagnetic wave measuring method and electromagnetic wave measuring device
JP2011220952A (en) * 2010-04-14 2011-11-04 Toshiba Toko Meter Systems Co Ltd Current detection device and watt-hour meter using the same
US20120294043A1 (en) * 2011-05-17 2012-11-22 Juds Mark A Parasitic power supply and sensor apparatus including a power supply

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102925U (en) * 1972-03-06 1973-12-03
JPS5652903A (en) * 1979-10-04 1981-05-12 Nippon Telegr & Teleph Corp <Ntt> Loop antenna
JPH01321373A (en) * 1988-06-24 1989-12-27 Mitsubishi Electric Corp Highly accurate current sensor
JPH0868837A (en) * 1994-08-30 1996-03-12 Nec Corp Apparatus for measuring high frequency field distribution in the vicinity of cable
JP2002040057A (en) * 2000-07-28 2002-02-06 Miyachi Technos Corp Current detection coil and current detection method
JP2009002788A (en) * 2007-06-21 2009-01-08 Panasonic Corp Electromagnetic wave measuring method and electromagnetic wave measuring device
JP2011220952A (en) * 2010-04-14 2011-11-04 Toshiba Toko Meter Systems Co Ltd Current detection device and watt-hour meter using the same
US20120294043A1 (en) * 2011-05-17 2012-11-22 Juds Mark A Parasitic power supply and sensor apparatus including a power supply

Similar Documents

Publication Publication Date Title
O’Donoghue et al. Catheter position tracking system using planar magnetics and closed loop current control
RU170772U1 (en) Device for evaluating the effectiveness of shielding electromagnetic radiation
CN105737727B (en) A kind of probe and current vortex sensor of current vortex sensor
Tenbohlen et al. Frequency range of UHF PD measurements in power transformers
CN205263204U (en) Transient state electric -field sensor
CN204008811U (en) A kind of poor anti-interference fraction current sensor chip
US20150168564A1 (en) Scintillating Fiber Dosimeter for Magnetic Resonance Imaging Enviroment
US7239133B1 (en) Methods and systems for controlling the temperature stability of an inductor
CN101183147A (en) Precision testing system of electrical energy meter electricity quick transient impulse group interference test
CN103344670B (en) Crude oil water content pipe external pelivimetry method and device
CN103605147B (en) Based on assay method and the system of the multi-dimensional electronic beam energy density of edge integration
JP2020513105A (en) Measuring method of current intensity in conductor
KR20120070789A (en) Apparatus and method for near field scan calibration
WO2013145928A1 (en) Current detection apparatus and current detection method
JP2015025707A (en) Current measuring device
CN111856345A (en) Broadband magnetic field sensor device and method for measuring impulse current
US8129989B2 (en) Electromagnetic field measuring apparatus and method therefor
CN203930030U (en) Transient magnetic field differential transducer
RU2649092C1 (en) Device for evaluating the effectiveness of electromagnetic emissions shielding
CN204116582U (en) Transient magnetic field differential transducer
CN206422964U (en) A kind of circuit for eliminating displacement current in triaxial cable circuit
WO2015037740A1 (en) Probe and probe card
CN109239469A (en) The device and method for detecting magnetic shielding material Magnetic Shielding Effectiveness under downfield
JP2011017535A (en) Distant electromagnetic field noise measuring method and device
JP2014219320A (en) Current measuring apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170425