JP2015025583A - Heat pump hot water supply system - Google Patents

Heat pump hot water supply system Download PDF

Info

Publication number
JP2015025583A
JP2015025583A JP2013154017A JP2013154017A JP2015025583A JP 2015025583 A JP2015025583 A JP 2015025583A JP 2013154017 A JP2013154017 A JP 2013154017A JP 2013154017 A JP2013154017 A JP 2013154017A JP 2015025583 A JP2015025583 A JP 2015025583A
Authority
JP
Japan
Prior art keywords
defrosting
heat pump
hot water
control
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013154017A
Other languages
Japanese (ja)
Other versions
JP6142711B2 (en
Inventor
岸本 知樹
Tomoki Kishimoto
知樹 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2013154017A priority Critical patent/JP6142711B2/en
Publication of JP2015025583A publication Critical patent/JP2015025583A/en
Application granted granted Critical
Publication of JP6142711B2 publication Critical patent/JP6142711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump hot water supply system capable of finding occurrence of a failure in a defrosting on-off valve as early as possible without adding new means such as an operation switch.SOLUTION: Before executing a normal operation control to boil water by actuation of a heat pump, a defrosting solenoid valve check control (SUB1, SUB3) is executed as an initial control to force a state of a defrosting solenoid valve to be switched over between an open state and a closed state by turning on power. In a normal operation, upon satisfaction of a condition for starting defrosting an evaporator, high-temperature refrigerant is directly supplied via a bypass passage from a compressor to the evaporator to defrost the evaporator by switching the state of the defrosting solenoid valve to the open state. The initial control is executed to switch the state of the defrosting solenoid valve over between the open state and the closed state regardless of whether the defrosting start condition is satisfied. It is thereby possible to confirm whether the defrosting solenoid valve normally operates in the open/closed state depending on presence/absence of a valve opening/closing sound.

Description

本発明は、ヒートポンプ給湯装置に関し、特に除霜運転を行うための除霜用電磁開閉弁が正常に開閉作動するか否かについて早期に確認し得るようにする技術に係る。   The present invention relates to a heat pump hot water supply apparatus, and more particularly to a technique that enables early confirmation as to whether or not a defrosting electromagnetic on-off valve for performing a defrosting operation normally opens and closes.

従来、圧縮機、凝縮器、減圧手段及び蒸発器を冷媒循環配管で順に接続した冷媒循環回路と、給水ポンプにより前記凝縮器に給水した水を前記圧縮機により圧縮された高圧冷媒で目標沸き上げ温度まで熱交換加熱して給湯に利用する給湯回路とを備えたヒートポンプ給湯装置が知られている。かかるヒートポンプ給湯装置では、通常、外気温が低い時期には蒸発熱交換器に着霜してしまい、熱交換し得なくなるため、蒸発器に着いた霜を溶かすための除霜運転を行う必要がある。このような除霜運転を可能にするために、圧縮機の吐出側から分岐させて凝縮器や減圧手段をバイパスさせて蒸発器の入口側に合流するバイパス路を設けるとともに、このバイパス路に除霜用電磁弁を介装させ、除霜が必要なときには除霜用電磁弁を開作動させることにより圧縮機から高温の冷媒を蒸発器に導入して霜を溶かすことができるようにされている(例えば特許文献1の段落0071を参照)。   Conventionally, a refrigerant circulation circuit in which a compressor, a condenser, a pressure reducing means, and an evaporator are connected in order by a refrigerant circulation pipe, and water supplied to the condenser by a feed water pump is heated to a target with a high-pressure refrigerant compressed by the compressor. 2. Description of the Related Art A heat pump hot water supply apparatus that includes a hot water supply circuit that is used for hot water supply by heat exchange heating to temperature is known. In such a heat pump hot water supply device, the evaporative heat exchanger usually frosts at a time when the outside air temperature is low, and heat exchange cannot be performed. Therefore, it is necessary to perform a defrosting operation to melt the frost attached to the evaporator. is there. In order to enable such a defrosting operation, a bypass path is provided that branches from the discharge side of the compressor, bypasses the condenser and the decompression means, and joins to the inlet side of the evaporator. A defrosting solenoid valve is interposed, and when defrosting is required, the defrosting solenoid valve is opened so that a high-temperature refrigerant can be introduced from the compressor into the evaporator to melt the frost. (See, for example, paragraph 0071 of Patent Document 1).

特許第3925433号公報Japanese Patent No. 3925433

しかしながら、従来のヒートポンプ給湯装置では、除霜用電磁弁が故障していたとしても、その故障発生を早期には発見することができないおそれがあり、対策の遅れが生じるおそれがあった。すなわち、除霜運転は例えば外気温が所定の低温状態にあり、かつ、蒸発器の温度が所定温度以下まで下がったことなどの除霜運転開始条件が成立して初めて実行されるものであるため、それまでは除霜用電磁弁は閉状態に維持されることになる。このため、たとえ開故障状態(開作動制御しても弁が閉じたままに固着して開かないような故障状態)に陥っていたとしても、除霜運転開始条件が成立しなければ、開作動制御されず、この結果、除霜用電磁弁について故障発生の発見が遅れてしまうことになる。しかも、夏場であれば着霜自体が起こり難く、故障発見はますます遅れることになる。   However, in the conventional heat pump hot water supply apparatus, even if the defrosting solenoid valve is out of order, the occurrence of the failure may not be detected at an early stage, which may cause a delay in countermeasures. That is, the defrosting operation is executed only when the defrosting operation start condition is established, for example, the outside air temperature is in a predetermined low temperature state and the temperature of the evaporator is lowered to a predetermined temperature or less. Until then, the defrosting solenoid valve is kept closed. For this reason, even if it is in an open failure state (a failure state in which the valve is stuck and does not open even if the opening operation is controlled), if the defrosting operation start condition is not satisfied, the opening operation is not performed. As a result, the detection of the occurrence of a failure in the defrosting solenoid valve is delayed. Moreover, frost formation is unlikely to occur in summer, and failure detection will be delayed more and more.

対策として、除霜用電磁弁を制御とは切り離して開閉切換するための操作スイッチを設け、この操作スイッチのONにより除霜用電磁弁を独立して開閉切換し得るようにすることも考えられるが、かかる操作スイッチを設けても操作し難かったり、コスト増大を招いたりする。すなわち、ヒートポンプ部分が通常は屋外設置であり、筐体内に保護されている制御基板上に操作スイッチを設けても操作し難くなる一方、所定の電装により操作し易い位置に操作スイッチを設けるようにすると、ますますコスト増大を招くことになる。   As a countermeasure, it is conceivable to provide an operation switch for switching the opening / closing of the defrosting electromagnetic valve from the control so that the defrosting electromagnetic valve can be opened / closed independently by turning on the operation switch. However, even if such an operation switch is provided, the operation is difficult or the cost is increased. In other words, the heat pump part is usually installed outdoors, and even if an operation switch is provided on the control board protected in the housing, it becomes difficult to operate, but an operation switch is provided at a position where it can be easily operated by predetermined electrical equipment. As a result, the cost increases.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、操作スイッチ等の手段を付加することなく、除霜用の開閉弁の故障発生を早期に発見し得るようにしたヒートポンプ給湯装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to detect the occurrence of a failure in the defrosting on-off valve at an early stage without adding means such as an operation switch. An object of the present invention is to provide a heat pump hot water supply apparatus.

上記目的を達成するために、本発明では、圧縮機、凝縮器、減圧手段、及び、蒸発器を冷媒循環配管で順に接続したヒートポンプユニットと、前記圧縮機から吐出される冷媒を前記蒸発器に対し前記減圧手段をバイパスして供給するバイパス路と、このバイパス路に介装された常閉設定の開閉制御弁と、前記蒸発器に対する除霜開始条件の成立により前記開閉制御弁を開変換させて圧縮機からの高温冷媒を蒸発器に導入させる除霜運転制御のための制御手段とを備えたヒートポンプ給湯装置を対象にして次の特定事項を備えることとした。すなわち、前記制御手段として、前記除霜開始条件の成立・非成立の如何に拘わらず、電源投入時に前記開閉制御弁を開閉変換させる初期制御を行う構成とした(請求項1)。   In order to achieve the above object, in the present invention, a compressor, a condenser, a decompression means, and a heat pump unit in which an evaporator is connected in order by a refrigerant circulation pipe, and refrigerant discharged from the compressor are supplied to the evaporator. On the other hand, a bypass path that bypasses and supplies the pressure reducing means, a normally-closed opening / closing control valve interposed in the bypass path, and the opening / closing control valve is opened when the defrosting start condition for the evaporator is satisfied. Thus, the following specific matters are provided for a heat pump hot water supply apparatus including a control means for defrosting operation control for introducing a high-temperature refrigerant from a compressor into an evaporator. In other words, the control means is configured to perform initial control for opening / closing conversion of the open / close control valve when the power is turned on regardless of whether the defrost start condition is satisfied or not (claim 1).

本発明の場合、初期制御の実行により、電源投入されると、まず最初に開閉制御弁が強制的に開閉変換されるため、その弁開閉音の有無により開閉制御弁が正常に開閉作動するか否かを確認することが可能となる。すなわち、例えば、装置の設置時やメンテナンス時に電源を投入すれば、除霜開始条件の成立を待たずに、開閉制御弁が正常に開閉作動するか否かを確認することができる。つまり、弁開閉音がすれば正常に開閉動作していると判断し得るし、弁開閉音がしなければ弁が閉状態又は開状態に固着して異常状態に陥っていると判断し得ることになる。以上より、操作スイッチ等の手段を新たに付加することなく、除霜用の開閉制御弁の故障発生を早期に発見することが可能となる。   In the case of the present invention, when the power is turned on by executing the initial control, first, the open / close control valve is forcibly converted to open / close first. It becomes possible to confirm whether or not. That is, for example, if the power is turned on at the time of installation or maintenance of the apparatus, it is possible to confirm whether the open / close control valve normally opens and closes without waiting for the defrost start condition to be satisfied. In other words, it can be determined that the valve is operating normally if there is a valve opening / closing sound, and it can be determined that the valve is stuck in the closed state or the open state and is in an abnormal state if there is no valve opening / closing sound. become. As described above, it is possible to detect the occurrence of a failure of the defrosting on / off control valve at an early stage without newly adding means such as an operation switch.

本発明のヒートポンプ給湯装置において、制御手段として、電源投入後、所定の設定時間が経過すると、前記の初期制御を行わない構成とすることができる(請求項2)。このようにすることにより、設置当初には電源投入により開閉制御弁の強制開閉変換が実行されるため、その開閉制御弁が正常に開閉動作する否かの確認を弁開閉音の発生により早期に行うことが可能となる。一方、その早期確認の後に所定の設定時間が経過すれば、開閉制御弁の強制開閉変換は実行されず、再度の電源投入によっても弁開閉音は生じないことになる。これにより、ユーザーに対し例えば電源投入の度に何か音がする等の疑問を抱かせたり、故障ではないか等という不安感を招いたり、というような事態の発生を回避することができるようになる。   In the heat pump hot water supply apparatus of the present invention, the control means may be configured not to perform the initial control when a predetermined set time elapses after the power is turned on (Claim 2). By doing so, the forced opening / closing conversion of the open / close control valve is executed at the beginning of the installation by turning on the power. Can be done. On the other hand, if a predetermined set time elapses after the early confirmation, the forced open / close conversion of the open / close control valve is not executed, and no valve open / close sound is generated even when the power is turned on again. As a result, it is possible to avoid the occurrence of situations such as causing the user to have questions such as making a sound every time the power is turned on, or causing anxiety that it is a malfunction. become.

以上、説明したように、本発明のヒートポンプ給湯装置によれば、初期制御の実行により、電源投入されると、まず最初に開閉制御弁が強制的に開閉変換されるため、その弁開閉音の有無により開閉制御弁が正常に開閉作動するか否かを確認することができる。すなわち、装置の設置時やメンテナンス時に電源を投入すれば、除霜開始条件の成立を待たずに、開閉制御弁が正常に開閉作動するか否かを確認することができるようになる。このため、操作スイッチ等の手段を新たに付加することなく、除霜用の開閉制御弁の故障発生を早期に発見することができるようになる。   As described above, according to the heat pump water heater of the present invention, when the power is turned on by the execution of the initial control, the open / close control valve is first forcibly opened / closed. Whether or not the opening / closing control valve normally opens and closes can be confirmed based on the presence or absence. That is, if the power is turned on at the time of installation or maintenance of the apparatus, it is possible to check whether the open / close control valve normally opens and closes without waiting for the defrost start condition to be satisfied. For this reason, it becomes possible to detect the occurrence of a failure of the defrosting on / off control valve at an early stage without newly adding means such as an operation switch.

請求項2のヒートポンプ給湯装置によれば、制御手段として、電源投入後、所定の設定時間が経過すると、前記の初期制御を行わない構成とすることにより、設置当初には電源投入により開閉制御弁の強制開閉変換が実行されるため、その開閉制御弁が正常に開閉動作するか否かの確認を弁開閉音の発生により早期に行うことができる一方、その早期確認の後に所定の設定時間が経過すれば、開閉制御弁の強制開閉変換は実行されず、再度の電源投入によっても弁開閉音は生じないようにすることができる。これにより、ユーザーに対し例えば電源投入の度に何か音がする等の疑問を抱かせたり、故障ではないか等という不安感を招いたり、というような事態の発生を回避することができるようになる。   According to the heat pump hot water supply apparatus of the second aspect, the control means is configured such that the initial control is not performed when a predetermined set time has elapsed after the power is turned on. Since the forced open / close conversion is executed, it is possible to confirm whether the open / close control valve normally opens / closes by the generation of the valve open / close sound. When the time has elapsed, the forced open / close conversion of the open / close control valve is not executed, and the valve open / close sound can be prevented from being generated even when the power is turned on again. As a result, it is possible to avoid the occurrence of situations such as causing the user to have questions such as making a sound every time the power is turned on, or causing anxiety that it is a malfunction. become.

本発明の実施形態に係るヒートポンプ給湯装置の模式図である。It is a schematic diagram of the heat pump hot-water supply apparatus which concerns on embodiment of this invention. 図1のヒートポンプ給湯装置の設置状態の例を示す正面図である。It is a front view which shows the example of the installation state of the heat pump hot-water supply apparatus of FIG. ヒートポンプ給湯装置の運転制御に係る基本制御フローチャートである。It is a basic control flowchart concerning operation control of a heat pump hot-water supply apparatus. 第1実施形態の除霜電磁弁チェック制御のフローチャートである。It is a flowchart of the defrost electromagnetic valve check control of 1st Embodiment. 通常運転制御の例を示すフローチャートである。It is a flowchart which shows the example of normal driving | operation control. 第2実施形態の除霜電磁弁チェック制御のフローチャートである。It is a flowchart of the defrost electromagnetic valve check control of 2nd Embodiment. 第2実施形態に適用される通常運転制御の例を示すフローチャートである。It is a flowchart which shows the example of the normal driving control applied to 2nd Embodiment.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2は、本発明の実施形態に係るヒートポンプ給湯装置を示す。このヒートポンプ給湯装置は、ヒートポンプユニット1と貯湯ユニット2とを組み合わせたものであり、冷凍サイクルを利用して貯湯ユニット2の水を熱交換加熱し得るようになっている。ヒートポンプユニット1は、図1に示すように、圧縮機11と、凝縮熱交換器(凝縮器)12と、減圧手段としての膨張弁13と、蒸発熱交換器(蒸発器)14とを冷媒循環配管15で順に接続したものである。ヒートポンプユニット1に循環させる冷媒としては、プロパン等のHC系冷媒や、CO2などの適宜のものを採用することができる。又、貯湯ユニット2は、貯湯タンク21と、貯湯タンク21内に貯留された湯水を前記凝縮熱交換器との間で循環させる水循環配管22と、貯湯タンク21の底部から水を前記凝縮熱交換器12へ圧送し、加熱後に凝縮熱交換器12から貯湯タンク21の頂部へと導く給水ポンプ23とを備えて構成されている。そして、これらヒートポンプユニット1と貯湯ユニット2とがコントローラ3,3aにより作動制御されて、凝縮熱交換器12において水が目標沸き上げ温度に加熱されて貯湯タンク21に貯湯されるようになっている。なお、図2に例示したものに限らず、ヒートポンプユニット1と貯湯ユニット2とを1つの筐体に収容することもできる。   1 and 2 show a heat pump hot water supply apparatus according to an embodiment of the present invention. This heat pump hot-water supply device is a combination of a heat pump unit 1 and a hot water storage unit 2, and can heat and heat the water in the hot water storage unit 2 using a refrigeration cycle. As shown in FIG. 1, the heat pump unit 1 circulates a refrigerant through a compressor 11, a condensation heat exchanger (condenser) 12, an expansion valve 13 as a decompression unit, and an evaporation heat exchanger (evaporator) 14. The pipes 15 are connected in order. As the refrigerant to be circulated in the heat pump unit 1, an appropriate HC refrigerant such as propane or CO 2 can be employed. The hot water storage unit 2 includes a hot water storage tank 21, a water circulation pipe 22 that circulates hot water stored in the hot water storage tank 21, and the condensation heat exchanger, and water from the bottom of the hot water storage tank 21 for the condensation heat exchange. The water supply pump 23 is pumped to the vessel 12 and led from the condensation heat exchanger 12 to the top of the hot water storage tank 21 after heating. The heat pump unit 1 and the hot water storage unit 2 are controlled by the controllers 3 and 3a so that water is heated to the target boiling temperature in the condensation heat exchanger 12 and stored in the hot water storage tank 21. . In addition, it is not restricted to what was illustrated in FIG. 2, The heat pump unit 1 and the hot water storage unit 2 can also be accommodated in one housing | casing.

ヒートポンプユニット1での動作を簡単に説明すると、圧縮機11で圧縮されることで高温の冷媒が圧縮機11から冷媒循環配管15に吐出され、その吐出温度が吐出温度センサ16により検出されて検出吐出温度がコントローラ3に出力されることになる。凝縮熱交換器12は、冷媒循環配管15の一部が内部に通される一方、逆方向から水循環配管22の一部が内部に通されて、両者間で熱交換するようになっている。そして、冷媒循環配管15に圧縮機11から吐出された高温の冷媒と、給水ポンプ23により貯湯タンク21の底部から供給された水とが熱交換され、水が熱交換加熱により湯となり、その熱交換により熱が奪われた冷媒は凝縮する。膨張弁13は凝縮熱交換器12で凝縮された冷媒を減圧するものである。この膨張弁13は、その開度を作動制御量としてコントローラ3により作動制御される。蒸発熱交換器14は、その回転作動により外気を送風するファン14aを備え、この外気と、膨張弁13により減圧された冷媒とを熱交換させることで、冷媒を蒸発させるようになっている。この蒸発熱交換器14を出た直後の冷媒温度が蒸発熱交換器温度として蒸発熱交換器出口温度センサ17により検出され、検出された蒸発熱交換器出口温度がコントローラ3に出力されることになる。そして、蒸発熱交換器14での熱交換により蒸発された冷媒が再び前記の圧縮機11において圧縮されて高温状態になる。   The operation of the heat pump unit 1 will be briefly described. When compressed by the compressor 11, high-temperature refrigerant is discharged from the compressor 11 to the refrigerant circulation pipe 15, and the discharge temperature is detected and detected by the discharge temperature sensor 16. The discharge temperature is output to the controller 3. The condensation heat exchanger 12 is configured such that a part of the refrigerant circulation pipe 15 is passed through the inside, and a part of the water circulation pipe 22 is passed through the inside from the reverse direction to exchange heat therebetween. Then, the high-temperature refrigerant discharged from the compressor 11 to the refrigerant circulation pipe 15 and the water supplied from the bottom of the hot water storage tank 21 by the water supply pump 23 are subjected to heat exchange, and the water is converted into hot water by heat exchange heating. The refrigerant whose heat has been removed by the exchange condenses. The expansion valve 13 depressurizes the refrigerant condensed in the condensation heat exchanger 12. The operation of the expansion valve 13 is controlled by the controller 3 using the opening degree as an operation control amount. The evaporative heat exchanger 14 includes a fan 14a that blows outside air by its rotational operation, and heat is exchanged between the outside air and the refrigerant decompressed by the expansion valve 13, thereby evaporating the refrigerant. The refrigerant temperature immediately after leaving the evaporating heat exchanger 14 is detected by the evaporating heat exchanger outlet temperature sensor 17 as the evaporating heat exchanger temperature, and the detected evaporating heat exchanger outlet temperature is output to the controller 3. Become. Then, the refrigerant evaporated by heat exchange in the evaporating heat exchanger 14 is compressed again in the compressor 11 and becomes a high temperature state.

又、前記の圧縮機11から吐出されて凝縮熱交換器12に入る前の冷媒を、凝縮熱交換器12及び膨張弁13をバイパスさせて蒸発熱交換器14の入口側に直接に供給するバイパス路18が配設されている。バイパス路18には除霜用の開閉制御弁として除霜電磁弁19が介装され、この除霜電磁弁19は除霜運転時を除く通常運転時には閉状態に維持される一方、後述の除霜運転時には開変換制御することで、圧縮機11から吐出された高温の冷媒を、バイパス路18を通して蒸発熱交換器14に対し直接に供給し得るようになっている。なお、蒸発熱交換器14の除霜運転のためのバイパス路としては、前記の他に、例えば凝縮熱交換器12の出口側から分岐して蒸発熱交換器14の入口側に連通させるバイパス路、つまり膨脹弁13のみをバイパスするバイパス路を採用し、このバイパス路に対し開閉制御弁としての除霜電磁弁を介装させることができ、この除霜電磁弁に対し以下の実施形態を適用することもできる。   Further, the bypass that supplies the refrigerant discharged from the compressor 11 and before entering the condensation heat exchanger 12 directly to the inlet side of the evaporation heat exchanger 14 by bypassing the condensation heat exchanger 12 and the expansion valve 13. A path 18 is provided. The bypass path 18 is provided with a defrosting electromagnetic valve 19 as an opening / closing control valve for defrosting, and this defrosting electromagnetic valve 19 is kept closed during normal operation except during defrosting operation. By performing open conversion control during the frost operation, the high-temperature refrigerant discharged from the compressor 11 can be directly supplied to the evaporating heat exchanger 14 through the bypass 18. In addition, as a bypass path for the defrosting operation of the evaporative heat exchanger 14, for example, a bypass path branched from the outlet side of the condensation heat exchanger 12, for example, and communicated with the inlet side of the evaporative heat exchanger 14 That is, a bypass path that bypasses only the expansion valve 13 is adopted, and a defrosting electromagnetic valve as an open / close control valve can be interposed in the bypass path, and the following embodiment is applied to the defrosting electromagnetic valve. You can also

一方、貯湯ユニット2では、給水ポンプ23の作動により貯湯タンク21内の水が凝縮熱交換器12に圧送される際に、凝縮熱交換器12の入口前で入水温度センサ24により熱交換加熱前の入水温度が検出され、この検出入水温度がコントローラ3に出力されるようになっている。又、凝縮熱交換器12を通過することで熱交換加熱されて出湯した際に、凝縮熱交換器12の出口側で出湯温度センサ25により沸き上げ温度が検出され、この検出沸き上げ温度がコントローラ3に出力されるようになっている。併せて、外気温が外気温センサ26により検出されて、コントローラ3に出力されるようになっている。凝縮熱交換器12で加熱された湯は貯湯タンク21の頂部側に戻されて貯留され、以後の給湯に利用されることになる。給湯により貯湯タンク21内の湯水量が減れば、その分だけ給水されるようになっている。   On the other hand, in the hot water storage unit 2, when the water in the hot water storage tank 21 is pumped to the condensation heat exchanger 12 by the operation of the water supply pump 23, before the heat exchange heating by the incoming water temperature sensor 24 in front of the inlet of the condensation heat exchanger 12. The detected incoming water temperature is output to the controller 3. In addition, when the hot water is heated by heat exchange by passing through the condensation heat exchanger 12, the boiling temperature is detected by the hot water temperature sensor 25 on the outlet side of the condensation heat exchanger 12, and the detected boiling temperature is determined by the controller. 3 is output. In addition, the outside air temperature is detected by the outside air temperature sensor 26 and output to the controller 3. The hot water heated by the condensation heat exchanger 12 is returned to the top side of the hot water storage tank 21 and stored, and is used for subsequent hot water supply. If the amount of hot water in the hot water storage tank 21 is reduced by hot water supply, water is supplied accordingly.

以上のヒートポンプ給湯装置の作動制御は、MPUやメモリ等を備え予め所定のプログラムが記録されたコントローラ3又は3aにより実行されるようになっている。コントローラ3,3aは、図3に示すように、電源投入により、初期制御として除霜電磁弁チェック制御SUB1又はSUB3が除霜電磁弁チェック制御手段により実行され、次いで、通常運転制御SUB2又はSUB4が通常運転制御手段により実行されるようになっている。通常運転制御SUB2又はSUB4は、例えば、目標沸き上げ温度を目標温度として凝縮熱交換器12により貯湯ユニット2側の水を加熱するように沸き上げ制御を行う一方、除霜運転開始条件の成立により蒸発熱交換器14を対象にして除霜運転制御を行うようになっている。   The above-described operation control of the heat pump water heater is performed by the controller 3 or 3a that includes an MPU, a memory, and the like and in which a predetermined program is recorded in advance. As shown in FIG. 3, when the controller 3 or 3a is turned on, the defrosting electromagnetic valve check control SUB1 or SUB3 is executed by the defrosting electromagnetic valve check control means as the initial control, and then the normal operation control SUB2 or SUB4 is executed. It is executed by normal operation control means. The normal operation control SUB2 or SUB4 performs, for example, boiling control so that the water on the hot water storage unit 2 side is heated by the condensation heat exchanger 12 with the target boiling temperature as the target temperature, while the defrosting operation start condition is satisfied. Defrosting operation control is performed for the evaporative heat exchanger 14.

<第1実施形態>
第1実施形態は、コントローラ3により、電源が投入されると、除霜電磁弁チェック制御SUB1が初期制御として実行され、次いで、通常運転制御SUB2が実行されるようになっている。除霜電磁弁チェック制御SUB1においては、電源投入されると、図4に示すように、閉状態にある除霜電磁弁19を一旦開変換した上で閉変換させて元の閉状態に戻すように動作制御する(ステップS11)。そして、通常運転制御SUB2に移行する。図5には、通常運転制御SUB2の一例を示している。まず、運転開始指令が出力されるまで待機し(ステップS21でNO)、運転開始指令が出力されれば(ステップS21でYES)、沸き上げ運転を開始する(ステップS22)。すなわち、前述の如く、貯湯ユニット2では給水ポンプ23を作動させて貯湯タンク21内の水を凝縮熱交換器12との間で循環させる一方、圧縮機11を作動させて高温高圧の冷媒を凝縮熱交換器12に供給し、凝縮熱交換器12において水を熱交換加熱させる。熱交換加熱により凝縮した冷媒は膨脹弁13で減圧されて膨脹し、蒸発熱交換器14において気化され、再度、圧縮機11で圧縮されて凝縮熱交換器12に循環供給される。目標沸き上げ温度まで沸き上げるためには、例えば、現在の運転時点での外気温センサ26による検出外気温、入水温度センサ24による検出入水温度、吐出温度センサ16による検出吐出温度や、目標沸き上げ温度等に基づいて、出湯温度センサ25による検出沸き上げ温度が目標沸き上げ温度になるように圧縮機11の回転数を変更制御したり、膨張弁13の開度を変更制御したり、あるいは、給水ポンプ23の循環流量を変更制御したり、することができる。
<First Embodiment>
In the first embodiment, when the controller 3 is turned on, the defrosting electromagnetic valve check control SUB1 is executed as initial control, and then the normal operation control SUB2 is executed. In the defrosting electromagnetic valve check control SUB1, when the power is turned on, as shown in FIG. 4, the defrosting electromagnetic valve 19 in the closed state is once converted to open and then converted back to the original closed state. The operation is controlled (step S11). And it transfers to normal operation control SUB2. FIG. 5 shows an example of the normal operation control SUB2. First, it waits until an operation start command is output (NO in step S21). If an operation start command is output (YES in step S21), a boiling operation is started (step S22). That is, as described above, in the hot water storage unit 2, the water supply pump 23 is operated to circulate the water in the hot water storage tank 21 between the condensation heat exchanger 12, while the compressor 11 is operated to condense the high-temperature and high-pressure refrigerant. The heat is supplied to the heat exchanger 12 and the water is heat-exchanged and heated in the condensation heat exchanger 12. The refrigerant condensed by heat exchange heating is decompressed and expanded by the expansion valve 13, vaporized in the evaporating heat exchanger 14, compressed again by the compressor 11, and circulated and supplied to the condensation heat exchanger 12. In order to boil up to the target boiling temperature, for example, the outside air temperature detected by the outside air temperature sensor 26 at the time of the current operation, the detected water inlet temperature detected by the water inlet temperature sensor 24, the detected discharge temperature detected by the discharge temperature sensor 16, and the target water heating Based on the temperature or the like, the rotational speed of the compressor 11 is changed and controlled so that the boiling temperature detected by the tapping temperature sensor 25 becomes the target boiling temperature, the opening degree of the expansion valve 13 is changed or controlled, or The circulating flow rate of the feed water pump 23 can be changed and controlled.

そして、沸き上げ運転を実行しつつ除霜開始条件が成立するか否かを監視し(ステップS23でNO)、除霜開始条件が成立すれば除霜運転制御を開始し(ステップS23でYES,S24)、通常運転への復帰条件が成立するまで除霜運転を実行する。除霜運転は、除霜電磁弁19を開変換することで、圧縮機11から吐出された高温の冷媒を凝縮熱交換器12や膨脹弁13をバイパスして蒸発熱交換器14に対しバイパス路18を通して直接供給し、この高温の冷媒で蒸発熱交換器14に着いた霜を溶かすようにする。この除霜運転の前後に、除霜電磁弁19を挟む系内の圧力調整のための作動制御(例えば膨脹弁13の作動制御)を加えることができる。   Then, whether or not the defrosting start condition is satisfied is monitored while performing the boiling operation (NO in step S23), and if the defrosting start condition is satisfied, the defrosting operation control is started (YES in step S23). S24) The defrosting operation is executed until the return condition to the normal operation is satisfied. In the defrosting operation, the defrosting electromagnetic valve 19 is opened and converted so that the high-temperature refrigerant discharged from the compressor 11 bypasses the condensation heat exchanger 12 and the expansion valve 13 and bypasses the evaporation heat exchanger 14. The frost attached to the evaporative heat exchanger 14 is melted with this high-temperature refrigerant. Before and after the defrosting operation, operation control for adjusting the pressure in the system sandwiching the defrosting electromagnetic valve 19 (for example, operation control of the expansion valve 13) can be added.

以上の沸き上げ運転や除霜運転(ステップS22〜S24)を運転停止指令が出力されるまで継続し(ステップS25でNO)、運転停止指令が出力されればリターンして待機状態に入る(ステップS21でNO)。なお、除霜開始条件として、蒸発熱交換器14の温度(例えば蒸発熱交換器出口温度センサ17により検出される蒸発熱交換器出口温度)が着霜により除霜が必要となる所定の設定温度以下まで低下したことを設定することができる。さらに、圧縮機11の検出吐出温度から目標沸き上げ温度を減じた差温が設定差温以下であることや、そのときの検出吐出温度の変化傾向が低下傾向であることなどを、除霜開始条件に加えても良い。又、図5の通常運転制御SUB2は通常運転制御の一例であり、これと異なる運転制御を採用することもできる。   The above-described boiling operation and defrosting operation (steps S22 to S24) are continued until the operation stop command is output (NO in step S25). If the operation stop command is output, the process returns and enters a standby state (step NO in S21). As a defrosting start condition, the temperature of the evaporative heat exchanger 14 (for example, the evaporative heat exchanger outlet temperature detected by the evaporative heat exchanger outlet temperature sensor 17) is a predetermined set temperature at which defrosting is required due to frost formation. It can be set that it has decreased to the following. Further, defrosting is started, for example, that the differential temperature obtained by subtracting the target boiling temperature from the detected discharge temperature of the compressor 11 is equal to or lower than the set differential temperature, or that the change trend of the detected discharge temperature at that time is decreasing. It may be added to the conditions. Further, the normal operation control SUB2 in FIG. 5 is an example of normal operation control, and different operation control can be adopted.

以上の第1実施形態の場合、除霜電磁弁チェック制御SUB1により、電源投入されると、まず最初に除霜電磁弁19が強制的に開閉変換されるため、その弁開閉音の有無により除霜電磁弁19が正常に開閉作動するか否かを確認することができる。すなわち、装置の設置時やメンテナンス時に電源を投入(例えば電源用のコンセントの差し込み操作)すれば、除霜開始条件の成立(除霜運転制御の開始)を待たずに、除霜電磁弁19が強制的に開閉変換されるため、除霜電磁弁19が正常に開閉作動するか否かを確認することができる。つまり、弁開閉音がすれば正常に開閉動作していると判断し得るし、弁開閉音がしなければ弁が閉状態に固着して異常状態に陥っていると判断し得る。以上より、操作スイッチ等の手段を新たに付加することなく、除霜用の除霜電磁弁19の故障発生を早期に発見することができるようになる。   In the case of the first embodiment described above, when power is turned on by the defrosting electromagnetic valve check control SUB1, the defrosting electromagnetic valve 19 is first forcibly opened and closed. It can be confirmed whether or not the frost electromagnetic valve 19 is normally opened and closed. That is, if the power is turned on at the time of installation or maintenance of the apparatus (for example, an operation of inserting a power outlet), the defrosting solenoid valve 19 does not wait for establishment of the defrosting start condition (start of defrosting operation control). Since it is forcibly opened and closed, it can be confirmed whether or not the defrosting electromagnetic valve 19 is normally opened and closed. That is, if there is a valve opening / closing sound, it can be determined that the valve is operating normally, and if there is no valve opening / closing sound, it can be determined that the valve is stuck in the closed state and is in an abnormal state. From the above, it becomes possible to detect a failure of the defrosting electromagnetic valve 19 for defrosting at an early stage without newly adding means such as an operation switch.

<第2実施形態>
第2実施形態は、コントローラ3aにより、電源が投入されると、除霜電磁弁チェック制御SUB3(図3参照)が初期制御として実行され、次いで、通常運転制御SUB4が実行されるようになっている。除霜電磁弁チェック制御SUB3においては、電源投入されると、図6に示すように、開閉要否フラグが「1」であるか「0」であるかを判定し(ステップS31)、開閉要否フラグが「1」であれば、第1実施形態の除霜電磁弁チェック制御SUB1と同様に、閉状態にある除霜電磁弁19を一旦開変換した上で閉変換させて元の閉状態に戻すように動作制御する(ステップS32)。なお、開閉要否フラグには「1」が初期設定されており、又、開閉要否フラグは電気的に書き換え可能な不揮発性メモリ(例えばEEPROM等)に記録され、ヒートポンプ給湯装置の電源が落とされても、開閉要否フラグの内容が消失してしまわないようにされている。一方、開閉要否フラグが「0」であれば、除霜電磁弁19の開閉変換(ステップS32)を行わずに、ステップS33に進み、開閉要否フラグを「0」から「1」に書き換えた上で、通常運転制御SUB4に移行する。
Second Embodiment
In the second embodiment, when power is turned on by the controller 3a, the defrosting electromagnetic valve check control SUB3 (see FIG. 3) is executed as initial control, and then the normal operation control SUB4 is executed. Yes. In the defrosting electromagnetic valve check control SUB3, when the power is turned on, as shown in FIG. 6, it is determined whether the opening / closing necessity flag is “1” or “0” (step S31). If the rejection flag is “1”, similarly to the defrosting electromagnetic valve check control SUB1 of the first embodiment, the defrosting electromagnetic valve 19 in the closed state is once converted to open and then converted to the original closed state. The operation is controlled to return to (step S32). The opening / closing necessity flag is initially set to “1”, and the opening / closing necessity flag is recorded in an electrically rewritable non-volatile memory (for example, EEPROM), and the heat pump water heater is turned off. Even if it is done, the contents of the opening / closing necessity flag are not lost. On the other hand, if the opening / closing necessity flag is “0”, the opening / closing conversion (step S32) of the defrosting electromagnetic valve 19 is not performed, the process proceeds to step S33, and the opening / closing necessity flag is rewritten from “0” to “1”. Then, the process proceeds to normal operation control SUB4.

第2実施形態の通常運転制御SUB4は、第1実施形態の通常運転制御SUB2に対し、電源投入時点から設定時間(例えば10時間)が経過したら開閉要否フラグを強制的に「1」から「0」に書き換える、という処理を加えるものである。実際の制御においては、通常運転制御のどのステップで開閉要否フラグの強制書き換え処理を入れるかは適宜決定するようにすれば良い。一例として図7に図示したものでは、まず最初に、電源投入から設定時間が経過したか否かを判定し(ステップS41)、設定時間が経過するまでは(ステップS41でNO)、第1実施形態で例示したような通常運転制御SUB2と同様の運転制御を実行する(ステップS43〜S47)。   The normal operation control SUB4 of the second embodiment compulsorily changes the opening / closing necessity flag from “1” to “normal operation control SUB2 of the first embodiment when a set time (for example, 10 hours) has elapsed since the power was turned on. A process of rewriting to “0” is added. In actual control, it may be determined as appropriate in which step of the normal operation control the forced rewriting process of the opening / closing necessity flag is performed. In the example shown in FIG. 7 as an example, first, it is determined whether or not a set time has elapsed since power-on (step S41), and until the set time has elapsed (NO in step S41), the first implementation is performed. The same operation control as the normal operation control SUB2 exemplified in the embodiment is executed (steps S43 to S47).

すなわち、運転開始指令が出力されるまで待機し(ステップS43でNO)、運転開始指令が出力されれば(ステップS43でYES)、沸き上げ運転を開始する(ステップS44)。そして、沸き上げ運転を実行しつつ除霜開始条件が成立するか否かを監視し(ステップS45でNO)、除霜開始条件が成立すれば除霜運転制御を開始し(ステップS45でYES,S46)、通常運転への復帰条件が成立するまで除霜運転を実行する。沸き上げ運転や除霜運転(ステップS44〜S47)を運転停止指令が出力されるまで継続し(ステップS47でNO)、運転停止指令が出力されればステップS41に戻り設定時間が経過したか否かの判定を繰り返し、未経過であれば待機状態に入る(ステップS43でNO)。   That is, it waits until the operation start command is output (NO in step S43), and if the operation start command is output (YES in step S43), the boiling operation is started (step S44). Then, it is monitored whether or not the defrosting start condition is satisfied while performing the boiling operation (NO in step S45), and if the defrosting start condition is satisfied, the defrosting operation control is started (YES in step S45). S46) The defrosting operation is executed until the return condition to the normal operation is satisfied. The boiling operation or the defrosting operation (steps S44 to S47) is continued until the operation stop command is output (NO in step S47), and if the operation stop command is output, the process returns to step S41 and whether or not the set time has elapsed. This determination is repeated, and if it has not elapsed, a standby state is entered (NO in step S43).

ステップS41で電源投入時点から設定時間が経過していれば(ステップS41でYES)、開閉要否フラグを「1」から「0」に強制的に書き直した上で、ステップS43〜S46の通常運転制御を実行する。従って、以後、電源が落とされて、その電源が再度投入されたとしても、除霜電磁弁19の強制開閉変換(ステップS32)は実行されずに、通常運転制御が実行される。   If the set time has elapsed since the power was turned on in step S41 (YES in step S41), the opening / closing necessity flag is forcibly rewritten from “1” to “0”, and the normal operation in steps S43 to S46 is performed. Execute control. Therefore, after that, even if the power is turned off and the power is turned on again, the normal operation control is executed without executing the forced open / close conversion (step S32) of the defrosting electromagnetic valve 19.

以上の第2実施形態では、設置当初には電源投入により除霜電磁弁19の強制開閉変換が実行されるため、第1実施形態と同様に、除霜電磁弁19が正常に開閉動作するか否かの確認を弁開閉音の発生により早期に行うことができる。一方、その早期確認の後に所定の設定時間が経過すれば、除霜電磁弁19の強制開閉変換は実行されず、再度の電源投入によっても弁開閉音は生じない。これにより、ユーザーに対し例えば電源投入の度に何か音がする等の疑問を抱かせたり、故障ではないか等という不安感を招いたり、というような事態の発生を回避することができるようになる。なお、電源投入から設定時間が経過した後であっても、メンテナンスのために除霜電磁弁19の開閉チェックをしたいときには、1回電源投入した後に、例えばすぐにコンセントを抜き、再度コンセントを差し込むことで、開閉要否フラグを元の「1」に復帰させることができ、これにより、除霜電磁弁19の強制開閉変換を実行させることができるようになる。   In the second embodiment described above, the forced opening / closing conversion of the defrosting electromagnetic valve 19 is executed by turning on the power at the beginning of installation, so whether the defrosting electromagnetic valve 19 normally opens and closes as in the first embodiment. The confirmation of whether or not can be performed at an early stage by the occurrence of valve opening / closing sound. On the other hand, if a predetermined set time elapses after the early confirmation, the forced opening / closing conversion of the defrosting electromagnetic valve 19 is not executed, and no valve opening / closing sound is generated even when the power is turned on again. As a result, it is possible to avoid the occurrence of situations such as causing the user to have questions such as making a sound every time the power is turned on, or causing anxiety that it is a malfunction. become. Even after the set time has elapsed since the power was turned on, when it is desired to check whether the defrosting solenoid valve 19 is open or closed for maintenance, after the power is turned on once, for example, the outlet is immediately disconnected and the outlet is reinserted. As a result, the open / close necessity flag can be restored to the original “1”, whereby the forced open / close conversion of the defrosting electromagnetic valve 19 can be executed.

1 ヒートポンプユニット
2 貯湯ユニット
11 圧縮機
12 凝縮熱交換器(凝縮器)
13 膨張弁(減圧手段)
14 蒸発熱交換器(蒸発器)
15 冷媒循環配管
18 バイパス路
19 除霜電磁弁(開閉制御弁)
3,3a コントローラ(制御手段)
SUB1,SUB3 除霜電磁弁チェック制御(初期制御)
1 Heat Pump Unit 2 Hot Water Storage Unit 11 Compressor 12 Condensation Heat Exchanger (Condenser)
13 Expansion valve (pressure reduction means)
14 Evaporation heat exchanger (evaporator)
15 Refrigerant circulation pipe 18 Bypass path 19 Defrosting solenoid valve (open / close control valve)
3, 3a controller (control means)
SUB1, SUB3 Defrosting solenoid valve check control (initial control)

Claims (2)

圧縮機、凝縮器、減圧手段、及び、蒸発器を冷媒循環配管で順に接続したヒートポンプユニットと、前記圧縮機から吐出される冷媒を前記蒸発器に対し前記減圧手段をバイパスして供給するバイパス路と、このバイパス路に介装された常閉設定の開閉制御弁と、前記蒸発器に対する除霜開始条件の成立により前記開閉制御弁を開変換させて圧縮機からの高温冷媒を蒸発器に導入させる除霜運転制御のための制御手段とを備えたヒートポンプ給湯装置であって、
前記制御手段は、前記除霜開始条件の成立・非成立の如何に拘わらず、電源投入時に前記開閉制御弁を開閉変換させる初期制御を行うように構成されている、
ことを特徴とするヒートポンプ給湯装置。
A heat pump unit in which a compressor, a condenser, a decompression unit, and an evaporator are connected in order through a refrigerant circulation pipe, and a bypass path that supplies the refrigerant discharged from the compressor by bypassing the decompression unit to the evaporator And a normally-closed open / close control valve interposed in the bypass passage, and opening / closing the open / close control valve when the defrost start condition for the evaporator is established, and introducing high-temperature refrigerant from the compressor into the evaporator A heat pump hot water supply device comprising a control means for controlling the defrosting operation,
The control means is configured to perform initial control for opening / closing conversion of the open / close control valve when the power is turned on regardless of whether the defrost start condition is satisfied or not.
A heat pump hot water supply apparatus characterized by that.
請求項1に記載のヒートポンプ給湯装置であって、
前記制御手段は、電源投入後、所定の設定時間が経過すると、前記初期制御を行わないように構成されている、ヒートポンプ給湯装置。
It is a heat pump hot-water supply apparatus of Claim 1, Comprising:
The heat pump hot water supply apparatus, wherein the control means is configured not to perform the initial control when a predetermined set time elapses after power is turned on.
JP2013154017A 2013-07-24 2013-07-24 Heat pump water heater Active JP6142711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013154017A JP6142711B2 (en) 2013-07-24 2013-07-24 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013154017A JP6142711B2 (en) 2013-07-24 2013-07-24 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2015025583A true JP2015025583A (en) 2015-02-05
JP6142711B2 JP6142711B2 (en) 2017-06-07

Family

ID=52490378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013154017A Active JP6142711B2 (en) 2013-07-24 2013-07-24 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP6142711B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016871A (en) * 2016-05-24 2016-10-12 昆明理工大学 Method and device for restraining low-temperature running frosting of air source heat pump water heater
JP2019132571A (en) * 2018-02-02 2019-08-08 株式会社デンソー Refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230110897A (en) * 2022-01-17 2023-07-25 삼성전자주식회사 Heat pump system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307743A (en) * 1993-04-23 1994-11-01 Hitachi Ltd Freezing/refrigerating unit
JP2003322437A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Failure diagnosing method of hot gas bypass opening/ closing valve and refrigerant circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307743A (en) * 1993-04-23 1994-11-01 Hitachi Ltd Freezing/refrigerating unit
JP2003322437A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Failure diagnosing method of hot gas bypass opening/ closing valve and refrigerant circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016871A (en) * 2016-05-24 2016-10-12 昆明理工大学 Method and device for restraining low-temperature running frosting of air source heat pump water heater
JP2019132571A (en) * 2018-02-02 2019-08-08 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP6142711B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
US10077925B2 (en) Refrigeration apparatus
JP5022920B2 (en) Air conditioner
JP5308220B2 (en) Heat pump type hot water supply / air conditioner
WO2016001980A1 (en) Heating and hot water supply system
EP2615388B1 (en) Air conditioner
JP2019049393A (en) Hot water heating system
JP2013119954A (en) Heat pump hot water heater
JP6403468B2 (en) Heat pump heat source equipment
JP6398324B2 (en) Heat pump water heater
EP2592368A2 (en) High-pressure control mechanism for air-cooled heat pump
JP2010196975A (en) Refrigerating cycle apparatus
JP6142711B2 (en) Heat pump water heater
JP7135493B2 (en) heat pump water heater
JP5515568B2 (en) Heat pump cycle equipment
EP2204620B1 (en) Heating and/or cooling installation and method for monitoring the operability of the installation
JP5589607B2 (en) Heat pump cycle equipment
JP5708249B2 (en) Heat pump water heater
JP2009264715A (en) Heat pump hot water system
JP2009264718A (en) Heat pump hot water system
JP2015152174A (en) hot water system
JP4668246B2 (en) Hot water use system
JP2008309391A (en) Heat pump type hot water supply device
JP2006003077A (en) Heat pump type hot water supply apparatus
JP5516332B2 (en) Heat pump type hot water heater
JP5747160B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6142711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250