JP2015025566A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2015025566A
JP2015025566A JP2013153463A JP2013153463A JP2015025566A JP 2015025566 A JP2015025566 A JP 2015025566A JP 2013153463 A JP2013153463 A JP 2013153463A JP 2013153463 A JP2013153463 A JP 2013153463A JP 2015025566 A JP2015025566 A JP 2015025566A
Authority
JP
Japan
Prior art keywords
cooler
refrigerant
defrosting
temperature
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013153463A
Other languages
Japanese (ja)
Inventor
克則 堀井
Katsunori Horii
克則 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013153463A priority Critical patent/JP2015025566A/en
Publication of JP2015025566A publication Critical patent/JP2015025566A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator provided with a cooler having high defrosting efficiency.SOLUTION: The refrigerator includes a defrosting heater 47 disposed below a cooler; and a control part 63 controlling power distribution to the defrosting heater. The control part 63 is structured to start the power distribution to the defrosting heater 47 after the lapse of a predetermined period of time by stopping a compressor 61. According to such a structure, the upper part of the cooler is defrosted also from the inside of a refrigerant pipe by heat transmission via high temperature refrigerant in the lower part refrigerant pipe heated by the defrosting heater in addition to defrosting due to radiation heat/convection heat from the defrosting heater in defrosting operation, and also the heat transmission by the high temperature refrigerant can be effectively performed because of using bursting force of foam due to bumping boiling caused by heating liquid-phase refrigerant, so that highly efficient defrosting can be performed.

Description

本発明は冷蔵庫に関し、特に冷却器の除霜効率を向上させた冷蔵庫に関するものである。   The present invention relates to a refrigerator, and more particularly to a refrigerator with improved defrosting efficiency of a cooler.

一般に冷蔵庫は使用していると冷却器に霜が付着し、冷却効率が低下してくる。したがって、定期的に除霜している。   In general, when a refrigerator is used, frost adheres to the cooler, and cooling efficiency decreases. Therefore, it defrosts regularly.

この除霜は冷却器の下部に設けたガラス管ヒータを発熱させ、このヒータからの対流熱と輻射熱で冷却器を加熱して行っている。   This defrosting is performed by heating a glass tube heater provided in the lower part of the cooler and heating the cooler with convection heat and radiant heat from the heater.

しかしながら、ガラス管ヒータの対流熱や輻射熱はガラス管ヒータ上方に設けた凝縮水滴化防止板の存在や冷却器上部に熱気が到達し難いことなどがあって除霜時間が長くなり、庫内温度の上昇及び消費電力の増大を招くという課題があった。   However, the convection heat and radiant heat of the glass tube heater may increase the defrosting time due to the presence of the condensation water droplet prevention plate provided above the glass tube heater and the difficulty of hot air reaching the top of the cooler. There has been a problem of increasing the power consumption and increasing the power consumption.

そこで従来の冷蔵庫の中には、冷却器のガラス管ヒータ近傍に位置する下部冷媒パイプを冷却器上部に位置する上部冷媒パイプに直結し、ガラス管ヒータによって加熱される下部冷媒パイプ内の高温冷媒を上部冷媒パイプに送り込んで、冷却器上部の除霜効率を高めたものが見られる(例えば、特許文献1参照)。   Therefore, in some conventional refrigerators, the lower refrigerant pipe located near the glass tube heater of the cooler is directly connected to the upper refrigerant pipe located at the upper portion of the cooler, and the high-temperature refrigerant in the lower refrigerant pipe heated by the glass tube heater. Is sent to the upper refrigerant pipe to increase the defrosting efficiency at the upper part of the cooler (see, for example, Patent Document 1).

図13は特許文献1記載の冷却器100を示し、凝縮器からの冷媒入口パイプ101を除霜用のガラス管ヒータ102近傍の下部冷媒パイプ103につなぎ、前記冷却器下部冷却パイプ103を連結パイプ104によって冷却器上部冷却パイプ105につないで構成してある。   FIG. 13 shows a cooler 100 described in Patent Document 1, in which a refrigerant inlet pipe 101 from a condenser is connected to a lower refrigerant pipe 103 in the vicinity of a glass tube heater 102 for defrosting, and the lower cooling pipe 103 is connected to a connecting pipe. 104 is connected to the upper cooling pipe 105 of the cooler.

特開平7−190598号公報JP-A-7-190598

上記特許文献1記載の冷却器は、除霜用のガラス管ヒータ102によって加熱された下部冷媒パイプ103内の高温冷媒が連結パイプを介して上部パイプ105へと上昇し、冷却器100上部を当該高温冷媒によってパイプ内側からも加熱するようになり、この冷媒による熱搬送加熱によって除霜時間が短くなる。   In the cooler described in Patent Document 1, the high-temperature refrigerant in the lower refrigerant pipe 103 heated by the glass tube heater 102 for defrosting rises to the upper pipe 105 through the connection pipe, and the upper part of the cooler 100 is Heat is also heated from the inside of the pipe by the high-temperature refrigerant, and the defrosting time is shortened by heat transfer heating by this refrigerant.

本発明はこのような除霜の効率をさらに向上させたもので、一段と高い除霜効率を持つ冷蔵庫を提供するものである。   The present invention further improves the efficiency of such defrosting and provides a refrigerator having a much higher defrosting efficiency.

本発明は、上記従来の除霜効率をさらに向上させるため、直管部および曲管部が上下に連続して複数の列に形成された冷媒管とプレートフィンとを備えた冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に配置した除霜ヒータと、前記冷却器、送風機および除霜ヒータを収容した冷却室と、前記除霜ヒータへの通電を制御する制御部とを備え、前記制御部は圧縮機を停止させた所定時間経過後に除霜ヒータへの通電を開始する構成としてある。   In order to further improve the conventional defrosting efficiency, the present invention includes a cooler including a refrigerant pipe and plate fins in which a straight pipe part and a curved pipe part are continuously formed in a plurality of rows in the vertical direction, A blower forcibly circulating cool air generated by a cooler, a defrost heater disposed below the cooler, a cooling chamber containing the cooler, the blower and the defrost heater, and the defrost heater A controller that controls energization, and the controller starts energization of the defrost heater after a predetermined time has elapsed since the compressor was stopped.

これにより、除霜運転時は除霜ヒータからの輻射・対流熱による除霜に加え、除霜ヒータによって加熱された下部冷媒パイプ内の高温冷媒が上部冷媒パイプに流れ込んでパイプ内側からも冷却器上部の除霜を行うので除霜時間の短縮が可能となるとともに、圧縮機停止の所定時間経過後に除霜ヒータによる加熱を開始させるので、この除霜ヒータで加熱する頃には冷却器の下部冷媒パイプ内は気相冷媒が液相冷媒と入れ替わって液相冷媒の比率が高まり、この液相冷媒が加熱されて生じる突沸沸騰による泡のはじける勢いにより下部冷媒パイプの高温冷媒は効率よく上部冷媒パイプに流れ込み加熱器上部を加熱するようになる。よって効率の良い除霜が可能となる。   As a result, during the defrosting operation, in addition to the defrosting by radiation and convection heat from the defrosting heater, the high-temperature refrigerant in the lower refrigerant pipe heated by the defrosting heater flows into the upper refrigerant pipe and the cooler is also provided from the inside of the pipe. Since the defrosting of the upper part is performed, the defrosting time can be shortened and the heating by the defrosting heater is started after a predetermined time has elapsed since the compressor is stopped. In the refrigerant pipe, the gas-phase refrigerant is replaced with the liquid-phase refrigerant, and the ratio of the liquid-phase refrigerant increases. It flows into the pipe and heats the upper part of the heater. Therefore, efficient defrosting is possible.

本発明は、除霜ヒータからの輻射・対流熱による除霜に加え冷媒自体が持つ熱の熱搬送によっても冷却器上部を除霜でき、しかも冷媒の熱搬送は加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して効率よく冷媒の熱を冷却器上部に搬送し、効果的に行うことができ、除霜効率の高い冷蔵庫とすることができる。   The present invention can defrost the upper part of the cooler not only by defrosting by radiation / convection heat from the defrosting heater but also by heat transfer of the heat of the refrigerant itself, and the heat transfer of the refrigerant evaporates the heated liquid refrigerant. Thus, the high-temperature refrigerant vapor rises in the pipe by buoyancy, efficiently transporting the heat of the refrigerant to the upper part of the cooler, and can be effectively performed, and a refrigerator having high defrosting efficiency can be obtained.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 同実施の形態1における冷蔵庫の冷却室を示す拡大縦断面図The expanded longitudinal cross-sectional view which shows the cooling chamber of the refrigerator in the same Embodiment 1 同実施の形態1における冷蔵庫の冷却室を背面から見た概略図The schematic which looked at the cooling chamber of the refrigerator in Embodiment 1 from the back 同実施の形態1における冷蔵庫の冷却器の正面図Front view of refrigerator refrigerator in the first embodiment 同実施の形態1における冷蔵庫の冷却器の側面図Side view of refrigerator cooler in the first embodiment 同実施の形態1における冷蔵庫の冷却器のプレートフィンの斜視図The perspective view of the plate fin of the refrigerator cooler in Embodiment 1 同実施の形態1における冷蔵庫の冷却器のパイプ配列を示す概略説明図Schematic explanatory drawing which shows the pipe arrangement of the refrigerator cooler in the first embodiment 同実施の形態1における冷蔵庫の除霜ヒータを制御する制御ブロック図Control block diagram for controlling the defrosting heater of the refrigerator in the first embodiment 同実施の形態1における冷蔵庫の除霜制御フロー図Refrigeration control flow diagram of the refrigerator in the first embodiment 同実施の形態1における冷蔵庫の圧縮機停止からの冷却器の圧力、温度と低温貯蔵室温度との関係を示す図The figure which shows the relationship between the pressure and temperature of the cooler after the compressor stop of the refrigerator in Embodiment 1, and low-temperature storage room temperature 同実施の形態2における冷蔵庫の冷却室を背面から見た概略図The schematic which looked at the cooling chamber of the refrigerator in Embodiment 2 from the back 同実施の形態3における冷蔵庫の冷却器のパイプ配列を示す概略説明図Schematic explanatory drawing which shows the pipe arrangement | sequence of the refrigerator cooler in Embodiment 3 従来の冷蔵庫の冷却器と除霜ヒータを示す側面図Side view showing conventional refrigerator cooler and defrost heater

第1の発明は、直管部および曲管部が上下に連続して複数の列に形成された冷媒管とプレートフィンとを備えた冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に配置した除霜ヒータと、前記冷却器、送風機および除霜ヒータを収容した冷却室と、前記除霜ヒータへの通電を制御する制御部とを備え、前記制御部は圧縮機を停止させた所定時間経過後に除霜ヒータへの通電を開始する構成としてある。   According to a first aspect of the present invention, there is provided a cooler including a refrigerant pipe and plate fins in which a straight pipe part and a curved pipe part are continuously formed in a plurality of rows, and cold air generated by the cooler is forced. A fan to be circulated, a defrost heater disposed below the cooler, a cooling chamber containing the cooler, the blower and the defrost heater, and a control unit for controlling energization to the defrost heater, The said control part is set as the structure which starts electricity supply to a defrost heater after progress for the predetermined time which stopped the compressor.

これにより、除霜運転時は除霜ヒータからの輻射・対流熱による除霜に加え、除霜ヒータによって加熱された下部冷媒パイプ内の高温冷媒が上部冷媒パイプに流れ込んでパイプ内側からも冷却器上部の除霜を行うので除霜時間の短縮が可能となるとともに、圧縮機停止の所定時間経過後に除霜ヒータによる加熱を開始させるので、この除霜ヒータで加熱する頃には冷却器の下部冷媒パイプ内は気相冷媒が液相冷媒と入れ替わって液相冷媒の比率が高まり、冷媒の熱搬送は加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して効率よく冷媒の熱を冷却器上部に搬送し効果的に行うことができ、除霜効率を高めることができる。   As a result, during the defrosting operation, in addition to the defrosting by radiation and convection heat from the defrosting heater, the high-temperature refrigerant in the lower refrigerant pipe heated by the defrosting heater flows into the upper refrigerant pipe and the cooler is also provided from the inside of the pipe. Since the defrosting of the upper part is performed, the defrosting time can be shortened and the heating by the defrosting heater is started after a predetermined time has elapsed since the compressor is stopped. In the refrigerant pipe, the gas-phase refrigerant is replaced with the liquid-phase refrigerant to increase the ratio of the liquid-phase refrigerant, and the heat transfer of the refrigerant is efficient because the heated liquid refrigerant evaporates and the high-temperature refrigerant vapor rises in the pipe by buoyancy It is possible to effectively carry the heat of the refrigerant to the upper part of the cooler and effectively perform the defrosting efficiency.

第2の発明は、第1の発明において、前記所定時間は圧縮機が停止して冷凍サイクルの高圧と低圧がバランスする時間としたものであり、この冷凍サイクルの高圧と低圧がバランスすることにより下部冷媒パイプ内はほぼ液相状態の冷媒となり、上部冷媒パイプへの
熱搬送がより効率のよいものとなって、除霜効率をさらに向上させることができる。
According to a second invention, in the first invention, the predetermined time is a time in which the compressor is stopped and the high pressure and the low pressure of the refrigeration cycle are balanced, and the high pressure and the low pressure of the refrigeration cycle are balanced. The inside of the lower refrigerant pipe becomes a refrigerant in a substantially liquid phase state, heat transfer to the upper refrigerant pipe becomes more efficient, and the defrosting efficiency can be further improved.

第3の発明は、第1または第2の発明において、低温貯蔵室および低温貯蔵室内の温度を検知する低温貯蔵室温度検知手段と、冷却器の温度を検知する冷却器温度検知手段とを備え、制御手段は前記低温貯蔵室温度検知手段と前記冷却器温度検知手段とに基づいて前記所定時間を制御する構成としてあり、低温貯蔵室温度検知手段と記冷却器温度検知手段が検出する温度によって冷凍サイクルの高圧と低圧のバランスを間接的に検知して除霜ヒータへの通電を制御でき、高価な圧力検知器などを用いることなく安価な構成で除霜効率の高い冷蔵庫を提供することができる。   According to a third invention, in the first or second invention, the low temperature storage room and a low temperature storage room temperature detecting means for detecting the temperature in the low temperature storage room, and a cooler temperature detecting means for detecting the temperature of the cooler are provided. The control means is configured to control the predetermined time based on the low temperature storage chamber temperature detection means and the cooler temperature detection means, and depending on the temperatures detected by the low temperature storage chamber temperature detection means and the cooler temperature detection means. Providing a refrigerator with high defrosting efficiency with an inexpensive configuration that can indirectly control the balance between the high pressure and low pressure of the refrigeration cycle and control energization to the defrost heater, without using an expensive pressure detector or the like. it can.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1における冷蔵庫の縦断面図、図2は同実施の形態1における冷蔵庫の冷却室を示す拡大縦断面図、図3は同実施の形態1における冷蔵庫の冷却室を背面から見た概略図、図4は同実施の形態1における冷蔵庫の冷却器の正面図、図5は同実施の形態1における冷蔵庫の冷却器の側面図、図6は同実施の形態1における冷蔵庫の冷却器のプレートフィンの斜視図、図7は同実施の形態1における冷蔵庫の冷却器のパイプ配列を示す説明、図8は同実施の形態1における冷蔵庫の除霜ヒータを制御する制御ブロック図、図9は同実施の形態1における冷蔵庫の除霜制御フロー図、図10は同実施の形態1における冷蔵庫の圧縮機停止からの冷却器の圧力、温度と低温貯蔵室温度との関係を示す図である。
(Embodiment 1)
1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is an enlarged longitudinal sectional view showing a cooling chamber of the refrigerator according to Embodiment 1, and FIG. 3 is a cooling chamber of the refrigerator according to Embodiment 1. FIG. 4 is a front view of the refrigerator cooler in the first embodiment, FIG. 5 is a side view of the refrigerator cooler in the first embodiment, and FIG. 6 is the first embodiment. 7 is a perspective view of the plate fins of the refrigerator cooler in FIG. 7, FIG. 7 is an explanation showing the pipe arrangement of the refrigerator cooler in the first embodiment, and FIG. 8 is a control for controlling the defrosting heater of the refrigerator in the first embodiment. FIG. 9 is a flowchart for controlling the defrosting of the refrigerator according to the first embodiment. FIG. 10 is a diagram showing the relationship between the pressure and temperature of the refrigerator after the compressor stop of the refrigerator according to the first embodiment and the temperature of the cold storage room. FIG.

図1〜図10において、冷蔵庫30の断熱箱体31は主に鋼板を用いた外箱32とABSなどの樹脂で成型された内箱33とで構成され、その内部には断熱材として例えば硬質発泡ウレタンなどの発泡断熱材34を充填してある。   1 to 10, a heat insulating box 31 of a refrigerator 30 is mainly composed of an outer box 32 using a steel plate and an inner box 33 formed of a resin such as ABS. Filled with a foam insulation material 34 such as foamed urethane.

断熱箱体31内は複数の貯蔵室に区分されており、最上部に冷蔵室35、その冷蔵室35の下部に野菜室36、そして最下部に冷凍室37が配置されている。   The inside of the heat insulation box 31 is divided into a plurality of storage rooms. A refrigeration room 35 is arranged at the top, a vegetable room 36 is arranged at the bottom of the refrigeration room 35, and a freezing room 37 is arranged at the bottom.

冷蔵室35の前面開口部には冷蔵室ドア38、野菜室36の前面開口部には野菜室ドア39、冷凍室37の前面開口部には冷凍室ドア40が、それぞれの前面開口部を開閉可能な如く設けてある。   A refrigerator compartment door 38 is opened at the front opening of the refrigerator compartment 35, a vegetable compartment door 39 is opened at the front opening of the vegetable compartment 36, and a freezer compartment door 40 is opened and closed at the front opening of the freezer compartment 37. It is provided as possible.

冷蔵室35は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室36は3〜8℃まで設定することができるように構成されており、これらは高温貯蔵室となっている。冷凍室37は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもあり、低温貯蔵室となっている。   The refrigerated room 35 is normally set to 1 ° C to 5 ° C at the lower limit of the temperature at which it does not freeze for refrigerated storage, and the vegetable room 36 is configured to be set to 3 to 8 ° C. It has become. The freezer compartment 37 is set in a freezing temperature zone and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature, and it is a low-temperature storage room.

野菜室36と冷凍室37とは仕切壁である第一区画壁41によって上下に区画され、冷蔵室35と野菜室36とは仕切壁である第二区画壁42によって上下に区画されている。   The vegetable compartment 36 and the freezer compartment 37 are partitioned vertically by a first partition wall 41 that is a partition wall, and the refrigerator compartment 35 and the vegetable compartment 36 are partitioned vertically by a second partition wall 42 that is a partition wall.

また低温貯蔵室となる冷凍室37の背面には冷気を生成する冷却室43が設けられ、内部には冷却器44が配設されている。冷却室43は縦区画壁45によって冷凍室37と断熱区画されている。冷却器44の上方に生成された冷気を強制的に送風する送風機46が配置され、冷却器44の下方に、冷却器44に付着した霜や氷を除霜する除霜ヒータ47が設けられている。さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン48、その最深部から庫外に貫通したドレンパイプ49が構成され、その下流側の庫外に
蒸発皿50が設置されている。
Further, a cooling chamber 43 for generating cold air is provided on the back surface of the freezing chamber 37 serving as a low-temperature storage chamber, and a cooler 44 is provided inside. The cooling chamber 43 is insulated from the freezing chamber 37 by a vertical partition wall 45. A blower 46 that forcibly blows cool air generated above the cooler 44 is disposed, and a defrost heater 47 that defrosts frost and ice adhering to the cooler 44 is provided below the cooler 44. Yes. Furthermore, a drain pan 48 for receiving defrost water generated at the time of defrosting, a drain pipe 49 penetrating from the deepest part to the outside of the warehouse are configured at the lower part, and the evaporating dish 50 is installed outside the warehouse on the downstream side. .

除霜ヒータ47は、具体的にはガラス製のガラス管ヒータであり、特に冷媒が炭化水素系冷媒ガスである場合、防爆対応としてガラス管が2重に形成された2重ガラス管ヒータとなっている。   The defrost heater 47 is specifically a glass tube heater made of glass, and in particular when the refrigerant is a hydrocarbon-based refrigerant gas, it is a double glass tube heater in which glass tubes are formed in double for explosion protection. ing.

ドレンパン48は冷却室43の底面および背面の一部を構成している。底面は、除霜水をドレンパイプ49に集めるためにドレンパイプ49との接続部が最も低くなるよう構成されており、ドレンパイプ49との接続部において除霜ヒータ47から最も離れる(距離L)ことになる。背面はドレンパン48の貯水量が確保できる高さを超える高さまで立ち上がっており、底面と背面とのなす角は緩やかな曲面で構成されている。   The drain pan 48 constitutes a part of the bottom surface and the back surface of the cooling chamber 43. The bottom surface is configured to have the lowest connection portion with the drain pipe 49 in order to collect the defrost water in the drain pipe 49, and is farthest from the defrost heater 47 at the connection portion with the drain pipe 49 (distance L). It will be. The back surface rises to a height that exceeds the height at which the amount of water stored in the drain pan 48 can be secured, and the angle between the bottom surface and the back surface is a gently curved surface.

縦区画壁45は、冷凍室37の外殻をなす前区画壁45aと冷却室43の外殻をなす後区画壁45bとから構成される。前区画壁45aと後区画壁45bとの間の空間は各貯蔵室に向けて冷気を分岐させる分配風路51である。   The vertical partition wall 45 includes a front partition wall 45 a that forms the outer shell of the freezing chamber 37 and a rear partition wall 45 b that forms the outer shell of the cooling chamber 43. A space between the front partition wall 45a and the rear partition wall 45b is a distribution air passage 51 that branches cold air toward each storage chamber.

前区画壁45aは、上方に冷凍室吐出口52を有し、分配風路51と冷凍室37とを連通している。下方には冷凍室37側へ突出した冷凍室戻り風路53を有し、冷凍室戻り風路53前面に設けられた入り口53aから冷却室43へ冷凍室37の戻り冷気を導入する。   The front partition wall 45 a has a freezer compartment discharge port 52 on the upper side, and communicates the distribution air passage 51 and the freezer compartment 37. There is a freezer return air passage 53 protruding downward from the freezer compartment 37 side, and the return cold air from the freezer compartment 37 is introduced into the cooling chamber 43 through an inlet 53a provided in front of the freezer return air passage 53.

分配風路51はまた、第一区画壁41内に設けられた高温吐出風路54に接続している。さらに高温吐出風路54は冷蔵室35および野菜室36と接続している。   The distribution air passage 51 is also connected to a high temperature discharge air passage 54 provided in the first partition wall 41. Further, the high temperature discharge air passage 54 is connected to the refrigerator compartment 35 and the vegetable compartment 36.

後区画壁45bは上方に送風機46を備え、下方には冷凍室戻り風路53と冷却室43とを区画するリブ55を有する。冷凍室戻り風路53をリブ55とドレンパン48とにより囲んだ領域が低温吸込み口56であり、冷却室43の前面下部に位置していて冷凍室戻り風路53と冷却室43とを連通している。   The rear partition wall 45 b includes a blower 46 on the upper side, and has a rib 55 that partitions the freezer return air passage 53 and the cooling chamber 43 on the lower side. A region surrounded by the freezing chamber return air passage 53 by the rib 55 and the drain pan 48 is a low temperature suction port 56, which is located at the lower part of the front surface of the cooling chamber 43 and communicates the freezing chamber return air passage 53 and the cooling chamber 43. ing.

冷凍室戻り風路53の底面は、ドレンパン48の一部により冷却室43底面の続きとして構成される。ドレンパン48は入り口53aの下端より始まり低温吸込み口56下端を通りドレンパイプ49まで下向きに傾斜し、その後緩やかに上向きに転じ冷却室43の背面へと繋がる形状を有する。   The bottom surface of the freezing chamber return air passage 53 is configured as a continuation of the bottom surface of the cooling chamber 43 by a part of the drain pan 48. The drain pan 48 starts from the lower end of the inlet 53a, passes through the lower end of the low-temperature suction port 56, inclines downward to the drain pipe 49, and then gradually turns upward to connect to the back surface of the cooling chamber 43.

冷却器44の背面に高温戻り風路57が配置されている。この高温戻り風路57は第一区画壁41および第二区画壁42を通り、高温貯蔵室である野菜室36と冷蔵室35とにそれぞれ連通しており、冷蔵室35と野菜室36を冷却した冷気が高温戻り風路57内で合流する。高温戻り風路57は下方に冷却室43と連通する高温吸込み口58を備える。高温吸込み口58は、図2から明らかなように冷却器44の背面下部近傍であって、低温吸込み口56よりも高い位置に構成されている。   A high-temperature return air passage 57 is disposed on the back surface of the cooler 44. The high temperature return air passage 57 passes through the first partition wall 41 and the second partition wall 42 and communicates with the vegetable compartment 36 and the refrigerator compartment 35 which are high-temperature storage rooms, respectively, and cools the refrigerator compartment 35 and the vegetable compartment 36. The chilled air joins in the high-temperature return air passage 57. The high temperature return air passage 57 includes a high temperature suction port 58 that communicates with the cooling chamber 43 below. As is clear from FIG. 2, the high temperature suction port 58 is configured in the vicinity of the lower portion of the back surface of the cooler 44 and at a position higher than the low temperature suction port 56.

冷却器44は、内部を冷媒が流動する冷媒パイプ201と、所定間隔毎に配置された複数のプレートフィン202を備えている。   The cooler 44 includes a refrigerant pipe 201 through which the refrigerant flows and a plurality of plate fins 202 arranged at predetermined intervals.

冷媒パイプ201は、アルミニウム製あるいはアルミニウム合金製の一本のパイプを、直管部と曲管部が連続し、列(左右)方向Xおよび段(上下)方向Yにおいて複数となるように蛇行状に曲げ加工されたサーペンタインパイプであり、曲管部を形成する接続管を用いることなく一本の冷媒流路を形成している。   Refrigerant pipe 201 is a single pipe made of aluminum or aluminum alloy, in which a straight pipe portion and a curved pipe portion are continuous, and are arranged in a meandering manner so that there are a plurality of pipes in row (left / right) direction X and step (up / down) direction Y. It is a serpentine pipe that is bent into a single shape, and forms one refrigerant flow path without using a connecting pipe that forms a curved pipe portion.

そして、プレートフィン202に形成された長孔203を冷媒パイプ201の曲管部が
貫通することにより、冷媒パイプ201の直管部がプレートフィン202と密着した構成となっている。
And the straight pipe part of the refrigerant | coolant pipe 201 has become the structure closely_contact | adhered to the plate fin 202, when the curved pipe part of the refrigerant | coolant pipe 201 penetrates the long hole 203 formed in the plate fin 202. FIG.

長孔203は、矩形部と円弧部とを有し、該矩形部の両側短辺に前記円弧部がそれぞれ連続して形成された長穴状に形成されている。また、円弧部には、冷媒パイプ201の直管部と密着固定するための縁立成形された円弧部カラー203aが設けられており、矩形部長手方向の両端にも、略垂直に縁立成形された矩形部カラー203bが設けられている。   The long hole 203 has a rectangular portion and a circular arc portion, and is formed in a long hole shape in which the circular arc portions are continuously formed on both short sides of the rectangular portion. Further, the arc part is provided with an edge-shaped arc part collar 203a for tightly fixing to the straight pipe part of the refrigerant pipe 201, and the edge part is formed substantially vertically at both ends in the longitudinal direction of the rectangular part. A rectangular portion collar 203b is provided.

冷却室43において、矩形部カラー203bが冷蔵庫背面に向かって下方に傾斜するように冷却器44が設置されている。   In the cooling chamber 43, the cooler 44 is installed such that the rectangular collar 203b is inclined downward toward the back of the refrigerator.

ここで、上記冷却器の冷媒パイプ201は図4に示すように凝縮器、キャピラリチューブ(図示せず)からの冷媒入口パイプ201aを下部冷媒パイプ201bに接続して冷媒入口部201cを冷却器44の下部としてある。そして、この実施の形態では上記冷媒入口部201cから冷蔵庫の横幅方向に折り曲げ冷却器44の上部まで蛇行させて前列A(図5参照)を構成し、その前列Aから同じように冷却器44の下部まで蛇行させて後列Bを構成した2列配置としてあり、後列Bの端部を立ち上げて冷媒出口パイプ201dとしてある。   Here, as shown in FIG. 4, the refrigerant pipe 201 of the cooler connects the refrigerant inlet pipe 201a from the condenser and capillary tube (not shown) to the lower refrigerant pipe 201b and connects the refrigerant inlet 201c to the cooler 44. As the bottom of the. In this embodiment, the front row A (see FIG. 5) is formed by meandering from the refrigerant inlet portion 201c to the upper portion of the cooler 44 by bending in the width direction of the refrigerator. The rear row B is configured to meander to the lower part to form a rear row B, and the end of the rear row B is raised to form the refrigerant outlet pipe 201d.

一方、上記冷却器44を収容した冷却室43は前記冷媒入口パイプ201aが接続された冷媒入口部201cにつながる前列Aの冷媒パイプ列と面する部分にバイパス風路60が設けられている。すなわち、バイパス風路60はこの実施の形態では図2に示すように冷却器44の前面側に設けられており、冷媒入口部201cはこのバイパス風路60に面した側に位置する低温吸込み口56の一端部近傍に設けられている。   On the other hand, the cooling chamber 43 containing the cooler 44 is provided with a bypass air passage 60 at a portion facing the refrigerant pipe row in the front row A connected to the refrigerant inlet portion 201c to which the refrigerant inlet pipe 201a is connected. That is, in this embodiment, the bypass air passage 60 is provided on the front side of the cooler 44 as shown in FIG. 2, and the refrigerant inlet portion 201 c is a low temperature suction port located on the side facing the bypass air passage 60. 56 is provided in the vicinity of one end.

図8は前記除霜ヒータ47を制御する制御ブロック図で、圧縮機61、送風機46、冷気供給制御用の冷気ダンパ62を制御する制御部63は、冷蔵庫の運転が例えば所定時間経過する毎に定期的に圧縮機61、送風機46を停止するとともに除霜ヒータ47への通電を行って除霜運転を行うように構成されている。そしてこの実施の形態では前記制御部63は、前記低温貯蔵室となる冷凍室37の温度を検出する低温貯蔵室温度検知手段64と前記冷却器44の温度を検出する冷却器温度検知手段65からの出力に基づいて除霜ヒータ47への通電を制御し除霜運転を停止させるように構成されている。   FIG. 8 is a control block diagram for controlling the defrosting heater 47. The control unit 63 for controlling the compressor 61, the blower 46, and the cool air damper 62 for controlling the cool air supply is operated every time the refrigerator is operated for a predetermined time, for example. The compressor 61 and the blower 46 are periodically stopped and the defrost heater 47 is energized to perform a defrost operation. In this embodiment, the control unit 63 includes a low-temperature storage chamber temperature detection unit 64 that detects the temperature of the freezing chamber 37 serving as the low-temperature storage chamber, and a cooler temperature detection unit 65 that detects the temperature of the cooler 44. The defrosting heater 47 is controlled based on the output of the defrosting operation to stop the defrosting operation.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷却動作を説明すると、冷却室43の冷却器44で生成された冷気はその一部が送風機46によって分配風路51内前方へ強制的に送風される。冷凍室37は冷凍室吐出口52から吐出された冷気によって冷却され、冷気は縦区画壁45の下部に設けられた冷凍室戻り風路53を介して低温吸込み口56より冷却器44の下部に導かれ、冷却器44で熱交換されて、再び新鮮な冷気が送風機46によって循環を繰返す。そして冷凍室37は低温貯蔵室温度検知手段64からの検出温度に基づいて適温に冷却される。   First, the cooling operation will be described. A part of the cool air generated by the cooler 44 in the cooling chamber 43 is forcibly blown forward by the blower 46 in the distribution air passage 51. The freezer compartment 37 is cooled by the cold air discharged from the freezer compartment discharge port 52, and the cold air passes from the low temperature suction port 56 to the lower part of the cooler 44 via the freezer return air passage 53 provided at the lower part of the vertical partition wall 45. Then, the heat is exchanged in the cooler 44, and fresh cold air is again circulated by the blower 46. The freezer compartment 37 is cooled to an appropriate temperature based on the detected temperature from the low temperature storage compartment temperature detecting means 64.

また分配風路51内上方に吐出された冷気は第一区画壁41内の高温吐出風路54を経て冷蔵室35や野菜室36に吐出される。循環した冷気は冷蔵室35や野菜室36内の空気や貯蔵物に含まれる湿気を帯びた空気となって、高温戻り風路57を通り高温吸込み口58から冷却器44の下部に導かれて冷却器44と熱交換および除湿されて、新鮮な冷気が再び送風機によって強制的に送風される。   Further, the cold air discharged upward in the distribution air passage 51 is discharged to the refrigerator compartment 35 and the vegetable compartment 36 through the high temperature discharge air passage 54 in the first partition wall 41. The circulated cold air becomes the air in the refrigerator compartment 35 and the vegetable compartment 36 and the humid air contained in the stored product, passes through the high temperature return air passage 57 and is led to the lower part of the cooler 44 through the high temperature suction port 58. Heat exchange with the cooler 44 and dehumidification are performed, and fresh cool air is forcibly blown by the blower again.

これによって、冷蔵室35や野菜室36は、冷却器44から離れた位置にあっても、送
風機46によって冷気を強制的に循環させることで貯蔵室内を設定温度に冷却することができる。
Thereby, even if the refrigerator compartment 35 and the vegetable compartment 36 are in the position away from the cooler 44, the air can be forcedly circulated by the blower 46 to cool the storage compartment to the set temperature.

このようにして各室の冷却を行っていると、前記冷却器44には霜が付着し成長していく。この霜は凝縮器で液化され、キャピラリチューブを通り減圧された低温冷媒が冷却器44内に入る冷却器44下部の冷媒入口部201cとそれにつらなる下部冷媒パイプ201bの温度が最も低くなるのでこの部分に付着しやすい。これと同時に冷却器44には高温吸込み口58および低温吸込み口56からの戻り冷気の一部がバイパス風路60から当該バイパス風路60に面する冷却器前列A側の冷媒パイプ列部分を通って冷却器44の中・上段に流れるので、このバイパス風路60に面する冷媒パイプ列A側に霜が多く付着しやすい。すなわち、冷却器44は冷却器下部と前面部分の着霜量が比較的多くなっている。   When each chamber is cooled in this manner, frost adheres to the cooler 44 and grows. This frost is liquefied by the condenser, and the temperature of the refrigerant inlet 201c at the lower part of the cooler 44 and the lower refrigerant pipe 201b formed in the lower part of the cooler 44 enters the cooler 44. Easy to adhere to. At the same time, a part of the returned cool air from the high temperature suction port 58 and the low temperature suction port 56 passes through the refrigerant pipe row portion on the cooler front row A side facing the bypass air passage 60 from the bypass air passage 60. Therefore, a large amount of frost is likely to adhere to the refrigerant pipe row A side facing the bypass air passage 60. That is, the cooler 44 has a relatively large amount of frost formation on the lower part and the front part of the cooler.

以上のように冷却器44には霜が付着しこれが成長していく。したがって、制御部63は所定時間経過するごとに除霜運転を行う。   As described above, frost adheres to the cooler 44 and grows. Therefore, the control unit 63 performs the defrosting operation every time a predetermined time elapses.

以下、その除霜運転について図9の制御フローを用いながら説明する。   Hereinafter, the defrosting operation will be described using the control flow of FIG.

制御部63は冷却運転が所定時間続くと、まずステップS1で圧縮機61、送風機46を停止し、ステップS2で冷気ダンパ62が開いた状態であればこれを閉じる。この状態で冷凍サイクル中の凝縮器と冷却器44の圧力がバランスし始める。   When the cooling operation continues for a predetermined time, the control unit 63 first stops the compressor 61 and the blower 46 in step S1, and closes the cold damper 62 if it is in the open state in step S2. In this state, the pressure in the condenser and the cooler 44 in the refrigeration cycle starts to balance.

次に制御部63はステップS3で圧縮機61停止から所定時間が経過するのを確認し、所定時間経過するまで待機状態とする。この待機により、凝縮器と冷却器44の圧力がバランスし、その間に凝縮器からの高温の冷媒がキャピラリチューブを通り気液二相の状態で低温の冷却器44に流れ込んでくる。その過程で一部凝縮しながら重力で液相冷媒が下部に滞留することになる。   Next, in step S3, the control unit 63 confirms that a predetermined time has elapsed from the stop of the compressor 61, and keeps waiting until the predetermined time has elapsed. By this standby, the pressure of the condenser and the cooler 44 is balanced, and during that time, the high-temperature refrigerant from the condenser flows through the capillary tube into the low-temperature cooler 44 in a gas-liquid two-phase state. The liquid refrigerant stays in the lower part due to gravity while partially condensing in the process.

すなわち、所定時間、待機することで、高圧液相冷媒が冷媒入口パイプ201aを介して冷却器44下部の冷媒入口部201cに入り、冷媒入口部201cにつながる下部冷媒パイプ201bの中に十分な液冷媒を滞留することができる。   That is, by waiting for a predetermined time, the high-pressure liquid-phase refrigerant enters the refrigerant inlet 201c at the lower part of the cooler 44 via the refrigerant inlet pipe 201a, and there is sufficient liquid in the lower refrigerant pipe 201b connected to the refrigerant inlet 201c. The refrigerant can stay.

この状態で制御部63はステップS4で除霜ヒータ47に通電し、除霜を開始する。除霜ヒータ47の通電によって除霜ヒータ47は発熱し、その熱は輻射および対流熱となってその上方の冷却器44を加熱し、また対流熱の一部はバイパス風路60を上昇して冷却器44上部を効率よく加熱し、冷却器44に付着している霜を除霜する。   In this state, the control unit 63 energizes the defrost heater 47 in step S4 and starts defrosting. When the defrost heater 47 is energized, the defrost heater 47 generates heat, the heat becomes radiation and convection heat to heat the cooler 44 above, and a part of the convection heat rises up the bypass air passage 60. The upper part of the cooler 44 is efficiently heated, and the frost adhering to the cooler 44 is defrosted.

またこの時、前記冷却器44の下部冷媒パイプ201bは前記除霜ヒータ47による加熱よって短時間で温度上昇し、下部冷媒パイプ201b内の加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して冷却器44上部に達し、冷却器44上部をパイプ内部からも加熱する。したがって冷却器44上部は除霜ヒータ47からの輻射・対流熱とともにこのパイプ内側からの冷媒によっても加熱されるから、輻射・対流熱が届きにくい冷却器44上部を効率よく短時間で除霜することができる。   At this time, the temperature of the lower refrigerant pipe 201b of the cooler 44 rises in a short time due to the heating by the defrost heater 47, and the heated liquid refrigerant in the lower refrigerant pipe 201b evaporates, and the high-temperature refrigerant vapor is buoyant. Thus, the inside of the pipe is raised to reach the upper part of the cooler 44, and the upper part of the cooler 44 is also heated from the inside of the pipe. Therefore, the upper part of the cooler 44 is heated by the refrigerant from the inside of the pipe together with the radiation and convection heat from the defrost heater 47. Therefore, the upper part of the cooler 44 that is hard to reach the radiation and convection heat is efficiently defrosted in a short time. be able to.

また、上記下部冷媒パイプ201bから冷却器上部に上昇する冷媒は下部冷媒パイプ201bにつながる冷却器前面部の冷媒パイプ前列Aを通って上昇するので、この上昇する冷媒は冷媒パイプ前列Aも加熱することになる。すなわち、冷却器44上部をパイプ内側から加熱する冷媒は冷却器前面の冷媒パイプ前列A側の除霜にも有効活用されることになる。その結果、冷却器44上部と同様比較的多くの霜が付着している冷却器前面部も従来に比べ短時間に効率よく除霜することができる。   Further, the refrigerant rising from the lower refrigerant pipe 201b to the upper part of the cooler rises through the refrigerant pipe front row A on the front surface of the cooler connected to the lower refrigerant pipe 201b, so that the rising refrigerant also heats the refrigerant pipe front row A. It will be. That is, the refrigerant that heats the upper part of the cooler 44 from the inside of the pipe is also effectively used for defrosting on the refrigerant pipe front row A side on the front side of the cooler. As a result, similarly to the upper part of the cooler 44, the cooler front surface portion to which a relatively large amount of frost is attached can be efficiently defrosted in a shorter time than in the past.

さらに、この実施の形態では前記除霜運転開始時、圧縮機61、送風機46を停止したのち、所定時間、除霜動作することなく待機状態としたことによって、下部冷媒パイプ201b内に十分な液冷媒を滞留させた後、加熱した液冷媒を効率よく冷却器44上部まで上昇させることができる。   Furthermore, in this embodiment, at the start of the defrosting operation, the compressor 61 and the blower 46 are stopped, and then the standby state is established without performing the defrosting operation for a predetermined time. After the refrigerant is retained, the heated liquid refrigerant can be efficiently raised to the upper part of the cooler 44.

すなわち、圧縮機61、送風機46の停止と同時に除霜ヒータ47に通電して除霜運転を開始した場合、下部冷媒パイプ201b内の冷媒は気相状態のままであるから除霜ヒータ47で加熱され温度上昇した冷媒は冷却器44上部に効率よく上昇しない。しかしながら、本実施の形態のように圧縮機停止から所定時間待機すれば、その間に凝縮器と冷却器との間の圧力がバランスし、この圧力バランスに伴い前記下部冷媒パイプ201bの気相冷媒が蒸発器からの液相冷媒と入れ替わって液相冷媒の比率が高くなり、この比率が高くなった液相冷媒を加熱することによって生じる加熱された液冷媒が蒸発して高温の冷媒蒸気が浮力でパイプ内を上昇して効率よく冷媒の熱を冷却器44上部に搬送することができ、効率の良い加熱が可能となる。   That is, when the defrosting heater 47 is energized simultaneously with the stop of the compressor 61 and the blower 46 and the defrosting operation is started, the refrigerant in the lower refrigerant pipe 201b remains in a gas phase state and is heated by the defrosting heater 47. The refrigerant whose temperature has been increased does not efficiently rise to the upper part of the cooler 44. However, if the compressor is stopped for a predetermined time as in the present embodiment, the pressure between the condenser and the cooler is balanced during that time, and the gas-phase refrigerant in the lower refrigerant pipe 201b is caused by this pressure balance. The ratio of the liquid-phase refrigerant is increased by replacing the liquid-phase refrigerant from the evaporator, and the heated liquid refrigerant generated by heating the liquid-phase refrigerant at which the ratio is increased evaporates, and the high-temperature refrigerant vapor is buoyant. The heat of the refrigerant can be efficiently transported to the upper portion of the cooler 44 by ascending the pipe and efficient heating becomes possible.

ここで、上記冷却器44の下部冷媒パイプ201bの中の冷媒が液相冷媒に入れ替わる所定時間は既に述べたように圧縮機61が停止して冷凍サイクルの高圧と低圧がバランスする時間となるので、この圧力がバランスするまでの間を所定時間として、当該圧力バランスを検出すればよいが、圧力検知器は高価である。   Here, the predetermined time when the refrigerant in the lower refrigerant pipe 201b of the cooler 44 is replaced with the liquid phase refrigerant is a time when the compressor 61 is stopped and the high pressure and low pressure of the refrigeration cycle are balanced as described above. The pressure balance may be detected by setting the time until the pressure is balanced as a predetermined time, but the pressure detector is expensive.

したがって、この実施の形態では冷却器44の温度と低温貯蔵室である冷凍室37の温度とから前記圧力バランスを間接的に検知し、所定時間を検出するようにしてある。   Therefore, in this embodiment, the pressure balance is indirectly detected from the temperature of the cooler 44 and the temperature of the freezing chamber 37 which is a low temperature storage chamber, and a predetermined time is detected.

図10は圧縮機61を停止した時点からの冷却器44の圧力、温度と低温貯蔵室の温度との関係を示す図で、冷却器44は圧縮機61の停止とともに凝縮器との間で圧力がバランスし始めてサチュレートしていくが、その間に既に述べたように凝縮器内の高温液相冷媒が冷媒入口パイプ201aを介して冷却器44下部の冷媒入口部201cに入り、冷媒入口部201cにつながる下部冷媒パイプ201bの中は圧縮機停止当初は気相冷媒であったものが液相冷媒に入れ替わって液相冷媒の比率が多くなってくる。   FIG. 10 is a diagram showing the relationship between the pressure and temperature of the cooler 44 from the time when the compressor 61 is stopped, and the temperature of the low temperature storage chamber. The cooler 44 is pressurized between the compressor 61 and the condenser. In the meantime, the high-temperature liquid refrigerant in the condenser enters the refrigerant inlet 201c below the cooler 44 via the refrigerant inlet pipe 201a and enters the refrigerant inlet 201c. In the connected lower refrigerant pipe 201b, the gas-phase refrigerant at the beginning of the compressor stop is replaced with the liquid-phase refrigerant, and the ratio of the liquid-phase refrigerant increases.

上記冷却器44と凝縮器の圧力がバランスし始める時点Xは冷却器44の温度もYで示すようにサチュレートし始めており、この冷却器44の温度のサチュレートを検出することによって圧力バランスを間接検知することができる。あるいは若干早め検知となるが、圧力がバランスする前に冷却器44の温度が低温貯蔵室の温度を超えるのでその時点Zを検出することによっても間接検知することができる。   The point X at which the pressure of the cooler 44 and the condenser begins to balance begins to saturate as indicated by the temperature of the cooler 44, and the pressure balance is indirectly detected by detecting the saturating of the temperature of the cooler 44. can do. Alternatively, the detection is performed slightly earlier, but since the temperature of the cooler 44 exceeds the temperature of the low temperature storage chamber before the pressure is balanced, the detection can be performed indirectly by detecting the time Z.

この実施の形態では冷却器温度検知手段65で冷却器44の温度を検出し、低温貯蔵室温度検知手段64で低温貯蔵室である冷凍室37の温度を検出し、冷却器44の温度が低温貯蔵室の温度を超えて一定時間後を所定時間としており、この所定時間を超えた時点で除霜ヒータ47に通電し、除霜を開始するようにしてある。したがって、冷却器44や凝縮器の圧力を検知する高価な圧力検知器を用いる必要がなく、安価に提供することができる。   In this embodiment, the temperature of the cooler 44 is detected by the cooler temperature detecting means 65, the temperature of the freezer compartment 37, which is a low temperature storage room, is detected by the low temperature storage room temperature detecting means 64, and the temperature of the cooler 44 is low. The predetermined time is defined as a predetermined time after the temperature of the storage room is exceeded, and when the predetermined time is exceeded, the defrost heater 47 is energized to start defrosting. Therefore, it is not necessary to use an expensive pressure detector for detecting the pressure of the cooler 44 or the condenser, and it can be provided at a low cost.

また、この実施の形態では前記構成の説明では割愛したが、図2からも明らかなように冷却室43の背面にも第二バイパス風路66が設けてあり、除霜運転時、除霜ヒータ47からの対流熱が前面のバイパス風路60とともにこの第二バイパス風路66をも経由して冷却器44上部へと流れるので、対流熱による除霜効率がさらに向上する。   Further, in this embodiment, although omitted in the description of the above configuration, a second bypass air passage 66 is also provided on the back surface of the cooling chamber 43 as is apparent from FIG. Since the convective heat from 47 flows to the upper part of the cooler 44 through the second bypass air passage 66 together with the front bypass air passage 60, the defrosting efficiency by the convection heat is further improved.

このようにして除霜が行われ、加熱器に付着している霜の除去が終了すると、冷却器4
4の温度が上昇をはじめる。この温度上昇を冷却器温度検知手段65が検出し、この温度が所定温度に達すれば、制御部63がステップS5でこれを検出し、ステップS6で除霜ヒータ47への通電を停止して除霜運転を終了する。
When the defrosting is performed in this way and the removal of the frost adhering to the heater is completed, the cooler 4
The temperature of 4 begins to rise. This temperature rise is detected by the cooler temperature detecting means 65, and when this temperature reaches a predetermined temperature, the control unit 63 detects this in step S5, and in step S6, the energization to the defrost heater 47 is stopped and removed. End frost operation.

以上のようにして除霜が行われるが、本実施の形態の冷蔵庫は、低温吸込み口56を冷却室43の前面に、高温吸込み口58を前記冷却室43の背面に設けた構成としてあるから、冷却運転時の冷却器44への着霜均一化を図ることができるとともに、高温吸込み口58を冷却室43の背面に設けたことで、高温吸込み口58を幅広に設計でき、冷却器44左右方向の着霜均一化も図ることができる。また、冷蔵室35等の高温貯蔵室が上部にあってこれにつながる高温戻り風路57も冷却室43背面に位置しているから、冷却室43から外部への熱ロスも低減することができる。   Although the defrosting is performed as described above, the refrigerator of the present embodiment has a configuration in which the low temperature suction port 56 is provided on the front surface of the cooling chamber 43 and the high temperature suction port 58 is provided on the rear surface of the cooling chamber 43. In addition, it is possible to achieve uniform frost formation on the cooler 44 during the cooling operation, and by providing the high temperature suction port 58 on the back surface of the cooling chamber 43, the high temperature suction port 58 can be designed to be wide. Uniform frost formation in the left-right direction can also be achieved. Further, since the high temperature storage chamber such as the refrigerator compartment 35 is at the top and the high temperature return air passage 57 connected to the high temperature storage chamber 57 is located on the back of the cooling chamber 43, heat loss from the cooling chamber 43 to the outside can be reduced. .

また、冷却室43の前面側にバイパス風路60を設けた構成としてあるから、バイパス風路60はその前方に位置する冷凍室37によってその中を流れる戻り冷気を低温に維持でき、冷却効率の低下を防止して省エネを図ることができる。   Further, since the bypass air passage 60 is provided on the front side of the cooling chamber 43, the bypass air passage 60 can maintain the return cold air flowing therein by the freezer compartment 37 positioned in front of the bypass air passage 60 at a low temperature. Energy saving can be achieved by preventing the decrease.

なお、図示はしないが、低温吸込み口56を冷却室43前面に、高温吸込み口58を前記冷却室43の背面に設けた前記冷蔵庫において、前記冷却器44を、その冷媒入口部201cが冷却室43背面の高温吸込み口58近傍に下部に位置し、かつ、この冷媒入口部201cにつながる後列の冷媒パイプ列Bが第二バイパス風路66に面するように設ける構成としてもよいものである。   Although not shown, in the refrigerator in which the low temperature suction port 56 is provided on the front surface of the cooling chamber 43 and the high temperature suction port 58 is provided on the back surface of the cooling chamber 43, the refrigerant inlet 201c of the cooler 44 has a cooling chamber. The rear refrigerant pipe row B, which is located in the lower portion near the high-temperature suction port 58 on the rear surface of 43 and is connected to the refrigerant inlet portion 201c, may be provided so as to face the second bypass air passage 66.

このような構成とすることによって、冷却室43の背面下部に開口させた高温吸込み口58からの比較的温度、湿度の高い冷気が第二バイパス風路66を流れるようになって、第二バイパス風路66に面する後列の冷媒パイプ列には冷凍室からの低温冷気が通る場合よりも多くの霜が付着するようになる。したがって、冷媒自体の熱搬送によって冷媒パイプ列部分の霜を除霜する本方式は効果的であり、その除霜効果はより高いものとなる。加えて、冷却室43背面に第二バイパス風路66が位置するので、除霜時、第二バイパス風路66に流れる除霜ヒータ47からの対流熱による冷凍室37側への熱影響を低減することもでき、さらに効果的である。   By adopting such a configuration, relatively high temperature and humidity cold air from the high temperature suction port 58 opened at the lower back of the cooling chamber 43 flows through the second bypass air passage 66, so that the second bypass More frost adheres to the rear row of refrigerant pipes facing the air passage 66 than when low-temperature cold air from the freezer compartment passes. Therefore, the present method of defrosting the frost in the refrigerant pipe row portion by heat conveyance of the refrigerant itself is effective, and the defrosting effect is higher. In addition, since the second bypass air passage 66 is located on the back of the cooling chamber 43, the influence of heat on the freezer compartment 37 side due to convective heat from the defrost heater 47 flowing in the second bypass air passage 66 is reduced during defrosting. Can also be more effective.

なお、本実施の形態1における冷蔵庫は、低温貯蔵室となる冷凍室37からの低温吸込み口56が冷却室43前面に、高温貯蔵室となる冷蔵室35等からの高温吸込み口58が冷却室43背面に設けられ、低温吸込み口56は高温吸込み口58よりも下方に位置する構成としたことにより、後向きの速度が大きい冷凍室戻り冷気と前向きの速度が大きい高温戻り冷気は、上下方向にずれることで相互干渉を抑制し庫内を循環する風量を大きくすることができるため、冷却能力を向上することができる。   In the refrigerator according to the first embodiment, the low-temperature suction port 56 from the freezing chamber 37 serving as the low-temperature storage chamber is in front of the cooling chamber 43, and the high-temperature suction port 58 from the refrigerator compartment 35 serving as the high-temperature storage chamber is the cooling chamber. 43 The low-temperature suction port 56 is provided on the back surface and is positioned below the high-temperature suction port 58, so that the freezing room return cold air having a large backward speed and the high temperature return cold air having a large forward speed are vertically moved. By shifting, it is possible to suppress mutual interference and increase the amount of air circulating in the cabinet, so that the cooling capacity can be improved.

また、冷却室43の底面を構成するドレンパン48は低温吸込み口56からドレンパイプ49にかけて下方に傾斜した形状を有することにより、冷凍室戻り冷気は、ドレンパン48沿って下方へ流れた後背面に沿って上昇させることができ、高温吸込み口58前方において冷凍室戻り冷気の速度が上向きとなり、高温戻り冷気とスムーズに合流できるため、より風量を増やし冷却能力を向上させることができる。   Further, the drain pan 48 constituting the bottom surface of the cooling chamber 43 has a shape inclined downward from the low temperature suction port 56 to the drain pipe 49, so that the freezing chamber return cold air flows downward along the drain pan 48 and along the rear surface. Since the speed of the freezing chamber return cold air is directed upward in front of the high temperature suction port 58 and can smoothly merge with the high temperature return cold air, the air volume can be increased and the cooling capacity can be improved.

また、冷却室43において、矩形部カラー203bが冷蔵庫背面に向かって下方に傾斜するように冷却器44を設置していることで、合流した冷気は、冷却器44の背面側より鉛直上向き成分を主として突入し、突入した冷気の一部は、冷却器44の矩形部カラー203bに沿って流れ、冷却器44の前面へと誘導される。これにより、冷気が冷却器44全体を通過することで熱交換量を増加させることができ、冷却能力を向上することができる。   Moreover, in the cooling chamber 43, the cooler 44 is installed so that the rectangular collar 203b is inclined downward toward the refrigerator back surface, so that the merged cold air has a vertically upward component from the back side of the cooler 44. The main portion of the cool air that has rushed in flows along the rectangular collar 203 b of the cooler 44 and is guided to the front surface of the cooler 44. Thereby, the amount of heat exchange can be increased by passing the cool air through the entire cooler 44, and the cooling capacity can be improved.

(実施の形態2)
図11は実施の形態2における冷蔵庫の冷却室を示し、冷却室を正面から見た概略図である。
(Embodiment 2)
FIG. 11 shows a cooling chamber of the refrigerator in the second embodiment, and is a schematic view of the cooling chamber as viewed from the front.

この実施の形態2の冷蔵庫は、実施の形態1で説明した高温戻り風路57とその高温吸込み口58を冷却室43の側部に設けるとともに、低温吸込み口56は前記冷却室43の前面に設け、かつ、冷却器44の冷媒入口部201cを高温吸込み口58とは反対の冷却室43の側面部としたものである。   In the refrigerator of the second embodiment, the high temperature return air passage 57 and the high temperature suction port 58 described in the first embodiment are provided on the side of the cooling chamber 43, and the low temperature suction port 56 is provided on the front surface of the cooling chamber 43. In addition, the refrigerant inlet portion 201 c of the cooler 44 is a side portion of the cooling chamber 43 opposite to the high temperature suction port 58.

その他の構成は前記実施の形態1と同様であり、同一構成、同一機能部分には同一の番号を付記して説明は省略する。   Other configurations are the same as those of the first embodiment, and the same configurations and the same functional parts are denoted by the same reference numerals and the description thereof is omitted.

本実施の形態2は、低温吸込み口56を冷却室43前面に、高温吸込み口58は冷却室43の側面に設けているので、冷却運転時の冷却器44への着霜均一化を図ることができる。特にこの実施の形態2ではさらに前記高温吸込み口58とは反対側の側面に冷媒入口部201cを設けてあるから、着霜量をより均一化できる。すなわち、上記高温吸込み口58からの戻り冷気は既に述べたように温度、湿度が高いため高温吸込み口58近傍の冷却器側面下部は着霜量が多くなる。一方、この高温吸込み口58の反対側の冷却器側面下部に設けた冷媒入口部201cでも凝縮器からの低温冷媒が最初に入ってくるところであるから強く冷却され着霜量が多くなる。これによって、冷却器44の下部はその左右で着霜量が略均一化するのであり、除霜運転によって左右ほぼ均等に除霜でき効率の良い除霜が可能となる。   In the second embodiment, since the low temperature suction port 56 is provided on the front surface of the cooling chamber 43 and the high temperature suction port 58 is provided on the side surface of the cooling chamber 43, uniform frost formation on the cooler 44 during the cooling operation is achieved. Can do. Particularly in the second embodiment, since the refrigerant inlet 201c is provided on the side surface opposite to the high temperature suction port 58, the amount of frost formation can be made more uniform. That is, since the return cold air from the high temperature suction port 58 has a high temperature and humidity as described above, the amount of frost formation increases in the lower part of the side surface of the cooler near the high temperature suction port 58. On the other hand, the refrigerant inlet portion 201c provided at the lower part of the side surface of the cooler opposite to the high temperature suction port 58 is strongly cooled because the low temperature refrigerant from the condenser first enters and the amount of frost formation increases. As a result, the amount of frost formation at the lower part of the cooler 44 is substantially uniform on the left and right sides, and the defrosting operation can be performed to remove the frost almost evenly on the left and right, thereby enabling efficient defrosting.

また、高温吸込み口58を冷却室43の側面に設けたことで、冷却室43の奥行寸法を小さくでき、省スペース化が可能、あるいはまた、冷却室43の奥行寸法を小さくしない場合は、冷却器44の奥行を大きくでき、冷却能力を高めることができる。   Further, by providing the high-temperature suction port 58 on the side surface of the cooling chamber 43, the depth dimension of the cooling chamber 43 can be reduced, space saving is possible, or if the depth dimension of the cooling chamber 43 is not reduced, cooling is performed. The depth of the vessel 44 can be increased and the cooling capacity can be increased.

その他の作用効果は前記実施の形態1と同様であり、説明は省略する。   Other functions and effects are the same as those of the first embodiment, and a description thereof will be omitted.

なお、この実施の形態2において、図示しないが、前記冷却室43の側面に設けた高温吸込み口58と同一側面に冷媒入口部201cを設けることも考えられる。   In the second embodiment, although not shown, it is conceivable to provide the refrigerant inlet 201c on the same side as the high temperature suction port 58 provided on the side of the cooling chamber 43.

この場合は、冷却器44への着霜量の均一化は得られないものの、冷媒入口部201cにつながる上方から下方に連通する冷媒入口パイプ201aを利用して、除霜時に発生する冷媒の熱搬送により冷媒入口パイプ201a近傍の高温戻り風路57内の除霜も可能となり、信頼性が向上する。   In this case, although the amount of frost formation on the cooler 44 cannot be made uniform, the refrigerant heat generated at the time of defrosting using the refrigerant inlet pipe 201a communicating from the upper side to the lower side connected to the refrigerant inlet portion 201c. The conveyance also enables defrosting in the high-temperature return air passage 57 in the vicinity of the refrigerant inlet pipe 201a, thereby improving the reliability.

(実施の形態3)
図12は実施の形態3における冷蔵庫の冷却器44を示し、冷却器44を側面から見た概略説明図である。
(Embodiment 3)
FIG. 12 shows a refrigerator 44 of the refrigerator in the third embodiment, and is a schematic explanatory view of the cooler 44 viewed from the side.

この実施の形態3の冷蔵庫の冷却器44は冷媒パイプ201の列を前列A、中列C、後列Bの3列としたものであり、冷媒パイプ長を長くして冷却効果を高めたものである。   The refrigerator cooler 44 of the third embodiment has three rows of refrigerant pipes 201, ie, a front row A, a middle row C, and a rear row B. The refrigerant pipe length is increased to increase the cooling effect. is there.

その他の構成、効果は前記実施の形態1あるいは2と同様であり、説明は省略する。   Other configurations and effects are the same as those in the first or second embodiment, and a description thereof will be omitted.

なお、上記各実施の形態で説明した冷蔵庫の断熱箱体31内に設けた複数の貯蔵室は、最上部に冷蔵室35、その冷蔵室35の下部に野菜室36、そして最下部に冷凍室37を配置したものを例にして説明したが、その配列に特定されるものではなく、例えば冷蔵室
35の下部に冷凍室37、さらにその下部に野菜室を配置したものであってもよいものである。この場合冷蔵室35からの高温吸込み口58と野菜室36からの高温吸込み口58は別に設けることになるが、これらは例えば冷却器44の背面に互いに隣接して配置する等すればよい。
The plurality of storage rooms provided in the heat insulating box 31 of the refrigerator described in each of the above embodiments are a refrigeration room 35 at the top, a vegetable room 36 at the bottom of the refrigeration room 35, and a freezing room at the bottom. However, the arrangement is not limited to the arrangement, and for example, the freezing room 37 may be arranged in the lower part of the refrigerator room 35 and the vegetable room may be arranged in the lower part. It is. In this case, the high temperature suction port 58 from the refrigerator compartment 35 and the high temperature suction port 58 from the vegetable compartment 36 are provided separately, but these may be disposed adjacent to each other on the back surface of the cooler 44, for example.

本発明は、除霜ヒータからの輻射・対流熱による除霜に加え冷媒自体が持つ熱の熱搬送によっても冷却器上部を除霜でき、しかも冷媒の熱搬送は液相冷媒の突沸沸騰による泡のはじけ力を利用して効果的に行うことができ、その結果、除霜効率の高い冷蔵庫とすることができ、家庭用冷蔵庫はもちろん、業務用冷蔵庫やショーケース等に幅広く適用できる。   In the present invention, the upper part of the cooler can be defrosted not only by defrosting by radiation / convection heat from the defrosting heater but also by heat transfer of heat of the refrigerant itself. As a result, it can be a refrigerator with high defrosting efficiency, and can be widely applied not only to household refrigerators but also to commercial refrigerators and showcases.

30 冷蔵庫
35 冷蔵室(高温貯蔵室)
36 野菜室(高温貯蔵室)
37 冷凍室(低温貯蔵室)
43 冷却室
44 冷却器
46 送風機
47 除霜ヒータ
48 ドレンパン(冷却室底面)
53 冷凍室戻り風路
53a 入り口
56 低温吸込み口
57 高温戻り風路
58 高温吸込み口
60 バイパス風路
61 圧縮機
62 冷気ダンパ
63 制御部
64 低温貯蔵室温度検知手段
65 冷却器温度検知手段
66 第二バイパス風路
201 冷媒パイプ
201a 冷媒入口パイプ
201b 下部冷媒パイプ
201c 冷媒入口部
201d 冷媒出口パイプ
202 プレートフィン
30 Refrigerator 35 Refrigerated room (high temperature storage room)
36 Vegetable room (high temperature storage room)
37 Freezer room (cold storage room)
43 Cooling chamber 44 Cooler 46 Blower 47 Defrost heater 48 Drain pan (cooling chamber bottom)
53 Freezer return air passage 53a Entrance 56 Low temperature intake port 57 High temperature return air passage 58 High temperature intake port 60 Bypass air passage 61 Compressor 62 Cold air damper 63 Control unit 64 Low temperature storage chamber temperature detection means 65 Cooler temperature detection means 66 Second Bypass air passage 201 Refrigerant pipe 201a Refrigerant inlet pipe 201b Lower refrigerant pipe 201c Refrigerant inlet part 201d Refrigerant outlet pipe 202 Plate fin

Claims (3)

直管部および曲管部が上下に連続して複数の列に形成された冷媒管とプレートフィンとを備えた冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器下方に配置した除霜ヒータと、前記冷却器、送風機および除霜ヒータを収容した冷却室と、前記除霜ヒータへの通電を制御する制御部とを備え、前記制御部は圧縮機を停止させて所定時間経過後に除霜ヒータへの通電を開始する構成とした冷蔵庫。 A cooler comprising a refrigerant pipe and plate fins formed in a plurality of rows of straight pipe parts and curved pipe parts continuously in the vertical direction, and a blower for forcibly circulating cold air generated by the cooler; A defrost heater disposed below the cooler; a cooling chamber containing the cooler, a blower, and a defrost heater; and a control unit that controls energization of the defrost heater, wherein the control unit is a compressor The refrigerator which made the structure which starts electricity supply to a defrosting heater after stopping predetermined time progress. 除霜ヒータへの通電を開始する所定時間は圧縮機が停止して冷凍サイクルの高圧と低圧がバランスする時間とした請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the predetermined time for starting energization of the defrosting heater is a time during which the compressor is stopped and the high pressure and the low pressure of the refrigeration cycle are balanced. 低温貯蔵室および低温貯蔵室内の温度を検知する低温貯蔵室温度検知手段と、冷却器の温度を検知する冷却器温度検知手段とを備え、制御手段は前記低温貯蔵室温度検知手段と前記冷却器温度検知手段とに基づいて前記所定時間を制御する請求項1または2に記載の冷蔵庫。 A low temperature storage room and a low temperature storage room temperature detecting means for detecting a temperature in the low temperature storage room; and a cooler temperature detecting means for detecting a temperature of the cooler, wherein the control means is the low temperature storage room temperature detecting means and the cooler. The refrigerator according to claim 1 or 2, wherein the predetermined time is controlled based on temperature detection means.
JP2013153463A 2013-07-24 2013-07-24 Refrigerator Pending JP2015025566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013153463A JP2015025566A (en) 2013-07-24 2013-07-24 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013153463A JP2015025566A (en) 2013-07-24 2013-07-24 Refrigerator

Publications (1)

Publication Number Publication Date
JP2015025566A true JP2015025566A (en) 2015-02-05

Family

ID=52490361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013153463A Pending JP2015025566A (en) 2013-07-24 2013-07-24 Refrigerator

Country Status (1)

Country Link
JP (1) JP2015025566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360778A (en) * 2019-07-14 2019-10-22 南京创维家用电器有限公司 Low-temperature starting control method for mechanical air door air-cooled refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102658A (en) * 1996-06-14 1998-01-06 Matsushita Refrig Co Ltd Refrigerator with freezer
JPH10160327A (en) * 1996-11-26 1998-06-19 Sharp Corp Refrigerator
JP2006052878A (en) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd Defrosting control device for refrigeration storage
US20070033956A1 (en) * 2005-08-11 2007-02-15 Samsung Electronics Co., Ltd. Operation control method of refrigerator
JP2010281491A (en) * 2009-06-04 2010-12-16 Hitachi Appliances Inc Refrigerator
JP2013040691A (en) * 2011-08-11 2013-02-28 Hoshizaki Electric Co Ltd Refrigeration storage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102658A (en) * 1996-06-14 1998-01-06 Matsushita Refrig Co Ltd Refrigerator with freezer
JPH10160327A (en) * 1996-11-26 1998-06-19 Sharp Corp Refrigerator
JP2006052878A (en) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd Defrosting control device for refrigeration storage
US20070033956A1 (en) * 2005-08-11 2007-02-15 Samsung Electronics Co., Ltd. Operation control method of refrigerator
JP2010281491A (en) * 2009-06-04 2010-12-16 Hitachi Appliances Inc Refrigerator
JP2013040691A (en) * 2011-08-11 2013-02-28 Hoshizaki Electric Co Ltd Refrigeration storage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360778A (en) * 2019-07-14 2019-10-22 南京创维家用电器有限公司 Low-temperature starting control method for mechanical air door air-cooled refrigerator

Similar Documents

Publication Publication Date Title
KR102327894B1 (en) Defrosting device and refrigerator having the same
JP6687384B2 (en) refrigerator
KR20170104877A (en) Refrigerator
CN107543351B (en) Refrigerator and control method thereof
JP5557661B2 (en) refrigerator
JP2010133590A (en) Refrigerator-freezer
US20220170675A1 (en) Method for controlling refrigerator
JP5847198B2 (en) refrigerator
WO2015029409A1 (en) Refrigerator
JP5966145B2 (en) refrigerator
US20220236001A1 (en) Method for controlling refrigerator
US20220235976A1 (en) Refrigerator
JP2010121842A (en) Refrigerator
JP6330137B2 (en) refrigerator
WO2013084473A1 (en) Refrigerator
JP2014077615A (en) Refrigerator
JP2015025566A (en) Refrigerator
JP2010117038A (en) Refrigerator
KR101097974B1 (en) Refrigeration warehouse for energy saving
JP2019039586A (en) refrigerator
JP6866995B2 (en) refrigerator
CN107816832B (en) Refrigerator with a door
JP7012139B2 (en) refrigerator
TWI781501B (en) refrigerator
JP6035506B2 (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031