JP2015025423A - Carbon dioxide circulation type power generation system and carbon dioxide circulation type power generation method - Google Patents

Carbon dioxide circulation type power generation system and carbon dioxide circulation type power generation method Download PDF

Info

Publication number
JP2015025423A
JP2015025423A JP2013155843A JP2013155843A JP2015025423A JP 2015025423 A JP2015025423 A JP 2015025423A JP 2013155843 A JP2013155843 A JP 2013155843A JP 2013155843 A JP2013155843 A JP 2013155843A JP 2015025423 A JP2015025423 A JP 2015025423A
Authority
JP
Japan
Prior art keywords
carbon dioxide
phase carbon
supercritical phase
supercritical
mixed fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013155843A
Other languages
Japanese (ja)
Other versions
JP6088933B2 (en
Inventor
川 斗 小
Hakaru Ogawa
川 斗 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013155843A priority Critical patent/JP6088933B2/en
Publication of JP2015025423A publication Critical patent/JP2015025423A/en
Application granted granted Critical
Publication of JP6088933B2 publication Critical patent/JP6088933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PROBLEM TO BE SOLVED: To provide a carbon dioxide circulation type power generation system with the power of a pressurizer reduced.SOLUTION: A carbon dioxide circulation type power generation system comprises: a pressurizer which pressurizes supercritical phase carbon dioxide; a heat exchanger which heats the pressurized supercritical phase carbon dioxide; a combustor which heats the supercritical phase carbon dioxide supplied from the heat exchanger by combustion reaction using oxygen and fuel, and discharges first mixed fluid containing the supercritical phase carbon dioxide and steam; a turbine which is driven by the first mixed fluid; a cooler which is supplied with second mixed fluid containing the supercritical phase carbon dioxide and the steam discharged from the turbine through the heat exchanger, cools the second mixed fluid and discharges third mixed fluid containing the supercritical phase carbon dioxide and liquid phase water; and a separator which separates the third mixed fluid into the supercritical phase carbon dioxide and the liquid phase water and supplies the separated supercritical phase carbon dioxide to the pressurizer.

Description

本発明の実施形態は、二酸化炭素循環発電システムおよび二酸化炭素循環発電方法に関する。   Embodiments described herein relate generally to a carbon dioxide circulation power generation system and a carbon dioxide circulation power generation method.

一般に、二酸化炭素循環発電システムにおいては、超臨界相二酸化炭素を加熱して得られた高温ガスによりタービンを駆動して発電を行っている。従来の二酸化炭素循環発電システムは、超臨界相二酸化炭素中でメタン等の水素含有燃料を酸素燃焼させる燃焼器と、燃焼により得られた高温ガスで駆動されるタービンと、臨界圧未満になったタービン排出ガスにより超臨界二酸化炭素を加熱する熱交換器と、熱交換器を通過したタービン排出ガスに含まれる(燃焼器での燃焼で生じた)水蒸気を凝縮させる凝縮器と、凝縮水と気相二酸化炭素とを分離する気液分離器と、凝縮水が除去された気相二酸化炭素を超臨界状態に加圧する加圧器(ポンプ又は圧縮機)と、を備えている。加圧器により超臨界状態に加圧された二酸化炭素(超臨界二酸化炭素)は、熱交換器を介して燃焼器に供給される。このようにして、二酸化炭素がシステム内を循環するように構成されている。   Generally, in a carbon dioxide circulation power generation system, power is generated by driving a turbine with a high-temperature gas obtained by heating supercritical phase carbon dioxide. The conventional carbon dioxide circulation power generation system has become less than the critical pressure, a combustor that oxycombusts hydrogen-containing fuel such as methane in supercritical phase carbon dioxide, a turbine driven by high-temperature gas obtained by combustion, and A heat exchanger that heats supercritical carbon dioxide with turbine exhaust gas, a condenser that condenses water vapor (generated by combustion in the combustor) contained in the turbine exhaust gas that has passed through the heat exchanger, and condensed water and gas. The gas-liquid separator which isolate | separates phase carbon dioxide, and the pressurizer (pump or compressor) which pressurizes the gaseous-phase carbon dioxide from which the condensed water was removed to a supercritical state. Carbon dioxide pressurized to a supercritical state by the pressurizer (supercritical carbon dioxide) is supplied to the combustor via the heat exchanger. In this way, carbon dioxide is circulated in the system.

従来の二酸化炭素循環発電分離システムにおいては、タービン排出ガスを二酸化炭素の臨界圧未満まで減圧した後に、凝縮器において、燃焼で生成した水蒸気を凝縮させ、その後、気相二酸化炭素と凝縮水とを気液分離させている。加圧器は、二酸化炭素を気体から超臨界状態まで加圧するため、大きな動力が求められるという問題があった。   In the conventional carbon dioxide circulation power generation separation system, after reducing the turbine exhaust gas to less than the critical pressure of carbon dioxide, water vapor generated by combustion is condensed in a condenser, and then vapor phase carbon dioxide and condensed water are combined. Gas-liquid separation. The pressurizer has a problem that large power is required to pressurize carbon dioxide from a gas to a supercritical state.

米国特許出願公開第2011/0179799号US Patent Application Publication No. 2011/0179799

本発明が解決しようとする課題は、加圧器の動力を低減させた二酸化炭素循環発電システムを提供することである。   The problem to be solved by the present invention is to provide a carbon dioxide circulation power generation system in which the power of the pressurizer is reduced.

本実施形態によれば、二酸化炭素循環発電システムは、超臨界相二酸化炭素を加圧する加圧器と、加圧された超臨界相二酸化炭素を加熱する熱交換器と、酸素及び燃料を用いた燃焼反応により、前記熱交換器から供給される超臨界相二酸化炭素を加熱し、超臨界相二酸化炭素及び水蒸気を含む第1混合流体を排出する燃焼器と、前記第1混合流体により駆動するタービンと、前記タービンから排出される、超臨界相二酸化炭素及び水蒸気を含む第2混合流体が、前記熱交換器を介して供給され、前記第2混合流体を冷却し、超臨界相二酸化炭素及び液相水を含む第3混合流体を排出する冷却器と、前記第3混合流体を、超臨界相二酸化炭素と液相水とに分離し、分離した超臨界相二酸化炭素を前記加圧器に供給する分離器と、を備える。   According to this embodiment, the carbon dioxide circulation power generation system includes a pressurizer that pressurizes supercritical phase carbon dioxide, a heat exchanger that heats pressurized supercritical phase carbon dioxide, and combustion using oxygen and fuel. A combustor for heating the supercritical phase carbon dioxide supplied from the heat exchanger by the reaction and discharging a first mixed fluid containing supercritical phase carbon dioxide and water vapor; and a turbine driven by the first mixed fluid; The second mixed fluid containing supercritical phase carbon dioxide and water vapor discharged from the turbine is supplied through the heat exchanger, and the second mixed fluid is cooled to obtain supercritical phase carbon dioxide and liquid phase. A cooler for discharging a third mixed fluid containing water, and separating the third mixed fluid into supercritical phase carbon dioxide and liquid phase water, and supplying the separated supercritical phase carbon dioxide to the pressurizer A vessel.

本実施形態によれば、二酸化炭素循環発電方法は、超臨界相二酸化炭素を加圧する工程と、加圧された超臨界相二酸化炭素を熱交換器で加熱する工程と、酸素及び燃料を用いた燃焼反応により、前記熱交換器から供給される超臨界相二酸化炭素を加熱し、超臨界相二酸化炭素及び水蒸気を含む第1混合流体を排出する工程と、前記第1混合流体によりタービンを駆動する工程と、前記タービンから排出される、超臨界相二酸化炭素及び水蒸気を含む第2混合流体を、前記熱交換器を介した後に冷却し、超臨界相二酸化炭素及び液相水を含む第3混合流体を排出する工程と、前記第3混合流体を、超臨界相二酸化炭素と液相水とに分離し、分離した超臨界相二酸化炭素を前記加圧器に供給する工程と、を備える。   According to the present embodiment, the carbon dioxide circulation power generation method uses a step of pressurizing supercritical phase carbon dioxide, a step of heating pressurized supercritical phase carbon dioxide with a heat exchanger, and oxygen and fuel. A process of heating supercritical phase carbon dioxide supplied from the heat exchanger by a combustion reaction and discharging a first mixed fluid containing supercritical phase carbon dioxide and water vapor, and driving a turbine by the first mixed fluid And a third mixture containing supercritical phase carbon dioxide and liquid phase water, cooled after passing through the heat exchanger, the second mixed fluid containing supercritical phase carbon dioxide and steam discharged from the turbine A step of discharging a fluid, and a step of separating the third mixed fluid into supercritical phase carbon dioxide and liquid phase water, and supplying the separated supercritical phase carbon dioxide to the pressurizer.

圧力と温度と物質の相状態との関係を示す状態図である。It is a state diagram which shows the relationship between pressure, temperature, and the phase state of a substance. 本実施形態に係る二酸化炭素循環発電システムの概略構成図である。It is a schematic structure figure of a carbon dioxide circulation power generation system concerning this embodiment. 変形例による二酸化炭素循環発電システムの概略構成図である。It is a schematic block diagram of the carbon dioxide circulation electric power generation system by a modification. 変形例による二酸化炭素循環発電システムの概略構成図である。It is a schematic block diagram of the carbon dioxide circulation electric power generation system by a modification. 変形例による二酸化炭素循環発電システムの概略構成図である。It is a schematic block diagram of the carbon dioxide circulation electric power generation system by a modification. 変形例による二酸化炭素循環発電システムの概略構成図である。It is a schematic block diagram of the carbon dioxide circulation electric power generation system by a modification.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、超臨界流体について説明する。図1は、圧力と温度と物質の相状態との関係を示す状態図である。超臨界流体の機能物質には、三態と称される気相(気体)、液相(液体)、固相(固体)の3つの存在状態がある。   First, the supercritical fluid will be described. FIG. 1 is a state diagram showing a relationship among pressure, temperature, and phase state of a substance. The functional material of a supercritical fluid has three existence states called a gas phase (gas), a liquid phase (liquid), and a solid phase (solid), which are called three states.

図1に示すように、上記3つの相は、気相と液相との境界を示す蒸気圧曲線(気相平衡線)、気相と固相との境界を示す昇華曲線、固相と液相との境界を示す溶解曲線で区切られる。これら3つの相が重なったところが三重点である。この三重点から蒸気圧曲線が高温、高圧側に延びると、気相と液相が共存する限界である臨界点に達する。この臨界点では、気相と液相の密度が等しくなり、気液共存状態の界面が消失する。   As shown in FIG. 1, the above three phases are a vapor pressure curve (gas phase equilibrium line) indicating the boundary between the gas phase and the liquid phase, a sublimation curve indicating the boundary between the gas phase and the solid phase, and the solid phase and the liquid. It is delimited by a dissolution curve indicating the boundary with the phase. The triple point is where these three phases overlap. When the vapor pressure curve extends from this triple point to the high temperature and high pressure side, it reaches the critical point where the gas phase and the liquid phase coexist. At this critical point, the gas phase and liquid phase densities are equal, and the gas-liquid coexistence interface disappears.

そして、臨界点より高温、高圧の状態では、気相、液相の区別がなくなり、物質は超臨界流体となる。超臨界流体とは、臨界温度以上で高密度に圧縮された流体である。超臨界流体は、溶媒分子の拡散力が支配的である点においては気体と類似している。一方、超臨界流体は、分子の凝集力の影響が無視できない点においては液体と類似している。   In the state of higher temperature and higher pressure than the critical point, there is no distinction between the gas phase and the liquid phase, and the substance becomes a supercritical fluid. A supercritical fluid is a fluid compressed at a high density above the critical temperature. Supercritical fluids are similar to gases in that the diffusive power of solvent molecules is dominant. On the other hand, a supercritical fluid is similar to a liquid in that the influence of molecular cohesion cannot be ignored.

二酸化炭素は、臨界温度が31.1℃、臨界圧力が7.37MPaである。本実施形態に係る二酸化炭素循環発電システムは、超臨界状態の二酸化炭素(以下、超臨界相二酸化炭素と称す。)を加熱して、高温高圧の二酸化炭素が膨張するときにタービンを回すことにより発電を行う。   Carbon dioxide has a critical temperature of 31.1 ° C. and a critical pressure of 7.37 MPa. The carbon dioxide circulation power generation system according to the present embodiment heats carbon dioxide in a supercritical state (hereinafter referred to as supercritical phase carbon dioxide), and rotates the turbine when high-temperature and high-pressure carbon dioxide expands. Generate electricity.

図2は、本実施形態に係る二酸化炭素循環発電システムの概略構成図である。図2に示すように、二酸化炭素循環発電システムは、加圧器2、分配器4、熱交換器7、燃焼器9、タービン13、冷却器16、分離器18、及び発電機20を備えている。   FIG. 2 is a schematic configuration diagram of the carbon dioxide circulation power generation system according to the present embodiment. As shown in FIG. 2, the carbon dioxide circulation power generation system includes a pressurizer 2, a distributor 4, a heat exchanger 7, a combustor 9, a turbine 13, a cooler 16, a separator 18, and a generator 20. .

加圧器2は、超臨界相二酸化炭素1を30MPa程度に加圧する。加圧器2は、例えばポンプまたは圧縮機である。加圧器2により加圧され出力された超臨界相二酸化炭素3は、分配器4において、後述する燃焼器9における燃焼反応で生じた二酸化炭素に相当する過剰二酸化炭素5と、系内を循環する超臨界相二酸化炭素6とに分配される。過剰二酸化炭素5は系外に排出される。   The pressurizer 2 pressurizes the supercritical phase carbon dioxide 1 to about 30 MPa. The pressurizer 2 is, for example, a pump or a compressor. Supercritical phase carbon dioxide 3 pressurized and output by the pressurizer 2 is circulated in the distributor 4 with excess carbon dioxide 5 corresponding to carbon dioxide generated by a combustion reaction in a combustor 9 described later. Partitioned into supercritical phase carbon dioxide 6. Excess carbon dioxide 5 is discharged out of the system.

超臨界相二酸化炭素6は、熱交換器7において、後述する混合流体14を熱源として加熱される。熱交換器7で加熱されて出力された超臨界相二酸化炭素8は、燃焼器9に供給される。燃焼器9には、メタンやメタノール等の炭素及び水素を含有する燃料10と、酸素11とが供給され、以下の反応式に示す燃焼反応により、二酸化炭素と水蒸気とが生じる。反応式1はメタンの燃焼反応を表し、反応式2はメタノールの燃焼反応を表す。
(反応式1)CH+2O→CO+2H
(反応式2)CHOH+1.5O→CO+2H
The supercritical phase carbon dioxide 6 is heated in the heat exchanger 7 by using a mixed fluid 14 described later as a heat source. Supercritical phase carbon dioxide 8 heated and output by the heat exchanger 7 is supplied to the combustor 9. The combustor 9 is supplied with a fuel 10 containing carbon and hydrogen such as methane and methanol, and oxygen 11, and carbon dioxide and water vapor are generated by the combustion reaction shown in the following reaction formula. Reaction formula 1 represents the combustion reaction of methane, and reaction formula 2 represents the combustion reaction of methanol.
(Reaction Formula 1) CH 4 + 2O 2 → CO 2 + 2H 2 O
(Reaction Formula 2) CH 3 OH + 1.5O 2 → CO 2 + 2H 2 O

燃焼器9における燃焼反応により超臨界相二酸化炭素は1150℃程度に加熱される。燃焼器9から、水蒸気と超臨界相二酸化炭素とが混合された混合流体12が排出され、タービン13に供給される。混合流体12は、タービン13内で膨張仕事をし、タービン13を回す。これにより、タービン13に接続された発電機20が発電を行うことができる。   The supercritical phase carbon dioxide is heated to about 1150 ° C. by the combustion reaction in the combustor 9. A mixed fluid 12 in which water vapor and supercritical phase carbon dioxide are mixed is discharged from the combustor 9 and supplied to the turbine 13. The mixed fluid 12 performs expansion work in the turbine 13 and rotates the turbine 13. Thereby, the generator 20 connected to the turbine 13 can generate electric power.

タービン13から、水蒸気と超臨界相二酸化炭素とが混合された混合流体14が、7.4〜10MPa程度の圧力(二酸化炭素の臨界圧力以上)で排出される。タービン13から排出された混合流体14は熱交換器7に供給され、超臨界相二酸化炭素6を加熱する。   A mixed fluid 14 in which water vapor and supercritical phase carbon dioxide are mixed is discharged from the turbine 13 at a pressure of about 7.4 to 10 MPa (above the critical pressure of carbon dioxide). The mixed fluid 14 discharged from the turbine 13 is supplied to the heat exchanger 7 to heat the supercritical phase carbon dioxide 6.

超臨界相二酸化炭素6を加熱し、熱交換器7から排出される水蒸気と超臨界相二酸化炭素とが混合された混合流体15は、冷却器16により30〜40℃程度(但し、二酸化炭素の臨界温度以上)に冷却され、超臨界相二酸化炭素と液相水との二相流体17として排出される。   The mixed fluid 15 in which the supercritical phase carbon dioxide 6 is heated and the water vapor discharged from the heat exchanger 7 and the supercritical phase carbon dioxide are mixed is about 30 to 40 ° C. by the cooler 16 (however, And is discharged as a two-phase fluid 17 of supercritical carbon dioxide and liquid phase water.

冷却器16から排出された二相流体17は、分離器18で超臨界相二酸化炭素1と液相水19とに分離される。分離器18は、例えば静的分離器であり、超臨界相二酸化炭素1(比重約0.3)と液相水19(比重約1)の比重差を用いて分離を行う。分離器18には、遠心分離器、サイクロン、コアレッサー、フィルターセパレータ等を用いてもよい。   The two-phase fluid 17 discharged from the cooler 16 is separated into supercritical phase carbon dioxide 1 and liquid phase water 19 by a separator 18. The separator 18 is, for example, a static separator, and performs separation using a difference in specific gravity between supercritical phase carbon dioxide 1 (specific gravity about 0.3) and liquid phase water 19 (specific gravity about 1). The separator 18 may be a centrifuge, a cyclone, a coalescer, a filter separator, or the like.

分離器18で分離された超臨界相二酸化炭素1は加圧器2に供給される。このようにして、超臨界相二酸化炭素がシステム内を循環する。また、分離器18で分離された液相水19は系外に排出される。これにより、燃焼反応で生じた水(HO)を循環媒体である二酸化炭素から分離・除去することができる。 The supercritical phase carbon dioxide 1 separated by the separator 18 is supplied to the pressurizer 2. In this way, supercritical phase carbon dioxide circulates in the system. The liquid phase water 19 separated by the separator 18 is discharged out of the system. Thus, water (H 2 O) generated in the combustion reaction can be separated and removed from the carbon dioxide is circulated medium.

本実施形態では、超臨界相二酸化炭素と液相水との二相流体17が分離器18に供給され、超臨界相二酸化炭素1と液相水19とに分離される。つまり、システム内を循環する二酸化炭素は気相にならず超臨界相のままであり、加圧器2は二酸化炭素を気相から超臨界相まで加圧する必要がない。   In the present embodiment, a two-phase fluid 17 of supercritical phase carbon dioxide and liquid phase water is supplied to a separator 18 and separated into supercritical phase carbon dioxide 1 and liquid phase water 19. That is, the carbon dioxide circulating in the system does not become a gas phase and remains in the supercritical phase, and the pressurizer 2 does not need to pressurize carbon dioxide from the gas phase to the supercritical phase.

熱交換器7から排出される混合流体15を二酸化炭素の臨界圧未満まで減圧して気相にし、凝縮器により、燃焼で生成した水蒸気を凝縮させ、その後、気相二酸化炭素と凝縮水とを気液分離させる構成とした場合、加圧器2が二酸化炭素を気体から超臨界状態まで加圧するため、大きな動力が必要となる。また、中間冷却を伴う多段圧縮が必要となる。また、気相二酸化炭素は、超臨界相二酸化炭素よりも水分含有量が多くなり、分離・除去される水の量が少なくなる。   The mixed fluid 15 discharged from the heat exchanger 7 is reduced to a gas phase by reducing the pressure to less than the critical pressure of carbon dioxide, and the water vapor generated by the combustion is condensed by a condenser. When the gas-liquid separation is adopted, the pressurizer 2 pressurizes carbon dioxide from a gas to a supercritical state, so that a large power is required. In addition, multistage compression with intermediate cooling is required. Gas phase carbon dioxide has a higher water content than supercritical phase carbon dioxide, and the amount of water to be separated and removed is reduced.

一方、本実施形態では、二酸化炭素を超臨界相のままにして、分離器18で超臨界相二酸化炭素1と液相水19とに分離する。そのため、上述したような気相二酸化炭素と凝縮水とを気液分離する場合と比較して、燃焼反応で生じた水を多く分離・除去することができる。また、加圧器2は二酸化炭素を気相から超臨界相まで加圧する必要がなく、動力を低減することができる。   On the other hand, in this embodiment, carbon dioxide remains in the supercritical phase, and is separated into supercritical phase carbon dioxide 1 and liquid phase water 19 by the separator 18. Therefore, more water generated by the combustion reaction can be separated and removed as compared with the case where gas-phase carbon dioxide and condensed water are separated from each other as described above. The pressurizer 2 does not need to pressurize carbon dioxide from the gas phase to the supercritical phase, and can reduce power.

このように、本実施形態によれば、二酸化炭素循環発電システムの加圧器の動力を低減させることができる。   Thus, according to this embodiment, the power of the pressurizer of the carbon dioxide circulation power generation system can be reduced.

上記実施形態において、分離器18は、二相流体17を超臨界相二酸化炭素1と液相水19とに分離する。分離器18から排出される液相水19は、比較的高い圧力を有しているため、図3に示すように、液相水19を水力タービン30に供給して動力を回収するようにしてもよい。   In the above embodiment, the separator 18 separates the two-phase fluid 17 into the supercritical phase carbon dioxide 1 and the liquid phase water 19. Since the liquid phase water 19 discharged from the separator 18 has a relatively high pressure, as shown in FIG. 3, the liquid phase water 19 is supplied to the hydraulic turbine 30 to recover the power. Also good.

また、水力タービン30から減圧されて排出される液相水を気水分離器(図示せず)に供給し、液相水19に溶解していた二酸化炭素を分離・回収するようにしてもよい。   Further, liquid phase water decompressed and discharged from the hydro turbine 30 may be supplied to an air-water separator (not shown), and carbon dioxide dissolved in the liquid phase water 19 may be separated and recovered. .

図4に示すように、分配器40により超臨界相二酸化炭素6を超臨界相二酸化炭素6a、6bに分配し、超臨界相二酸化炭素6aと酸素11とを混合してから燃焼器9に供給するとともに、熱交換器7を介して超臨界相二酸化炭素6bを燃焼器9に供給する構成にしてもよい。   As shown in FIG. 4, the supercritical phase carbon dioxide 6 is distributed to the supercritical phase carbon dioxide 6a and 6b by the distributor 40, and the supercritical phase carbon dioxide 6a and oxygen 11 are mixed and then supplied to the combustor 9. In addition, the supercritical phase carbon dioxide 6b may be supplied to the combustor 9 through the heat exchanger 7.

このような構成にすることで、図2に示すような酸素11を燃焼器9に直接供給する場合と比較して、燃焼器9での燃焼反応の安定性を高めることができる。なお、超臨界相二酸化炭素6aと酸素11とを混合したものも別途、熱交換器7を介して燃焼器9に供給する構成にしてもよい。   By adopting such a configuration, the stability of the combustion reaction in the combustor 9 can be improved as compared with the case where the oxygen 11 as shown in FIG. 2 is directly supplied to the combustor 9. A mixture of supercritical phase carbon dioxide 6a and oxygen 11 may be separately supplied to the combustor 9 via the heat exchanger 7.

上記実施形態では、加圧器2により加圧され出力された超臨界相二酸化炭素3が分配器4に供給されていたが、図5に示すように、分離器18から排出された超臨界相二酸化炭素1を分配器4に供給してもよい。分配器1により、超臨界相二酸化炭素1が、過剰二酸化炭素5と、系内を循環する超臨界相二酸化炭素6とに分配される。超臨界相二酸化炭素6は加圧器2に供給される。   In the above embodiment, the supercritical phase carbon dioxide 3 pressurized and output by the pressurizer 2 is supplied to the distributor 4, but the supercritical phase carbon dioxide discharged from the separator 18 as shown in FIG. Carbon 1 may be supplied to the distributor 4. The distributor 1 distributes supercritical phase carbon dioxide 1 into excess carbon dioxide 5 and supercritical phase carbon dioxide 6 circulating in the system. Supercritical phase carbon dioxide 6 is supplied to the pressurizer 2.

また、タービン13から排出される混合流体14を用いる排熱回収ボイラを設け、蒸気を生成し、蒸気タービンに供給するようにしてもよい。   Further, an exhaust heat recovery boiler that uses the mixed fluid 14 discharged from the turbine 13 may be provided to generate steam and supply it to the steam turbine.

また、図6に示すように、加圧器2に供給される超臨界相二酸化炭素1を冷却して液相にし、液相二酸化炭素1Aを加圧器2に供給する冷却器60を設けてもよい。液相二酸化炭素1Aとすることで二酸化炭素の密度が上がり、加圧器2で加圧し易くなり、加圧器2の動力をさらに低減することができる。   Further, as shown in FIG. 6, a cooler 60 may be provided that cools the supercritical phase carbon dioxide 1 supplied to the pressurizer 2 to a liquid phase and supplies the liquid phase carbon dioxide 1 </ b> A to the pressurizer 2. . By setting it as liquid phase carbon dioxide 1A, the density of carbon dioxide increases, it becomes easy to pressurize with the pressurizer 2, and the motive power of the pressurizer 2 can further be reduced.

以上説明した少なくともひとつの実施形態によれば、二酸化炭素循環発電システムの加圧器の動力を低減させることができる。   According to at least one embodiment described above, the power of the pressurizer of the carbon dioxide circulation power generation system can be reduced.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

2 加圧器
4 分配器
7 熱交換器
9 燃焼器
13 タービン
16 冷却器
18 分離器
20 発電機
2 Pressurizer 4 Distributor 7 Heat exchanger 9 Combustor 13 Turbine 16 Cooler 18 Separator 20 Generator

Claims (7)

超臨界相二酸化炭素を加圧する加圧器と、
加圧された超臨界相二酸化炭素を加熱する熱交換器と、
酸素及び燃料を用いた燃焼反応により、前記熱交換器から供給される超臨界相二酸化炭素を加熱し、超臨界相二酸化炭素及び水蒸気を含む第1混合流体を排出する燃焼器と、
前記第1混合流体により駆動するタービンと、
前記タービンから排出される、超臨界相二酸化炭素及び水蒸気を含む第2混合流体が、前記熱交換器を介して供給され、前記第2混合流体を冷却し、超臨界相二酸化炭素及び液相水を含む第3混合流体を排出する冷却器と、
前記第3混合流体を、超臨界相二酸化炭素と液相水とに分離し、分離した超臨界相二酸化炭素を前記加圧器に供給する分離器と、
を備える二酸化炭素循環発電システム。
A pressurizer for pressurizing supercritical phase carbon dioxide;
A heat exchanger for heating the pressurized supercritical phase carbon dioxide;
A combustor that heats supercritical phase carbon dioxide supplied from the heat exchanger by a combustion reaction using oxygen and fuel, and discharges the first mixed fluid containing supercritical phase carbon dioxide and water vapor;
A turbine driven by the first fluid mixture;
A second mixed fluid containing supercritical phase carbon dioxide and water vapor discharged from the turbine is supplied through the heat exchanger to cool the second mixed fluid, and supercritical phase carbon dioxide and liquid phase water. A cooler for discharging a third mixed fluid containing:
A separator for separating the third mixed fluid into supercritical phase carbon dioxide and liquid phase water, and supplying the separated supercritical phase carbon dioxide to the pressurizer;
A carbon dioxide circulation power generation system.
前記分離器は、比重差を用いて、前記第3混合流体を、超臨界相二酸化炭素と液相水とに分離することを特徴とする請求項1に記載の二酸化炭素循環発電システム。   2. The carbon dioxide circulation power generation system according to claim 1, wherein the separator separates the third mixed fluid into supercritical phase carbon dioxide and liquid phase water using a specific gravity difference. 前記分離器から排出される前記液相水により駆動する水力タービンをさらに備えることを特徴とする請求項1又は2に記載の二酸化炭素循環発電システム。   The carbon dioxide circulation power generation system according to claim 1 or 2, further comprising a hydro turbine driven by the liquid phase water discharged from the separator. 前記加圧器により加圧された超臨界相二酸化炭素を第1超臨界相二酸化炭素と第2超臨界相二酸化炭素とに分配する分配器をさらに備え、
前記第1超臨界相二酸化炭素は酸素と混合されて前記燃焼器に供給され、
前記第2超臨界相二酸化炭素は、前記熱交換器において前記第2混合流体を熱源として加熱され、前記燃焼器に供給されることを特徴とする請求項1乃至3のいずれかに記載の二酸化炭素循環発電システム。
A distributor for distributing supercritical phase carbon dioxide pressurized by the pressurizer into first supercritical phase carbon dioxide and second supercritical phase carbon dioxide;
The first supercritical carbon dioxide is mixed with oxygen and supplied to the combustor;
4. The carbon dioxide according to claim 1, wherein the second supercritical phase carbon dioxide is heated in the heat exchanger using the second mixed fluid as a heat source and supplied to the combustor. Carbon cycle power generation system.
前記分離器から排出される前記超臨界相二酸化炭素を冷却し、液相二酸化炭素を排出する第2冷却器をさらに備え、
前記加圧器は、前記液相二酸化炭素を加圧して超臨界相二酸化炭素を排出することを特徴とする請求項1乃至4のいずれかに記載の二酸化炭素循環発電システム。
A second cooler for cooling the supercritical phase carbon dioxide discharged from the separator and discharging liquid phase carbon dioxide;
The carbon dioxide circulation power generation system according to any one of claims 1 to 4, wherein the pressurizer pressurizes the liquid phase carbon dioxide to discharge supercritical phase carbon dioxide.
前記分離器は、遠心分離器、サイクロン、コアレッサー、又はフィルターセパレータであることを特徴とする請求項1乃至5のいずれかに記載の二酸化炭素循環発電システム。   The carbon dioxide circulation power generation system according to any one of claims 1 to 5, wherein the separator is a centrifuge, a cyclone, a coalescer, or a filter separator. 超臨界相二酸化炭素を加圧する工程と、
加圧された超臨界相二酸化炭素を熱交換器で加熱する工程と、
酸素及び燃料を用いた燃焼反応により、前記熱交換器から供給される超臨界相二酸化炭素を加熱し、超臨界相二酸化炭素及び水蒸気を含む第1混合流体を排出する工程と、
前記第1混合流体によりタービンを駆動する工程と、
前記タービンから排出される、超臨界相二酸化炭素及び水蒸気を含む第2混合流体を、前記熱交換器を介した後に冷却し、超臨界相二酸化炭素及び液相水を含む第3混合流体を排出する工程と、
前記第3混合流体を、超臨界相二酸化炭素と液相水とに分離し、分離した超臨界相二酸化炭素を前記加圧器に供給する工程と、
を備える二酸化炭素循環発電方法。
Pressurizing supercritical phase carbon dioxide;
Heating the pressurized supercritical phase carbon dioxide with a heat exchanger;
Heating a supercritical phase carbon dioxide supplied from the heat exchanger by a combustion reaction using oxygen and fuel, and discharging a first mixed fluid containing the supercritical phase carbon dioxide and water vapor;
Driving a turbine with the first mixed fluid;
The second mixed fluid containing supercritical phase carbon dioxide and water vapor discharged from the turbine is cooled after passing through the heat exchanger, and the third mixed fluid containing supercritical phase carbon dioxide and liquid phase water is discharged. And a process of
Separating the third mixed fluid into supercritical phase carbon dioxide and liquid phase water, and supplying the separated supercritical phase carbon dioxide to the pressurizer;
A carbon dioxide circulation power generation method comprising:
JP2013155843A 2013-07-26 2013-07-26 Carbon dioxide circulation power generation system and carbon dioxide circulation power generation method Active JP6088933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155843A JP6088933B2 (en) 2013-07-26 2013-07-26 Carbon dioxide circulation power generation system and carbon dioxide circulation power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155843A JP6088933B2 (en) 2013-07-26 2013-07-26 Carbon dioxide circulation power generation system and carbon dioxide circulation power generation method

Publications (2)

Publication Number Publication Date
JP2015025423A true JP2015025423A (en) 2015-02-05
JP6088933B2 JP6088933B2 (en) 2017-03-01

Family

ID=52490264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155843A Active JP6088933B2 (en) 2013-07-26 2013-07-26 Carbon dioxide circulation power generation system and carbon dioxide circulation power generation method

Country Status (1)

Country Link
JP (1) JP6088933B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619135B1 (en) 2015-05-08 2016-05-11 한국에너지기술연구원 Power generation system using ejector refrigeration cycle
KR101623309B1 (en) 2015-06-18 2016-05-20 한국에너지기술연구원 Supercritical carbon dioxide powder plant
KR101628619B1 (en) * 2015-05-04 2016-06-08 두산중공업 주식회사 generation system having temperature control device for heat exchanger
KR101628611B1 (en) * 2015-03-30 2016-06-08 두산중공업 주식회사 Supercritical CO2 generation system using multistage compressing and expanding of working fluid
KR101638286B1 (en) * 2015-04-22 2016-07-11 두산중공업 주식회사 Supercritical CO2 generation system and method for controlling output thereof
KR101638287B1 (en) * 2015-04-22 2016-07-11 두산중공업 주식회사 Supercritical CO2 generation system
KR20160125764A (en) * 2015-04-22 2016-11-01 두산중공업 주식회사 Supercritical CO2 generation system
WO2016178470A1 (en) * 2015-05-04 2016-11-10 두산중공업 주식회사 Supercritical carbon dioxide power generation system
WO2017138677A1 (en) * 2016-02-11 2017-08-17 두산중공업 주식회사 Waste heat recovery power generation system and flow control method for power generation system
US10570783B2 (en) 2017-11-28 2020-02-25 Hanwha Power Systems Co., Ltd Power generation system using supercritical carbon dioxide
KR102256202B1 (en) * 2020-02-17 2021-05-27 한국전력공사 Gas turbine power generating system
CN113958380A (en) * 2021-09-22 2022-01-21 西安交通大学 Transcritical carbon dioxide power generation system and method using gas-liquid separator and ejector
CN115288817A (en) * 2022-08-18 2022-11-04 中国核动力研究设计院 Supercritical carbon dioxide power generation system control method, device and equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736745A (en) * 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
JP2011256818A (en) * 2010-06-11 2011-12-22 Motoaki Utamura Exhaust heat recovery power plant and combined plant
JP2012225228A (en) * 2011-04-19 2012-11-15 Institute Of Applied Energy Supercritical pressure co2 gas turbine composite power generation system
WO2012176256A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Closed-cycle gas turbine and method for operating same
JP2013520597A (en) * 2010-01-28 2013-06-06 パルマー ラボ,エルエルシー System and method for high-efficiency power generation using carbon dioxide circulating working fluid
JP2014148934A (en) * 2013-02-01 2014-08-21 Hitachi Ltd Thermal power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736745A (en) * 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
JP2013520597A (en) * 2010-01-28 2013-06-06 パルマー ラボ,エルエルシー System and method for high-efficiency power generation using carbon dioxide circulating working fluid
JP2011256818A (en) * 2010-06-11 2011-12-22 Motoaki Utamura Exhaust heat recovery power plant and combined plant
JP2012225228A (en) * 2011-04-19 2012-11-15 Institute Of Applied Energy Supercritical pressure co2 gas turbine composite power generation system
WO2012176256A1 (en) * 2011-06-20 2012-12-27 熱技術開発株式会社 Closed-cycle gas turbine and method for operating same
JP2014148934A (en) * 2013-02-01 2014-08-21 Hitachi Ltd Thermal power generation system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101628611B1 (en) * 2015-03-30 2016-06-08 두산중공업 주식회사 Supercritical CO2 generation system using multistage compressing and expanding of working fluid
KR101638287B1 (en) * 2015-04-22 2016-07-11 두산중공업 주식회사 Supercritical CO2 generation system
KR101674804B1 (en) * 2015-04-22 2016-11-09 두산중공업 주식회사 Supercritical CO2 generation system
KR20160125764A (en) * 2015-04-22 2016-11-01 두산중공업 주식회사 Supercritical CO2 generation system
KR101638286B1 (en) * 2015-04-22 2016-07-11 두산중공업 주식회사 Supercritical CO2 generation system and method for controlling output thereof
WO2016178470A1 (en) * 2015-05-04 2016-11-10 두산중공업 주식회사 Supercritical carbon dioxide power generation system
JP2018519454A (en) * 2015-05-04 2018-07-19 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Supercritical carbon dioxide power generation system
KR20160130551A (en) * 2015-05-04 2016-11-14 두산중공업 주식회사 Supercritical CO2 generation system
KR101719234B1 (en) 2015-05-04 2017-03-23 두산중공업 주식회사 Supercritical CO2 generation system
KR101628619B1 (en) * 2015-05-04 2016-06-08 두산중공업 주식회사 generation system having temperature control device for heat exchanger
KR101619135B1 (en) 2015-05-08 2016-05-11 한국에너지기술연구원 Power generation system using ejector refrigeration cycle
WO2016182150A1 (en) * 2015-05-08 2016-11-17 한국에너지기술연구원 Power generation system using ejector refrigeration cycle
KR101623309B1 (en) 2015-06-18 2016-05-20 한국에너지기술연구원 Supercritical carbon dioxide powder plant
WO2017138677A1 (en) * 2016-02-11 2017-08-17 두산중공업 주식회사 Waste heat recovery power generation system and flow control method for power generation system
US10570783B2 (en) 2017-11-28 2020-02-25 Hanwha Power Systems Co., Ltd Power generation system using supercritical carbon dioxide
KR102256202B1 (en) * 2020-02-17 2021-05-27 한국전력공사 Gas turbine power generating system
CN113958380A (en) * 2021-09-22 2022-01-21 西安交通大学 Transcritical carbon dioxide power generation system and method using gas-liquid separator and ejector
CN115288817A (en) * 2022-08-18 2022-11-04 中国核动力研究设计院 Supercritical carbon dioxide power generation system control method, device and equipment
CN115288817B (en) * 2022-08-18 2023-04-07 中国核动力研究设计院 Supercritical carbon dioxide power generation system control method, device and equipment

Also Published As

Publication number Publication date
JP6088933B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6088933B2 (en) Carbon dioxide circulation power generation system and carbon dioxide circulation power generation method
US10072531B2 (en) Hybrid power generation system using supercritical CO2 cycle
US10024198B2 (en) Heat engine system including an integrated cooling circuit
RU2534077C2 (en) Method of combined production of synthesis-gas and electric energy
KR102473939B1 (en) Method and system for power production with improved efficiency
JP5183119B2 (en) Power generation system
CN105765178A (en) Heat Engine System Having a Selectively Configurable Working Fluid Circuit
JP5496494B2 (en) Power generation system
JP2009519828A (en) Integrated compressor / stripper configuration and method
JP2014530323A (en) Fischer-Tropsch reactor integrated with organic Rankine cycle
WO2021132126A1 (en) Ammonia derivative production plant and production method for ammonia derivative
US20180340454A1 (en) Open Thermodynamic Cycle Utilizing Supercritical Carbon Dioxide Without Compressors
JP6764798B2 (en) Plant and plant operation method
JP6181138B2 (en) Shaft seal device and power generation system
JP5656057B2 (en) Separation process module
RU2651918C1 (en) Method and plant for mechanical and thermal energy generation
JP5183118B2 (en) Power generation system
JP2022068715A (en) Power generation system
JP2018128201A (en) Co2 liquefying system and co2 liquefying method
JP6664033B1 (en) Ammonia production plant and method for producing ammonia
JPH11269109A (en) Plant for synthesizing carbon-containing hydrogen compound
JP2021124074A (en) Power generation method and power generation system
JP2020200812A (en) Combined plant
KR20130074466A (en) Power system for improved thermal and condensing efficiency
KR20180127307A (en) Open thermodynamic cycle utilizing supercritical carbon dioxide without compressors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170206

R151 Written notification of patent or utility model registration

Ref document number: 6088933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350