JP2012225228A - Supercritical pressure co2 gas turbine composite power generation system - Google Patents

Supercritical pressure co2 gas turbine composite power generation system Download PDF

Info

Publication number
JP2012225228A
JP2012225228A JP2011092648A JP2011092648A JP2012225228A JP 2012225228 A JP2012225228 A JP 2012225228A JP 2011092648 A JP2011092648 A JP 2011092648A JP 2011092648 A JP2011092648 A JP 2011092648A JP 2012225228 A JP2012225228 A JP 2012225228A
Authority
JP
Japan
Prior art keywords
power generation
gas turbine
generation system
steam
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011092648A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasuike
宏 蓮池
Kiichiro Ogawa
紀一郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Energy
Original Assignee
Institute of Applied Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Energy filed Critical Institute of Applied Energy
Priority to JP2011092648A priority Critical patent/JP2012225228A/en
Publication of JP2012225228A publication Critical patent/JP2012225228A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation system whose power generation efficiency is higher than that of a conventional power generation system or a simple supercritical pressure COgas turbine cycle in the power generation region of 25,000 kWe class, and to further provide a thermoelectric variable power generation system in addition thereto.SOLUTION: In a composite power generation system of the supercritical pressure COgas turbine and a gas turbine, a flue COheating unit 21 for recovering the heat of exhaust gas and a steam generator 3 are arranged within an exhaust gas duct 17 of a conventional gas turbine 1, the flue COheating unit 21 is used as a COheater of a supercritical pressure COgas turbine cycle 2 (in some case, together with a cooling wall pipe 19 provided in a combustor), and steam generated in the steam generator 3 is introduced within the conventional gas turbine, and supplies the heat as demanded.

Description

本発明は、超臨界圧二酸化炭素(CO)を作動媒体とするタービン(以下、「超臨界圧COガスタービン」という。)とLNG等を燃料とする従来型のガスタービン(以下、「従来型ガスタービン」という。)との複合発電システムに関するものである。 The present invention relates to a turbine using supercritical carbon dioxide (CO 2 ) as a working medium (hereinafter referred to as “supercritical CO 2 gas turbine”) and a conventional gas turbine using LNG or the like as fuel (hereinafter referred to as “ This is related to a combined power generation system with a conventional gas turbine.

非特許文献1及び非特許文献2に記載されているとおり、超臨界圧COガスタービンサイクルの開発が進められている。その超臨界圧COガスタービンサイクルの概念図を図7に示す。 As described in Non-Patent Document 1 and Non-Patent Document 2, development of a supercritical pressure CO 2 gas turbine cycle is underway. The conceptual diagram of the supercritical pressure CO 2 gas turbine cycle is shown in FIG.

図8に示すように、超臨界圧COガスタービンサイクルは1、000kWeから100,000kWeの発電領域、特に、25,000kWe以下の発電領域で従来のガスエンジン、従来型ガスタービン、あるいは、従来の蒸気タービンサイクルに比べて高い発電効率が得られる。また、超臨界圧COガスタービンは従来型ガスタービンやガスエンジンとは異なり、完全な閉サイクルであって、サイクルへの熱の供給は熱交換器壁を介して行う外熱式であるから、バイオマスの燃焼ガスや高炉ガスなどの粒状物を含む、いわゆる、ダーティなガスも熱源として利用できるという利点があるので、将来この発電領域での普及が期待されている。 As shown in FIG. 8, the supercritical pressure CO 2 gas turbine cycle is a conventional gas engine, a conventional gas turbine, or a conventional power generation region of 1,000 kWe to 100,000 kWe, particularly a power generation region of 25,000 kWe or less. High power generation efficiency can be obtained compared to the steam turbine cycle. Also, unlike the conventional gas turbine and gas engine, the supercritical pressure CO 2 gas turbine is a completely closed cycle, and the heat is supplied to the cycle through the heat exchanger wall. Since there is an advantage that so-called dirty gas including particulate matter such as biomass combustion gas and blast furnace gas can be used as a heat source, it is expected to spread in the power generation area in the future.

本願出願人は、超臨界圧COガスタービンサイクルのこのような将来性に以前より着目して開発を進めてきており、非特許文献3に記載した超臨界圧COガスタービンや、特許文献1に記載したCO加熱器はその開発の一端である。 Applicant has such attention than before to the future has been developing, the supercritical CO 2 gas turbines and described in Non-Patent Document 3 supercritical CO 2 gas turbine cycle, JP The CO 2 heater described in 1 is one end of its development.

超臨界圧COガスタービンサイクルが従来の発電システムに比べ高効率であることは前述の通りであるが、更なる高効率化が望まれる。 As described above, the supercritical pressure CO 2 gas turbine cycle is more efficient than the conventional power generation system, but further higher efficiency is desired.

一方、25,000kWeクラス以下の発電領域の発電システムには、電力と同時に発電システム外に蒸気を供給し、しかも、その需要に応じて出力する電力と熱の比率、すなわち、熱電比を替えることができる熱電可変型の設備が望まれている。   On the other hand, for power generation systems in the power generation region of 25,000 kWe class or less, steam is supplied to the outside of the power generation system at the same time as the power, and the ratio of power to heat output according to the demand, that is, the thermoelectric ratio is changed. There is a demand for a thermoelectric variable type facility that can be used.

なお、従来型ガスタービンプラントにおいて、ガスタービンの排熱を回収して蒸気を発生させ、その蒸気をガスタービンに注入して、発電出力を増大させ、かつ、熱効率を向上させる蒸気注入サイクルがある。その中で注入蒸気中のドレンのガスタービン内への同伴を避けるため注入蒸気として過熱蒸気を使用するものはチエンサイクル(Cheng cycle)と呼ばれ実用に供されている。   In a conventional gas turbine plant, there is a steam injection cycle that recovers exhaust heat of the gas turbine to generate steam, injects the steam into the gas turbine, increases power generation output, and improves thermal efficiency. . Among them, what uses superheated steam as injection steam in order to avoid entrainment of drain in the injection steam into the gas turbine is called a Cheng cycle and is put into practical use.

この蒸気注入サイクルでは、発生した蒸気の一部あるいは全部を必要に応じて発電システムの外部に供給する熱電可変型も実用化されている。図9のケース4に蒸気注入サイクルの概念図を示す。   In this steam injection cycle, a variable thermoelectric type in which part or all of the generated steam is supplied to the outside of the power generation system as necessary has been put into practical use. A conceptual diagram of the steam injection cycle is shown in Case 4 of FIG.

しかし、従来からある従来型ガスタービンと蒸気タービンの複合発電システム(図9のケース1)が、ガスタービンの入口温度の高温化や蒸気タービン側の蒸気条件の向上により発電効率が向上してきているために、蒸気注入サイクルの効率上の、ひいては経済上の優位性が薄れて来ている。蒸気注入サイクルはそのシステムの本質から発電はガスタービンでのみ行い、従って、発電効率もガスタービン効率のみによって左右されるので、効率向上が頭打ちになること、さらには、煙突より水蒸気量を多量に排出するので白煙が目立つこと、これらの経済上及び景観上の問題から発電用としての普及を妨げている。   However, the conventional combined power generation system of the conventional gas turbine and the steam turbine (case 1 in FIG. 9) has improved the power generation efficiency due to the high inlet temperature of the gas turbine and the improvement of the steam conditions on the steam turbine side. For this reason, the efficiency and thus the economic advantage of the steam injection cycle is waning. In the steam injection cycle, power generation is performed only by the gas turbine because of the essence of the system, and therefore the power generation efficiency depends only on the gas turbine efficiency. Since it is discharged, white smoke is conspicuous, and these economic and landscape problems prevent the spread of power generation.

このような従来技術に比べて、さらに発電効率が高く、かつ、必要に応じ熱電可変型の設備として対応できる発電設備が望まれている。   There is a demand for a power generation facility that has higher power generation efficiency than that of such a conventional technique and can be used as a thermoelectric variable type facility as necessary.

特願2009−279495号。Japanese Patent Application No. 2009-279495.

「超臨界圧CO2を作動媒体とするガスタービンの研究開発」宇多村元昭他著、財団法人エネルギー総合工学研究所編集発行「季報 エネルギー総合工学」第32巻第1号 平成21年4月20日発行。"Research and development of gas turbine using supercritical pressure CO2 as working medium" Motoaki Utamura et al., Edited by Energy Research Institute of Energy, "Kiho Energy Engineering" Vol. 32, No. 1, April 20, 2009 Issued daily. 「超臨界圧CO2ガスタービン発電システム効率特性評価」蓮池宏他著、2010年10月20、21日、徳島市で開催された第38回日本ガスタービン学会定期講演会で発表。"Supercritical pressure CO2 gas turbine power generation system efficiency characteristics evaluation" presented by Hiroshi Hasuike et al., October 20-21, 2010, at the 38th Annual Gas Turbine Society Annual Meeting held in Tokushima City. 「超臨界圧CO2クローズドサイクルガスタービンの開発」宇多村元昭他著、2009年10月21、22日、山口市で開催された第37回日本ガスタービン学会定期講演会で発表。“Development of Supercritical Pressure CO2 Closed Cycle Gas Turbine” by Motoaki Utamura et al., October 21 and 22, 2009, presented at the 37th Japan Gas Turbine Society Regular Lecture Meeting held in Yamaguchi City.

本発明が解決しようとする課題は、25,000kWeクラス以下の発電領域で従来型の発電システムや、単なる超臨界圧COガスタービンサイクルよりもさらに発電効率が高い発電システムを提供し、さらに、それに加えて熱電可変型の発電システムを提供することにある。 The problem to be solved by the present invention is to provide a power generation system having a power generation efficiency higher than that of a conventional power generation system or a simple supercritical pressure CO 2 gas turbine cycle in a power generation region of 25,000 kWe class or less, In addition, it is to provide a thermoelectric variable power generation system.

本発明は、LNG等を燃料とするガスタービンの排ガスダクト内に、その上流側から順に、排ガスの熱回収を行う煙道CO加熱部と蒸気発生器を配置し、当該煙道CO加熱部が超臨界圧COガスタービンサイクルのCO加熱器として使用され、当該蒸気発生器で発生した蒸気が当該従来型ガスタービン内に注入される、COガスタービンと従来型ガスタービンの複合発電システムである。 In the present invention, a flue CO 2 heating unit and a steam generator for recovering heat of exhaust gas are arranged in order from the upstream side in an exhaust gas duct of a gas turbine using LNG or the like as fuel, and the flue CO 2 heating is performed. A combination of a CO 2 gas turbine and a conventional gas turbine in which the section is used as a CO 2 heater for a supercritical CO 2 gas turbine cycle and the steam generated by the steam generator is injected into the conventional gas turbine It is a power generation system.

本発明の複合発電システムの概念図を図9のケース3に示す。LNG等を燃料とする従来型ガスタービンはコンバスタで燃料を燃焼させることにより発生した高温・高圧のガスでタービンを回転させ、発電機を回して電力を外部に送ると共に、自らのコンプレッサを回転させて燃焼用空気を昇圧する。   A conceptual diagram of the combined power generation system of the present invention is shown in case 3 of FIG. Conventional gas turbines that use LNG as a fuel rotate the turbine with high-temperature and high-pressure gas generated by burning fuel with a combustor, rotate the generator to send power to the outside, and rotate their compressors. Pressurize the combustion air.

この従来型ガスタービンのタービンの排ガスを煙突に導く排ガスダクト内に煙道CO加熱部と蒸気発生器を設ける。両者はいずれもタービンからの排ガスの熱回収を行い煙突から排出される排ガスの温度を下げて、システムの効率を向上させる。 A flue CO 2 heating section and a steam generator are provided in an exhaust gas duct that guides the exhaust gas of the turbine of this conventional gas turbine to a chimney. Both of them improve the efficiency of the system by recovering the heat of the exhaust gas from the turbine and lowering the temperature of the exhaust gas discharged from the chimney.

この煙道CO加熱部は、図7に示す超臨界圧COガスタービンサイクルのCO加熱器に相当し、再生熱交換器から出たCOを超臨界圧COガスタービンの所定の入口温度まで過熱する。一方、蒸気発生器で発生した蒸気は、ガスタービンに注入されて発電に寄与する。 The flue CO 2 heating portion corresponds to CO 2 heater supercritical CO 2 gas turbine cycle shown in FIG. 7, the CO 2 exiting the regenerative heat exchanger predetermined supercritical pressure CO 2 gas turbine Heat to inlet temperature. On the other hand, the steam generated by the steam generator is injected into the gas turbine and contributes to power generation.

この構成により、従来型ガスタービンの排熱を有効に回収し、その一部を超臨界圧COガスタービンサイクルの加熱源として有効活用すると共に、回収した残りで蒸気を発生させ、その蒸気をガスタービンに注入して、発電出力を増大させ、かつ、熱効率を向上させる。 With this configuration, the exhaust heat of the conventional gas turbine is effectively recovered, and a part of the exhaust heat is effectively used as a heating source for the supercritical pressure CO 2 gas turbine cycle. It is injected into a gas turbine to increase power generation output and improve thermal efficiency.

10,000kWe級の既存のガスタービンをベースに、他の発電システムとの間で出力と発電効率の比較をした。比較したのは、それぞれの概念図を図9に示す通り、本発明の複合発電システム(ケース3)の他に、従来型ガスタービンと蒸気タービンの複合発電システム(ケース1)、超臨界圧COガスタービンと従来型ガスタービンの複合発電システム(蒸気発生器を有しないもの)(ケース2)、そして、蒸気注入サイクル(ケース4)である。 Based on a 10,000 kWe class existing gas turbine, the output and power generation efficiency were compared with other power generation systems. Compared to each other, as shown in the conceptual diagram of FIG. 9, in addition to the combined power generation system of the present invention (case 3), the combined power generation system of the conventional gas turbine and the steam turbine (case 1), supercritical pressure CO A combined power generation system of two gas turbines and a conventional gas turbine (without a steam generator) (case 2), and a steam injection cycle (case 4).

試算した結果の概要を表1に示す。   Table 1 summarizes the results of the trial calculation.

Figure 2012225228
Figure 2012225228

その結果は、各発電システムの出力は図10、発電効率は図11の通りである。同規模のガスタービンを用いた場合、本発明の複合発電システム(ケース3)は、試算条件下においては、出力において従来型ガスタービンと蒸気タービンの複合発電システム(ケース1)にわずかに及ばない値となったが、効率(低位発熱量・発電端基準)では、ケース1が40.4%であるのに対し、47.3%と大幅に上回り、その効率向上の効果が際だっている。   As a result, the output of each power generation system is as shown in FIG. 10, and the power generation efficiency is as shown in FIG. When a gas turbine of the same scale is used, the combined power generation system (Case 3) of the present invention is slightly smaller in output than the combined power generation system of the conventional gas turbine and the steam turbine (Case 1) under trial calculation conditions. However, in the efficiency (low heating value / power generation end standard), Case 1 was 40.4%, significantly exceeding 47.3%, and the efficiency improvement effect was remarkable.

同様の試算を、発電規模を替えて行った結果を図12に示す。ここでは、本発明の複合発電システム(ケース3)及び従来型ガスタービンと蒸気タービンの複合発電システム(ケース1)に加えて、従来型ガスタービンと組み合わせないで燃焼炉でCOを加熱する超臨界圧COガスタービン発電システム、並びに、従来のボイラと蒸気タービンからなる火力発電システムと比較をした。 FIG. 12 shows the result of a similar trial calculation with the power generation scale changed. Here, in addition to the combined power generation system of the present invention (Case 3) and the combined power generation system of the conventional gas turbine and the steam turbine (Case 1), the superheater that heats CO 2 in the combustion furnace without combining with the conventional gas turbine. Comparison was made with a critical pressure CO 2 gas turbine power generation system and a conventional thermal power generation system consisting of a boiler and a steam turbine.

図から明らかなように、本発明の複合発電システムは、発電規模の広い範囲で他の発電システムに比べて高い効率(低位発熱量・発電端基準)を有している。特に、その効果は25,000kWeクラス以下の発電領域で際だっている。   As is apparent from the figure, the combined power generation system of the present invention has higher efficiency (low heating value / power generation end reference) than other power generation systems in a wide range of power generation scale. In particular, the effect is outstanding in the power generation area below 25,000 kWe class.

また、本発明は、請求項1に記載の複合発電システムであって、前記蒸気発生器で発生した蒸気の一部、あるいは、全部を、熱源として当該複合発電システム外へ送る熱電可変型の複合発電システムである。その概念図を図13に示す。   Further, the present invention is the combined power generation system according to claim 1, wherein a part of or all of the steam generated by the steam generator is used as a heat source to send out the combined power generation system. It is a power generation system. The conceptual diagram is shown in FIG.

ガスタービンの排熱を回収して蒸気を発生させ、その蒸気をガスタービンに注入して、発電出力を増大し、かつ、熱効率を向上させる蒸気注入サイクルは、航空転用型ガスタービンや可変静翼を有する産業用ガスタービンを用いることが多く、発電出力6,000kWeから27,000kWe程度のガスタービンがすでに実用化されている。前述の通り、同じサイズのガスタービンを用いた場合の発電量は他の発電方式に比べて大きくないが、かなり高い発電効率が得られ、さらに、付属設備が少ないため、設備単価が安くなることや省スペースであることが特徴である。   The steam injection cycle, which recovers exhaust heat from the gas turbine and generates steam, and injects the steam into the gas turbine to increase the power generation output and improve the thermal efficiency, is an aeroderivative gas turbine or variable stator blade In many cases, an industrial gas turbine having a power generation output of 6,000 kWe to 27,000 kWe has already been put into practical use. As described above, the amount of power generated when using the same size gas turbine is not large compared to other power generation methods, but considerably higher power generation efficiency is obtained, and furthermore, the equipment unit price is cheaper because there are few attached equipment. It is also characterized by space saving.

ガスタービンのコンバスタは外筒と内筒の二重構造をもち、燃料は内筒内で燃焼し、その燃焼により高温になる内筒の温度を下げるために、外筒と内筒の間にできる円環状の流路に冷却流体(通常は燃焼用の空気)を流す構造となっている。   A gas turbine combustor has a double structure of an outer cylinder and an inner cylinder, and fuel is burned in the inner cylinder, and the temperature of the inner cylinder which becomes high due to the combustion can be lowered between the outer cylinder and the inner cylinder. A cooling fluid (usually combustion air) is passed through an annular channel.

蒸気注入サイクルにおいて、ガスタービンの排熱の熱回収で発生した蒸気は、この円環状の流路を流れる空気に混入させる形で、ガスタービンに注入される。注入できる蒸気量は、下記の数式1に示す熱電比で0から0.3程度、すなわち、熱回収で発生した蒸気すべてをガスタービンに注入する運転状態から発生電力量の3割に相当する蒸気をサイクル外へ送気する運転状態まで対応が可能である。   In the steam injection cycle, the steam generated by the heat recovery of the exhaust heat of the gas turbine is injected into the gas turbine in a form of being mixed into the air flowing through the annular flow path. The amount of steam that can be injected is about 0 to 0.3 in terms of the thermoelectric ratio shown in Equation 1 below, that is, the steam corresponding to 30% of the generated electric energy from the operating state in which all the steam generated by heat recovery is injected into the gas turbine. It is possible to cope with the operating state in which air is supplied to the outside of the cycle.

数式1
熱電比=サイクル外へ送気する蒸気の熱量/発生電力量
Formula 1
Thermoelectric ratio = calorie of steam sent out of cycle / generated energy

10,000kWe級の既存のガスタービンをベースに、他の熱併給型の発電システムと発電効率の比較をしてみた。比較したのは、それぞれの概念図を図14に示す通り、本発明の複合発電システムであって煙道に置かれた蒸気発生器が一つであって、発生する蒸気の圧力が一つの圧力、すなわち、蒸気発生器が単圧の場合(ケース6)、煙道に置かれて蒸気発生器が複数(この場合は二つ)あって、発生する蒸気が複数の圧力、すなわち、蒸気発生器が複圧の場合(ケース7)、さらに、従来型ガスタービンと蒸気タービンの複合発電システム(ケース5)、及び、蒸気注入サイクル(ケース8)である。   Based on a 10,000 kWe class existing gas turbine, we compared the power generation efficiency with other cogeneration systems. The comparison is as shown in FIG. 14 in which each conceptual diagram is a combined power generation system of the present invention, in which there is one steam generator placed in the flue, and the pressure of the generated steam is one pressure. That is, when the steam generator has a single pressure (case 6), there are a plurality of steam generators (two in this case) placed in the flue, and the generated steam has a plurality of pressures, that is, the steam generator. Is a double pressure (case 7), a conventional combined power generation system of a gas turbine and a steam turbine (case 5), and a steam injection cycle (case 8).

試算した結果の概要を表2に示す。   Table 2 summarizes the results of the trial calculation.

Figure 2012225228
Figure 2012225228

その結果は、各発電システムの発電量を最大にした場合(以下、「発電MAX」という。)の効率(低位発熱量・発電端基準)は図15、熱供給を最大にした場合(以下、「熱MAX」という。)の効率(低位発熱量)は図16の通りである。   As a result, when the power generation amount of each power generation system is maximized (hereinafter referred to as “power generation MAX”), the efficiency (low heating value / power generation end standard) is shown in FIG. The efficiency (referred to as “heat MAX”) (low heating value) is as shown in FIG.

同規模のガスタービンを用いた場合、本発明の複合発電システム、特に、蒸気発生器が複圧の場合は、発電MAXの効率(低位発熱量・発電端基準)において47.4%と他システムにくらべ極めて高効率である。   When a gas turbine of the same scale is used, the combined power generation system of the present invention, particularly when the steam generator has multiple pressures, the efficiency of power generation MAX (low heating value / power generation end standard) is 47.4%, which is another system. It is extremely efficient compared to

本発明の複合発電システムの熱MAXの効率(低位発熱量)はケース5やケース8に比べて低いが、多くの事例で見られるように、発電が主体であり、熱供給は副の位置づけであるプラントにあっては、発電量を多くした運転状態、すなわち、発電MAX、あるいは、それに近い状態で、極めて高い効率が得られることは電力不足が懸念される昨今非常に有益である。   Although the efficiency (low heating value) of the thermal power generation system of the combined power generation system of the present invention is lower than those of Case 5 and Case 8, as seen in many cases, the power generation is the main component, and the heat supply is the subordinate position. In a certain plant, it is very beneficial nowadays that there is a concern about power shortage that an extremely high efficiency can be obtained in an operation state with a large amount of power generation, that is, power generation MAX or a state close thereto.

さらに、本発明は、請求項1に記載の複合発電システムであって、前記煙道CO加熱器で加熱されたCOを、前記従来型ガスタービンのコンバスタの冷却壁管に導き、その中で再加熱した後、前記超臨界圧COガスタービンに送る複合発電システムである。 Furthermore, the present invention provides a combined cycle power generation system of claim 1, the CO 2 that is heated by the flue CO 2 heater, led to the cooling wall tube of the combustor of the conventional gas turbine, therein In the combined power generation system, after being reheated at, the mixture is sent to the supercritical CO 2 gas turbine.

図17に本発明の複合発電システムの概念図を示す。超臨界圧COガスタービンに送るCOの加熱を煙道CO加熱器とコンバスタ内冷却壁管での加熱の2段階に分けて行うことにより、煙道CO加熱器の伝熱面積が減り、設置スペースが節約できると共に、加熱段階でのCOの圧力損失が少なくなり、超臨界圧COガスタービンサイクルの発電効率、ひいては、本複合発電サイクルの発電効率が、さらに向上する。 FIG. 17 shows a conceptual diagram of the combined power generation system of the present invention. By heating the CO 2 sent to the supercritical CO 2 gas turbine in two stages, the flue CO 2 heater and the cooling wall pipe in the combustor, the heat transfer area of the flue CO 2 heater is reduced. As a result, the installation space can be saved, and the pressure loss of CO 2 in the heating stage is reduced, so that the power generation efficiency of the supercritical pressure CO 2 gas turbine cycle and thus the power generation efficiency of the combined power generation cycle are further improved.

また、本発明は、請求項3に記載の複合発電システムであって、前記蒸気発生器で発生した蒸気の一部、あるいは、全部を、熱源として当該複合発電システム外へ送る熱電可変型の複合発電システムである。   Further, the present invention is the combined power generation system according to claim 3, wherein a part or all of the steam generated by the steam generator is sent out of the combined power generation system as a heat source. It is a power generation system.

前記煙道CO加熱器で加熱されたCOを、従来型ガスタービンのコンバスタに導き、その中の冷却壁管で加熱した後、COガスタービンに送る複合システムで得られたより高い発電効率を維持しつつ、前述の熱電可変型の効果を生かすことができる。 The CO 2 that is heated by the flue CO 2 heater, lead to combustor of a conventional gas turbine, after heating at a cooling wall tube therein, high power generation efficiency than was obtained with a complex system to be sent to the CO 2 gas turbine The above-described thermoelectric variable effect can be utilized while maintaining the above.

本発明の複合電システムを採用することにより、25,000kWeクラス以下の発電領域で従来型の発電システムや、単なる超臨界圧COガスタービンサイクルよりもさらに発電効率が高い発電システムを提供し、さらに、それに加えて熱電可変型の発電システムを提供することができる。 By adopting the composite power system of the present invention, a power generation system having a power generation efficiency higher than that of a conventional power generation system or a simple supercritical CO 2 gas turbine cycle in a power generation region of 25,000 kWe or less, In addition, a thermoelectric variable type power generation system can be provided.

本発明の複合発電システムの実施例1及び実施例2の説明図である。It is explanatory drawing of Example 1 and Example 2 of the combined power generation system of this invention. 実施例1の温度線図である。3 is a temperature diagram of Example 1. FIG. 実施例2の温度線図である。6 is a temperature diagram of Example 2. FIG. 実施例3の説明図である。10 is an explanatory diagram of Example 3. FIG. 実施例3のガスタービンのコンバスタの断面図である。It is sectional drawing of the combustor of the gas turbine of Example 3. FIG. 実施例3の温度線図である。6 is a temperature diagram of Example 3. FIG. 超臨界圧COガスタービンサイクルの説明図である。It is an illustration of supercritical CO 2 gas turbine cycle. 超臨界圧COガスタービンサイクルと他の発電システムの発電効率の比較図である。It is a comparison diagram of the power generation efficiency of the supercritical CO 2 gas turbine cycles and other power generation systems. 出力と効率(低位発熱量・発電端基準)の比較をした発電システムの概念図である。It is the conceptual diagram of the electric power generation system which compared the output and efficiency (low heating value and electric power generation end standard). 出力の比較図である。It is an output comparison diagram. 効率(低位発熱量・発電端基準)の比較図である。It is a comparison figure of efficiency (low heating value, power generation end standard). 発電規模を変えた場合の効率(低位発熱量・発電端基準)の比較図である。It is a comparison figure of the efficiency (low heating value and power generation end standard) when the power generation scale is changed. 本発明の熱電可変型の複合発電システムの概念図である。It is a conceptual diagram of the thermoelectric variable type combined power generation system of this invention. 発電効率の比較をしてみた熱併給型の発電システムの概念図である。It is a conceptual diagram of the cogeneration type power generation system which compared the power generation efficiency. 発電MAXの効率(低位発熱量・発電端基準)の比較図である。It is a comparison figure of efficiency of power generation MAX (low heating value / power generation end standard). 熱MAXの効率(低位発熱量)の比較図である。It is a comparison figure of efficiency (low calorific value) of heat MAX. 本発明のCOを煙道CO加熱器と従来型ガスタービンのコンバスタで加熱する複合発電システムの説明図である。The CO 2 of the present invention is an explanatory diagram of a combined cycle power generation system for heating in combustor flue CO 2 heater and conventional gas turbines.

本発明の実施の形態について、図面を参照しながら説明する。なお、本発明はかかる実施の形態には限定されず、本発明の範囲内でその具体的構造に種々の変更を加えて良いことは言うまでもない。   Embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to such an embodiment, and it goes without saying that various modifications may be made to the specific structure within the scope of the present invention.

図1は本発明の超臨界圧COガスタービン複合発電システムの実施例1の構成を示す説明図である。図中の一点鎖線で示されたラインと弁は実施例2で付加されるものであり、実施例1では存在しない。また、図2には実施例1の試算された一つの温度線図を示す。 FIG. 1 is an explanatory diagram showing a configuration of a supercritical pressure CO 2 gas turbine combined power generation system according to a first embodiment of the present invention. The line and valve indicated by the alternate long and short dash line in the figure are added in the second embodiment and do not exist in the first embodiment. FIG. 2 shows a temperature diagram calculated for Example 1.

従来型ガスタービン1は、燃焼用空気11を圧縮するコンプレッサ12、燃料であるLNG等13をその圧縮された燃焼用空気で燃焼させるコンバスタ14、そこで発生した高温・高圧ガスのエネルギーを回転運動に変えるタービン15、そのタービンにより回転し発電する発電機16からなり、タービン15を出た排ガスは煙道17を通って煙突18に導かれる。   The conventional gas turbine 1 includes a compressor 12 that compresses combustion air 11, a combustor 14 that combusts LNG or the like 13 that is fuel using the compressed combustion air, and the energy of the high-temperature and high-pressure gas generated therein is rotated. A turbine 15 to be changed and a generator 16 that rotates by the turbine to generate electric power, and the exhaust gas exiting the turbine 15 is guided to a chimney 18 through a flue 17.

この煙道17内のタービン15に近い部分、すなわち、ガスタービン排ガスの温度が最も高い部分に、超臨界圧COガスタービンサイクル2に使用するCOを加熱する煙道CO加熱器21が設けられる。その下流側、すなわち、ガスタービン排ガスの温度が下がった部分にはガスタービン1に注入される蒸気を発生する蒸気発生器3が設けられる。 A flue CO 2 heater 21 that heats CO 2 used in the supercritical pressure CO 2 gas turbine cycle 2 is provided in a portion close to the turbine 15 in the flue 17, that is, a portion where the temperature of the gas turbine exhaust gas is highest. Provided. A steam generator 3 for generating steam to be injected into the gas turbine 1 is provided on the downstream side thereof, that is, in a portion where the temperature of the gas turbine exhaust gas is lowered.

この実施例1では2段の複圧式を採用しており、蒸気発生器3は、高圧蒸気発生器31、低圧蒸気発生器32、それらに送る給水を予熱する節炭器33,および、その給水を送り込む給水ポンプ34から成っている。図2に示したように飽和温度の最も高い高圧蒸気発生器31をより高い排ガス温度域に配置し、その下流側により飽和温度の低い低圧蒸気発生器32、最後に飽和温度以下の低い温度の節炭器33を設けることにより、ピンチ・ポイントを避けて、煙突18に至る排ガス温度を165℃の適正値まで下げることができる。また、熱交換に必要な温度差を十分採れるので、熱交換器としてコンパクトな構成を取ることができる。   In the first embodiment, a two-stage multi-pressure type is adopted, and the steam generator 3 includes a high-pressure steam generator 31, a low-pressure steam generator 32, a economizer 33 for preheating the feed water to be sent to them, and its feed water. It consists of a water supply pump 34 that feeds in water. As shown in FIG. 2, the high-pressure steam generator 31 having the highest saturation temperature is arranged in a higher exhaust gas temperature region, the low-pressure steam generator 32 having a lower saturation temperature on the downstream side, and finally the lower temperature below the saturation temperature. By providing the economizer 33, the exhaust gas temperature reaching the chimney 18 can be lowered to an appropriate value of 165 ° C. while avoiding pinch points. Further, since a sufficient temperature difference necessary for heat exchange can be taken, a compact configuration can be taken as a heat exchanger.

本実施例では、圧力が違う二つの蒸気発生器31、32に一つの給水ポンプ34から給水を送り込み、一つの節炭器33を経たのち分岐してそれぞれの蒸気発生器に給水を送り込むために、分配用の調整弁35、36を設けているが、それぞれの蒸気発生器に節炭器、及び、給水ポンプを個別に設け、ラインを分離して、調整弁は無しとすることも当然に考えられる。   In this embodiment, feed water is fed from one feed pump 34 to two steam generators 31 and 32 having different pressures, branches after passing through one economizer 33, and feeds feed water to the respective steam generators. The distribution regulating valves 35 and 36 are provided, but it is natural that the steam generator and the water supply pump are individually provided in each steam generator, the line is separated, and the regulating valve is not provided. Conceivable.

二つの蒸気発生器31、32で発生した蒸気36、37は、実施例1では一点鎖線で表示した熱供給ライン41、42やそのための調整弁38、39、43、44は存在しないから、全量がガスタービン1に注入され、その発電電力を増大させ、かつ、発電効率を向上させるために使われる。   The steams 36 and 37 generated by the two steam generators 31 and 32 are all in the first embodiment because there is no heat supply line 41 or 42 indicated by an alternate long and short dash line and regulating valves 38, 39, 43 and 44 therefor. Is injected into the gas turbine 1 and used to increase the generated power and improve the power generation efficiency.

一方、超臨界圧COガスタービンサイクル2の詳細は図1では表示していないが、図7に示す構成になっており、図7のCO加熱器の役割を図1の煙道CO加熱器が担う。前述したとおり、超臨界圧COガスタービンサイクルは1、000kWeから100,000kWeの発電領域、特に、25,000kWe以下の発電領域で従来のガスエンジン、従来型ガスタービン、あるいは、従来の蒸気タービンサイクルに比べて高い発電効率が得られる。 On the other hand, details of the supercritical pressure CO 2 gas turbine cycle 2 are not shown in FIG. 1, but have the configuration shown in FIG. 7, and the role of the CO 2 heater in FIG. 7 is the flue CO 2 in FIG. The heater is responsible. As described above, the supercritical pressure CO 2 gas turbine cycle is a conventional gas engine, a conventional gas turbine, or a conventional steam turbine in a power generation region of 1,000 kWe to 100,000 kWe, particularly in a power generation region of 25,000 kWe or less. High power generation efficiency can be obtained compared to the cycle.

図2に示した試算では、コンバスタ14で発生した燃焼ガスは1,250℃でタービン15に送られ、12,547kWeの発電をする。タービン15出口の排ガス温度は544℃であり、煙道CO加熱器21、二つの蒸気発生器31、32、さらに節炭器33と熱交換して165℃で煙突から排出される。 In the trial calculation shown in FIG. 2, the combustion gas generated in the combustor 14 is sent to the turbine 15 at 1,250 ° C. and generates 12,547 kWe. The exhaust gas temperature at the outlet of the turbine 15 is 544 ° C., and heat is exchanged with the flue CO 2 heater 21, the two steam generators 31 and 32, and the economizer 33, and the exhaust gas is discharged from the chimney at 165 ° C.

高圧蒸気発生器31からは3,170kg/hの蒸気が、低圧蒸気発生器32からは11,300kg/hの蒸気がガスタービン1に送られる。   3,170 kg / h of steam is sent from the high-pressure steam generator 31, and 11,300 kg / h of steam is sent from the low-pressure steam generator 32 to the gas turbine 1.

図1において、図中の一点鎖線で示されたライン41、42、および、調整弁38、39、43、44を実施例1に付加したものが実施例2である。また、図3には実施例2の試算された一つの温度線図を示す。   In FIG. 1, a second embodiment is obtained by adding lines 41 and 42 indicated by a one-dot chain line and regulating valves 38, 39, 43, and 44 to the first embodiment. FIG. 3 shows one temperature diagram calculated for Example 2. FIG.

熱供給を行うため、蒸気発生器3で発生した蒸気36、37の一部、又は、全部を分岐して供給する熱供給ライン41、42を設ける。熱供給の需要に合わせて蒸気を送り、かつ、電力の需要にも合わせるため、蒸気36、37は熱供給用とガスタービンへの注入用に適切に分配される。そのために調整弁38、39、43、44が設けられている。   In order to supply heat, heat supply lines 41 and 42 for supplying a part or all of the steam 36 and 37 generated by the steam generator 3 in a branched manner are provided. In order to deliver steam to meet the demand for heat supply and to meet the demand for power, the steam 36, 37 is appropriately distributed for heat supply and for injection into the gas turbine. For this purpose, regulating valves 38, 39, 43, 44 are provided.

図3は、実施例2において、発生させた蒸気36、37の全量を熱供給した場合の試算である。コンバスタ14で発生した燃焼ガスは1,250℃でタービン15に送られ、12,415kWeの発電をする。タービン15出口の排ガス温度は539℃であり、煙道CO加熱器21、二つの蒸気発生器31、32、さらに節炭器33と熱交換して165℃で煙突から排出される。 FIG. 3 is a trial calculation in the case where the whole amount of the generated steams 36 and 37 is supplied with heat in the second embodiment. The combustion gas generated in the combustor 14 is sent to the turbine 15 at 1,250 ° C., and generates 12,415 kWe. The exhaust gas temperature at the outlet of the turbine 15 is 539 ° C., and heat is exchanged with the flue CO 2 heater 21, the two steam generators 31 and 32, and the economizer 33, and the exhaust gas is discharged from the chimney at 165 ° C.

高圧蒸気発生器31からは3,270kg/hの蒸気が、低圧蒸気発生器32からは11,500kg/hの蒸気が熱供給のため発電システムの外に供給され、ガスタービン1に送られる蒸気量は0kg/hである。   Steam supplied from the high-pressure steam generator 31 to the gas turbine 1 is supplied with 3,270 kg / h of steam and from the low-pressure steam generator 32 is supplied with 11,500 kg / h of steam to the outside of the power generation system for heat supply. The amount is 0 kg / h.

図4は本発明の超臨界圧COガスタービン複合発電システムの実施例3の構成を示す説明図である。また、図5は、実施例3のガスタービンのコンバスタの一例の断面図である。さらに、図6には実施例3の試算された一つの温度線図を示す。 FIG. 4 is an explanatory diagram showing the configuration of a third embodiment of the supercritical pressure CO 2 gas turbine combined power generation system of the present invention. FIG. 5 is a cross-sectional view of an example of a gas turbine combustor according to the third embodiment. Further, FIG. 6 shows one temperature diagram calculated for Example 3. FIG.

理解を容易にするために、実施例1あるいは実施例2と同様の機能を持ち、類似の構成を持つ要素には同じ付番を行う。   In order to facilitate understanding, elements having the same functions as those in the first embodiment or the second embodiment and having similar configurations are assigned the same numbers.

ガスタービン1のタービン15を出た排ガスは煙道17を通って煙突18に導かれ、その煙道17内のタービン15に近い部分、すなわち、ガスタービン排ガスの温度が最も高い部分に、超臨界圧COガスタービンサイクル2に使用するCOを加熱する煙道CO加熱器21が設けられる。その下流側、すなわち、ガスタービン排ガスの温度が下がった部分にはガスタービン1に注入される蒸気を発生する蒸気発生器3が設けられる所は実施例1と同様である。 The exhaust gas exiting the turbine 15 of the gas turbine 1 is guided to the chimney 18 through the flue 17 and is supercritical in a portion near the turbine 15 in the flue 17, that is, a portion where the temperature of the gas turbine exhaust gas is highest. A flue CO 2 heater 21 is provided to heat the CO 2 used in the pressure CO 2 gas turbine cycle 2. The place where the steam generator 3 for generating the steam injected into the gas turbine 1 is provided on the downstream side, that is, the portion where the temperature of the gas turbine exhaust gas is lowered is the same as in the first embodiment.

この実施例では、蒸気発生器3が単圧式の場合を示している。すなわち、給水ポンプ34で送り込まれた給水は節炭器33で予熱された後、一つの蒸気発生器30に導かれ、単圧の蒸気を発生させる。技術的検討や経済性比較の結果によっては、実施例1と同様に複圧式とすることは可能である。   In this embodiment, the case where the steam generator 3 is a single pressure type is shown. That is, the feed water fed by the feed water pump 34 is preheated by the economizer 33 and then led to one steam generator 30 to generate single pressure steam. Depending on the results of technical examination and economic comparison, it is possible to use a double pressure type as in the first embodiment.

蒸気発生器30で発生した蒸気は、ガスタービン1に注入される。熱電可変型が必要な場合には、図4の図中に一点鎖線で示された熱供給ライン41、および、調整弁38、43を設けることは実施例2と同様である。   Steam generated by the steam generator 30 is injected into the gas turbine 1. When the thermoelectric variable type is required, the heat supply line 41 indicated by the one-dot chain line in the drawing of FIG. 4 and the regulating valves 38 and 43 are provided as in the second embodiment.

煙道CO加熱器21で加熱されたCOはガスタービン1のコンバスタ19に送られ、コンバスタ内に設置された冷却壁管19でさらに加熱され、所定の温度になった後、超臨界圧COガスタービンサイクル2に送られる。すなわち、図7のCO加熱器の役割を、この実施例では煙道CO加熱器21とコンバスタ14内に設けられた冷却壁管19が担う形となる。 Flue CO CO 2 heated by the second heating unit 21 is sent to the combustor 19 of the gas turbine 1, further heated in cold wall pipe 19 installed in the combustor, after reaching a predetermined temperature, a supercritical pressure To the CO 2 gas turbine cycle 2. That is, in this embodiment, the role of the CO 2 heater of FIG. 7 is played by the flue CO 2 heater 21 and the cooling wall pipe 19 provided in the combustor 14.

図5(b)は、従来から有るガスタービンのサイロ型コンバスタの断面図である。ガスタービンのコンバスタには、サイロ型のほかに缶型やアニュラ型があるが、構造上このサイロ型が実施例3を適用するのに最適と考えられる。サイロ型コンバスタはガスタービン1台に付き通常1基設けられる。コンバスタ14は、外筒51と内筒52の二重筒からなり、LNG等の燃料は内筒52内で燃焼する。その熱で内筒は高温になるので、二重筒の円環部に燃焼用の空気を流し、また、内筒52に細孔53を開けて燃焼用空気を内筒の内壁に沿って流れるようにして、冷却を行う。   FIG.5 (b) is sectional drawing of the silo type combustor of the conventional gas turbine. The gas turbine combustor includes a can type and an annular type in addition to the silo type. The silo type is considered to be optimal for applying the third embodiment because of its structure. Normally, one silo type combustor is provided for each gas turbine. The combustor 14 includes a double cylinder of an outer cylinder 51 and an inner cylinder 52, and fuel such as LNG burns in the inner cylinder 52. Because the heat causes the inner cylinder to become hot, combustion air is caused to flow through the annular part of the double cylinder, and the pores 53 are opened in the inner cylinder 52 so that the combustion air flows along the inner wall of the inner cylinder. Thus, cooling is performed.

図5(a)にサイロ型コンバスタに設置した本実施例のコンバスタ内冷却壁管19の一例を示す。冷却壁管19は、コンバスタ内筒52内にチューブを互いに密接したコイル状に巻いた形で設置される。冷却壁管19は、コンバスタ内でCOを加熱する熱交換器として働くと共に、内筒52の冷却装置としても機能する。煙道CO加熱器21で加熱されたCO22は、コンバスタ内冷却壁管19に導入され、再加熱される。規定の温度まで加熱されたCO23は超臨界圧COガスタービンサイクル2に送られる。 FIG. 5A shows an example of the cooling wall pipe 19 in the combustor according to this embodiment installed in the silo type combustor. The cooling wall pipe 19 is installed in the combustor inner cylinder 52 in a form in which the tubes are wound in a close coil shape. The cooling wall pipe 19 functions as a heat exchanger for heating CO 2 in the combustor and also functions as a cooling device for the inner cylinder 52. The CO 2 22 heated by the flue CO 2 heater 21 is introduced into the in-combustor cooling wall pipe 19 and reheated. The CO 2 23 heated to a specified temperature is sent to the supercritical pressure CO 2 gas turbine cycle 2.

超臨界圧COガスタービンに送るCOの加熱を、煙道CO加熱器21とコンバスタ内冷却壁管19の2段階に分けて行うことにより、煙道CO加熱器21の伝熱面積が減り、設置スペースが節約できると共に、加熱段階でのCOの圧力損失が少なくなり、超臨界圧COガスタービンサイクルの発電効率、ひいては、本複合発電サイクルの発電効率が、さらに向上する。 Heating of CO 2 sent to the supercritical pressure CO 2 gas turbine is performed in two stages of the flue CO 2 heater 21 and the cooling wall pipe 19 in the combustor, so that the heat transfer area of the flue CO 2 heater 21 is increased. As a result, the installation space can be saved, and the pressure loss of CO 2 in the heating stage is reduced, and the power generation efficiency of the supercritical pressure CO 2 gas turbine cycle, and thus the power generation efficiency of the combined power generation cycle is further improved.

図6は、この実施例で試算された一つの温度線図を示す。
コンバスタ14で発生した燃焼ガスは1,250℃でタービン15に送られて発電をする。タービン15出口の排ガス温度は544℃であり、煙道CO加熱器21、蒸気発生器30、さらに節炭器33と熱交換して183℃で煙突から排出される。
この試算では、熱供給を行っていないので、蒸気発生器30で発生した蒸気は全量ガスタービン1に送られる。
FIG. 6 shows one temperature diagram calculated in this example.
The combustion gas generated in the combustor 14 is sent to the turbine 15 at 1,250 ° C. to generate power. The exhaust gas temperature at the outlet of the turbine 15 is 544 ° C., and is exchanged with the flue CO 2 heater 21, the steam generator 30, and the economizer 33, and is discharged from the chimney at 183 ° C.
In this trial calculation, since heat is not supplied, the steam generated by the steam generator 30 is sent to the gas turbine 1 in its entirety.

煙道CO加熱器21に385℃で流入するCOは、そこで450℃まで加熱され、コンバスタ内冷却壁管19に送られて、さらに490℃まで加熱されて超臨界圧COガスタービンサイクル2に送られる。 CO 2 flowing into the flue CO 2 heater 21 at 385 ° C. is where it is heated to 450 ° C., is fed in to the cooling wall tube 19 combustor is further heated up to 490 ° C. with supercritical CO 2 gas turbine cycle Sent to 2.

25,000kWeクラス以下の発電領域で、発電効率の高い発電システム、さらに、それに加えて熱電可変型の発電システムのニーズは従来にも増して高まっている。本発明の複合発電システムが、この分野で利用される可能性は極めて大きい。   There is a growing need for power generation systems with high power generation efficiency in the power generation range of 25,000 kWe class and below, and in addition to these, thermoelectric variable power generation systems. The combined power generation system of the present invention is very likely to be used in this field.

1 ガスタービン
2 超臨界圧COガスタービンサイクル
3 蒸気発生器
11 燃焼用空気
12 コンプレッサ
13 LNG等の燃料
14 コンバスタ
15 タービン
16 発電機
17 煙道
18 煙突
19 コンバスタ内冷却壁管
21 煙道CO加熱器
22、23 CO
30 蒸気発生器
31 高圧蒸気発生器
32 低圧蒸気発生器
33 節炭器
34 給水ポンプ
35a、35b 分配用調整弁
36、37 蒸気
38、39 調整弁
41、42 熱供給ライン
51 コンバスタ外筒
52 コンバスタ内筒
53 細孔
DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Supercritical pressure CO 2 Gas turbine cycle 3 Steam generator 11 Combustion air 12 Compressor 13 Fuel such as LNG 14 Combustor 15 Turbine 16 Generator 17 Chimney 18 Chimney 19 Cooling tube 21 in combustor 21 Flue CO 2 Heater 22, 23 CO 2
30 steam generator 31 high pressure steam generator 32 low pressure steam generator 33 economizer 34 feed water pump 35a, 35b regulating valve 36, 37 steam 38, 39 regulating valve 41, 42 heat supply line 51 combustor outer cylinder 52 in combustor Tube 53 pore

Claims (4)

LNG等を燃料とするガスタービン(以下、「従来型ガスタービン」という。)の排ガスダクト内に、その上流側から順に、排ガスの熱回収を行う煙道CO加熱部と蒸気発生器を配置し、当該煙道CO加熱部が超臨界圧COガスタービンサイクルのCO加熱器として使用され、当該蒸気発生器で発生した蒸気が当該従来型ガスタービン内に注入される、超臨界圧COガスタービンと従来型ガスタービンの複合発電システム A flue CO 2 heating section and a steam generator for heat recovery of exhaust gas are arranged in the exhaust gas duct of a gas turbine (hereinafter referred to as “conventional gas turbine”) using LNG or the like as fuel from the upstream side. And the flue CO 2 heating section is used as a CO 2 heater in a supercritical pressure CO 2 gas turbine cycle, and the steam generated by the steam generator is injected into the conventional gas turbine. Combined power generation system of CO 2 gas turbine and conventional gas turbine 請求項1に記載の複合発電システムであって、前記蒸気発生器で発生した蒸気の一部、あるいは、全部を、熱源として当該複合発電システム外へ送る熱電可変型の複合発電システム。   The combined power generation system according to claim 1, wherein a part or all of the steam generated by the steam generator is sent out of the combined power generation system as a heat source. 請求項1に記載の複合発電システムであって、前記煙道CO加熱器で加熱されたCOを、前記従来型ガスタービンのコンバスタの冷却壁管に導き、その中で再加熱した後、前記超臨界圧COガスタービンに送る複合発電システム。 A combined cycle power generation system according to claim 1, after the CO 2 that is heated by the flue CO 2 heater, the guided cooling wall tube combustor of a conventional gas turbine, reheated therein, A combined power generation system for sending to the supercritical pressure CO 2 gas turbine. 請求項3に記載の複合発電システムであって、前記蒸気発生器で発生した蒸気の一部、あるいは、全部を、熱源として当該複合発電システム外へ送る熱電可変型の複合発電システム。   4. The combined power generation system according to claim 3, wherein a part or all of the steam generated by the steam generator is sent out of the combined power generation system as a heat source.
JP2011092648A 2011-04-19 2011-04-19 Supercritical pressure co2 gas turbine composite power generation system Withdrawn JP2012225228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011092648A JP2012225228A (en) 2011-04-19 2011-04-19 Supercritical pressure co2 gas turbine composite power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011092648A JP2012225228A (en) 2011-04-19 2011-04-19 Supercritical pressure co2 gas turbine composite power generation system

Publications (1)

Publication Number Publication Date
JP2012225228A true JP2012225228A (en) 2012-11-15

Family

ID=47275665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011092648A Withdrawn JP2012225228A (en) 2011-04-19 2011-04-19 Supercritical pressure co2 gas turbine composite power generation system

Country Status (1)

Country Link
JP (1) JP2012225228A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025423A (en) * 2013-07-26 2015-02-05 株式会社東芝 Carbon dioxide circulation type power generation system and carbon dioxide circulation type power generation method
KR101575511B1 (en) * 2014-08-01 2015-12-08 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System and Ship having the same
KR101575512B1 (en) * 2014-08-01 2015-12-08 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System and Ship having the same
KR101603252B1 (en) * 2014-09-24 2016-03-15 한국전력공사 System combined supercritical carbon dioxide power cycle and fuel cell
KR20160059730A (en) * 2014-11-19 2016-05-27 한국에너지기술연구원 Supercritical carbon dioxide power plant
KR20160066540A (en) * 2016-05-27 2016-06-10 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System and Ship having the same
KR20160087259A (en) * 2015-01-13 2016-07-21 연세대학교 산학협력단 Generating System Having Super Critical Fluid Turbine-Steam Power Hybrid System
KR101646588B1 (en) * 2015-09-22 2016-08-08 현대건설 주식회사 heat integration in gasification plant with supercritical carbon dioxide power generation system
WO2016167445A1 (en) * 2015-04-16 2016-10-20 두산중공업 주식회사 Hybrid generation system using supercritical carbon dioxide cycle
KR20170114336A (en) * 2016-04-04 2017-10-16 대우조선해양 주식회사 Complex power generating system and ship having the same
KR20170114333A (en) * 2016-04-04 2017-10-16 대우조선해양 주식회사 Complex power generating system and ship having the same
KR101839643B1 (en) * 2014-08-01 2018-03-19 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System having Steam Supplying Function and Ship having the same
CN108005744A (en) * 2017-12-26 2018-05-08 华北电力大学 Supercritical CO2The machine furnace cooling of circulation can recycle and power generation and heat supply integral system
CN110945213A (en) * 2017-05-05 2020-03-31 Ceox 有限公司 Mechanical/electrical power generation system
KR20220142214A (en) 2021-04-14 2022-10-21 한화파워시스템 주식회사 Supercritical carbon dioxide generating system using pure oxygen-fuel feeding system
KR20220142215A (en) 2021-04-14 2022-10-21 한화파워시스템 주식회사 Supercritical carbon dioxide generating system using waste heat of gas turbine

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025423A (en) * 2013-07-26 2015-02-05 株式会社東芝 Carbon dioxide circulation type power generation system and carbon dioxide circulation type power generation method
KR101575511B1 (en) * 2014-08-01 2015-12-08 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System and Ship having the same
KR101575512B1 (en) * 2014-08-01 2015-12-08 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System and Ship having the same
KR101839643B1 (en) * 2014-08-01 2018-03-19 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System having Steam Supplying Function and Ship having the same
KR101603252B1 (en) * 2014-09-24 2016-03-15 한국전력공사 System combined supercritical carbon dioxide power cycle and fuel cell
KR101628030B1 (en) * 2014-11-19 2016-06-08 한국에너지기술연구원 Supercritical carbon dioxide power plant
KR20160059730A (en) * 2014-11-19 2016-05-27 한국에너지기술연구원 Supercritical carbon dioxide power plant
KR20160087259A (en) * 2015-01-13 2016-07-21 연세대학교 산학협력단 Generating System Having Super Critical Fluid Turbine-Steam Power Hybrid System
KR101659405B1 (en) * 2015-01-13 2016-09-23 연세대학교 산학협력단 Generating System Having Super Critical Fluid Turbine-Steam Power Hybrid System
US10072531B2 (en) 2015-04-16 2018-09-11 Doosan Heavy Industries & Construction Co., Ltd. Hybrid power generation system using supercritical CO2 cycle
WO2016167445A1 (en) * 2015-04-16 2016-10-20 두산중공업 주식회사 Hybrid generation system using supercritical carbon dioxide cycle
JP2018514686A (en) * 2015-04-16 2018-06-07 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Hybrid power generation system using supercritical carbon dioxide cycle
KR101784553B1 (en) * 2015-04-16 2017-11-06 두산중공업 주식회사 Hybrid power generation system using a supercritical CO2 cycle
KR101646588B1 (en) * 2015-09-22 2016-08-08 현대건설 주식회사 heat integration in gasification plant with supercritical carbon dioxide power generation system
KR20170114333A (en) * 2016-04-04 2017-10-16 대우조선해양 주식회사 Complex power generating system and ship having the same
KR102492649B1 (en) * 2016-04-04 2023-01-27 대우조선해양 주식회사 Complex power generating system and ship having the same
KR20170114336A (en) * 2016-04-04 2017-10-16 대우조선해양 주식회사 Complex power generating system and ship having the same
KR102492650B1 (en) * 2016-04-04 2023-01-27 대우조선해양 주식회사 Complex power generating system and ship having the same
KR20160066540A (en) * 2016-05-27 2016-06-10 현대중공업 주식회사 Supercritical Carbon Dioxide Power Generation System and Ship having the same
KR102035891B1 (en) * 2016-05-27 2019-10-24 한국조선해양 주식회사 Supercritical Carbon Dioxide Power Generation System and Ship having the same
CN110945213A (en) * 2017-05-05 2020-03-31 Ceox 有限公司 Mechanical/electrical power generation system
CN108005744A (en) * 2017-12-26 2018-05-08 华北电力大学 Supercritical CO2The machine furnace cooling of circulation can recycle and power generation and heat supply integral system
CN108005744B (en) * 2017-12-26 2023-08-29 华北电力大学 Supercritical CO 2 Circulating machine furnace cold energy recovery and power generation integrated heat supply method
KR20220142214A (en) 2021-04-14 2022-10-21 한화파워시스템 주식회사 Supercritical carbon dioxide generating system using pure oxygen-fuel feeding system
KR20220142215A (en) 2021-04-14 2022-10-21 한화파워시스템 주식회사 Supercritical carbon dioxide generating system using waste heat of gas turbine

Similar Documents

Publication Publication Date Title
JP2012225228A (en) Supercritical pressure co2 gas turbine composite power generation system
US8176724B2 (en) Hybrid Brayton cycle with solid fuel firing
JP5868113B2 (en) Combined cycle power plant with carbon dioxide collection system
JP4681598B2 (en) Power plant with coal combustion chamber
US20130269356A1 (en) Method and system for controlling a stoichiometric egr system on a regenerative reheat system
US9500103B2 (en) Duct fired combined cycle system
US20100205967A1 (en) Pre-heating gas turbine inlet air using an external fired heater and reducing overboard bleed in low-btu applications
JP2001502399A (en) Hydrogen fuel power plant
US20120317973A1 (en) Asymmetrical Combined Cycle Power Plant
EP2604821B1 (en) System and method for thermal control in a gas turbine engine
JP2009062985A (en) Method for operating combined-cycle power plant and combined-cycle power plant for executing the method
US20140096535A1 (en) Gas turbine system with reheat spray control
US20120285175A1 (en) Steam injected gas turbine engine
US9074491B2 (en) Steam cycle system with thermoelectric generator
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
JP5933944B2 (en) Integrated turbomachine oxygen plant
US20140069078A1 (en) Combined Cycle System with a Water Turbine
US8869502B2 (en) Fuel reformer system for a turbomachine system
JP5114589B2 (en) Integrated gasification combined cycle system with nitrogen cooled gas turbine
JP2013117209A (en) Gas turbine and gas turbine plant
RU58613U1 (en) COMBINED STEAM-GAS UNIT WITH PARALLEL OPERATION DIAGRAM
JP2009504965A (en) Method for operating a gas turbine and gas turbine implementing this method
JP5690954B1 (en) Conventional thermal power plant and conventional thermal power generation method
WO2024038724A1 (en) Combined cycle power generator
RU2384720C1 (en) Gas-espansion machine-electric power station generator plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140701