JP2015025172A - Circulatory bio hydrogen production facility using biomass - Google Patents

Circulatory bio hydrogen production facility using biomass Download PDF

Info

Publication number
JP2015025172A
JP2015025172A JP2013155572A JP2013155572A JP2015025172A JP 2015025172 A JP2015025172 A JP 2015025172A JP 2013155572 A JP2013155572 A JP 2013155572A JP 2013155572 A JP2013155572 A JP 2013155572A JP 2015025172 A JP2015025172 A JP 2015025172A
Authority
JP
Japan
Prior art keywords
hydrogen
production facility
biomass
fermentation
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013155572A
Other languages
Japanese (ja)
Inventor
悟 磯田
Satoru Isoda
悟 磯田
内山俊一
Shunichi Uchiyama
渡辺 治
Osamu Watanabe
治 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013155572A priority Critical patent/JP2015025172A/en
Publication of JP2015025172A publication Critical patent/JP2015025172A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve, by targeting a hydrogen production method for producing, from a raw ingredient consisting of biomass such as ligneous biomass, etc., hydrogen by exploiting a microorganism function, the hydrogen generation yield and hydrogen generation speed.SOLUTION: In the case of ligneous biomass known as representative biomass, hydrogen is generated by using, as hydrogen fermentation substrates, a hemicellulose degradation product and a cellulose degradation product obtained by treating the ligneous biomass. Moreover, hydrogen is produced by using, together with a microorganism electrolytic cell, a fermentation liquid including, as main components, organic acids such as acetic acid, etc. generated as a result of hydrogen fermentation. An electrolytically modified carbon electrode rather than a platinum catalyst electrode is used as a cathode of the microorganism electrolytic cell for generating hydrogen. It accordingly becomes possible to significantly improve the hydrogen generation yield and hydrogen generation speed, to abate the hydrogen production cost, and to realize a resource-circulatory hydrogen production plant using, as a raw ingredient, recyclable ligneous biomass.

Description

本発明は再生可能な資源である木質バイオマスなどのバイオマスを原料として用いる循環型バイオ水素生産施設に関わる
The present invention relates to a circulating biohydrogen production facility that uses biomass such as woody biomass, which is a renewable resource, as a raw material.

従来の代表的なバイオ水素の生産方法としては、バイオマスなどの有機物を微生物を用いて水素醗酵する方法であった。(たとえば、文献1、文献2参照) A conventional representative method for producing biohydrogen has been a method in which organic matter such as biomass is subjected to hydrogen fermentation using microorganisms. (For example, see Document 1 and Document 2)

しかし、従来のバイオ水素生産では微生物処理の最終段で不可欠とされる光合成細菌を用いた有機酸からの水素生産の効率が低く、エネルギー転換効率がバイオエタノールと較べて格段に劣るため、実用化に向けた開発が進んでおらず、有機酸を利用した水素生産プロセスの効率向上が課題とされてきた。 However, in conventional biohydrogen production, the efficiency of hydrogen production from organic acids using photosynthetic bacteria, which is indispensable in the final stage of microbial treatment, is low, and the energy conversion efficiency is far inferior to bioethanol. The development of the hydrogen production process using organic acids has been an issue.

こうした状況下で、ペンシルバニア大学のLogan等は、酢酸を基質として用いた微生物電解セル(微生物電解槽と同義、以下、微生物電解セルと表現する)を用いた水素生産で水素生成収率3.65
mol H2/mol acetate、水素生成速度46 mL/L/hを報告し、大きな反響を呼んだ(文献3)。
Under such circumstances, Logan et al. Of the University of Pennsylvania have a hydrogen production yield of 3.65 in hydrogen production using a microbial electrolysis cell (synonymous with a microbial electrolysis cell, hereinafter referred to as microbial electrolysis cell) using acetic acid as a substrate
Mol H 2 / mol acetate, a hydrogen production rate of 46 mL / L / h was reported and a great response was received (Reference 3).

Loganらの結果は、水素醗酵プロセスと微生物電解セルとを組み合わせた系を用いることにより、木質バイオマスからの水素生産が、エネルギー生産効率としてバイオエタノールの効率を上回る可能性を強く示唆している(文献4)。 The results of Logan et al. Strongly suggest that hydrogen production from woody biomass may exceed the efficiency of bioethanol as an energy production efficiency by using a system that combines a hydrogen fermentation process and a microbial electrolysis cell ( Reference 4).

しかし、Loganらの微生物電解セルでは、水素生成電極として白金触媒電極が用いられているため、実プラントへの展開ではコスト面での問題があった。 However, in the microbial electrolysis cell of Logan et al., Since a platinum catalyst electrode is used as a hydrogen generation electrode, there has been a problem in terms of cost when deployed to an actual plant.

現状ではバイオ水素はバイオエタノールと比較して実プラントへの展開では後れを取っているが、水素は燃料電池との組み合わせで電気エネルギーへの変換が可能であるため、電気自動車や発電用の再生可能新エネルギーとして期待が大きく、バイオエタノールと同等以上のエネルギー転換効率を実現する実プラントへの展開が可能なバイオ水素生産技術の開発が求められてきた。
At present, biohydrogen lags behind deployment in actual plants compared to bioethanol, but hydrogen can be converted into electric energy in combination with fuel cells, so it can be used for electric vehicles and power generation. There is great expectation as a new renewable energy, and there has been a demand for the development of biohydrogen production technology that can be applied to actual plants that achieve energy conversion efficiency equivalent to or higher than that of bioethanol.

“アジアバイオマスハンドブック −バイオマス利活用の手引き−”「平成19年度アジア環境保全型農業パートナーシップ構築支援事業(農林水産省委託事業)」社団法人 日本エネルギー学会 編集委員長 横山伸也(東京大学大学院)編集幹事 松村幸彦(広島大学大学院)“Asian Biomass Handbook -Guide for Utilization of Biomass-” “Asia Environmental Conservation Agricultural Partnership Support Project 2007 (Project commissioned by the Ministry of Agriculture, Forestry and Fisheries)” Japan Energy Society Editorial Board Chair Shinya Yokoyama (University of Tokyo) Yukihiko Matsumura (Hiroshima University Graduate School) W. M.Alalayah et al.: ”Bio-HydrogenProduction Using a Two-Stage Fermentation Process”, Pakistan Journal ofBiological Sciences, 12(22), 1462-1467(2009).W. M. Alalayah et al .: “Bio-HydrogenProduction Using a Two-Stage Fermentation Process”, Pakistan Journal of Biological Sciences, 12 (22), 1462-1467 (2009). S. Cheng andB. E. Logan: “Sustainable and efficient biohydrogen production viaelectrohydrogenesis”, Proc. Natl.Acad. Sci. USA, 104, 18871-18873 (2007).S. Cheng and B. E. Logan: “Sustainable and efficient biohydrogen production via electrohydrogenesis”, Proc. Natl. Acad. Sci. USA, 104, 18871-18873 (2007). P.-C.Maness et al.: “Fermentation and Electrohydrogenic Approaches to Hydrogen Production”,DOE Hydrogen Program FY 2010 Annual Progress Report.P.-C.Maness et al .: “Fermentation and Electrohydrogenic Approaches to Hydrogen Production”, DOE Hydrogen Program FY 2010 Annual Progress Report.

従来のバイオ水素の生産方法は、バイオマスなどの有機物を微生物を用いて水素醗酵する方法であるが、微生物処理の最終段で不可欠とされる光合成細菌を用いた有機酸からの水素生産の効率が低く、有機酸を利用した水素生産プロセスの水素生成収率と水素生成速度の向上が技術的課題とされてきた。 The conventional biohydrogen production method is a method in which organic matter such as biomass is fermented using microorganisms, but the efficiency of hydrogen production from organic acids using photosynthetic bacteria, which is indispensable in the final stage of microbial treatment, is high. Low, improvement of hydrogen production yield and hydrogen production rate of hydrogen production process using organic acid has been a technical issue.

有機酸を利用した水素生産プロセスの効率向上は、有機酸を資化できる微生物を固定化した電極を陽極とし水素触媒電極を陰極とする構成の微生物電解セルを用いて、有機酸を含む溶液を陽極に対する電子供与体として用いることで達成されるが、従来の微生物電解セルでは、水素生成電極として白金触媒電極が用いられているため、実プラントへの展開ではコスト面での課題があった。 The improvement of the efficiency of hydrogen production process using organic acid is achieved by using a microbial electrolysis cell with an electrode on which a microorganism capable of assimilating organic acid is immobilized as an anode and a hydrogen catalyst electrode as a cathode. This is achieved by using it as an electron donor for the anode. However, in the conventional microbial electrolysis cell, since a platinum catalyst electrode is used as a hydrogen generation electrode, there has been a problem in terms of cost when deployed to an actual plant.

そこで本発明は上記課題を解決するもので、微生物電解セルの陰極に白金触媒電極ではなく、水素生成触媒能を有する電解改質カーボン電極を用いて新規微生物電解セルを構成することにより、コスト面での課題を克服し、光合成細菌を用いた有機酸の水素変換と比較して、水素生成収率と水素生成速度を飛躍的に改善することを第一の目的とするものである。 Therefore, the present invention solves the above-mentioned problems, and by constructing a novel microbial electrolysis cell using an electromodified carbon electrode having a hydrogen generation catalytic ability instead of a platinum catalyst electrode at the cathode of the microbial electrolysis cell, the cost is reduced. The first object is to overcome the problems described above and dramatically improve the hydrogen production yield and hydrogen production rate compared to the hydrogen conversion of organic acids using photosynthetic bacteria.

また、本発明は、上記課題を解決するもので、微生物による水素生産と微生物電解セルによる水素生産とを組み合わせることにより、木質バイオマスなどの再生可能資源を原料として用いた循環型バイオ水素生産施設を実現することを第二の目的とするものである。
In addition, the present invention solves the above-mentioned problem, and by combining hydrogen production by microorganisms with hydrogen production by microbial electrolysis cells, a circulating biohydrogen production facility using renewable resources such as woody biomass as a raw material is provided. This is the second purpose.

本発明は上記の第1の目的を以下のように達成する。請求項1記載の発明は、微生物電解セルの陰極として水素生成触媒能を有する電解改質カーボン電極を用いることを特徴とするものである。 The present invention achieves the above first object as follows. The invention described in claim 1 is characterized in that an electrolytically modified carbon electrode having a hydrogen generation catalytic ability is used as a cathode of a microbial electrolysis cell.

上記電解改質カーボン電極は、カーボンの表面の炭素原子にアミノ基などの含窒素官能基を共有結合させ、これを硫酸などの強酸中で電解還元処理することにより作製される。 The electrolytically modified carbon electrode is produced by covalently bonding a nitrogen-containing functional group such as an amino group to a carbon atom on the surface of carbon, and subjecting this to an electrolytic reduction treatment in a strong acid such as sulfuric acid.

また、本発明は上記の第2の目的を以下のように達成する。請求項1記載の微生物電解セルを用いて、その陽極に供給する有機物を請求項2記載の再生可能資源であるバイオマスの処理物を用いて循環型水素生産施設を実現することを特徴とするものである。 The present invention also achieves the above second object as follows. A circulatory hydrogen production facility is realized by using the microbial electrolysis cell according to claim 1 and the organic material supplied to the anode using the treated biomass as a renewable resource according to claim 2. It is.

バイオマスの処理方法は、請求項3に記載の微生物の水素醗酵を利用し、バイオマスからバイオ水素を生産し、水素醗酵後の醗酵液の主成分である有機酸を生成させる。この有機酸は微生物電解セルの陽極に供給され陰極で水素が生成される。 A method for treating biomass utilizes hydrogen fermentation of microorganisms according to claim 3 to produce biohydrogen from biomass and to generate an organic acid that is a main component of the fermentation liquid after hydrogen fermentation. This organic acid is supplied to the anode of the microbial electrolysis cell, and hydrogen is generated at the cathode.

請求項4記載の木質バイオマスを用いる場合の処理方法は、高温高圧水処理と酵素処理及び微生物処理を用い、木質バイオマスを糖分及び有機酸に変換し、糖分は請求項4記載の水素醗酵によりバイオ水素と有機酸に変換され、有機酸は微生物電解セルにより水素に変換される。 The processing method in the case of using the woody biomass according to claim 4 uses high-temperature and high-pressure water treatment, enzyme treatment and microbial treatment to convert the woody biomass into sugar and organic acid, and the sugar is biodegradable by hydrogen fermentation according to claim 4. It is converted to hydrogen and an organic acid, and the organic acid is converted to hydrogen by a microbial electrolysis cell.

木質バイオマスの高温高圧水処理により生成される有機酸は請求項5記載のように、微生物電解槽により水素に変換される。 The organic acid produced by the high-temperature and high-pressure water treatment of the woody biomass is converted into hydrogen by the microbial electrolyzer as described in claim 5.

木質バイオマスの高温高圧水処理により糖分と有機酸という可溶化成分に変換できない不溶成分は、請求項6記載のようにセルラーゼを用いて処理することにより糖分として可溶化することで微生物水素醗酵の基質とすることが可能となる。 The insoluble component that cannot be converted into a solubilized component of sugar and organic acid by high-temperature and high-pressure water treatment of woody biomass is a substrate for microbial hydrogen fermentation by solubilizing it as a sugar by treatment with cellulase as described in claim 6. It becomes possible.

また、前記不溶成分は、請求項7記載のようにセルロース分解酵素を有する水素生産菌を用いて水素醗酵手段の原料として用いることが可能である。 Moreover, the said insoluble component can be used as a raw material of a hydrogen fermentation means using the hydrogen producing microbe which has a cellulolytic enzyme as described in Claim 7.

本発明は上記構成によって、木質バイオマスなどの再生可能資源を原料として用いて、微生物による水素醗酵と電解改質カーボン電極を陰極とする微生物電解セルとを複合化した新規システムにより、水素生成収率及び水素生成速度を飛躍的に改善し、バイオ水素をバイオエタノールよりも高いエネルギー転換効率で生産する循環型水素生産施設を可能とした。
According to the present invention, a hydrogen generation yield is achieved by a novel system in which a hydrogen fermentation by microorganisms and a microbial electrolysis cell using an electro-modified carbon electrode as a cathode are combined using a renewable resource such as woody biomass as a raw material. In addition, the hydrogen generation rate has been dramatically improved, and a recycling-type hydrogen production facility that can produce biohydrogen with higher energy conversion efficiency than bioethanol has become possible.

上記のように本発明にあっては、バイオマスの水素醗酵と微生物電解セル処理、木質バイオマスの場合には、高温・高圧水処理プロセスと水素醗酵及び微生物電解セル処理とを組み合わせ、それぞれの処理プロセスを最適化することにより、バイオエタノールよりもエネルギー転換効率において高効率なバイオ水素生産を実現できるという効果がある。 As described above, in the present invention, in the case of biomass hydrogen fermentation and microbial electrolysis cell treatment, in the case of woody biomass, a combination of a high temperature / high pressure water treatment process and hydrogen fermentation and microbial electrolysis cell treatment, each treatment process By optimizing the above, there is an effect that biohydrogen production can be realized with higher energy conversion efficiency than bioethanol.

さらにまた、微生物電解セルの水素生成用電極として電解改質カーボン電極を用いることにより、高価な白金触媒電極を用いることが不要となるため、実プラント展開に不可欠なコスト面の課題を克服できるという効果がある。 Furthermore, the use of an electrolytically modified carbon electrode as the hydrogen generation electrode of the microbial electrolysis cell eliminates the need for an expensive platinum catalyst electrode, thereby overcoming the cost issues essential for actual plant development. effective.

さらにまた、本発明の循環型バイオ水素生産施設を燃料電池発電システムと連結させることにより、バイオマスという再生可能資源を用いた自然エネルギー発電が可能となるという効果がある。 Furthermore, by connecting the circulating biohydrogen production facility of the present invention with a fuel cell power generation system, there is an effect that natural energy power generation using a renewable resource called biomass becomes possible.

さらにまた、木質バイオマスを原料とする電気・熱コジェネレーション施設と木質バイオマスを原料とする循環型バイオ水素生産施設を統合し熱連携させることにより、統合された施設における熱エネルギーを有効に活用できるという効果がある。
Furthermore, it is possible to effectively utilize the thermal energy in the integrated facility by integrating the heat and power generation between the electricity and thermal cogeneration facility using woody biomass and the circulating biohydrogen production facility using woody biomass. effective.

以下、本発明の構成について図面を参照して説明する。         The configuration of the present invention will be described below with reference to the drawings.

図1は、本発明による微生物電解セルのセル構成と電極電子移動反応の模式図である。 FIG. 1 is a schematic diagram of a cell configuration and electrode electron transfer reaction of a microbial electrolysis cell according to the present invention.

微生物電解セルの陰極には本発明による電解改質カーボン電極を用い、陽極には微生物固定化を促進させるために電極表面に正電荷を有するアミノ化カーボン電極を用いた。 An electrolytically modified carbon electrode according to the present invention was used for the cathode of the microbial electrolysis cell, and an aminated carbon electrode having a positive charge on the electrode surface was used for the anode in order to promote microbial immobilization.

陽極には、電極と電子移動が可能なElectrogenic bacteriaを固定化した。Electrogenic
bacteriaとしては、様々な微生物が知られているが、ここでは、代表的なElectrogenic
bacteriaであるGeobacter sulfurreducensを用いた。
Electrogenic bacteria capable of electron transfer with the electrode were immobilized on the anode. Electrogenic
Various microorganisms are known as bacteria, but here, representative Electrogenic
The bacteria Geobacter sulfurreducens was used.

微生物電解セルの陽極の電子供与体となる基質は、Electrogenic bacteriaが資
化できる有機物であれば広範な種類の有機物を基質とすることができるが、図では水素醗酵後の醗酵液の主成分である酢酸を例として電極電子移動反応を示した。1モルの酢酸から8個の電子が陽極に渡され、2モルのCO2が生成する。一方、陰極では、生成された8個の電子は、電子受容体であるプロトンに受け渡されることにより水素が生産される。この水素生成電子移動反応は、陰極電位と電子受容体であるプロトンの酸化還元電位との電位差で反応速度が決まるため、酢酸から水素を生成する電極電子移動反応の正味のエネルギー変換効率を最大化する効率的な電子移動をおこすために、電源から電極間に電圧印加する必要がある。酢酸の場合は0.6Vの電圧印加が最適である。
The substrate that serves as the electron donor for the anode of the microbial electrolysis cell can be a wide variety of organic substances as long as it is an organic substance that can be assimilated by Electrogenic bacteria. An electrode electron transfer reaction was shown using an acetic acid as an example. Eight electrons from 1 mole of acetic acid are passed to the anode, producing 2 moles of CO 2 . On the other hand, at the cathode, the generated eight electrons are transferred to protons, which are electron acceptors, to produce hydrogen. In this hydrogen-generating electron transfer reaction, the reaction rate is determined by the potential difference between the cathode potential and the redox potential of the proton that is the electron acceptor, so the net energy conversion efficiency of the electrode electron transfer reaction that generates hydrogen from acetic acid is maximized. In order to perform efficient electron transfer, it is necessary to apply a voltage between the power source and the electrode. In the case of acetic acid, a voltage application of 0.6 V is optimal.

図2は、木質バイオマスを原料とする循環型バイオ水素生産施設のバイオ水素の生産工程を表したものである。 FIG. 2 shows a biohydrogen production process in a circulating biohydrogen production facility using woody biomass as a raw material.

循環型バイオ水素生産施設における高温・高圧水処理ステップ1により生成される成分は、ヘミセルロース分解産物であり主成分はキシロース及びそのオリゴ糖であり、キシロース系化合物を高効率に水素醗酵可能な微生物(例えばThermoanaerobacterium
thermosaccharolyticumやThermotoga
neapolitanaなど)を用いて水素醗酵しバイオ水素を生産する。水素醗酵後の醗酵液は、酢酸や乳酸などの有機酸が主成分であり、微生物電解セルの陽極の電子供与体として供給され、陰極からバイオ水素が生産される。
The components produced by the high-temperature / high-pressure water treatment step 1 in the circulating biohydrogen production facility are hemicellulose degradation products, the main components are xylose and its oligosaccharides, and microorganisms capable of hydrogen fermentation of xylose compounds with high efficiency ( For example Thermoanaerobacterium
thermosaccharolyticum or Thermotoga
neapolitana etc.) to produce biohydrogen through hydrogen fermentation. The fermented liquid after hydrogen fermentation is mainly composed of organic acids such as acetic acid and lactic acid, and is supplied as an electron donor for the anode of the microbial electrolysis cell, and biohydrogen is produced from the cathode.

循環型バイオ水素生産施設における高温・高圧水処理ステップ2により生成される成分は、セルロース分解産物であり主成分はグルコース及びそのオリゴ糖と可溶化されず不溶物として残留するセルロースである。この高温・高圧水処理ステップ2で生成される成分を水素醗酵の基質として利用するには、セルロースを分解する酵素を有する水素生産菌(例えば、Costridium
thermocellumやThermoanaerobacterium
thermosaccharolyticumなど)を用いて不溶物であるセルロースの糖化を行わしめ、引き続いて起こる水素醗酵によりバイオ水素を生産する。水素醗酵後の醗酵液中に含まれる酢酸や乳酸などの有機酸は、微生物電解セルの陽極の電子供与体として供給され、陰極からバイオ水素が生産される。
The component produced by the high temperature / high pressure water treatment step 2 in the circulating biohydrogen production facility is a cellulose degradation product, and the main component is cellulose remaining as an insoluble matter without being solubilized with glucose and its oligosaccharide. In order to use the components produced in this high-temperature / high-pressure water treatment step 2 as a substrate for hydrogen fermentation, a hydrogen-producing bacterium having an enzyme that decomposes cellulose (for example, Costridium).
thermocellum and Thermoanaerobacterium
thermosaccharolyticum etc.) is used to saccharify cellulose, which is an insoluble matter, and biohydrogen is produced by subsequent hydrogen fermentation. Organic acids such as acetic acid and lactic acid contained in the fermentation liquid after hydrogen fermentation are supplied as an electron donor for the anode of the microbial electrolysis cell, and biohydrogen is produced from the cathode.

高温・高圧水処理ステップ1の処理条件は、140〜230℃、0.1〜10MPaの温度・圧力条件であり、高温・高圧水処理ステップ2の処理条件は、230〜270℃、0.1〜10MPaの温度・圧力条件である。高温・高圧水処理の処理時間は2〜60分の範囲である。 The treatment conditions for high temperature / high pressure water treatment step 1 are 140-230 ° C, temperature and pressure conditions of 0.1-10MPa, and the treatment conditions for high temperature / high pressure water treatment step 2 are temperatures of 230-270 ° C, 0.1-10MPa. -Pressure conditions. The treatment time for high temperature / high pressure water treatment is in the range of 2-60 minutes.

以上、図2の循環型バイオ水素生産施設においては、木質バイオマスを出発原料として、温度・圧力を基本パラメーターとした高温・高圧水処理により、ヘミセルロース成分(キシロースとそのオリゴ糖が主成分)とセルロース成分(グルコースとそのオリゴ糖および不溶成分として残留するセルロース)を生産する。このプロセスはカスケードプロセスで二つのステップから構成され、第一ステップとして、ヘミセルロース成分を抽出し、第二ステップとしては、セルロース成分が生産される。グルコース及びキシロースは、微生物醗酵プロセスにより水素に変換する。水素醗酵プロセスで生成される酢酸などの有機酸を主成分とする醗酵液は、微生物電解セルの微生物固定化電極(陽極)の電子供与体として用いられ、電極電子移動反応により陰極において水素が生産される。 As described above, in the circulating biohydrogen production facility shown in FIG. 2, hemicellulose components (xylose and its oligosaccharides are the main components) and cellulose are obtained by using high-temperature and high-pressure water treatment using woody biomass as a starting material and temperature and pressure as basic parameters. Ingredients (glucose and its oligosaccharides and cellulose remaining as insoluble components) are produced. This process is a cascade process and consists of two steps. As a first step, a hemicellulose component is extracted, and as a second step, a cellulose component is produced. Glucose and xylose are converted to hydrogen by a microbial fermentation process. Fermentation liquid mainly composed of organic acid such as acetic acid produced in hydrogen fermentation process is used as an electron donor for microorganism-immobilized electrode (anode) of microbial electrolysis cell, and hydrogen is produced at the cathode by electrode electron transfer reaction. Is done.

微生物電解セルの水素を生成する陰極には白金触媒電極を用いず、電解改質カーボン電極を用いる。これにより、光合成細菌を用いた有機酸の水素変換と比較して、水素生成収率と水素生成速度の飛躍的な向上が実現され、白金触媒電極を用いる場合のコストの課題と一酸化炭素による電極被毒の問題を同時に解決できた。 A platinum catalyst electrode is not used as the cathode for generating hydrogen in the microbial electrolysis cell, but an electrolytically modified carbon electrode is used. This realizes a dramatic improvement in hydrogen production yield and hydrogen production rate compared to hydrogen conversion of organic acids using photosynthetic bacteria, which is due to the problem of cost and carbon monoxide when using platinum catalyst electrodes. The problem of electrode poisoning was solved at the same time.

図2に示す実施例2では、高温高圧水処理の二つのステップで生成する成分のそれぞれに対応した異なる微生物を用いて二つのタイプの水素醗酵を行う構成であるが、高温高圧水処理の二つのステップで生成する成分を一つの水素醗酵槽に纏めて導入し、セルロースを分解する酵素を有する水素生産菌を用いた水素醗酵によりバイオ水素を生産する構成も可能である。 In Example 2 shown in FIG. 2, although it is the structure which performs two types of hydrogen fermentation using different microorganisms corresponding to each of the component produced | generated by two steps of high temperature / high pressure water treatment, It is also possible to produce biohydrogen by hydrogen fermentation using a hydrogen producing bacterium having an enzyme that decomposes cellulose by introducing components produced in one step together into one hydrogen fermentation tank.

図3は、循環型バイオ水素生産施設を木質バイオマスを原料とする電気・熱コジェネレーション施設と熱連携させた場合の高温高圧水処理工程フローと熱エネルギーフロー(黒矢印)を示したものである。 Fig. 3 shows the high-temperature and high-pressure water treatment process flow and thermal energy flow (black arrows) when the circulating biohydrogen production facility is in thermal cooperation with an electric / thermal cogeneration facility that uses woody biomass as a raw material. .

図に示すように、循環型バイオ水素生産施設では、原材料を高温・高圧水処理する工程があり、多量の熱エネルギーが必要である。この熱エネルギーは、図の黒矢印で示す熱交換器AおよびBからの高温水のフローによって供給される。循環型バイオ水素生産施設のそれぞれの工程では、必要とする温度条件が異なるため、高温水のフローは、図中には示していないが、温度調節器によってそれぞれの工程で必要とされる所定の温度に調節して供給される。 As shown in the figure, in a circulating biohydrogen production facility, there is a process of treating raw materials at high temperature and high pressure water, and a large amount of heat energy is required. This thermal energy is supplied by the flow of hot water from heat exchangers A and B as indicated by the black arrows in the figure. Since the required temperature conditions are different in each process of the circulating biohydrogen production facility, the flow of high-temperature water is not shown in the figure, but a predetermined temperature required in each process by the temperature controller. Supplied by adjusting the temperature.

図中、可溶成分1は主としてヘミセルロース分解産物のことであり、不溶成分1は主として、セルロース及びリグニンのことであり、可溶成分2は主としてセルロース分解産物のことであり、不溶成分2は主としてセルロースとリグニンのことである。 In the figure, soluble component 1 is mainly a hemicellulose degradation product, insoluble component 1 is mainly cellulose and lignin, soluble component 2 is mainly a cellulose degradation product, and insoluble component 2 is mainly Cellulose and lignin.

図は、循環型バイオ水素生産施設内の木質バイオマスの処理プロセスの内、電気・熱コジェネレーション施設との熱連携に大きく関わるプロセスを記しているが、循環型バイオ水素生産施設には、それ以外の熱を必要とする施設として複数の水素醗酵施設があり、これらの施設において必要とされる熱エネルギーは、図中の黒矢印で示される高温水によって供給される。このように供給される高温水は、温度調節器により予め所定の温度に調節され用いられる。
The figure shows the process of wood biomass in the circulating biohydrogen production facility that is largely related to the thermal cooperation with the electric / thermal cogeneration facility. There are a plurality of hydrogen fermentation facilities that require this heat, and the heat energy required in these facilities is supplied by high-temperature water indicated by black arrows in the figure. The high-temperature water supplied in this way is used after being adjusted to a predetermined temperature by a temperature controller.

本発明の実施形態を示す微生物電解槽の構成と酢酸を陽極の基質とした場合の電極電子移動反応Electrobium Electron Transfer Reaction Using Microbial Electrolyzer Configuration and Acetic Acid as Anode Substrate Showing Embodiment of the Present Invention 本発明の実施形態を示す循環型バイオ水素生産施設の全体構成図Overall configuration diagram of a circulating biohydrogen production facility showing an embodiment of the present invention 本発明の実施形態を示す循環型バイオ水素生産施設における電気・熱コジェネレーション施設と水素生産用リファイナリー施設との間の熱エネルギーフロー(黒矢印)Thermal energy flow between an electrical / thermal cogeneration facility and a refinery facility for hydrogen production in a circulating biohydrogen production facility showing an embodiment of the present invention (black arrow)

Claims (9)

水素を生成する電解槽の陽極に、微生物を固定化した固定化微生物電極を陽極として用い、微生物が代謝可能なグルコースや酢酸などの有機物を電子供与体とする機能構成の電解槽において、陰極に水素生成触媒能を有する電解改質カーボン電極を用いることを特徴とする微生物電解槽。 In an electrolytic cell having a functional structure in which an organic substance such as glucose or acetic acid that can be metabolized by microorganisms is used as an anode for an anode of an electrolytic cell that generates hydrogen, and an immobilized microorganism electrode on which microorganisms are immobilized. A microbial electrolyzer characterized by using an electrolytically modified carbon electrode having hydrogen-catalyzing ability. 請求項1記載の微生物電解槽の陽極に供給する有機物をバイオマスから供給する手段を備え、バイオマスから水素を生産することを特徴とする循環型水素生産施設。 A circulation type hydrogen production facility comprising means for supplying an organic substance to be supplied to an anode of a microbial electrolytic cell according to claim 1 from biomass, and producing hydrogen from biomass. 請求項2記載のバイオマスの有機物への転換手段として、微生物機能を用いた水素醗酵を利用することを特徴とする循環型水素生産施設。 A circulating hydrogen production facility characterized in that hydrogen fermentation using a microbial function is used as means for converting biomass into organic matter according to claim 2. 木質バイオマスからヘミセルロース成分およびセルロース成分を分離抽出する手段、前記分離抽出手段から抽出されたそれぞれの成分を原料として微生物由来の触媒機能を用いて水素を産生する第一と第二の水素醗酵手段、および請求項1記載の微生物電解槽を備え、前記第一および第二の水素醗酵手段から生じる醗酵液を前記微生物電解槽の陽極に供給することにより、木質バイオマスから水素を生産することを特徴とする循環型水素生産施設。 Means for separating and extracting the hemicellulose component and the cellulose component from the woody biomass, and first and second hydrogen fermentation means for producing hydrogen using a catalytic function derived from a microorganism using each component extracted from the separation and extraction means, And comprising the microbial electrolyzer according to claim 1, wherein hydrogen is produced from woody biomass by supplying a fermentation solution produced from the first and second hydrogen fermentation means to the anode of the microbial electrolyzer. Circulating hydrogen production facility. 請求項4記載の循環型水素生産施設において、前記微生物電解槽の陽極の有機物として、前記第一と第二の水素醗酵手段で生じる醗酵液に加えて、前記分離抽出手段から分離抽出される有機酸を用いることを特徴とする循環型水素生産施設。 5. The circulating hydrogen production facility according to claim 4, wherein an organic substance separated and extracted from the separation and extraction means in addition to the fermentation liquid produced in the first and second hydrogen fermentation means as an organic substance of the anode of the microbial electrolysis tank. A recycling-type hydrogen production facility characterized by using an acid. 請求項4記載の循環型水素生産施設において、前記分離抽出手段から分離抽出されるセルロースを主成分とする不溶成分をセルラーゼを用いて可溶化し、前記第二の水素醗酵手段の原料として用いることを特徴とする循環型水素生産施設。 5. The circulating hydrogen production facility according to claim 4, wherein an insoluble component mainly composed of cellulose separated and extracted from the separation and extraction means is solubilized using cellulase and used as a raw material for the second hydrogen fermentation means. A recycling-type hydrogen production facility characterized by 請求項4記載の循環型水素生産施設において、前記分離抽出手段から分離抽出されるセルロースを主成分とする不溶成分をセルロース分解酵素を有する水素生産菌を用いて第二の水素醗酵手段の原料として用いることを特徴とする循環型水素生産施設。 5. The circulating hydrogen production facility according to claim 4, wherein an insoluble component mainly composed of cellulose separated and extracted from the separation and extraction means is used as a raw material for the second hydrogen fermentation means using hydrogen-producing bacteria having cellulolytic enzymes. A recycling-type hydrogen production facility characterized by the use. 請求項4記載の第一と第二の水素醗酵手段を同一の水素醗酵手段とすることを特徴とする循環型水素生産施設。 A circulating hydrogen production facility characterized in that the first and second hydrogen fermentation means according to claim 4 are the same hydrogen fermentation means. 請求項8記載の循環型水素生産施設において、ヘミセルロース成分およびセルロース成分を分離抽出せずに一体抽出し、前記同一の水素醗酵手段に供給することを特徴とする循環型水素生産施設。

The circulating hydrogen production facility according to claim 8, wherein the hemicellulose component and the cellulose component are integrally extracted without being separated and extracted and supplied to the same hydrogen fermentation means.

JP2013155572A 2013-07-26 2013-07-26 Circulatory bio hydrogen production facility using biomass Pending JP2015025172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013155572A JP2015025172A (en) 2013-07-26 2013-07-26 Circulatory bio hydrogen production facility using biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155572A JP2015025172A (en) 2013-07-26 2013-07-26 Circulatory bio hydrogen production facility using biomass

Publications (1)

Publication Number Publication Date
JP2015025172A true JP2015025172A (en) 2015-02-05

Family

ID=52490066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155572A Pending JP2015025172A (en) 2013-07-26 2013-07-26 Circulatory bio hydrogen production facility using biomass

Country Status (1)

Country Link
JP (1) JP2015025172A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121609A (en) * 2016-01-07 2017-07-13 国立研究開発法人農業・食品産業技術総合研究機構 Microbe electrolysis cell
WO2018126292A1 (en) * 2017-01-03 2018-07-12 Sea-Nergy Pty Ltd Hydrogen production
JP2019047777A (en) * 2017-09-07 2019-03-28 エスペック株式会社 Hydrogen producing method and producing apparatus
CN110791768A (en) * 2019-10-22 2020-02-14 国电新能源技术研究院有限公司 Improved organic matter electrolytic hydrogen production system and method
CN113278983A (en) * 2021-05-21 2021-08-20 长沙理工大学 Electrochemical hydrogen production process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017121609A (en) * 2016-01-07 2017-07-13 国立研究開発法人農業・食品産業技術総合研究機構 Microbe electrolysis cell
WO2018126292A1 (en) * 2017-01-03 2018-07-12 Sea-Nergy Pty Ltd Hydrogen production
KR20190096938A (en) * 2017-01-03 2019-08-20 씨-너지 피티와이 엘티디 Hydrogen manufacturing
KR102085104B1 (en) 2017-01-03 2020-05-18 씨-너지 피티와이 엘티디 Hydrogen production
JP2019047777A (en) * 2017-09-07 2019-03-28 エスペック株式会社 Hydrogen producing method and producing apparatus
CN110791768A (en) * 2019-10-22 2020-02-14 国电新能源技术研究院有限公司 Improved organic matter electrolytic hydrogen production system and method
CN113278983A (en) * 2021-05-21 2021-08-20 长沙理工大学 Electrochemical hydrogen production process
CN113278983B (en) * 2021-05-21 2022-12-02 长沙理工大学 Electrochemical hydrogen production process

Similar Documents

Publication Publication Date Title
Priya et al. Cashew apple juice as substrate for microbial fuel cell
Nagarajan et al. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production
Prabakar et al. Advanced biohydrogen production using pretreated industrial waste: outlook and prospects
Srivastava et al. Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116)
Lalaurette et al. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis
Ren et al. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges
Ahmad et al. A review of cellulosic microbial fuel cells: performance and challenges
Rezaei et al. Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell
Katsimpouras et al. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover
Savla et al. Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell
Watt A new future for carbohydrate fuel cells
JP2015025172A (en) Circulatory bio hydrogen production facility using biomass
Jablonska et al. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells
Varanasi et al. Maximizing biohydrogen production from water hyacinth by coupling dark fermentation and electrohydrogenesis
Cao et al. Development of AFEX-based consolidated bioprocessing on wheat straw for biohydrogen production using anaerobic microflora
An et al. Biological saccharification by Clostridium thermocellum and two-stage hydrogen and methane production from hydrogen peroxide-acetic acid pretreated sugarcane bagasse
JP6361041B2 (en) Circulating biohydrogen production facility using biomass
Shi et al. Biomass sugar-powered enzymatic fuel cells based on a synthetic enzymatic pathway
Gupta et al. Design of a single chambered microbial electrolytic cell reactor for production of biohydrogen from rice straw hydrolysate
Shrivastava et al. Conversion of lignocellulosic biomass: Production of bioethanol and bioelectricity using wheat straw hydrolysate in electrochemical bioreactor
Srivastava et al. Pretreatment and production of bioethanol from different lignocellulosic biomass
Kadier et al. Hydrogen production through electrolysis
CN1993855A (en) Fuel cell, electronic equipment, movable body, power generation system and cogeneration system
Paul et al. Impact of fermentation types on enzymes used for biofuels production
Liu et al. The effects of cathodic micro-voltage combined with hydrothermal pretreatment on methane fermentation of lignocellulose substrate