JP2015018777A - Method for manufacturing electrode - Google Patents

Method for manufacturing electrode Download PDF

Info

Publication number
JP2015018777A
JP2015018777A JP2013147050A JP2013147050A JP2015018777A JP 2015018777 A JP2015018777 A JP 2015018777A JP 2013147050 A JP2013147050 A JP 2013147050A JP 2013147050 A JP2013147050 A JP 2013147050A JP 2015018777 A JP2015018777 A JP 2015018777A
Authority
JP
Japan
Prior art keywords
electrode
solid electrolyte
active material
material layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013147050A
Other languages
Japanese (ja)
Inventor
寛 広瀬
Hiroshi Hirose
寛 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013147050A priority Critical patent/JP2015018777A/en
Publication of JP2015018777A publication Critical patent/JP2015018777A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an electrode capable of giving an electrode having improved mobility in a Li ion electrode by a simple step.SOLUTION: A method for manufacturing an electrode in which an active material and a solid electrolyte are continuously and vertically arranged in an active material layer introduces the solid electrolyte into the active material layer formed in advance.

Description

本発明は、電極の製造方法に関し、さらに詳しくはLiイオンの電極内の移動性を改良し、製造工程が簡易である電極の製造方法に関する。   The present invention relates to an electrode manufacturing method, and more particularly to an electrode manufacturing method that improves the mobility of Li ions in an electrode and that has a simple manufacturing process.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために種々の研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて燃えやすい電解液を用いないため安全性が高くセルの形状の自由度が高く構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, the use of non-flammable electrolytes compared to the conventional non-aqueous electrolyte type lithium batteries eliminates the need for flammable electrolytes, so the safety is high, the degree of freedom of the cell shape is high, the degree of freedom of the structure is increased, and the number of auxiliary devices Therefore, it is expected that the solid state battery will be put to practical use.

しかし、固体電池の実用化が実現するためには、高容量・高出力を与え得る固体電解質の創出および/又は高電極利用効率を実現し得る電極を創出することなどの様々な改良が必要である。
この固体電池の電池特性の向上を図る技術の1つとして、電極内の電極活物質と固体電解質との界面を充放電に伴いLiイオンが移動する際の抵抗を下げる低抵抗化を実現するために活物質と固体電解質とが連続的に垂直配置された電極が提案された。
However, in order to realize the practical application of solid state batteries, various improvements such as the creation of a solid electrolyte capable of providing high capacity and high output and / or the creation of electrodes capable of realizing high electrode utilization efficiency are required. is there.
As one of the technologies for improving the battery characteristics of this solid state battery, in order to realize a low resistance that lowers the resistance when Li ions move at the interface between the electrode active material and the solid electrolyte in the electrode during charging and discharging. An electrode in which an active material and a solid electrolyte are continuously arranged vertically has been proposed.

例えば、特許文献1には、非晶質ポリアニオン化合物又は非晶質リン酸化合物からなる固体電解質材料と特定の容量低下温度を有する電極活物質材料との混合物を、加圧された状態で加熱焼成する電極の製造方法が記載されている。そして、具体例として活物質と固体電解質とが連続的に垂直配置された活物質層を有する電極の模式図が図1として示されている。   For example, in Patent Document 1, a mixture of a solid electrolyte material made of an amorphous polyanion compound or an amorphous phosphate compound and an electrode active material having a specific capacity lowering temperature is heated and fired in a pressurized state. An electrode manufacturing method is described. As a specific example, a schematic diagram of an electrode having an active material layer in which an active material and a solid electrolyte are continuously arranged vertically is shown in FIG.

さらに、特許文献2には、電極活物質の柱状体と電極固体電解質の柱状体とを交互に隣接させセパレータを構成する固体電解質の平面に交差する方向に配置させて電極を得るに際し、電極活物質のスラリーと固体電解質のスラリーとを隣接させて柱状に成形する工程を含む電極の製造方法が記載されている。   Furthermore, Patent Document 2 discloses that when an electrode is obtained by arranging a columnar body of an electrode active material and a columnar body of an electrode solid electrolyte alternately in a direction intersecting a plane of the solid electrolyte constituting the separator, An electrode manufacturing method is described which includes a step of forming a substance slurry and a solid electrolyte slurry adjacent to each other to form a columnar shape.

しかし、従来公知の技術によっては、活物質層中に固体電解質を導入することが認識されていないため、活物質層と固体電解質との接触が不十分であり、活物質層と固体電解質との十分な接触を確保してLiイオンの電極内の移動性を改良し、簡易な製造工程によって電極を得ることは困難であった。   However, since it is not recognized that the solid electrolyte is introduced into the active material layer by a conventionally known technique, the contact between the active material layer and the solid electrolyte is insufficient, and the active material layer and the solid electrolyte It has been difficult to secure sufficient contact to improve the mobility of Li ions in the electrode and to obtain an electrode by a simple manufacturing process.

特開2009−140910号公報JP 2009-140910 A 特開2009−181877号公報JP 2009-181877 A

従って、本発明の目的は、Liイオンの電極内の移動性を改良した電極を簡易な工程によって与える得る電極の製造方法を提供することである。   Accordingly, an object of the present invention is to provide an electrode manufacturing method capable of providing an electrode with improved mobility within the electrode of Li ions by a simple process.

本発明は、活物質層内で、活物質と固体電解質とが連続的に垂直配置された電極の製造方法であって、
固体電解質を、予め形成された活物質層に導入する、
ことを特徴とする、前記方法に関する。
The present invention is an electrode manufacturing method in which an active material and a solid electrolyte are continuously arranged vertically in an active material layer,
Introducing a solid electrolyte into a pre-formed active material layer;
And to the method.

本発明によれば、Liイオンの電極内の移動性を改良した電極を簡易な製造工程によって得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode which improved the mobility in the electrode of Li ion can be obtained with a simple manufacturing process.

図1は、本発明の実施態様によって得られた電極の活物質層の断面SEM画像の写しである。FIG. 1 is a copy of a cross-sectional SEM image of an active material layer of an electrode obtained according to an embodiment of the present invention. 図2は、本発明の実施例1で得られた電極の活物質層の断面SEM画像の写しである。FIG. 2 is a copy of a cross-sectional SEM image of the active material layer of the electrode obtained in Example 1 of the present invention. 図3は、本発明の実施例2で得られた電極の活物質層の断面SEM画像の写しである。FIG. 3 is a copy of a cross-sectional SEM image of the active material layer of the electrode obtained in Example 2 of the present invention. 図4は、本発明の実施例3で得られた電極の活物質層の断面SEM画像の写しである。FIG. 4 is a copy of a cross-sectional SEM image of the active material layer of the electrode obtained in Example 3 of the present invention. 図5は、本発明の実施例における固体電解質を活物質層に導入するために撹拌する時間と、固体電解質層の平均幅と活物質層平均幅との比との関係を示す表である。FIG. 5 is a table showing the relationship between the stirring time for introducing the solid electrolyte into the active material layer and the ratio between the average width of the solid electrolyte layer and the average width of the active material layer in the example of the present invention. 図6は、Liイオン伝導度の評価方法を示す模式図である。FIG. 6 is a schematic diagram showing a method for evaluating Li ion conductivity. 図7は、本発明および本発明の範囲外の方法で得られた電極のLiイオン伝導度を比較して示す棒グラフである。FIG. 7 is a bar graph comparing the Li ion conductivity of electrodes obtained by the present invention and methods outside the scope of the present invention.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記固体電解質の導入が、固体電解質の粒子を小片化することなく前記活物質層と混合することによって行われる前記電極の製造方法。
2)前記予め形成された活物質層が、電極の膜厚未満の粒子径を有する固体電解質(B)を含む層である前記電極の製造方法。
3)前記固体電解質の導入における固体電解質の粒子が、電極の膜厚以上の粒子径を有する前記電極の製造方法。
In particular, in the present invention, the following embodiments can be mentioned.
1) The method for producing the electrode, wherein the introduction of the solid electrolyte is performed by mixing the particles of the solid electrolyte with the active material layer without fragmentation.
2) The manufacturing method of the said electrode whose said active material layer formed in advance is a layer containing the solid electrolyte (B) which has a particle diameter smaller than the film thickness of an electrode.
3) The manufacturing method of the said electrode in which the particle | grains of the solid electrolyte in introduction | transduction of the said solid electrolyte have a particle diameter more than the film thickness of an electrode.

本発明においては、活物質層内で、活物質と固体電解質とが連続的に垂直配置された電極の製造方法であって、固体電解質を、予め形成された活物質層に導入することが必要であり、これによってLiイオンの電極内の移動性を改良した電極を簡易な製造工程により得ることができる。   In the present invention, an electrode manufacturing method in which an active material and a solid electrolyte are continuously arranged vertically in an active material layer, and it is necessary to introduce the solid electrolyte into a previously formed active material layer Thus, an electrode with improved mobility within the electrode of Li ions can be obtained by a simple manufacturing process.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様によって得られる電極は、図1に示すように、集電箔上の典型的には約50μmの膜厚の活物質層内で、活物質(黒色)と固体電解質(灰色)とが連続的に垂直配置されているものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the electrode obtained by the embodiment of the present invention has an active material (black) and a solid electrolyte (gray) in an active material layer with a thickness of typically about 50 μm on a current collector foil. Are continuously arranged vertically.

言い換えれば、本発明の実施態様によって得られる電極は、活物質層内に固体電解質が活物質に対して垂直方向に連続して存在するものである。
そして、活物質に対して前記のように垂直に連続的に存在する固体電解質は、活物質層を貫通していてもよく、貫通していなくてもよい。
前記の活物質層内に連続的に存在する固体電解質層の幅は、例えば図2〜図4においては、17μmから100μm程度であり得る。
In other words, the electrode obtained by the embodiment of the present invention has a solid electrolyte continuously present in the active material layer in a direction perpendicular to the active material.
And the solid electrolyte which exists continuously perpendicularly | vertically as mentioned above with respect to the active material may penetrate the active material layer, and does not need to penetrate.
The width of the solid electrolyte layer continuously present in the active material layer can be, for example, about 17 μm to 100 μm in FIGS.

前記の電極において、前記の活物質層とは純粋に活物質のみからなる層だけでなく、少量の固体電解質を含む活物質が豊富な層、すなわち活物質リッチ層をも含み得る。
前記の活物質層が活物質が豊富な層(活物質リッチ層)である場合、図2〜4に示すように、固体電解質がこの活物質層に対して垂直に連続的に配置されている層幅の平均値(すなわち、固体電解質層の平均幅)/活物質が豊富な層の幅の平均値(すなわち、活物質層の平均幅)=0.7〜2程度が適当であり得る。
In the electrode, the active material layer may include not only a layer made of pure active material but also a layer rich in an active material containing a small amount of solid electrolyte, that is, an active material rich layer.
When the active material layer is a layer rich in active material (active material rich layer), as shown in FIGS. 2 to 4, the solid electrolyte is continuously arranged perpendicular to the active material layer. The average value of the layer width (that is, the average width of the solid electrolyte layer) / the average value of the width of the layer rich in the active material (that is, the average width of the active material layer) = about 0.7 to 2 may be appropriate.

前記の電極は、活物質層内で、活物質と固体電解質とが連続的に垂直配置された電極の製造方法であって、
固体電解質を、予め形成された活物質層に導入する、固体電極の製造方法によって得ることができる。
前記の方法において、固体電解質の導入は、固体電解質の粒子を小片化することなく前記活物質層と混合することによって行うことが好適である。
本明細書において、固体電解質の粒子を小片化することなくとは、固体電解質の粒子が全く粉砕されない場合だけでなく少し粉砕される場合、例えば粒子径の50%程度以上が保たれる場合も含むものである。
また、明細書において、固体電解質の粒子の粒子径とは、粒子の形状(例えば、板状、球状、柱状など)にかかわらず、粒子内の最も長い部分の長さを意味する。
また、本明細書において、粒子の粒子径とは二次粒子径を示す。
The electrode is a method of manufacturing an electrode in which an active material and a solid electrolyte are continuously arranged vertically in an active material layer,
The solid electrolyte can be obtained by a solid electrode manufacturing method in which a solid electrolyte is introduced into a previously formed active material layer.
In the above method, the introduction of the solid electrolyte is preferably performed by mixing the solid electrolyte particles with the active material layer without fragmentation.
In this specification, without solidifying the particles of the solid electrolyte, not only when the particles of the solid electrolyte are not pulverized but also when they are pulverized a little, for example, about 50% or more of the particle diameter may be maintained. Is included.
In the specification, the particle diameter of the solid electrolyte particles means the length of the longest part in the particles regardless of the shape of the particles (for example, plate shape, spherical shape, columnar shape, etc.).
Moreover, in this specification, the particle diameter of particle | grains shows a secondary particle diameter.

また、前記の方法において、前記予め形成された活物質層は、電極の膜厚未満の粒子径を有する固体電解質を含む層であることが好適である。
また、前記の方法において、予め形成された活物質層に導入する前記固体電解質の粒子は、電極の膜厚以上の粒子径を有することが好適である。
In the above method, it is preferable that the previously formed active material layer is a layer containing a solid electrolyte having a particle diameter less than the film thickness of the electrode.
In the above method, it is preferable that the particles of the solid electrolyte introduced into the pre-formed active material layer have a particle diameter equal to or greater than the film thickness of the electrode.

本発明の実施態様においては、先ず電極の膜厚未満の粒子径を有する固体電解質、例えば電極の膜厚が典型的には50μm程度を想定した場合、約50μm未満の粒子径を有する固体電解質とこの固体電解質の2〜100質量倍の範囲、例えば2〜10質量倍の量の活物質(固体)と不活性溶媒、例えば炭化水素溶媒、例えばヘプタン、ヘキサンなどとを混合機、例えば超音波ホモジナイザーを用いてあるいは超音波ホモジナアイザーと振とう機とを併用して混合して、活物質層を含む混合物(塗工ペースト)を形成する。この混合の際に、加えられた固体電解質は小片化されてもよい。   In an embodiment of the present invention, first, a solid electrolyte having a particle diameter less than the film thickness of the electrode, for example, assuming that the electrode film thickness is typically about 50 μm, a solid electrolyte having a particle diameter of less than about 50 μm; A mixer, such as an ultrasonic homogenizer, in which the active material (solid) is in the range of 2 to 100 times by mass of this solid electrolyte, for example 2 to 10 times by mass, and an inert solvent such as a hydrocarbon solvent such as heptane or hexane. Or using an ultrasonic homogenizer and a shaker in combination to form a mixture (coating paste) containing an active material layer. During this mixing, the added solid electrolyte may be fragmented.

本発明の実施態様は、次いで、得られた予め形成された活物質層を含む混合物に、電極の膜厚以上の粒子径を有する固体電解質、例えば電極の膜厚が50μm程度を想定した場合、約50μm以上、例えば50〜150μmの範囲、例えば50〜100μmの範囲、典型的には90μm程度の粒子径(二次粒子径)を有する固体電解質(固体電解質大粒子と呼ぶこともある。)を、全固体電解質の合計質量1に対して0.1〜1の範囲、例えば0.1〜0.95の範囲、例えば0.2〜0.7の範囲、典型的には0.5、すなわち最初に加えた量と同程度の量の固体電解質を加える。次いで、加えた固体電解質の粒子を小片化することなく前記活物質層と混合する、例えば振とう機によって混合することによって固体電解質を活物質層に導入し、得られた混合物を集電箔に、例えば100〜300μm、典型的には200μm厚みに塗工し、乾燥することによって行われる。   The embodiment of the present invention then assumes that the obtained mixture containing the pre-formed active material layer has a solid electrolyte having a particle diameter equal to or larger than the film thickness of the electrode, for example, the film thickness of the electrode is about 50 μm. A solid electrolyte having a particle size (secondary particle size) of about 50 μm or more, for example, 50 to 150 μm, for example, 50 to 100 μm, typically about 90 μm (sometimes referred to as solid electrolyte large particles). , In the range of 0.1 to 1 relative to the total mass 1 of the total solid electrolyte, such as in the range of 0.1 to 0.95, such as in the range of 0.2 to 0.7, typically 0.5. Add an amount of solid electrolyte comparable to the amount added initially. Next, the added solid electrolyte particles are mixed with the active material layer without fragmentation, for example, by mixing with a shaker, the solid electrolyte is introduced into the active material layer, and the resulting mixture is applied to the current collector foil. For example, it is performed by coating to 100 to 300 μm, typically 200 μm thickness, and drying.

前記の方法によって、固体電解質を予め形成された活物質層に導入する際に、図2〜5に示すように、固体電解質大粒子を予め形成された活物質層を含む混合物に加えた後、振とう機によって撹拌混合する時間を1分間以上、例えば5〜60分間の範囲、典型的には10〜30分の範囲で変えることによって、固体電解質層の平均幅/活物質層の平均幅の値を0.7〜2.2の範囲で変えることができる。
そして、固体電解質層の平均幅/活物質層の平均幅の値を前記のように変えることによって、図7に示すように、電極におけるLiイオン伝導度が高い電極を得ることができる。
When the solid electrolyte is introduced into the preformed active material layer by the above method, as shown in FIGS. 2 to 5, after adding the solid electrolyte large particles to the mixture including the preformed active material layer, The average width of the solid electrolyte layer / the average width of the active material layer is changed by changing the time of stirring and mixing by a shaker in a range of 1 minute or more, for example, in the range of 5 to 60 minutes, typically in the range of 10 to 30 minutes. The value can be varied in the range of 0.7 to 2.2.
Then, by changing the value of the average width of the solid electrolyte layer / the average width of the active material layer as described above, an electrode having high Li ion conductivity can be obtained as shown in FIG.

本発明の実施態様において、前記の活物質としては、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルマンガンコバルト酸リチウム(Li1+xNi1/3Mn1/3Co1/3)、リチウムコバルト酸ニッケル(LiCo0.3Ni0.7)、マンガン酸リチウム(LiMn)、チタン酸リチウム(Li4/3Ti5/3)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、酸化バナジウム(V)、酸化モリブデン(MoO3)、硫化チタン(TiS)、リチウムコバルト窒化物(LiCoN)、リチウムシリコン窒化物(LiCoN)、リチウム金属、リチウム合金(LiM、M=Sn、Si、Al、Ge、Sb、P)、リチウム貯蔵性金属間化合物(MgxM、M=Sn、Ge、Sb、あるいはXySb、X=In、Cu、Mn)やそれらの誘導体、グラファイト、ハードカーボンなどの炭素材料(C)が挙げられる。ここに、正極活物質と負極活物質には明確な区別はなく、2種類の化合物の充放電電位を比較して貴な電位を示すものを正極に、卑な電位を示すものを負極に用いて任意の電圧の電極を構成し得る。
例えば、LiCoO、LiNiO、LiMn、LiNi1/2Mn1/2、LiNi1/3Co1/3Mn1/3、Li[NiLi1/3−2y/3]O(0≦x≦1、0<y<1/2)やこれらのリチウム遷移金属酸化物のリチウム又は遷移金属を他の元素で置換したリチウム遷移金属、例えばLiNiMnCoOが正極活物質として挙げられる。
また、グラファイト、ハードカーボンなどの炭素材料(C)が負極活物質として好適に挙げられる。
In an embodiment of the present invention, the active material includes lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ), nickel manganese lithium cobaltate (Li 1 + x Ni 1/3 Mn 1/3). Co 1/3 O 2 ), nickel lithium cobaltate (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate (Li x Mn 2 O 4 ), lithium titanate (Li 4/3 Ti 5/3 O) 4), lithium manganese oxide compound (Li 1 + x M y Mn 2-x-y O 4; M = Al, Mg, Fe, Cr, Co, Ni, Zn), lithium titanate (Li x TiO y), phosphoric acid metallic lithium (LiMPO 4, M = Fe, Mn, Co, Ni), vanadium oxide (V 2 O 5), molybdenum oxide (MoO3), titanium sulfide ( iS 2), lithium cobalt nitride (LiCoN), lithium silicon nitride (LiCoN), lithium metal, lithium alloy (LiM, M = Sn, Si , Al, Ge, Sb, P), lithium storage intermetallic compound ( (MgxM, M = Sn, Ge, Sb, or XySb, X = In, Cu, Mn) and their derivatives, carbon materials (C) such as graphite and hard carbon. Here, there is no clear distinction between the positive electrode active material and the negative electrode active material, and the positive and negative potentials are compared for the positive electrode and the negative potential is used for the negative electrode by comparing the charge and discharge potentials of the two types of compounds. Thus, an electrode having an arbitrary voltage can be formed.
For example, Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x Ni 1/2 Mn 1/2 O 2 , Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li x [Ni y Li 1 / 3-2y / 3 ] O 3 (0 ≦ x ≦ 1, 0 <y <1/2) and lithium or transition metal of these lithium transition metal oxides were substituted with other elements Lithium transition metals such as LiNiMnCoO 2 can be mentioned as the positive electrode active material.
Moreover, carbon materials (C), such as graphite and hard carbon, are preferably used as the negative electrode active material.

前記の固体電解質としては、LiS−SiS、LiI−LiS−SiS、liI−liS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの硫化物系非晶質固体電解質が挙げられる。 Examples of the solid electrolyte include Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , liI-li 2 S—P 2 S 5 , LiI—Li 2 S—B 2 S 3 , Li 3 PO 4 —. Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2, LiPO 4 -Li 2 S-SiS, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5 , sulfide-type amorphous solid electrolytes such as Li 3 PS 4 and Li 2 S—P 2 S 5 .

前記のLiS−Pは、硫化リチウムと、五硫化二燐及び/又は、単体燐及び単体硫黄から得るができ、例えばこれら原料を溶融反応した後、急冷するか、又は原料をメカニカルミリング法により処理して得られる硫化物ガラスを加熱処理することによって得ることができる。硫化リチウムと、五硫化二燐又は単体燐及び単体硫黄の混合モル比は、通常50:50〜80:20、好ましくは60:40〜75:25であり、好適にはLiS:P=70:30〜75:25(モル比)程度である。 The Li 2 S—P 2 S 5 can be obtained from lithium sulfide and diphosphorus pentasulfide and / or simple phosphorus and simple sulfur. For example, these raw materials are melt-reacted and then rapidly cooled or the raw materials are used. It can be obtained by heat-treating sulfide glass obtained by processing by a mechanical milling method. The mixing molar ratio of lithium sulfide to diphosphorus pentasulfide or simple phosphorus and simple sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25, and preferably Li 2 S: P 2. S 5 = 70: 30~75: is about 25 (mole ratio).

本発明の実施態様において、前記の負極活物質と固体電解質と、一般的に用いられる導電剤を用い得る。
前記導電剤としては、炭素材料、リチウムと合金化し難い金属、例えばアルミニウム、導電性高分子材料等が挙げられ、アルミニウム、炭素材料が好適である。前記炭素材料としては、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、フラーレン等を単独で又は2種以上を組み合わせて用いることができる。
In the embodiment of the present invention, the negative electrode active material, the solid electrolyte, and a commonly used conductive agent can be used.
Examples of the conductive agent include carbon materials and metals that are difficult to be alloyed with lithium, such as aluminum and conductive polymer materials, and aluminum and carbon materials are preferable. As the carbon material, graphite, carbon black, carbon nanotube, carbon nanofiber, fullerene and the like can be used alone or in combination of two or more.

本発明の実施態様によって得られる固体電池の電極を用いて固体電池を得るには、本発明の実施態様によって得られる電極を負極として適用し、固体硫化物電解質を積層し、正極には前記の方法によって得られる電極あるいは前記の電極以外の電極を適用することによって作製し得る。   In order to obtain a solid battery using the electrode of the solid battery obtained by the embodiment of the present invention, the electrode obtained by the embodiment of the present invention is applied as a negative electrode, a solid sulfide electrolyte is laminated, It can be produced by applying an electrode obtained by the method or an electrode other than the electrode described above.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
以下の各例において、Li伝導度は図6に模式図を示す方法により行った。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.
In each of the following examples, Li conductivity was measured by the method shown in the schematic diagram of FIG.

参考例1
1.固体電解質の合成
LiS(日本化学工業社)とP(アルドリッチ社)とLiI(アルドリッチ社)とを出発原料として、LiS0.558g、P0.900g、LiI0.542gをメノウ乳鉢で5分間混合し、その後ヘプタン4gを入れ、遊星ボールミル(容器:ZrO製45ml、ボール:ZrO製のφ5mmを53g)を用いて台盤回転数500rpmで40時間ボールミルし、100℃で乾燥して固体電解質前駆体を得た。
得られたガラスサンプル0.5gを秤量し、ガラス管の中に入れ、さらにSUS製の密閉容器に入れた後、卓上マッフル炉にて様々な温度で熱処理を行い、ガラスセラミック電解質を得た。
なお、秤量、合成は全てArガス中にて行った。
Reference example 1
1. Synthesis Li 2 S solid electrolyte and (Nippon Chemical Industrial Co., Ltd.) P 2 S 5 and (Aldrich) and LiI (Aldrich) as a starting material, Li 2 S0.558g, P 2 S 5 0.900g, LiI0. 542 g was mixed for 5 minutes in an agate mortar, then 4 g of heptane was added, and ball milling was performed at a platform rotation speed of 500 rpm for 40 hours using a planetary ball mill (container: 45 ml of ZrO 2 , ball: 53 g of ZrO 2 φ5 mm), The solid electrolyte precursor was obtained by drying at 100 ° C.
After 0.5 g of the obtained glass sample was weighed and placed in a glass tube, and further placed in a sealed container made of SUS, heat treatment was performed at various temperatures in a desktop muffle furnace to obtain a glass ceramic electrolyte.
The weighing and synthesis were all performed in Ar gas.

実施例1〜3
2.電極の作製
2−1負極
1)秤量
グラファイト(三菱化学社)1100mgと、得られた固体電解質(小粒子径のもの)473mgとアルミニウム(高純度化学社)46mgを秤量した。
2)撹拌混合
秤量した各材料をヘプタン中に分散させ、超音波ホモジナイザーと振とう機を用いて撹拌混合した。
3)秤量
固体電解質473mg秤量した。この時に、固体電解質の二次粒子径は90μmのものを用いた。
4)撹拌混合
2回目に加えた固体電解質を解砕せずに、分散だけを行うために、振とう機のみを用いて撹拌混合した。
振とう時間を10分間(実施例1)、20分間(実施例2)、又は30分間(実施例3行った。
5)塗工
混合物を200μmのGAP計で行い、乾燥して電極を作製した。
Examples 1-3
2. Preparation of Electrode 2-1 Negative Electrode 1) Weighing 1100 mg of graphite (Mitsubishi Chemical Corporation), 473 mg of the obtained solid electrolyte (small particle size) and 46 mg of aluminum (High Purity Chemical) were weighed.
2) Stirring and mixing Each weighed material was dispersed in heptane and stirred and mixed using an ultrasonic homogenizer and a shaker.
3) Weighing 473 mg of the solid electrolyte was weighed. At this time, the solid electrolyte having a secondary particle diameter of 90 μm was used.
4) Mixing by stirring In order to perform only dispersion without crushing the solid electrolyte added the second time, stirring and mixing were performed using only a shaker.
The shaking time was 10 minutes (Example 1), 20 minutes (Example 2), or 30 minutes (Example 3).
5) Coating The mixture was subjected to a 200 μm GAP meter and dried to produce an electrode.

得られた負極について測定した断面SEM画像を図2、図3および図4に示す。
また、図2〜4から求めた、固体電解質を活物質層に導入するための撹拌する時間と、固体電解質層の平均幅と活物質層平均幅との比との関係を求めた。結果を図5に示す。
The cross-sectional SEM images measured for the obtained negative electrode are shown in FIG. 2, FIG. 3, and FIG.
Moreover, the relationship between the stirring time for introducing the solid electrolyte into the active material layer and the ratio between the average width of the solid electrolyte layer and the average width of the active material layer, obtained from FIGS. The results are shown in FIG.

2−2正極の作製
LiNiI/3Co1/3Mn1/3O(日亜化学社)1700mgとVGCF(昭和電工社)51mg、得られた固体電解質541mg秤量し、混合し塗膜した膜を正極とした。
2-2 Production of Positive Electrode LiNiI / 3Co1 / 3Mn1 / 3O 2 (Nichia Corporation) 1700 mg, VGCF (Showa Denko) 51 mg, and the obtained solid electrolyte 541 mg were weighed, mixed, and coated to form a film.

3.Liイオン伝導度の測定
通常の電池の構成と考えられる正極と負極との間に、得られた固体電解質粉末50mgを挟んで絶縁した状態でターゲットとなる負極を図6に示すように設置した。
任意の電流(例えば1mA/cm)で正極(正極合材)と負極(負極合材)間で直流抵抗を測定した。
別に、ターゲット合材を含まないセルを作製し、同じ電流で直流抵抗を測定した。
ターゲット合材の有無による抵抗の差をターゲット由来の直流抵抗とし、Liイオン伝導度を求めた。なお、ターゲット合材/セパレート層(セパ層と略記する場合もある。)の接合抵抗は小さいと仮定している。
3. Measurement of Li ion conductivity Between the positive electrode and the negative electrode, which are considered to be the structure of a normal battery, a target negative electrode was installed as shown in FIG. 6 with 50 mg of the obtained solid electrolyte powder sandwiched between them.
DC resistance was measured between the positive electrode (positive electrode mixture) and the negative electrode (negative electrode mixture) at an arbitrary current (for example, 1 mA / cm 2 ).
Separately, a cell containing no target compound was produced, and the direct current resistance was measured at the same current.
The difference in resistance due to the presence or absence of the target compound was taken as the direct current resistance derived from the target, and the Li ion conductivity was determined. It is assumed that the target compound / separate layer (sometimes abbreviated as a separate layer) has a low junction resistance.

得られた実施例1、3のLiイオン伝導度を他の結果とまとめて図7に示す。   The Li ion conductivity of the obtained Examples 1 and 3 is shown together with other results in FIG.

比較例1
2回目に固体電解質を加えないで、1回目のみで全量の固体電解質を加えて、超音波ホモジナイザーと振とう機を用いて撹拌混合を行った他は実施例1と同様にして、負極を作製した。
得られた負極を用いて得られたLiイオン伝導度を他の結果とまとめて図7に示す。
Comparative Example 1
A negative electrode was produced in the same manner as in Example 1, except that the solid electrolyte was not added at the second time, the entire amount of solid electrolyte was added at the first time, and the mixture was stirred and mixed using an ultrasonic homogenizer and a shaker. did.
The Li ion conductivity obtained using the obtained negative electrode is shown together with other results in FIG.

図7から、Liイオンの電極内の移動性を改良した電極を簡易な製造工程によって容易に得ることができることが確認された。   From FIG. 7, it was confirmed that an electrode with improved mobility in the Li ion electrode can be easily obtained by a simple manufacturing process.

本発明によって、Liイオンの電極内の移動性を改良した電極を簡易な製造工程によって容易に得ることができる。   According to the present invention, an electrode with improved mobility in the Li ion electrode can be easily obtained by a simple manufacturing process.

Claims (4)

活物質層内で、活物質と固体電解質とが連続的に垂直配置された電極の製造方法であって、
固体電解質を、予め形成された活物質層に導入する、
ことを特徴とする、前記方法。
In the active material layer, an active material and a solid electrolyte are continuously and vertically manufactured electrodes,
Introducing a solid electrolyte into a pre-formed active material layer;
And said method.
前記固体電解質の導入が、固体電解質の粒子を小片化することなく前記活物質層と混合することによって行われる請求項1に記載の電極の製造方法。   The method for producing an electrode according to claim 1, wherein the introduction of the solid electrolyte is performed by mixing the particles of the solid electrolyte with the active material layer without fragmentation. 前記予め形成された活物質層が、電極の膜厚未満の粒子径を有する固体電解質を含む層である請求項1又は2に記載の電極の製造方法。   The method for producing an electrode according to claim 1, wherein the pre-formed active material layer is a layer containing a solid electrolyte having a particle diameter less than the film thickness of the electrode. 前記固体電解質の粒子が、電極の膜厚以上の粒子径を有する請求項2に記載の電極の製造方法。   The method for producing an electrode according to claim 2, wherein the solid electrolyte particles have a particle diameter equal to or greater than a film thickness of the electrode.
JP2013147050A 2013-07-12 2013-07-12 Method for manufacturing electrode Pending JP2015018777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147050A JP2015018777A (en) 2013-07-12 2013-07-12 Method for manufacturing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147050A JP2015018777A (en) 2013-07-12 2013-07-12 Method for manufacturing electrode

Publications (1)

Publication Number Publication Date
JP2015018777A true JP2015018777A (en) 2015-01-29

Family

ID=52439590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147050A Pending JP2015018777A (en) 2013-07-12 2013-07-12 Method for manufacturing electrode

Country Status (1)

Country Link
JP (1) JP2015018777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180038764A (en) * 2016-10-07 2018-04-17 주식회사 엘지화학 Electrode active material slurry composition and secondary battery comprising electrode using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180038764A (en) * 2016-10-07 2018-04-17 주식회사 엘지화학 Electrode active material slurry composition and secondary battery comprising electrode using the same
KR102227802B1 (en) * 2016-10-07 2021-03-15 주식회사 엘지화학 Electrode active material slurry composition and secondary battery comprising electrode using the same

Similar Documents

Publication Publication Date Title
JP6755736B2 (en) Electrode active material slurry, its manufacturing method, and an all-solid-state secondary battery containing the electrode active material slurry.
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
TWI619298B (en) Lithium manganese oxide composite, secondary battery, and manufacturing method thereof
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
JP6946836B2 (en) Lithium solid-state battery and manufacturing method of lithium solid-state battery
JP7028354B2 (en) All-solid-state lithium-ion secondary battery
JP5682318B2 (en) All solid battery
JP6259704B2 (en) Method for producing electrode for all solid state battery and method for producing all solid state battery
JP2012155994A (en) Electrode for solid-state battery
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
JP7414702B2 (en) Cathode active material for lithium secondary batteries
KR20190035655A (en) Solid electrolyte material and all solid lithium battery
JP2018098161A (en) Method for manufacturing cathode active material
JP2014229579A (en) Lithium ion conductive inorganic solid composite
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP2017157473A (en) Lithium ion secondary battery
US11532837B2 (en) Sulfide solid electrolyte particles and all-solid-state battery
JP2012104280A (en) Sintered body for battery, all-solid lithium battery, and method for manufacturing sintered body for battery
JP5920097B2 (en) Sulfide solid state battery
WO2015159331A1 (en) Solid-state battery, electrode for solid-state battery, and production processes therefor
JP2015018777A (en) Method for manufacturing electrode
CN112825351A (en) All-solid-state battery
JP2017016766A (en) Method of manufacturing positive electrode composite particle
JP2023154562A (en) Conductive material and battery