JP2015017883A - Ultrasonic flaw detection method - Google Patents

Ultrasonic flaw detection method Download PDF

Info

Publication number
JP2015017883A
JP2015017883A JP2013145170A JP2013145170A JP2015017883A JP 2015017883 A JP2015017883 A JP 2015017883A JP 2013145170 A JP2013145170 A JP 2013145170A JP 2013145170 A JP2013145170 A JP 2013145170A JP 2015017883 A JP2015017883 A JP 2015017883A
Authority
JP
Japan
Prior art keywords
steel material
round steel
reflected wave
point
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013145170A
Other languages
Japanese (ja)
Other versions
JP6167706B2 (en
Inventor
森 大輔
Daisuke Mori
大輔 森
崇 佐古
Takashi Sako
崇 佐古
峻嗣 札本
Shunji Fudamoto
峻嗣 札本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2013145170A priority Critical patent/JP6167706B2/en
Publication of JP2015017883A publication Critical patent/JP2015017883A/en
Application granted granted Critical
Publication of JP6167706B2 publication Critical patent/JP6167706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flaw detection method capable of certainly detecting the presence or absence of a flaw such as an internal defect immediately below a surface of a steel material even if a disturbance reflected wave exists.SOLUTION: An ultrasonic wave B is made to enter a circular cross section at each point in the circumferential direction of the circular cross section of a round steel material M, an intensity distribution diagram is obtained in which the lateral axis shows each point and the longitudinal axis shows time change of reflected wave intensity in the ultrasonic wave at each point. When, of the regions (high intensity regions) in which the reflected wave intensity is a certain value or higher in the intensity distribution diagram, at least one region is inclined in the lateral axis direction, it is determined that a flaw F occurs in the round steel material M.

Description

本発明は超音波探傷方法に関し、特に、丸鋼材の表面直下の内部欠陥や表面疵を良好に検出できる超音波探傷方法に関するものである。   The present invention relates to an ultrasonic flaw detection method, and in particular, relates to an ultrasonic flaw detection method that can favorably detect internal defects and surface defects immediately below the surface of a round steel material.

特許文献1にはアレイプローブを使用した丸鋼材の超音波探傷方法が開示されている。アレイプローブは、丸鋼材の外周面と同心の円弧面に多数の超音波振動子を設けて超音波発射面としたもので、必要数の超音波振動子を駆動することによって、丸鋼材内で横波屈折角が所定の角度になるように超音波ビームを丸鋼材に向けて発射する。丸鋼材を適宜回転させるか、同種のアレイプローブを丸鋼材の全周に隣接させて複数設けることによって、丸鋼材の全周を超音波ビームでスキャンして表面疵を検出することができる。   Patent Document 1 discloses an ultrasonic flaw detection method for a round steel material using an array probe. An array probe is an ultrasonic emission surface by providing a number of ultrasonic transducers on a circular arc surface concentric with the outer peripheral surface of a round steel material. By driving the required number of ultrasonic transducers, An ultrasonic beam is emitted toward the round steel material so that the transverse wave refraction angle becomes a predetermined angle. By rotating the round steel material as appropriate or by providing a plurality of array probes of the same kind adjacent to the entire circumference of the round steel material, the entire surface of the round steel material can be scanned with an ultrasonic beam to detect surface defects.

特開2009−150679JP 2009-150679 A

ところで、上記従来の超音波探傷方法において、アレイプローブを使用した場合には表面直下の内部欠陥等の検出に有効な屈折した横波探傷ビームの反射波以外に、丸鋼材内へ直進し反対側の鋼材内表面で反射されて戻る反射波や、丸鋼材内で反射を繰り返して戻る反射波等の妨害反射波が生じるため、上記内部欠陥や表面疵を確実に検出できないという問題があった。   By the way, in the conventional ultrasonic flaw detection method described above, when an array probe is used, in addition to the reflected wave of the refracted transverse wave flaw detection beam that is effective for detecting internal defects directly under the surface, the straight wave travels straight into the round steel material and is on the opposite side. There is a problem that the internal defects and surface flaws cannot be reliably detected because a reflected wave such as a reflected wave that is reflected and returned from the inner surface of the steel material or a reflected wave that is repeatedly reflected in the round steel material is generated.

そこで本発明はこのような課題を解決するもので、妨害反射波が存在しても鋼材の表面直下の内部欠陥等の疵の有無を確実に検出することが可能な超音波探傷方法を提供することを目的とする。   Therefore, the present invention solves such a problem, and provides an ultrasonic flaw detection method capable of reliably detecting the presence or absence of defects such as internal defects directly under the surface of a steel material even in the presence of disturbing reflected waves. For the purpose.

上記目的を達成するために、本第1発明では、丸鋼材(M)の円形断面の周方向の各点において前記円形断面内へ超音波(B)を入射させ、前記各点を一軸に、各点における超音波の反射波強度の時間変化を他軸にとった強度分布図を得て、当該強度分布図中における反射波強度が一定以上の領域(高強度領域)のうち、少なくとも一つの領域が前記一軸方向へ傾斜している場合に前記丸鋼材(M)に疵(F)が生じていると判定することを特徴とする。   In order to achieve the above object, in the first aspect of the present invention, ultrasonic waves (B) are incident on the circular cross section at each point in the circumferential direction of the circular cross section of the round steel material (M), Obtain an intensity distribution map taking the time change of the reflected wave intensity of the ultrasonic wave at each point as the other axis, and at least one of the areas (high intensity areas) where the reflected wave intensity in the intensity distribution map is a certain level or higher. When the region is inclined in the uniaxial direction, it is determined that wrinkles (F) are generated in the round steel material (M).

本第1発明において、妨害反射波は超音波入射点が変化してもその反射経路は一定になる。したがって、妨害反射波の高強度領域は強度分布図上において上記一軸方向へ平行となり傾斜しない。これに対して、表面直下の内部欠陥等の疵が丸鋼材にあると、当該疵からの探傷反射波の反射経路は超音波入射点の変化に伴い変化する。したがって、探傷反射波の高強度領域は強度分布図上において上記一軸方向へ傾斜する。これにより、高強度領域が一軸方向へ傾斜しているか否かによって丸鋼材における疵の有無を確実に判定することができる。   In the first invention, the reflected path of the disturbing reflected wave is constant even if the ultrasonic incident point changes. Accordingly, the high intensity region of the disturbing reflected wave is parallel to the uniaxial direction on the intensity distribution diagram and does not tilt. On the other hand, when a flaw such as an internal defect directly under the surface is present in the round steel material, the reflection path of the flaw detection reflected wave from the flaw changes with a change in the ultrasonic incident point. Therefore, the high intensity region of the flaw detection reflected wave is inclined in the uniaxial direction on the intensity distribution diagram. Thereby, the presence or absence of wrinkles in the round steel material can be reliably determined depending on whether the high-strength region is inclined in the uniaxial direction.

本第2発明では、疵(F)の無い正常な丸鋼材(M)の強度分布図を予め取得しておき、当該強度分布図と探傷対象の丸鋼材(M)の強度分布図との差分をとった強度分布図に基づいて前記判定を行う。   In the second invention, a strength distribution map of a normal round steel material (M) having no flaw (F) is acquired in advance, and the difference between the strength distribution map and the strength distribution map of the round steel material (M) to be flawed is obtained. The determination is performed based on the intensity distribution chart obtained by taking

本第2発明において、差分をとった強度分布図では妨害反射波の影響が除去されているから、丸鋼材における疵の有無判定をより確実に行うことができる。   In the second invention, since the influence of the disturbing reflected wave is removed in the intensity distribution diagram taking the difference, it is possible to more reliably determine whether or not there is a flaw in the round steel material.

上記カッコ内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   The reference numerals in the parentheses indicate the correspondence with specific means described in the embodiments described later.

以上のように、本発明の超音波探傷方法によれば、妨害反射波が存在しても鋼材の表面直下の内部欠陥等を確実に検出することができる。   As described above, according to the ultrasonic flaw detection method of the present invention, it is possible to reliably detect an internal defect or the like directly under the surface of a steel material even if an interference reflected wave exists.

探傷反射波の経路を示す丸鋼材の横断面図である。It is a cross-sectional view of the round steel material which shows the path | route of a flaw detection reflected wave. 妨害反射波の経路を示す丸鋼材の横断面図である。It is a cross-sectional view of the round steel material which shows the path | route of a disturbance reflected wave. 他の妨害反射波の経路を示す丸鋼材の横断面図である。It is a cross-sectional view of the round steel material which shows the path | route of another disturbance reflected wave. 各反射波信号の時間関係を示す図である。It is a figure which shows the time relationship of each reflected wave signal. 超音波ビームの発射点を変更した場合の妨害反射波の経路を示す丸鋼材の横断面図である。It is a cross-sectional view of the round steel material which shows the path | route of the disturbance reflected wave at the time of changing the launch point of an ultrasonic beam. 超音波ビームの発射点を変更した場合の他の妨害反射波の経路を示す丸鋼材の横断面図である。It is a cross-sectional view of the round steel material which shows the path | route of the other disturbance reflected wave at the time of changing the launch point of an ultrasonic beam. 超音波ビームの発射点を変更した場合の探傷反射波の経路を示す丸鋼材の横断面図である。It is a cross-sectional view of the round steel material which shows the path | route of a flaw detection reflected wave at the time of changing the launch point of an ultrasonic beam. 丸鋼材内に内部欠陥がある場合の強度分布図である。It is an intensity distribution figure when there is an internal defect in a round steel material. 丸鋼材内に内部欠陥が無い場合の強度分布図である。It is an intensity distribution figure when there is no internal defect in a round steel material. 差分処理を行った後の反射波強度分布図である。It is a reflected wave intensity distribution figure after performing a difference process. さらに他の処理を行った後の反射波強度分布図である。It is a reflected wave intensity distribution figure after performing other processing.

なお、以下に説明する実施形態はあくまで一例であり、本発明の要旨を逸脱しない範囲で当業者が行う種々の設計的改良も本発明の範囲に含まれる。以下、本発明の探傷方法の詳細を説明する。   The embodiment described below is merely an example, and various design improvements made by those skilled in the art without departing from the gist of the present invention are also included in the scope of the present invention. Details of the flaw detection method of the present invention will be described below.

図1に丸鋼材Mの断面を示し、その外周面から所定距離離してアレイプローブ1が設けられる。アレイプローブ1は丸鋼材Mの外周面に向く超音波発射面11が丸鋼材Mの外周面とほぼ同心の円弧面となっている。なお、これら丸鋼材Mとアレイプローブ1は水中に設置されている。   FIG. 1 shows a cross section of the round steel material M, and the array probe 1 is provided at a predetermined distance from the outer peripheral surface thereof. In the array probe 1, the ultrasonic wave emitting surface 11 facing the outer peripheral surface of the round steel material M is an arc surface substantially concentric with the outer peripheral surface of the round steel material M. The round steel material M and the array probe 1 are installed in water.

アレイプローブ1の必要数の超音波振動子(図示略)を駆動して超音波ビームBを発射し、丸鋼材M内で屈折角θが40〜45°になるような横波を発生させて、これを探傷ビームDとする。探傷ビームDが表面直下の内部欠陥(以下、単に内部欠陥という)や表面疵で反射されると探傷反射波Rdとなって、探傷ビームDの入射時の経路を辿って再びアレイプローブ1に戻る。必要数の超音波振動子の駆動を順次行うことによって、アレイプローブ1から出力される超音波ビームBを丸鋼材Mの周方向の所定範囲でスキャンするようにし、丸鋼材Mを適宜回転させるか、同種のアレイプローブ1を丸鋼材Mの全周に隣接させて複数設けることによって、丸鋼材Mの全周を超音波ビームBでスキャンすることができる。   A necessary number of ultrasonic transducers (not shown) of the array probe 1 are driven to emit an ultrasonic beam B, and a transverse wave is generated in the round steel material M so that the refraction angle θ is 40 to 45 °. This is a flaw detection beam D. When the flaw detection beam D is reflected by an internal defect (hereinafter simply referred to as “internal defect”) or a surface flaw immediately below the surface, it becomes a flaw detection reflected wave Rd, and returns to the array probe 1 again following the path when the flaw detection beam D is incident. . Whether the ultrasonic beam B output from the array probe 1 is scanned in a predetermined range in the circumferential direction of the round steel material M by sequentially driving the necessary number of ultrasonic transducers, and the round steel material M is appropriately rotated. By providing a plurality of array probes 1 of the same type adjacent to the entire circumference of the round steel material M, the entire circumference of the round steel material M can be scanned with the ultrasonic beam B.

ところで、超音波ビームBが丸鋼材M中に進入すると、屈折する横波の探傷ビームD以外に、図2に示すような直進する縦波ビームB1が生じ、これが反対側の鋼材面で反射して再びアレイプローブ1に妨害反射波Rb1として戻る。また、図3に示すように、横波の探傷ビームDから、反対側の鋼材面に向かう縦波の反射波Rが生じて、これが鋼材面で反射して再びアレイプローブ1に妨害反射波Rb2として戻る。   By the way, when the ultrasonic beam B enters the round steel material M, in addition to the refracting transverse wave flaw detection beam D, a straight traveling longitudinal wave beam B1 as shown in FIG. 2 is generated, which is reflected by the opposite steel surface. It returns to the array probe 1 again as an interference reflected wave Rb1. Further, as shown in FIG. 3, a longitudinal wave reflected wave R directed to the opposite steel surface is generated from the transverse wave flaw detection beam D, and this is reflected by the steel surface and again reflected to the array probe 1 as an interference reflected wave Rb2. Return.

丸鋼材Mの直径Dを28mm、アレイプローブ1の超音波発射面11の曲率半径を62.5mmとすると、アレイプローブ1から丸鋼材Mまでの水距離WPは48.5mmとなる。屈折角θを45°とし、水音速Cwを1480m/s、縦波音速Ctを5900m/s、横波音速Csを3230m/sとすると、水距離WPを往復する時間は2×(WP/Cw)≒65.5μsとなる。   If the diameter D of the round steel material M is 28 mm and the radius of curvature of the ultrasonic emission surface 11 of the array probe 1 is 62.5 mm, the water distance WP from the array probe 1 to the round steel material M is 48.5 mm. When the refraction angle θ is 45 °, the water sound velocity Cw is 1480 m / s, the longitudinal wave sound velocity Ct is 5900 m / s, and the transverse wave sound velocity Cs is 3230 m / s, the time for reciprocating the water distance WP is 2 × (WP / Cw). ≈65.5 μs.

また、探傷ビームDが丸鋼材M内に進入して内部欠陥等で反射され探傷反射波Rdとして再び丸鋼材Mの内表面へ戻るまでの時間は2×(D×Cosθ)/Cs)で近似されて約12.2μsとなる。さらに、妨害反射波Rb1の丸鋼材M内での往復時間は2×(D/Ct)≒9.5μsとなる。また妨害反射波Rb2の丸鋼材M内での往復時間は(D×Cosθ)/Cs+(D×Sinθ)/Ct+D/Ctで近似されて約14.2μsとなる。   Further, the time until the flaw detection beam D enters the round steel material M, is reflected by an internal defect, etc., and returns to the inner surface of the round steel material M again as a flaw detection reflected wave Rd is approximated by 2 × (D × Cosθ) / Cs). To about 12.2 μs. Further, the reciprocation time of the disturbing reflected wave Rb1 in the round steel material M is 2 × (D / Ct) ≈9.5 μs. The round trip time of the interference reflected wave Rb2 in the round steel M is approximately 14.2 μs as approximated by (D × Cos θ) / Cs + (D × Sin θ) / Ct + D / Ct.

これらの時間関係を図4に示す。アレイプローブ1への不要な他の反射波の入力を極力防止するために時間軸上で通過ゲートWを設定するが、この通過ゲートWは一般的にアレイプローブ1から材料表面までの路程を1スキップ(S)として、図4に示すように0.5〜1.25スキップ(S)の範囲に設定される。しかしこの場合にも、探傷反射波Rd以外に妨害反射波Rb1,Rb2は検出されてしまうため、探傷反射波Rdが妨害反射波Rb1,Rb2と重なった場合には内部欠陥等の存在を見逃し、あるいは内部欠陥等が無い場合に妨害反射波Rb1,Rb2を探傷反射波Rdであると誤検出するおそれがあった。   These time relationships are shown in FIG. In order to prevent unnecessary input of other reflected waves to the array probe 1, a pass gate W is set on the time axis, and this pass gate W generally has a path distance from the array probe 1 to the material surface of 1. The skip (S) is set in the range of 0.5 to 1.25 skip (S) as shown in FIG. However, also in this case, the disturbing reflected waves Rb1 and Rb2 are detected in addition to the flaw detection reflected wave Rd. Therefore, when the flaw detected reflected wave Rd overlaps the disturbing reflected waves Rb1 and Rb2, the presence of internal defects or the like is overlooked. Alternatively, when there is no internal defect or the like, the interference reflected waves Rb1 and Rb2 may be erroneously detected as the flaw detection reflected wave Rd.

そこで、本実施形態では以下の知見に基づいてさらに処理を行う。すなわち、妨害反射波Rb1の反射経路について考えると、図5に示すように、超音波発射面11は丸鋼材Mの外周面とほぼ同心の円弧面になっているから、図5のX点〜Y点〜Z点へと超音波ビームBの発射点(したがって丸鋼材Mの円形断面の周方向での超音波ビームBの各入射点)が変わっても、妨害反射波Rb1の反射経路は常に一定で変化しない。また、図6に示すように、妨害反射波Rb2の反射経路についても、超音波ビームBの発射点がX点?Y点?Z点へと変わっても妨害反射波Rb2の反射経路は常に一定で変化しない。   Therefore, in the present embodiment, further processing is performed based on the following knowledge. That is, considering the reflection path of the disturbing reflected wave Rb1, as shown in FIG. 5, the ultrasonic emission surface 11 is an arc surface substantially concentric with the outer peripheral surface of the round steel material M. Even if the launch point of the ultrasonic beam B (and hence each incident point of the ultrasonic beam B in the circumferential direction of the circular cross section of the round steel material M) changes from the Y point to the Z point, the reflection path of the disturbing reflected wave Rb1 is always Constant and unchanged. In addition, as shown in FIG. 6, the reflection path of the disturbing reflected wave Rb2 is always constant even if the launch point of the ultrasonic beam B is changed from the X point to the Y point to the Z point. Does not change.

一方、図7に示すように、丸鋼材M内の表面直下に内部欠陥Fがある場合には、超音波ビームBの発射点がX点〜Y点〜Z点へと変わると、X点から超音波ビームBを発射した場合の探傷反射波Rdの反射経路が最も長く、これからY点、Z点へと移るにつれて探傷反射波Rdの反射経路は次第に短くなり、Z点で反射経路は最も短くなる。   On the other hand, as shown in FIG. 7, when there is an internal defect F directly under the surface in the round steel material M, when the launch point of the ultrasonic beam B is changed from the X point to the Y point to the Z point, When the ultrasonic beam B is emitted, the reflection path of the flaw detection reflected wave Rd is the longest. From now on, the reflection path of the flaw detection reflected wave Rd gradually decreases as it moves to the Y point and the Z point, and the reflection path is the shortest at the Z point. Become.

そこで、丸鋼材Mの円形断面の周方向での超音波ビームBの各発射点を横軸に、各点における反射波強度の時間変化を縦軸にとって強度分布図を描くと(図8)、妨害反射波Rb1,Rb2についてはその反射経路が常に一定であることにより、これら妨害反射波Rb1,Rb2の強度が高い領域(高輝度領域、図8中の白い領域)は超音波ビームBの発射点が変化しても常に一定の時間に現れるから、高輝度領域は横軸方向に平行に延びる。これに対して、丸鋼材M内に内部欠陥F等があると、ここで反射された探傷反射波Rdはその反射経路が超音波ビームBの各入射点に応じて変化するから、探傷反射波Rdの強度が高い図8中の高輝度領域は横軸方向に傾斜して延びる。   Therefore, when the distribution point of the ultrasonic beam B in the circumferential direction of the circular cross section of the round steel material M is plotted on the horizontal axis and the time variation of the reflected wave intensity at each point is plotted on the vertical axis, the intensity distribution diagram is drawn (FIG. 8). Since the reflection paths of the disturbing reflected waves Rb1 and Rb2 are always constant, the areas where the intensity of the disturbing reflected waves Rb1 and Rb2 is high (high brightness area, white area in FIG. 8) are emitted from the ultrasonic beam B. Even if the point changes, it always appears at a certain time, so the high luminance region extends in parallel to the horizontal axis direction. On the other hand, if there is an internal defect F or the like in the round steel material M, the flaw detection reflected wave Rd reflected here changes its reflection path according to each incident point of the ultrasonic beam B. The high luminance region in FIG. 8 where the intensity of Rd is high extends while being inclined in the horizontal axis direction.

さらに本実施形態では、内部欠陥F等が無い正常な丸鋼材Mについて超音波ビームBの各発射点を横軸に、各点における超音波の反射波強度の時間変化を縦軸にとってその強度分布図、すなわち妨害反射波Rb1,Rb2のみが表れている強度分布図(図9)を予め取得しておき、これと、疵検出の対象となる丸鋼材Mの強度分布図(図8)との差分をとる。差分処理がなされた強度分布図(図10)からは妨害反射波Rb1,Rb2の高輝度領域が消去されて探傷反射波Rdの高輝度領域のみが残されるから、当該強度分布図に対して微分処理、二値化処理、膨張処理、収縮処理を行って高輝度領域を明瞭化したものを図11に示す。そして、処理後の強度分布図において一定長さ以上の、横軸方向に傾斜して延びる高輝度領域が表れた場合に内部欠陥があるものと判定する。なお、「一定長さ以上」としたのは、短い場合は単なるノイズである場合が多いことによる。このようにして確実に丸鋼材中の内部欠陥等の有無を検出することができる。   Further, in the present embodiment, with respect to a normal round steel material M having no internal defect F or the like, the intensity distribution of each launch point of the ultrasonic beam B on the horizontal axis and the time change of the reflected wave intensity of the ultrasonic wave at each point on the vertical axis. FIG. 9, that is, an intensity distribution diagram (FIG. 9) in which only the disturbing reflected waves Rb1 and Rb2 appear is acquired in advance, and this is an intensity distribution diagram (FIG. 8) of the round steel material M that is the target of wrinkle detection. Take the difference. Since the high-intensity areas of the disturbing reflected waves Rb1 and Rb2 are erased and only the high-intensity area of the flaw detection reflected wave Rd is left from the intensity distribution chart (FIG. 10) subjected to the difference processing, the differential with respect to the intensity distribution chart. FIG. 11 shows the high-luminance region clarified by performing processing, binarization processing, expansion processing, and contraction processing. Then, in the intensity distribution diagram after processing, it is determined that there is an internal defect when a high-luminance region extending in a horizontal axis direction that is longer than a certain length appears. Note that the reason for “more than a certain length” is that, in the case of a short length, there are many cases of simple noise. In this manner, it is possible to reliably detect the presence or absence of internal defects or the like in the round steel material.

1…アレイプローブ、B…超音波ビーム(超音波)、F…内部欠陥(疵)、M…丸鋼材。   DESCRIPTION OF SYMBOLS 1 ... Array probe, B ... Ultrasonic beam (ultrasonic wave), F ... Internal defect (疵), M ... Round steel material.

Claims (2)

丸鋼材の円形断面の周方向の各点において前記円形断面内へ超音波を入射させ、前記各点を一軸に、各点における超音波の反射波強度の時間変化を他軸にとった強度分布図を得て、当該強度分布図中における反射波強度が一定以上の領域のうち、少なくとも一つの領域が前記一軸方向へ傾斜している場合に前記丸鋼材に疵が生じていると判定することを特徴とする超音波探傷方法。 Intensity distribution in which ultrasonic waves are incident into the circular cross section at each point in the circumferential direction of the circular cross section of the round steel material, with each point as a single axis, and the time variation of the reflected wave intensity of the ultrasonic wave at each point as another axis. Obtaining a figure, it is determined that wrinkles have occurred in the round steel material when at least one region is inclined in the uniaxial direction among regions where the reflected wave intensity in the intensity distribution diagram is a certain level or more. Ultrasonic flaw detection method characterized by. 疵の無い正常な丸鋼材の強度分布図を予め取得しておき、当該強度分布図と探傷対象の丸鋼材の強度分布図との差分をとった強度分布図に基づいて前記判定を行う請求項1に記載の超音波探傷方法。 Claims are obtained based on an intensity distribution chart obtained by obtaining in advance a strength distribution map of a normal round steel material without defects and taking a difference between the strength distribution chart and the strength distribution chart of a round steel material to be flawed. The ultrasonic flaw detection method according to 1.
JP2013145170A 2013-07-11 2013-07-11 Ultrasonic flaw detection method Active JP6167706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013145170A JP6167706B2 (en) 2013-07-11 2013-07-11 Ultrasonic flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013145170A JP6167706B2 (en) 2013-07-11 2013-07-11 Ultrasonic flaw detection method

Publications (2)

Publication Number Publication Date
JP2015017883A true JP2015017883A (en) 2015-01-29
JP6167706B2 JP6167706B2 (en) 2017-07-26

Family

ID=52439011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013145170A Active JP6167706B2 (en) 2013-07-11 2013-07-11 Ultrasonic flaw detection method

Country Status (1)

Country Link
JP (1) JP6167706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118329660A (en) * 2024-06-12 2024-07-12 潍坊国一铝材有限公司 Aluminum profile strength testing device and testing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213880A (en) * 1993-01-18 1994-08-05 Sanyo Special Steel Co Ltd Ultrasonic flaw-detection method and device
JPH08248011A (en) * 1995-03-10 1996-09-27 Nippon Kurauto Kureemaa Fuerusutaa Kk Oblique ultrasonic inspection system
JP2001324485A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Ultrasonic flaw detection result display method and ultrasonic flaw detector
JP2005351864A (en) * 2004-06-14 2005-12-22 Toshiba Corp Three-dimensional ultrasonic imaging apparatus
US20110030479A1 (en) * 2008-03-31 2011-02-10 Junichi Murai Ultrasonic flaw detection method and ultrasonic flaw detection equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213880A (en) * 1993-01-18 1994-08-05 Sanyo Special Steel Co Ltd Ultrasonic flaw-detection method and device
JPH08248011A (en) * 1995-03-10 1996-09-27 Nippon Kurauto Kureemaa Fuerusutaa Kk Oblique ultrasonic inspection system
JP2001324485A (en) * 2000-05-17 2001-11-22 Hitachi Ltd Ultrasonic flaw detection result display method and ultrasonic flaw detector
JP2005351864A (en) * 2004-06-14 2005-12-22 Toshiba Corp Three-dimensional ultrasonic imaging apparatus
US20110030479A1 (en) * 2008-03-31 2011-02-10 Junichi Murai Ultrasonic flaw detection method and ultrasonic flaw detection equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118329660A (en) * 2024-06-12 2024-07-12 潍坊国一铝材有限公司 Aluminum profile strength testing device and testing method

Also Published As

Publication number Publication date
JP6167706B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
KR102251819B1 (en) Device and method for non-destructive control of tubular products using electroacoustic phased networks, in particular on site
KR101833467B1 (en) Method for detecting and characterizing defects in a heterogeneous material via ultrasound
CN101952712A (en) Device and method for optically detecting surface defect of round wire rod
US10261055B2 (en) Probe, ultrasonic testing apparatus, and ultrasonic testing control method
JP6192973B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP2004279144A (en) Ultrasonic inspection method and device
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
JP6167706B2 (en) Ultrasonic flaw detection method
JP5750989B2 (en) Ultrasonic flaw detection method for round bars
JP5810873B2 (en) Ultrasonic flaw detection method
JP6123537B2 (en) Ultrasonic flaw detection method
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
KR101104889B1 (en) Calibration block for ultrasonic testing with tapered and curved surface
WO2016185836A1 (en) Steel material cleanliness evaluation method and cleanliness evaluation device
JP6761780B2 (en) Defect evaluation method
JP6731863B2 (en) Inspection method
JP6467811B2 (en) Ultrasonic flaw detection method
JP2005221371A (en) Ultrasonic probe
JP6850275B2 (en) Ultrasonic flaw detector, ultrasonic flaw detection program and ultrasonic flaw detection method
JP5123030B2 (en) Underwater X-ray inspection equipment
JP2018128296A (en) Ultrasonic probe
US20200363196A1 (en) Method for non-destructive testing of walls of components
JP6622679B2 (en) Circle scratch inspection device
CN103582811A (en) Device and method for ultrasonic testing of a workpiece
JP2006003150A (en) Oblique probe and ultrasonic flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6167706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150