JP2015017792A - Simple refrigeration machine integrated cold insulation container - Google Patents

Simple refrigeration machine integrated cold insulation container Download PDF

Info

Publication number
JP2015017792A
JP2015017792A JP2013147131A JP2013147131A JP2015017792A JP 2015017792 A JP2015017792 A JP 2015017792A JP 2013147131 A JP2013147131 A JP 2013147131A JP 2013147131 A JP2013147131 A JP 2013147131A JP 2015017792 A JP2015017792 A JP 2015017792A
Authority
JP
Japan
Prior art keywords
container
refrigerator
heat insulating
storage container
heat insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013147131A
Other languages
Japanese (ja)
Inventor
佐保典英
Norihide Saho
小野瑞絵
Mizue Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013147131A priority Critical patent/JP2015017792A/en
Publication of JP2015017792A publication Critical patent/JP2015017792A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple refrigeration machine integrated cold insulation container that can transport frozen cells at a freezing temperature or less at which the quality of the frozen cells can be kept with cold of a refrigeration machine, and that can be manufactured at low cost.SOLUTION: In a simple refrigeration machine integrated cold insulation container, a heat insulation container is divided into: a first heat insulation container that thermally integrates a storage container, storing a capsule containing freezing cells inserted from an atmosphere side, with the cooling stage of a refrigeration machine, and in which parts of the cooling part and cooling stage of the refrigeration are included in a heat insulation space; and a second heat insulation container that includes a part of the first heat insulation container, a part of the cooling stage, and a cooled object thermally connected to the part of the cooling stage. The first heat insulation container can be mounted and removed to and from the inside of the second heat insulation container easily in atmosphere.

Description

本発明は保冷容器に係り、とくに、細胞等の被冷却体を凍結保持して移送可能な保冷容器において、被冷却体の装着、離脱が容易な、簡易冷凍機一体型保冷容器に関するものである。 The present invention relates to a cold storage container, and more particularly, to a simple refrigerator-integrated cold storage container in which a cooled object can be transferred by holding the cooled object such as cells in a frozen state. .

従来、例えば牛や馬の精子等の細胞は、例えばプラスチック製のカプセル内に内蔵され、カプセルごと例えば液体窒素中に投入され、細胞は瞬時に凍結されて細胞を供給する供給センター内で液体窒素中や、-150℃以下の冷凍庫で長期保存されている。 Conventionally, cells such as cattle and horse sperm, for example, are contained in, for example, plastic capsules, and the whole capsule is placed in, for example, liquid nitrogen, and the cells are instantly frozen and supplied in a supply center that supplies the cells. Stored for a long time in a freezer at -150 ° C or lower.

この凍結細胞を内蔵したカプセルを凍結温度に維持して長距離を輸送できる保冷容器として、冷凍機と保冷容器を一体化した冷凍機一体型保冷容器の開発が進められている。 Development of a refrigerator-integrated type cold storage container in which a refrigerator and a cold storage container are integrated as a cold storage container capable of transporting a long distance while maintaining the capsule containing the frozen cells at a freezing temperature is in progress.

特に、凍結細胞は輸送途中に温度が上昇すると細胞の質が変化して損傷してしまうため、冷凍機の寒冷で常に冷凍温度以下に冷却されなければならず、良好な冷却性能を有し、かつ製造コストが安価な、簡易冷凍機一体型保冷容器の提供が求められている。 In particular, frozen cells will be damaged when the temperature rises during transportation, so the quality of the cells will change and it must be always cooled below the freezing temperature in the refrigerator cold, and has good cooling performance, There is also a need to provide a simple refrigerator-integrated cold storage container that is inexpensive to manufacture.

外筒容器及び内筒容器で構成された真空断熱容器の真空空間において、内筒容器底外面に冷却部が熱的に接続されて配置された冷凍機を使用し、加圧されたヘリウムガスを作動流体とした冷凍機の断熱膨張で寒冷を発生し、前記真空容器の内筒容器底部を前記寒冷で極低温に冷却し、前記内筒容器の内側底部空間に、凍結細胞が内蔵されたカプセルを大気側から挿入する構造が、特開2009−288234公報(特許文献1)に開示されている。 In a vacuum space of a vacuum heat insulating container composed of an outer cylinder container and an inner cylinder container, using a refrigerator in which a cooling part is thermally connected to the outer surface of the inner cylinder container bottom, pressurized helium gas is A capsule in which cold is generated by adiabatic expansion of a refrigerator as a working fluid, the bottom of the inner cylinder of the vacuum vessel is cooled to the cryogenic temperature by the cold, and a frozen cell is embedded in the inner bottom space of the inner cylinder Japanese Patent Laid-Open No. 2009-288234 (Patent Document 1) discloses a structure for inserting the air from the atmosphere side.

特開2009−288234公報JP 2009-288234 A

しかしながら、特許文献1では、カプセル毎に大気側から挿入するため、冷凍機の冷却ステージで熱的に一体化された内筒容器底部にカプセルが直接接触して接触部が最もよく冷やされるが、カプセルを大気側に取り出す際、一個毎に長尺のピンセットや専用工具を使用しての取り出しが面倒で作業性が悪いために、取り出し途中でカプセル温度が異常に上昇したりする問題があった。 However, in Patent Document 1, since the capsule is inserted from the atmosphere side, the capsule is in direct contact with the bottom of the inner cylinder container that is thermally integrated in the cooling stage of the refrigerator, and the contact portion is cooled most, When removing capsules to the atmosphere side, taking out long tweezers or dedicated tools for each capsule is cumbersome and the workability is poor, causing the capsule temperature to rise abnormally during removal. .

また、前記取り出し操作を容易にするために、カプセル群を収納した収納容器を用いる場合、前記内筒容器の大気開放口から挿入し、底部に収納容器を収納するため、冷凍機で冷却される冷却ステージ部と収納容器間をボルトで締め付けるような熱的接触ができず不十分であるため、両者間に温度差が生じ、カプセル群の冷却温度が前記冷却ステージ部よりもかなり高くなる問題があった。 Further, in order to facilitate the take-out operation, when using a storage container storing a capsule group, it is inserted through the atmosphere opening of the inner cylinder container and is cooled by a refrigerator in order to store the storage container at the bottom. There is a problem that a thermal difference such as bolting between the cooling stage part and the storage container is not possible, and thus a temperature difference occurs between them, and the cooling temperature of the capsule group becomes considerably higher than that of the cooling stage part. there were.

また、特許文献1では、真空容器の断熱真空空間内に冷凍機を配置するため、冷凍機配置のための専用の真空容器等の断熱容器構造が必要で、製造コストが上昇する問題もあった。また、断熱性能の経年劣化が生じた場合、外筒容器外面も冷却され大気中の水分が結露し、断熱容器下部が濡れる問題もあった。 Moreover, in patent document 1, in order to arrange | position a refrigerator in the heat insulation vacuum space of a vacuum vessel, heat insulation container structures, such as a vacuum vessel for exclusive use for refrigerator arrangement | positioning, are required, and there also existed a problem which manufacturing cost raised. . In addition, when the heat insulation performance deteriorates over time, the outer surface of the outer cylinder container is cooled, moisture in the atmosphere is condensed, and the lower part of the heat insulation container is also wetted.

本発明は上記の事情に鑑みてなされたもので、本発明の目的は、冷凍機の寒冷で凍結細胞の質を担保できる冷凍温度以下で凍結細胞を輸送でき、かつ製造コストが安価な、簡易冷凍機一体型保冷容器を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to transport frozen cells at a freezing temperature or lower that can ensure the quality of the frozen cells by freezing the refrigerator, and is simple in manufacturing cost. The object is to provide a refrigerator-integrated cold storage container.

前述の目的を達成するために、本発明は、大気側から挿入するカプセル群を収納した収納容器と冷凍機の冷却ステージを、熱的に一体化する構造にしたものである。 In order to achieve the above-described object, the present invention has a structure in which a storage container storing a capsule group inserted from the atmosphere side and a cooling stage of a refrigerator are thermally integrated.

上記の課題を解決するために、請求項1に記載の簡易冷凍機一体型保冷容器は、冷凍機の冷却ステージ部と収納容器を支持固定するための取付け支持台の端部を、挿入用断熱容器内部に配置し、互いを、熱伝導体を介して熱的に一体化させ、前記取付け支持台の大気側露出端部に収納容器を熱的に一体化し、前記収納容器を他の低温保冷用断熱容器の内筒容器の内底部に大気開放口から挿入する構造を有したことを特徴としたものである。 In order to solve the above-described problems, the simple refrigerator-integrated cold storage container according to claim 1 is configured such that the end portion of the mounting support base for supporting and fixing the cooling stage portion of the refrigerator and the storage container is insulated for insertion. Arranged inside the container, thermally integrated with each other via a heat conductor, thermally integrated the storage container with the atmosphere side exposed end of the mounting support base, the storage container is cooled at another low temperature The heat insulating container has a structure that is inserted into the inner bottom portion of the inner tube container from the atmosphere opening port.

本簡易冷凍機一体型保冷容器によれば、収納容器を冷凍機の冷却ステージ部に熱伝導体および取付け支持台を介して熱的に一体化できるので、収納容器および内蔵するカプセルと冷却ステージの温度差を小さくすることができ、かつ収納容器の温度を、断熱真空空間を有する低温保冷用断熱容器内に保存できるので、常温からの熱侵入量を防止して、凍結細胞の質を担保できる低温に良好に長時間維持することができる簡易冷凍機一体型保冷容器を提供することが可能となる。 According to this simple refrigerator-integrated cold storage container, the storage container can be thermally integrated with the cooling stage portion of the refrigerator via the heat conductor and the mounting support, so that the storage container, the capsule to be incorporated, and the cooling stage can be integrated. The temperature difference can be reduced, and the temperature of the storage container can be stored in a heat insulating container for cold insulation having a heat insulating vacuum space, thus preventing the amount of heat intrusion from room temperature and ensuring the quality of frozen cells. It becomes possible to provide a simple refrigerator-integrated cold storage container that can be maintained at a low temperature for a long time.

また、冷凍機の冷却ステージ部を内蔵する挿入用断熱容器サイズは、低温保冷用断熱容器より小型になるので製造コストも低減できるとともに、低温保冷用断熱容器は、市販の大量生産された魔法瓶等の真空断熱容器を適用できるので製作コストが低減でき、低コストの簡易冷凍機一体型保冷容器を提供することが可能となる。 In addition, the size of the heat insulating container for inserting the cooling stage part of the refrigerator is smaller than the heat insulating container for low-temperature cold insulation, so that the manufacturing cost can be reduced. Therefore, the manufacturing cost can be reduced, and a low-cost simple refrigerator-integrated cold storage container can be provided.

請求項2に記載の簡易冷凍機一体型保冷容器によれば、前記冷凍機の冷却ステージ部およびその常温部を挿入用断熱容器内底部に配置し、収納容器を支持固定する取付け支持台の端部と最短の熱伝導体を介して熱的に一体化させた構造を有したことを特徴としたものである。 According to the simple refrigerator-integrated cold storage container according to claim 2, the cooling stage portion of the refrigerator and the room temperature portion thereof are arranged at the bottom portion of the heat insulating container for insertion, and the end of the mounting support base for supporting and fixing the storage container This is characterized in that it has a structure in which it is thermally integrated with the part via the shortest thermal conductor.

本構成によれば、取付け支持台を冷凍機の冷却ステージ部に、短尺の熱伝導体を介して熱的に一体化できるので、熱伝導体内での温度差が更に小さくなり、収納容器および内蔵するカプセルと冷却ステージの温度差を更に小さくすることができるので、凍結細胞の質を担保できる性能を向上できる簡易冷凍機一体型保冷容器を提供することが可能となる。 According to this configuration, the mounting support can be thermally integrated with the cooling stage portion of the refrigerator via a short heat conductor, so that the temperature difference in the heat conductor is further reduced, and the storage container and the built-in Since the temperature difference between the capsule to be cooled and the cooling stage can be further reduced, it is possible to provide a simple refrigerator-integrated cold storage container that can improve the performance of ensuring the quality of frozen cells.

請求項3に記載の簡易冷凍機一体型保冷容器は、挿入用断熱容器を重力方向に上向きで固定し、カプセルの出し入れ際に、保冷用断熱容器を挿入用断熱容器に鞘のように上部から装着、脱離できる構造である。 The simple refrigerator-integrated cold storage container according to claim 3 is configured such that the heat insulating container for insertion is fixed upward in the direction of gravity, and the heat insulating container for cold storage is inserted into the heat insulating container for insertion from the top like a sheath when the capsule is taken in and out. It is a structure that can be attached and detached.

本構造によれば、収納容器へのカプセルの挿入や、取り出しの際に両手がフリーとなり、更に素早く短時間にカプセルの出し入れが可能となり、カプセルの温度上昇を最小限に押させることができる。 According to this structure, both hands are free when the capsule is inserted into and removed from the storage container, and the capsule can be taken in and out quickly and in a short time, and the temperature rise of the capsule can be minimized.

請求項4に記載の簡易冷凍機一体型保冷容器は、挿入用断熱容器や保冷用断熱容器周りに、前記冷凍機の圧縮機部を空冷した空気を循環する構造である。 The simple refrigerator-integrated cold storage container according to claim 4 has a structure in which air cooled by the compressor portion of the refrigerator is circulated around the heat insulating container for insertion and the heat insulating container for cold storage.

本構造によれば、保冷用断熱容器や挿入用断熱容器の断熱性能が経年劣化した場合においても、保冷用断熱容器や挿入用断熱容器が大気と接する面に大気中の水分が結露することを防止し、簡易冷凍機一体型保冷容器の底部が水分で濡れることを防止することができる。 According to this structure, even when the heat insulation performance of the heat insulation container for cold insulation and the heat insulation container for insertion deteriorates over time, moisture in the atmosphere is condensed on the surface where the heat insulation container for cold insulation and the heat insulation container for insertion are in contact with the atmosphere. It is possible to prevent the bottom of the simple refrigerator-integrated cold storage container from getting wet with moisture.

本発明によれば、冷凍機を使用して細胞の質を担保できる冷凍温度以下に保持し、凍結細胞を冷却輸送でき、かつ操作性に優れ、製造コストが安価な、簡易冷凍機一体型保冷容器を提供することができる。 According to the present invention, a simple refrigerator-integrated cooling system that can maintain a cell quality using a refrigerator below the freezing temperature, can transport frozen cells by cooling, has excellent operability, and is inexpensive to manufacture. A container can be provided.

本発明の第1実施例の簡易冷凍機一体型保冷容器の構成図である。It is a block diagram of the simple refrigerator integrated cold storage container of 1st Example of this invention. 本発明の第2実施例の簡易冷凍機一体型保冷容器の構成図である。It is a block diagram of the simple refrigerator integrated cold storage container of 2nd Example of this invention. 本発明の第3実施例の簡易冷凍機一体型保冷容器の構成図である。It is a block diagram of the simple refrigerator integrated cold storage container of 3rd Example of this invention. 本発明の第4実施例の簡易冷凍機一体型保冷容器の構成図である。It is a block diagram of the simple refrigerator integrated cold storage container of 4th Example of this invention.

以下、本発明の複数の実施例について図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

[実施例1] [Example 1]

本発明の第1実施例の簡易冷凍機一体型保冷容器について、図1を参照しながら、さらに具体的に説明する。図1は本発明の第1実施例の簡易冷凍機一体型保冷容器1の構成図を示す。 The simple refrigerator integrated cold storage container of the first embodiment of the present invention will be described more specifically with reference to FIG. FIG. 1 shows a configuration diagram of a simple refrigerator-integrated cold storage container 1 according to a first embodiment of the present invention.

本実施例の簡易冷凍機一体型保冷容器1において、例えば牛や馬の精子等の細胞を含む被冷却体の細胞保存液2は、例えばプラスチック製の蓋3付のカプセル4内に内蔵され、細胞を供給する供給センター内でカプセルごと例えば液体窒素中に浸漬され、細胞保存液2は瞬時に凍結され、液体窒素中や、-150℃以下の冷凍庫で長期保存されているものである。 In the simple refrigerator-integrated cold storage container 1 of the present embodiment, for example, a cell preservation solution 2 of an object to be cooled containing cells such as cow and horse sperm is incorporated in a capsule 4 with a plastic lid 3, for example. Each capsule is immersed in, for example, liquid nitrogen in a supply center that supplies cells, and the cell preservation solution 2 is instantly frozen and stored in liquid nitrogen or in a freezer at −150 ° C. or lower for a long time.

複数のカプセル4を収納できる熱伝導率が大きい例えば銅製やアルミニウム製の収納容器5は、カプセル挿入孔6を有し、その上部はボルト7でインジューム等の軟金属シート(図示せず)を介して、熱伝導率が大きい例えば銅製の取付け支持台8の大気側露出端部に熱的に一体化されている。 A storage container 5 made of, for example, copper or aluminum having a high thermal conductivity capable of storing a plurality of capsules 4 has a capsule insertion hole 6, and a soft metal sheet (not shown) such as indium is formed on the upper portion thereof with a bolt 7. For example, it is thermally integrated with the exposed end portion of the atmosphere side of the mounting support base 8 made of copper having a high thermal conductivity.

冷凍機9の作動ガスの断熱膨張で寒冷を発生する断熱膨張冷凍部10内部は、常温部の作動ガスの給排気孔11から導管12を通じて排出される断熱膨張の作動ガスである例えば高圧ヘリウムガスの寒冷の熱交換を行う、例えば非磁性で円盤状の被覆無しの銅線を編んだ銅網の蓄冷材13を積層した蓄冷蓄冷材を内蔵した非磁性で熱伝導率が小さい材質の例えばエポキシ樹脂製の蓄冷器14と、断熱膨張の作動ガス圧の差圧で紙面上下方向に移動する蓄冷器14の作動ガス圧と蓄冷器14位置との関係を最適化する自励振動用のコイルばね15と、蓄冷器14の低温・常温端に設けられ蓄冷器14内に高低圧の作動ガスが流動する低温ガス連通孔16と常温ガス連通孔17で構成される。 The inside of the adiabatic expansion refrigeration unit 10 that generates cold by adiabatic expansion of the working gas of the refrigerator 9 is, for example, high-pressure helium gas that is adiabatic expansion working gas discharged from the working gas supply / exhaust hole 11 of the normal temperature part through the conduit 12. For example, an epoxy made of a non-magnetic and low thermal conductivity material, for example, a non-magnetic, low-heat-conducting material having a built-in cold-storage material that is formed by laminating a non-magnetic, disc-shaped uncovered copper wire woven copper mesh Coil spring for self-excited vibration that optimizes the relationship between the position of the regenerator 14 and the operating gas pressure of the regenerator 14 made of resin and the regenerator 14 that moves in the vertical direction on the paper surface due to the differential pressure between the operating gas pressures of adiabatic expansion. 15 and a low temperature gas communication hole 16 provided at a low temperature / normal temperature end of the regenerator 14 and a high and low pressure working gas flows in the regenerator 14 and a normal temperature gas communication hole 17.

断熱膨張冷凍部10の常温部フランジ18は、熱伝導率が小さい例えばステンレス鋼製の挿入用断熱容器19の常温端部フランジ20と、例えば接合面外周部を気密溶接やOリングとボルト(図示せず)で気密一体化されている。 The normal temperature part flange 18 of the adiabatic expansion refrigeration part 10 has a low thermal conductivity, for example, a normal temperature end flange 20 of a heat insulating container 19 for insertion made of stainless steel, for example, an airtight weld or an O-ring and a bolt (see FIG. (Not shown).

断熱膨張冷凍部10には、大気空間に配置された冷凍機の常温圧縮機部21から導管12を通じて、高低圧の作動ガスが周期的に供給、排気される。 The adiabatic expansion refrigeration unit 10 is periodically supplied and exhausted with high and low pressure working gas through a conduit 12 from a room temperature compressor unit 21 of a refrigerator placed in the atmospheric space.

挿入用断熱容器19の底部では、取付け支持台8との接合面を例えば銀ロー等で気密一体化されており、取付け支持台8と、熱伝導率が大きな銅やアルミニウム製の熱伝導体22の接合面はボルト締結(図示せず)や溶接で熱的に一体化されており、熱伝導体22と断熱膨張冷凍部10の冷却ステージ23とは、柔軟性のあり熱伝導率が大きな素材、例えば銅製の銅網24を半田付け等で熱的に一体化されている。挿入用断熱容器19内は、例えば真空配管25、真空弁26を通じて外部の真空ポンプ27で真空排気される。 At the bottom of the heat insulating container 19 for insertion, the joint surface with the mounting support base 8 is airtightly integrated with, for example, silver solder, and the mounting support base 8 and a heat conductor 22 made of copper or aluminum having a high thermal conductivity. The joint surface is thermally integrated by bolt fastening (not shown) or welding, and the heat conductor 22 and the cooling stage 23 of the adiabatic expansion refrigeration unit 10 are flexible and have a large thermal conductivity. For example, the copper mesh 24 made of copper is thermally integrated by soldering or the like. The inside of the heat insulating container 19 for insertion is evacuated by an external vacuum pump 27 through, for example, a vacuum pipe 25 and a vacuum valve 26.

保冷用断熱容器28は、外筒容器29と内筒容器30で構成され、上部は内筒容器30のフランジ部31と外筒容器29の端部が溶接等で気密一体化されている。 The heat insulation container 28 for cold insulation is composed of an outer cylinder container 29 and an inner cylinder container 30, and the upper part of the flange part 31 of the inner cylinder container 30 and the end of the outer cylinder container 29 are hermetically integrated by welding or the like.

挿入用断熱容器19は、保冷用断熱容器28の内筒容器30内に挿入された後、内筒容器30端部に装着した締付けナット32内の雌ねじと勘合する内筒容器30端部の雄ねじ部33の締め付け回転で径方向に変形するゴム製の締め付けリング34で支持固定される。 The insertion heat insulation container 19 is inserted into the inner cylinder container 30 of the cold insulation heat insulation container 28, and then the male screw at the end of the inner cylinder container 30 is fitted with the female screw in the tightening nut 32 attached to the end of the inner cylinder container 30. It is supported and fixed by a rubber fastening ring 34 that is deformed in the radial direction by the fastening rotation of the portion 33.

保冷用断熱容器28内は、例えば真空配管35、真空弁36を通じて外部の真空ポンプ37で真空排気される。常温圧縮機部21は、支持体38を介して架台39で固定支持され、空冷ファン40および蓄電器41は直接に架台39に固定支持されている。常温圧縮機部21での発熱は、空冷ファ40により室温の空気で冷却される。常温圧縮機部21および空冷ファン40は、電源ケーブル42から給電される例えば直流流電源で運転される。 The inside of the heat insulating container 28 is evacuated by an external vacuum pump 37 through a vacuum pipe 35 and a vacuum valve 36, for example. The room temperature compressor unit 21 is fixed and supported by a gantry 39 via a support 38, and the air cooling fan 40 and the battery 41 are directly fixed and supported by the gantry 39. The heat generated in the room temperature compressor unit 21 is cooled by air at room temperature by the air cooling fan 40. The room temperature compressor unit 21 and the air cooling fan 40 are operated by, for example, a direct current power source fed from a power cable 42.

冷凍機9のスターリング式冷凍機の断熱膨張冷凍部10の冷却ステージ23での寒冷発生過程を説明する。図1の蓄冷器14の位置は、膨張寒冷発生空間43で作動ガスが膨張した状態を示している。次に、縮んだ状態のコイルばね15が復元力で伸びて蓄冷器が紙面下方向に移動し、膨張寒冷発生空間43の例えば圧力1MPaの作動ガスは、低温ガス連通孔16から蓄冷器14内の積層された銅網の蓄冷材13と熱交換しながらほぼ常温に加温されて常温ガス連通孔17から蓄冷器14外に排出され、断熱膨張冷凍部作動ガスの給排気孔11、導管12を通じて吸引工程の常温圧縮機部21に吸引される。 The process of generating cold at the cooling stage 23 of the adiabatic expansion refrigeration unit 10 of the Stirling refrigerator of the refrigerator 9 will be described. The position of the regenerator 14 in FIG. 1 shows a state in which the working gas has expanded in the expansion cold generation space 43. Next, the coil spring 15 in a contracted state is expanded by a restoring force, and the regenerator moves downward in the drawing, so that the working gas having a pressure of 1 MPa, for example, in the expansion chill generation space 43 passes through the low temperature gas communication hole 16 into the regenerator 14. Heat is exchanged with the laminated copper mesh regenerator 13 and is heated to substantially normal temperature and discharged from the normal temperature gas communication hole 17 to the outside of the regenerator 14, and the adiabatic expansion refrigeration unit working gas supply / exhaust hole 11 and conduit 12. Is sucked into the normal temperature compressor section 21 in the suction process.

次に、常温圧縮機部21が圧縮工程に進むと加圧圧縮され、空冷ファン40で除熱された圧力2MPaの高圧作動ガスが、導管12、給排気孔11を通じて常温ガス連通孔17から蓄冷器14内に供給され、蓄冷材13と熱交換しながら冷却されて低温ガス連通孔16から狭くなった張寒冷発生空間43に流入するとともに、伸びきった状態のコイルばね15が復元力で縮み始め、蓄冷器14内の高圧の作動ガスが膨張寒冷発生空間43に流入しながら、コイルばね15が縮きった、すなわち張寒冷発生空間43が最大の状態になった状態で、常温圧縮機部21が低圧状態の吸引工程になり、高圧の作動ガスした充満した空間が高圧から低圧に断熱膨張する。この状態で説明のはじめの状態に戻る。この工程を連続的に繰り返し、冷却ステージ23が徐々に冷却され、冷凍機9の定常状態において収納容器5は例えば液体窒素温度に冷却される。 Next, when the room temperature compressor unit 21 proceeds to the compression process, the high-pressure working gas having a pressure of 2 MPa that has been compressed and removed by the air cooling fan 40 is stored in the cold through the conduit 12 and the air supply / exhaust hole 11 from the room temperature gas communication hole 17. The coil spring 15 is supplied into the vessel 14, cooled while exchanging heat with the regenerator material 13, and flows into the cold / cold generating space 43 that is narrowed from the low-temperature gas communication hole 16. At first, the high-temperature working gas in the regenerator 14 flows into the expansion cold generation space 43 and the coil spring 15 is contracted, that is, the room temperature compressor section is in a state where the tension cold generation space 43 is maximized. 21 is a suction step in a low pressure state, and the filled space filled with the high pressure working gas is adiabatically expanded from the high pressure to the low pressure. In this state, the state returns to the initial state. This process is repeated continuously, the cooling stage 23 is gradually cooled, and the storage container 5 is cooled to, for example, liquid nitrogen temperature in the steady state of the refrigerator 9.

また、保冷用断熱容器の内筒容器30と挿入用断熱容器19との隙間は、発泡ポリスチレン等の断熱用の円筒体44を配置し、前記隙間に存在する空気等の対流やガスの熱伝導で、大気側から熱侵入が増加することを防止している。 Further, in the gap between the inner container 30 of the heat insulating container and the insulating container 19 for insertion, a cylindrical body 44 for heat insulation such as polystyrene foam is arranged, and convection such as air existing in the gap or heat conduction of gas. In this way, heat penetration from the atmosphere side is prevented from increasing.

本実施例での凍結細胞の輸送の手順は、予め簡易冷凍機一体型保冷容器の冷凍機9を運転して、空の収納容器5の温度を凍結細胞の質を担保できる所定の温度まで冷却する。次に、別途液体窒素中に保存しておいた凍結細胞液2を有するカプセル4の液体窒素中からの取り出し準備を終了し、冷凍機9を運転したままの状態で挿入用断熱容器19を大気中に取り出して直ぐにカプセル4を収納容器5に挿入し、その後直ぐに、挿入用断熱容器19を内筒容器30内に挿入し、締め付けナット32で締め付け、拘束リング34で挿入用断熱容器19で気密固定し、内筒容器30の大気側フランジ20に、ボルト(図示せず)等で、機械的に支持固定する。 The procedure for transporting frozen cells in this embodiment is to operate the refrigerator 9 of a simple refrigerator-integrated cold storage container in advance and cool the temperature of the empty storage container 5 to a predetermined temperature that can ensure the quality of the frozen cells. To do. Next, preparation for taking out the capsule 4 having the frozen cell solution 2 separately stored in liquid nitrogen from the liquid nitrogen is completed, and the insertion heat insulating container 19 is kept in the atmosphere while the refrigerator 9 is operated. The capsule 4 is immediately inserted into the storage container 5 after being taken out, and immediately after that, the heat insulating container 19 for insertion is inserted into the inner cylinder container 30, tightened with a tightening nut 32, and airtight with the heat insulating container 19 for insertion with a restraining ring 34. It is fixed and mechanically supported and fixed to the atmosphere side flange 20 of the inner cylinder container 30 with a bolt (not shown) or the like.

輸送中は、蓄電器41の電源で冷凍機21、ファン40を運転し、収納容器5の温度を所定の温度に冷却維持する。保冷用断熱容器28は、真空断熱されているので収納容器5への大気側からの輻射熱による熱侵入は微量であり、また、内筒容器30の大気側からの伝導伝熱による熱侵入量も内筒容器30の深さを深くすること、内筒容器30の円筒肉厚を0.5mm程度に薄くすることにより低く抑えることができ、冷凍機の少ない消費電力での運転で、所定の温度に収納容器5を冷却できる。 During transportation, the refrigerator 21 and the fan 40 are operated by the power source of the battery 41 to keep the temperature of the storage container 5 at a predetermined temperature. Since the heat insulating container 28 is insulated by vacuum, the heat intrusion into the storage container 5 due to the radiant heat from the atmosphere side is very small, and the heat intrusion amount due to the conduction heat transfer from the atmosphere side of the inner cylinder container 30 is also small. The inner cylinder container 30 can be kept low by increasing the depth of the inner cylinder container 30 and by reducing the cylindrical wall thickness of the inner cylinder container 30 to about 0.5 mm. The storage container 5 can be cooled.

また、輸送作業を行う際は、真空ポンプ27、37から真空弁26、36を閉じて簡易冷凍機一体型保冷容器1を分離する、輸送目的場所に輸送した後は、冷凍機21、ファン40を運転したままで、挿入用断熱容器19を、保冷用断熱容器28の内筒容器30から抜出し、カプセル4を収納容器5から取り出し、目的地の液体窒素槽の液体窒素中に素早く移し、輸送を終了する。 Further, when carrying out the transportation work, the vacuum valves 26 and 36 are closed from the vacuum pumps 27 and 37 to separate the simple refrigerator-integrated cold storage container 1, and after transporting to the transportation destination, the refrigerator 21 and the fan 40. The heat insulating container 19 for insertion is pulled out from the inner cylinder container 30 of the heat insulating container 28 for cooling, the capsule 4 is taken out from the storage container 5, and is quickly transferred to the liquid nitrogen in the destination liquid nitrogen tank for transportation. Exit.

また、大気に開放される内筒容器30に挿入用断熱容器19が挿入されるように、内筒容器30を下側から移動させ、締め付けナット32を巻き締めて締め付けリング34で内筒容器30内を大気と密閉状態にした後、冷凍機の運転停止等のトラブルで内筒容器30内の残留ガスが熱膨張して圧力が上昇するリスクを避けるため、内筒容器30と大気とを導通する圧力放出孔45を設け、配管46と自動圧力調整弁47を設置し、所定の圧力に上昇した場合、自動圧力調整弁47が開放されガスが大気側に放出されて、内筒容器30内の圧力を低減する。 Further, the inner cylinder container 30 is moved from the lower side so that the heat insulating container 19 for insertion is inserted into the inner cylinder container 30 opened to the atmosphere, the tightening nut 32 is tightened, and the inner ring container 30 is tightened by the tightening ring 34. After the inside is sealed with the atmosphere, the inner container 30 is connected to the atmosphere in order to avoid the risk that the residual gas in the inner container 30 will thermally expand due to troubles such as the shutdown of the refrigerator. When the pressure rises to a predetermined pressure, the automatic pressure adjustment valve 47 is opened and the gas is released to the atmosphere side, and the inside of the inner cylinder container 30 is provided. Reduce the pressure.

本実施例の簡易冷凍機一体型保冷容器1では、凍結細胞が保存されたカプセル4を冷凍機9で冷却輸送する際に、冷凍機9で凍結細胞の質を担保できる所定の温度以下にカプセル4の収納容器5を大気に露出しつつ、周りにカプセル4の収納、取出し作業に障害となる障害物がない状態で冷却できるので、カプセル4を常時冷却保管している液体窒素槽や低温冷凍庫から大気内に取出し、輸送のために収納容器5に短時間で収納し、短時間で取出せるので、収納容器5が大気中に曝されている際も、温度上昇を防止でき、収納容器内のカプセル4の温度を、所定の温度以下に冷却することができ、凍結細胞の質を担保できる簡易冷凍機一体型保冷容器1を提供できる効果がある。 In the simple refrigerator-integrated cold storage container 1 of the present embodiment, when the capsule 4 in which the frozen cells are stored is cooled and transported by the refrigerator 9, the capsule is below a predetermined temperature that can ensure the quality of the frozen cells by the refrigerator 9. 4 is exposed to the atmosphere, and can be cooled without any obstacles that obstruct the operation of storing and taking out the capsules 4, so a liquid nitrogen tank or a low-temperature freezer in which the capsules 4 are always kept cool. Can be taken out from the atmosphere and stored in the storage container 5 for transport in a short time, and can be taken out in a short time, so that the temperature rise can be prevented even when the storage container 5 is exposed to the atmosphere. The capsule 4 can be cooled to a predetermined temperature or lower, and there is an effect that it is possible to provide the simple refrigerator-integrated cold storage container 1 that can ensure the quality of the frozen cells.

また、挿入用断熱容器19は保冷用断熱容器28より小さくでき、保冷用断熱容器28も単純な真空容器構造であるので、真空容器の製造コストが低減でき、低コストの簡易冷凍機一体型保冷容器1を提供できる効果がある。 Further, since the heat insulating container 19 for insertion can be made smaller than the heat insulating container 28 for cold insulation, and the heat insulating container 28 for cold insulation has a simple vacuum container structure, the manufacturing cost of the vacuum container can be reduced, and the low-cost simple refrigerator-integrated cold insulation can be achieved. There exists an effect which can provide the container 1. FIG.

また、保冷用断熱容器28は、市販されている金属製魔法瓶を流用でき、これにより保冷用断熱容器28の製造コストが大幅に低減でき、低コストの簡易冷凍機一体型保冷容器1を提供できる効果がある。また、保冷用断熱容器28として、真空断熱の代わりに発泡スチロール等の断熱材で保冷用断熱容器28の外観、内観の形状を同一に作成し、フランジ部31、締付けナット32を例えばプラスチックで製作し、前記発泡スチロールと接着接合した断熱容器を構成すれば、低コストで、かつ軽量な簡易冷凍機一体型保冷容器1を提供できる効果がある。 Further, as the cold insulation heat insulating container 28, a commercially available metal thermos can be diverted, whereby the manufacturing cost of the cold insulation heat insulating container 28 can be greatly reduced, and the low-cost simple refrigerator-integrated cold storage container 1 can be provided. effective. Further, as the cold insulation heat insulation container 28, the external appearance and the interior shape of the cold insulation heat insulation container 28 are made the same with a heat insulating material such as styrene foam instead of the vacuum insulation, and the flange portion 31 and the tightening nut 32 are made of, for example, plastic. If the heat insulating container bonded and bonded to the polystyrene foam is constructed, there is an effect that it is possible to provide the low-cost and lightweight simple refrigerator integrated type cold insulating container 1.

[実施例2] [Example 2]

次に、本発明の第2実施例について図2を用いて説明する。図2は本発明の簡易冷凍機一体型保冷容器の構成図である。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a configuration diagram of the simple refrigerator integrated cold storage container of the present invention.

この第2実施例の簡易冷凍機一体型保冷容器1では、熱伝導体22を無くし、冷凍機9の断熱膨張冷凍部10の冷却ステージ23と取付け支持台8を、銅網24を解して半田付け等で熱的に一体化され、断熱膨張冷凍部10の常温部を含めて挿入用断熱容器内底部に配置し、作動ガスが流動する配管12と断熱膨張冷凍部10の給排気孔11は断熱空間50に配置された導管48で導通している。 In the simple refrigerator-integrated cold storage container 1 of the second embodiment, the heat conductor 22 is eliminated, and the cooling stage 23 and the mounting support 8 of the adiabatic expansion refrigeration unit 10 of the refrigerator 9 are separated from the copper mesh 24. It is thermally integrated by soldering or the like, and is disposed at the bottom of the heat insulating container for insertion including the normal temperature portion of the adiabatic expansion refrigeration unit 10. The piping 12 through which the working gas flows and the air supply / exhaust holes 11 of the adiabatic expansion refrigeration unit 10 Is conducted through a conduit 48 disposed in the heat insulating space 50.

なお、断熱膨張冷凍部10は熱伝導率の小さな例えばプラスチック製のスペーサ49で、挿入用断熱容器19内面から径方向を支持されている。 The adiabatic expansion refrigeration unit 10 is a plastic spacer 49 having a small thermal conductivity, and is supported in the radial direction from the inner surface of the heat insulating container 19 for insertion.

また、挿入用断熱容器19の断熱空間50において、断熱膨張冷凍部10の周りに積層断熱材51を巻き付け、低温部への輻射熱の侵入を防止している。 Moreover, in the heat insulation space 50 of the heat insulation container 19 for insertion, the lamination | stacking heat insulating material 51 is wound around the heat insulation expansion refrigerating part 10, and the penetration | invasion of the radiant heat to a low-temperature part is prevented.

本構成によれば、断熱膨張冷凍部10を挿入用断熱容器19の断熱空間50内奥に配置するので、冷却ステージ23を取付け支持台8の直近まで近づけられ、取付け支持台8を冷凍機の冷却ステージ部23に短尺の銅網24を介して熱的に一体化できるので、熱伝導体による熱抵抗を更に小さくでき、収納容器5の温度が更に小さくなり、凍結細胞の質を担保できる性能をさらに向上できる簡易冷凍機一体型保冷容器を提供することが可能となる。 According to this configuration, since the adiabatic expansion refrigeration unit 10 is disposed in the heat insulation space 50 of the heat insulating container 19 for insertion, the cooling stage 23 can be brought close to the mounting support base 8 and the mounting support base 8 can be connected to the refrigerator. Since it can be thermally integrated with the cooling stage portion 23 via a short copper mesh 24, the thermal resistance by the heat conductor can be further reduced, the temperature of the storage container 5 can be further reduced, and the quality of the frozen cells can be ensured. It becomes possible to provide a simple refrigerator integrated cold storage container that can further improve the above.

また、断熱空間50の紙面上部は常温の配管48が収納されるので、断熱の必要が無く、真空断熱の代わりに残留ガスの対流による冷却ステージ23への熱侵入を防ぐための発泡スチロール等の断熱材を断熱空間50の紙面上部に充填することにより、真空排気なしで断熱できるので、真空ポンプを準備する必要が無く、低コストの簡易冷凍機一体型保冷容器1を提供できる効果がある。 In addition, since the room temperature pipe 48 is accommodated in the upper part of the space of the heat insulation space 50, there is no need for heat insulation, and heat insulation such as polystyrene foam for preventing heat from entering the cooling stage 23 by convection of residual gas instead of vacuum heat insulation. By filling the material in the upper part of the space of the heat insulating space 50, heat insulation can be performed without evacuation, so there is no need to prepare a vacuum pump, and there is an effect that the low-cost simple refrigerator integrated cold storage container 1 can be provided.

[実施例3] [Example 3]

次に、本発明の第3実施例について図3を用いて説明する。図3は本発明の簡易冷凍機一体型保冷容器の構成図である。この第3実施例の簡易冷凍機一体型保冷容器1は、挿入用断熱容器19を紙面下側に上向きで固定し、カプセルの出し入れ際に、保冷用断熱容器28を鞘のように挿入用断熱容器19に上部から装脱着できる構造である。 Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a configuration diagram of a simple refrigerator integrated cold storage container of the present invention. The simple refrigerator-integrated cold storage container 1 of the third embodiment is configured such that the heat insulating container 19 for insertion is fixed upward on the lower side of the paper, and the heat insulating container 28 is inserted into the heat insulating container for insertion like a sheath when the capsule is taken in and out. It is a structure that can be attached to and detached from the container 19 from above.

本構成では、保冷用断熱容器28を挿入用断熱容器19に鞘のように上部から装脱着でき、かつ、取り外した保冷用断熱容器28の底部は下向きで常温であるため、取り外した保冷用断熱容器28をそのままの姿勢で例えば床や机の上にフランジを下にして置け、さらには、ゴムやジェル状のマットの上に置けば、フランジ面で気密性が保持でき、保冷用断熱容器28の内部の低温部への霜付きを最小限に抑えることができる。 In this configuration, since the cold insulation heat insulating container 28 can be attached to and detached from the insertion heat insulation container 19 like a sheath from the top, and the bottom of the removed cold insulation heat insulation container 28 is at a normal temperature downward, the removed cold insulation heat insulation container For example, if the container 28 is placed on a floor or desk with the flange down, and further placed on a rubber or gel mat, the air tightness can be maintained on the flange surface. It is possible to minimize frost formation on the internal low temperature part.

したがって、本実施例によれば、収納容器5へのカプセル4の挿入や、取り出しの際に両手がフリーとなり、更に素早く短時間にカプセル4の出し入れが可能となる。また、収納容器5を覆うように、大気の対流防止用の例えば海綿状のポリイミド製や発泡スチロール製の対流防止カバー52をカプセル4収納後に素早く被せることで、大気に露出された収納容器5の温度が上昇することを防止し、その後、素早く保冷用断熱容器28を上部から装着できるので、空気の混入を最小限にでき、大量の氷が着氷することを防止できる。 Therefore, according to the present embodiment, both hands are free when the capsule 4 is inserted into and removed from the storage container 5, and the capsule 4 can be taken in and out more quickly. Further, by covering the storage container 5 with a convection prevention cover 52 made of, for example, sponge polyimide or styrene foam for preventing convection of the atmosphere after the capsule 4 is stored, the temperature of the storage container 5 exposed to the atmosphere is covered. Then, it is possible to quickly mount the cold insulation heat insulating container 28 from above, so that air can be minimized and a large amount of ice can be prevented from icing.

なお、ポリイミド製の対流防止カバーは52海綿状であるため、本体の体積の約97%が空気であり、熱容量が小さく、収納容器5の数℃の上昇分の熱容量で同温度に冷却できかつ、その温度上昇分は冷凍機9の寒冷で短時間に冷却できるので、カプセル4の温度は上昇しない。 In addition, since the convection prevention cover made of polyimide has a 52 spongy shape, about 97% of the volume of the main body is air, the heat capacity is small, and it can be cooled to the same temperature with the heat capacity of several degrees Centigrade of the storage container 5 and Since the temperature rise can be cooled in a short time by the coldness of the refrigerator 9, the temperature of the capsule 4 does not rise.

したがって、本実施例では、収納容器5が架台39で間接的に支持されているので手で保持する必要が無く、カプセル4の装脱着両手で更に短時間に実施することが可能となり、収納中のカプセル4の温度上昇を最小限に抑えることができる効果がある。 Therefore, in this embodiment, since the storage container 5 is indirectly supported by the gantry 39, it is not necessary to hold it by hand, and it is possible to carry out the capsule 4 with both hands of the attachment / detachment of the capsule 4 in a shorter time. There is an effect that the temperature rise of the capsule 4 can be minimized.

[実施例4] [Example 4]

次に、本発明の第4実施例について図4を用いて説明する。図4は本発明の簡易冷凍機一体型保冷容器の構成図である。この第4実施例の簡易冷凍機一体型保冷容器1は、空冷ファン40の排気口53を架台39壁に設け、プラスチック製や発泡スチロール製の壁54で保冷用断熱容器28等を覆い、常温圧縮機部21を冷却し温度が大気温度を超えて上昇した空気を、図中矢印に示すように排気口53から、空間55に導き、下部の排気口56から簡易冷凍機一体型保冷容器1外に排出される構造である。 Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram of the simple refrigerator integrated cold storage container of the present invention. The simple refrigerator-integrated cold storage container 1 of the fourth embodiment is provided with an exhaust port 53 of an air cooling fan 40 on a wall of a mount 39, covers a cold insulation heat insulating container 28 and the like with a plastic or polystyrene wall 54, and compresses at room temperature. The air whose temperature has risen beyond the atmospheric temperature by cooling the machine unit 21 is guided from the exhaust port 53 to the space 55 as shown by the arrows in the figure, and from the lower exhaust port 56 to the outside of the simple refrigerator-integrated cold storage container 1. It is a structure that is discharged.

本構成では、保冷用断熱容器2や挿入用断熱容器19の断熱性能が経年劣化してそれぞれの容器面が劣化前の温度より冷えた場合においても、大気温度より高い空気を空間55内に送風できるので、本実施例では、保冷用断熱容器2や挿入用断熱容器19が大気と接する面に大気中の水分が結露することを防止し、架台39の底部が水分で濡れることを防止できる効果がある。 In this configuration, even when the heat insulation performance of the heat insulation container 2 for cold insulation and the heat insulation container 19 for insertion deteriorates over time and the surface of each container cools down from the temperature before deterioration, air higher than the atmospheric temperature is blown into the space 55. Therefore, in this embodiment, it is possible to prevent moisture in the atmosphere from condensing on the surface where the cold insulation heat insulating container 2 and the heat insulating container 19 for insertion are in contact with the air, and to prevent the bottom portion of the mount 39 from getting wet with water. There is.

以上の実施例では、取付け支持台8に熱的に一体化する被冷却体が、収納容器5およびそれに内蔵される冷凍細胞を内蔵したカプセルである場合について説明したが、被冷却体が超電導バルク体、凍結治療用の低温物体等であっても、所定の温度に保持する冷却保持効果として、同様な効果が生じる。 In the above embodiment, the case where the object to be cooled thermally integrated with the mounting support 8 is a capsule containing the storage container 5 and the frozen cells incorporated therein, but the object to be cooled is a superconducting bulk. Even if it is a body, a cryogenic object for cryotherapy, etc., the same effect is produced as a cooling and holding effect for holding at a predetermined temperature.

また、以上の実施例では、冷凍機として蓄冷器が運転中に移動するスターリング式冷凍機を適用した場合について説明したが、他方式の冷凍機であるギフォード・マクマホン型冷凍機、ソルベイ式冷凍機、パルス管式冷凍機を適用しても、同様な効果が生じる。 Further, in the above-described embodiment, the case where the Stirling type refrigerator in which the regenerator moves during operation has been described as the refrigerator. However, the Gifford McMahon type refrigerator and the Solvay type refrigerator which are other types of refrigerators Even if a pulse tube refrigerator is applied, the same effect is produced.

以上、本発明になる簡易冷凍機一体型保冷容器によれば、冷凍機を使用して細胞の質を担保できる冷凍温度以下で凍結細胞を冷却輸送でき、かつ操作性に優れ、製造コストが安価な、簡易冷凍機一体型保冷容器を提供することができる効果がある。 As described above, according to the simple refrigerator-integrated cold storage container according to the present invention, the frozen cells can be cooled and transported at a temperature below the freezing temperature at which the quality of the cells can be ensured by using the refrigerator, the operability is excellent, and the manufacturing cost is low. In addition, there is an effect that a simple refrigerator integrated cold storage container can be provided.

1…簡易冷凍機一体型保冷容器、2…細胞保存液、4…カプセル、5…収納容器、8…取付け支持台、9…冷凍機、10…断熱膨張冷凍部、12…導管、13…蓄冷材、14…蓄冷器、19…挿入断熱容器、21…常温圧縮機部、22…熱伝導体、23…冷却ステージ、24…銅網、28…保冷用断熱容器、29…外筒容器、30…内筒容器、32…締付けナット、34…締付けリング、40…空冷ファン、41…蓄電器、43…膨張寒冷発生空間 DESCRIPTION OF SYMBOLS 1 ... Simple refrigerator integrated cold storage container, 2 ... Cell preservation solution, 4 ... Capsule, 5 ... Storage container, 8 ... Mounting support, 9 ... Refrigerator, 10 ... Adiabatic expansion freezing part, 12 ... Conduit, 13 ... Cold storage 14 ... Regenerator, 19 ... Insertion heat insulation container, 21 ... Room temperature compressor part, 22 ... Heat conductor, 23 ... Cooling stage, 24 ... Copper net, 28 ... Heat insulation container for cold insulation, 29 ... Outer cylinder container, 30 ... inner cylinder container, 32 ... clamping nut, 34 ... clamping ring, 40 ... air cooling fan, 41 ... capacitor, 43 ... expansion / cold generation space

Claims (4)

被冷却体を冷凍機の寒冷で冷却する冷凍機一体型保冷容器において、
前記冷凍機の冷却部と、前記冷却部と熱的に一体化された冷却ステージを有し、
前記冷凍機の冷却部と、前記冷却ステージの一部を、断熱空間に包含する第一断熱容器と、
前記第一断熱容器の一部と、前記冷却ステージの一部と、前記冷却ステージの一部に熱的に接続された前記被冷却体を包含する被冷却体保持空間を、内側に有する第二断熱容器を有し、
前記第二断熱容器の内側に前記第一断熱容器を大気中で装着、脱離可能な構造である
ことを特徴とする冷凍機一体型保冷容器。
In the refrigerator-integrated cold storage container that cools the object to be cooled by the coldness of the refrigerator,
A cooling unit of the refrigerator, and a cooling stage thermally integrated with the cooling unit,
A first heat insulating container including a cooling unit of the refrigerator and a part of the cooling stage in a heat insulating space;
A second body having a cooled object holding space including a part of the first heat insulating container, a part of the cooling stage, and the cooled object thermally connected to a part of the cooling stage. Have an insulated container,
A refrigerator-integrated cold storage container characterized in that the first heat insulating container can be attached to and detached from the inside of the second heat insulating container in the atmosphere.
前記断熱空間の冷却ステージ側に前記冷凍機の冷却部を配置し、
前記冷凍機への作動流体の配管を前記断熱空間内に配置した構造である
ことを特徴とする請求項1記載の冷凍機一体型保冷容器。
The cooling unit of the refrigerator is arranged on the cooling stage side of the heat insulation space,
2. The refrigerator integrated cold storage container according to claim 1, wherein a pipe for working fluid to the refrigerator is arranged in the heat insulating space.
前記冷却ステージに熱的に接続された被冷却体を支持する前記第一断熱容器を、支持台に固定保持し、
前記第二断熱容器を前記第一断熱容器に装着、脱離可能な構造である
ことを特徴とする請求項1および請求項2記載の冷凍機一体型保冷容器。
The first heat insulating container that supports the object to be cooled thermally connected to the cooling stage is fixedly held on a support base,
The refrigerator-integrated cold storage container according to claim 1 or 2, wherein the second heat insulating container can be attached to and detached from the first heat insulating container.
前記第一断熱容器および前記第二断熱容器の大気に接し、かつ大気温度より温度が低い部位に、
前記冷凍機の排熱で加温された空気が接するように流動される流路を設けた
ことを特徴とする請求項1、請求項2および請求項3記載の冷凍機一体型保冷容器。
In contact with the atmosphere of the first heat insulation container and the second heat insulation container, and at a temperature lower than the atmospheric temperature,
4. The refrigerator-integrated cold storage container according to claim 1, wherein a flow path is provided so that air heated by exhaust heat of the refrigerator is in contact therewith.
JP2013147131A 2013-07-13 2013-07-13 Simple refrigeration machine integrated cold insulation container Pending JP2015017792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147131A JP2015017792A (en) 2013-07-13 2013-07-13 Simple refrigeration machine integrated cold insulation container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147131A JP2015017792A (en) 2013-07-13 2013-07-13 Simple refrigeration machine integrated cold insulation container

Publications (1)

Publication Number Publication Date
JP2015017792A true JP2015017792A (en) 2015-01-29

Family

ID=52438937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147131A Pending JP2015017792A (en) 2013-07-13 2013-07-13 Simple refrigeration machine integrated cold insulation container

Country Status (1)

Country Link
JP (1) JP2015017792A (en)

Similar Documents

Publication Publication Date Title
JP4854396B2 (en) Cryostat structure with low-temperature refrigerator
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
JP2021032555A (en) Insertable/withdrawable cryostat
US7568353B2 (en) Method of storing biological samples
GB2454268A (en) cryostat for reduced cryogen consumption
KR101822263B1 (en) Low thermal liquid storage tank with a detachable cryocooler
JP2008249201A (en) Recondenser, its mounting method and superconducting magnet using the same
JP2015117778A (en) Vacuum heat insulation pipe and vacuum heat insulation transfer tube
JP2016512879A (en) Portable self-cooling autonomous system
CN109442798B (en) Refrigeration system, closed-loop refrigeration cycle and method for injecting refrigerant
EP2085720B1 (en) Cryogenic container with built-in refrigerator
US20190137163A1 (en) Cryogenic Freezer
JP2006502778A (en) MR device cooling device
US10996298B2 (en) Displacer in magnetic resonance imaging system
US20230384016A1 (en) Cryogenic freezer
US20120180899A1 (en) Sytem and method for liquefying a fluid and storing the liquefied fluid
JP2015017792A (en) Simple refrigeration machine integrated cold insulation container
JPS6290910A (en) Cryogenic device
JP5916517B2 (en) Cooling container
ES2910106T3 (en) shipping container
JP6082531B2 (en) Cooling container
JP2022105076A (en) Cryogenic freezer
CN112825278B (en) Cryostat structure for magnetic resonance imaging equipment and magnetic resonance imaging equipment
JP5030064B2 (en) Cryogenic refrigerator
JP2008091802A (en) Cryogenic container