JP2015017592A - 内燃機関の触媒劣化判定装置 - Google Patents

内燃機関の触媒劣化判定装置 Download PDF

Info

Publication number
JP2015017592A
JP2015017592A JP2013146687A JP2013146687A JP2015017592A JP 2015017592 A JP2015017592 A JP 2015017592A JP 2013146687 A JP2013146687 A JP 2013146687A JP 2013146687 A JP2013146687 A JP 2013146687A JP 2015017592 A JP2015017592 A JP 2015017592A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
detection
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013146687A
Other languages
English (en)
Inventor
橋本 浩成
Hiroshige Hashimoto
浩成 橋本
徹 木所
Toru Kidokoro
徹 木所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013146687A priority Critical patent/JP2015017592A/ja
Publication of JP2015017592A publication Critical patent/JP2015017592A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】OSCに基づく排気浄化触媒の劣化判定をより正確に行う。【解決手段】排気浄化触媒に流入する排気の空燃比を検出する第1の検出手段と、排気浄化触媒から流出する排気の空燃比を検出する第2の検出手段と、リッチスパイク制御において排気の空燃比をリッチ空燃比からリーン空燃比に戻す途中に、ストイキ空燃比とリーン空燃比との間の中間空燃比に制御する期間を設ける制御手段と、リッチスパイク制御において排気の空燃比がリッチ空燃比から中間空燃比に切り替えられることにともなって変化する第1の検出手段による検出値と第2の検出手段による検出値とに基づいて排気浄化触媒のOSCを推定する推定手段と、OSCに基づいて排気浄化触媒の劣化を判定する劣化判定手段と、を備えることを特徴とする触媒劣化判定装置。【選択図】図4

Description

本発明は、内燃機関の触媒劣化判定装置に関する。
リーン空燃比のときに排気中の酸素を吸蔵し、吸蔵している酸素をリッチ空燃比のときに排気中に放出する酸素吸蔵能力(以下、OSCともいう。)を有する排気浄化触媒がある。吸蔵還元型NOx触媒(以下、NSR触媒ともいう)や三元触媒がOSCを有する場合もある。排気浄化触媒のOSCは排気浄化触媒の劣化度合によって変化するため、排気浄化触媒のOSCに基づいて排気浄化触媒の劣化判定をすることができる。
排気浄化触媒のOSCを推定する方法として、例えば、排気の空燃比をストイキ空燃比近傍でリッチ空燃比とリーン空燃比に交互に変化させたときの、排気浄化触媒の上流及び下流における排気の空燃比の変化に基づいて、推定する方法がある(例えば特許文献1を参照)。
また、排気の空燃比をリーン空燃比から一時的にリッチ空燃比まで低下させるリッチスパイク制御の実施時に、排気の空燃比がリッチ空燃比からリーン空燃比に戻るときの排気浄化触媒の上流及び下流における排気の空燃比の変化に基づいて、排気浄化触媒のOSCを推定する方法もある。
排気浄化触媒の上流及び下流の排気の空燃比は、排気浄化触媒の上流及び下流の排気通路にそれぞれ設けた空燃比センサを用いて検出することができる。
特開2004−308451号公報 特開2006−291773号公報
リッチスパイク制御は、例えばNSR触媒を備えた内燃機関においてNSR触媒に吸蔵されたNOxを還元するために定期的に行われる。従って、NOx還元のためのリッチスパイク制御の実施時にOSCの推定も行うようにすれば、OSCの推定に係る燃料消費を抑制できるという利点がある。
リッチスパイク制御においてリッチ空燃比からリーン空燃比へ切り替えるときの排気の空燃比の変化は、ストイキ空燃比近傍でリッチ空燃比とリーン空燃比に交互に切り替えるときの排気の空燃比の変化と比較して、空燃比の変化幅が大きく、またリーン側の空燃比のリーンの度合が大きい(よりリーンである)。
空燃比センサには応答遅れがあり、応答特性が速くない空燃比センサでは、空燃比の変化幅が大きく、変化が急激な場合、精度良く空燃比の変化を検出できないことがある。また、空燃比センサの公差は空燃比がリーンになるほど大きくなる傾向があるため、空燃比を切り替えるときのリーン側の空燃比のリーンの度合が大きい(よりリーンである)場合、正確な検出値が得られないことが懸念される。
そのため、リッチスパイク制御の実施時にOSCを推定する場合、空燃比センサの応答
特性や公差の影響により精度良くOSCを推定することができず、OSCに基づく排気浄化触媒の劣化判定を正確に行えないという課題があった。
本発明はこのような問題点に鑑みてなされたものであり、OSCに基づく排気浄化触媒の劣化判定をより正確に行うことができる内燃機関の触媒劣化判定装置を提供することを目的とする。
本発明は、内燃機関の排気通路に設けられ、OSCを有する排気浄化触媒の劣化判定を行う触媒劣化判定装置であって、
前記排気浄化触媒に流入する排気の空燃比を検出する第1の検出手段と、
前記排気浄化触媒から流出する排気の空燃比を検出する第2の検出手段と、
排気の空燃比をリーン空燃比から一時的にリッチ空燃比まで低下させるリッチスパイク制御を行う制御手段であって、前記リッチスパイク制御で排気の空燃比を前記リッチ空燃比から前記リーン空燃比に戻す途中に、排気の空燃比をストイキ空燃比と前記リーン空燃比との間の中間空燃比に制御する期間を設ける制御手段と、
前記リッチスパイク制御において排気の空燃比が前記リッチ空燃比から前記中間空燃比に切り替えられることにともなって変化する前記第1の検出手段による検出値と前記第2の検出手段による検出値とに基づいて前記排気浄化触媒のOSCを推定する推定手段と、
前記推定手段により推定されるOSCに基づいて前記排気浄化触媒の劣化を判定する劣化判定手段と、
を備えることを特徴とする触媒劣化判定装置である。
本発明の触媒劣化判定装置によれば、リッチスパイク制御において排気の空燃比がリッチ空燃比から中間空燃比へ切り替えられるときの第1の検出手段と第2の検出手段による検出値に基づいてOSCの推定が行われる。中間空燃比は、ストイキ空燃比よりリーン側かつリッチスパイク制御におけるリーン空燃比よりストイキ空燃比に近い空燃比である。OSCの推定を行うときのリッチ空燃比から中間空燃比への排気の空燃比の変化は、リッチスパイク制御におけるリッチ空燃比からリーン空燃比への排気の空燃比の変化と比較して、空燃比の変化幅が小さく、またリーン側の空燃比のリーンの度合が小さい。
OSCの推定を行うときの空燃比の変化における変化幅が小さく、空燃比の変化が緩やかになるため、第1の検出手段及び第2の検出手段に応答遅れがあっても、応答遅れに起因する検出精度の低下が起こりにくい。また、OSCの推定を行うときの空燃比の変化におけるリーン側の空燃比のリーンの度合が小さいため、第1の検出手段及び第2の検出手段の公差がリーンになるほど大きくなる傾向を有していても、公差の影響による検出精度の低下を軽減できる。
従って、本発明の触媒劣化判定装置によれば、リッチスパイク制御の実施時に、第1の検出手段及び第2の検出手段の検出値に基づいて、精度良くOSCを推定することができる。これにより、OSCに基づく排気浄化触媒の劣化判定を正確に行うことが可能になる。
本発明において、前記制御手段は、前記推定手段による前記排気浄化触媒のOSCの推定が終わった後、排気の空燃比を前記中間空燃比から前記リーン空燃比へ戻すとよい。
これにより、リッチスパイク制御において空燃比をリッチ空燃比からリーン空燃比へ戻す途中に中間空燃比に制御する期間はOSCの推定に必要な期間に限られることになるため、OSCの推定に係る燃料消費を抑えることができる。
本発明において、前記排気浄化触媒の劣化の判定の実行要否を判定する要否判定手段を更に備え、
前記制御手段は、前記要否判定手段により前記排気浄化触媒の劣化の判定を実行すると判定されるときに限り、前記リッチスパイク制御で排気の空燃比を前記リッチ空燃比から前記リーン空燃比に戻す途中に前記中間空燃比に制御する期間を設けるとよい。
リッチスパイク制御は、例えばNSR触媒のNOx還元処理等のために定期的に実行されるが、NOx還元処理の実施頻度と触媒劣化判定の実施頻度とは同じであるとは限らない。一般に触媒劣化判定の実行頻度の方が少ない。従って、NOx還元処理等の他の目的のためのリッチスパイク制御が実施されるたびに必ずしも毎回触媒劣化判定のためのOSCの推定を行う必要はない。OSCの推定を行わない場合、リッチスパイク制御においてリッチ空燃比からリーン空燃比へ切り替える途中に中間空燃比に制御する期間を設けなくても良い。中間空燃比に制御する期間を設けるのは、第1の検出手段及び第2の検出手段の検出精度の低下を抑制し、OSCを正確に推定するためだからである。
要否判定手段は、例えば、前回の触媒劣化判定を実行してから所定の時間経過した場合に、触媒劣化判定を実行すると判定する。所定の時間とは、例えば、標準的な内燃機関の使用態様にて触媒劣化の進行が予想される時間である。
本発明において、前記第1の検出手段及び前記第2の検出手段のいずれか一方又は両方の応答遅れ時間に応じて前記中間空燃比を決定する決定手段を更に備えるとよい。
空燃比の変化の検出精度は、第1の検出手段や第2の検出手段の応答特性に依存する。第1の検出手段や第2の検出手段の応答特性が遅くても、空燃比の変化幅が小さければ、空燃比の変化の検出精度の低下を抑制できる。従って、第1の検出手段や第2の検出手段の応答特性の指標である応答遅れ時間に応じて、十分な検出精度が得られる空燃比の変化幅になるように中間空燃比を決定することにより、第1の検出手段の検出値及び第2の検出手段の検出値に基づくOSCの推定を精度良く行うことができる。本発明では、第1の検出手段の検出値及び第2の検出手段の検出値の両方を用いてOSCの推定を行うので、第1の検出手段及び第2の検出手段の両方の応答遅れ時間に応じて中間空燃比を決定するのが望ましい。
本発明において、前記第1の検出手段の応答遅れ時間と前記第2の検出手段の応答遅れ時間のうち長い方の応答遅れ時間に応じて前記中間空燃比を決定する決定手段を更に備えるとよい。
本発明では、第1の検出手段の検出値及び第2の検出手段の検出値の両方を用いてOSCの推定を行うので、第1の検出手段及び第2の検出手段のうち応答特性がより遅い方の応答遅れ時間に応じて中間空燃比を決定することにより、より確実に空燃比の変化の検出精度の低下を抑制でき、OSCの推定を精度良く行うことが可能になる。
本発明において、前記決定手段は、前記応答遅れ時間が長いほど前記中間空燃比をストイキ空燃比に近くするとよい。
第1の検出手段や第2の検出手段の応答特性が遅くても、空燃比の変化幅が小さければ、空燃比の変化の検出精度の低下を抑制できる。中間空燃比をストイキ空燃比に近くする(よりリーンの度合の小さい空燃比にする)ことにより、空燃比がリッチ空燃比から中間空燃比へ切り替えられるときの空燃比の変化幅が小さくなる。よって、空燃比の変化の検出精度の低下を抑制できる。
本発明において、前記制御手段は、前記決定手段により決定された中間空燃比と、前回のOSCの推定で用いられた中間空燃比と、を比較し、ストイキ空燃比に近い方の中間空燃比を今回のOSCの推定で用いるとよい。
これにより、OSCの推定のためにリッチスパイク制御において空燃比をリッチ空燃比から中間空燃比へ切り替えるときの空燃比の変化幅をより適切に設定できる。
本発明において、前記制御手段は、前記リッチスパイク制御において排気の空燃比を前記リッチ空燃比から前記中間空燃比に切り替えることにともなう前記第1の検出手段による検出値と前記第2の検出手段による検出値との変化において前記第1の検出手段による検出値が前記第2の検出手段による検出値よりもリーンになる期間である計測期間が、前回のリッチスパイク制御において閾値より短かった場合、前記決定手段により決定された中間空燃比と、前回のOSCの推定で用いられた中間空燃比をよりストイキ空燃比に近くなるように補正した中間空燃比と、を比較し、ストイキ空燃比に近い方の中間空燃比を今回のリッチスパイク制御において用いるとよい。
閾値は、計測期間がこの閾値より短い場合、空燃比の変化の傾きが大きく、空燃比の変化が急激になり、第1の検出手段や第2の検出手段の応答遅れのために空燃比の変化を精度良く検出できない可能性があると判断できるように定められる。或いは、閾値は、推定手段の処理速度(計算速度)に基づいて定められる。すなわち、計測期間が閾値より短い場合、推定手段による第1の検出手段及び第2の検出手段の検出値の取得処理やOSCの推定処理を適切に実行するために必要な時間が確保できない可能性があると判断できるように定められる。
計測期間が閾値より短かった場合、今回のリッチスパイク制御においてOSCの推定のために設定された中間空燃比では、空燃比の変化幅を小さくする程度が不十分であったと考えられる。上記の構成によれば、次回のリッチスパイク制御におけるOSCの推定のために設定される中間空燃比がよりストイキ空燃比に近くなるため、空燃比の変化幅を更に小さくすることができ、第1の検出手段や第2の検出手段の応答遅れによる空燃比の変化の検出精度の低下をより確実に抑制できる。
本発明において、前記内燃機関が燃料カット運転を行ったときに、
前記第1の検出手段の検出値が、燃料カット運転を行う直前の運転状態に対応する検出値から燃料噴射をカットした状態に対応する検出値に変化するまでの時間に基づいて、前記第1の検出手段の応答遅れ時間を計測し、
前記第2の検出手段の検出値が、燃料カット運転を行う直前の運転状態に対応する検出値から燃料噴射をカットした状態に対応する検出値に変化するまでの時間に基づいて、前記第2の検出手段の応答遅れ時間を計測する、
計測手段を更に備え、
前記決定手段は、前記計測手段により計測される前記第1の検出手段及び前記第2の検出手段の応答遅れ時間を用いて前記中間空燃比を決定するとよい。
第1の検出手段や第2の検出手段の応答特性には個体差によるばらつきがあり、また使用過程の経時劣化等により変化する。上記の構成によれば、第1の検出手段や第2の検出手段の実際の応答特性に基づいて中間空燃比を決定することができるので、第1の検出手段や第2の検出手段の応答遅れに起因する検出精度の低下をより確実に抑制できる。
本発明によれば、OSCに基づく排気浄化触媒の劣化判定をより正確に行うことができる内燃機関の触媒劣化判定装置を提供することができる。
実施例に係る内燃機関と、その吸気系及び排気系との概略構成を示す図である。 リッチスパイク制御の実施時の第1の空燃比センサ12及び第2の空燃比センサ13の検出値の時間変化の一例を示す図である。 リッチスパイク制御の実施時の第1の空燃比センサ12及び第2の空燃比センサ13の検出値の時間変化の一例を示す図であり、排気の空燃比をリッチ空燃比からリーン空燃比へ戻す途中に中間空燃比に制御する期間を設けた場合を示す。 実施例1に係る触媒劣化判定処理を示すフローチャートである。 実施例1に係る中間空燃比の決定処理を示すフローチャートである。 実施例1に係る空燃比センサの応答遅れ時間と中間空燃比との対応関係を示す図である。 実施例2に係る触媒劣化判定処理を示すフローチャートである。
以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。
(実施例1)
図1は、本実施例に係る内燃機関と、その吸気系及び排気系との概略構成を示す図である。図1に示す内燃機関1は、ガソリン機関である。内燃機関1は、たとえば車両に搭載される。
内燃機関1には、排気通路2が接続されている。この排気通路2の途中には、上流から順に、三元触媒3、吸蔵還元型NOx触媒4(以下、NSR触媒4という。)、選択還元型NOx触媒5(以下、SCR触媒5という。)が備えられている。三元触媒3は、触媒雰囲気が理論空燃比のときにNOx,HCおよびCOを最大効率で浄化する。また、三元触媒3は、OSCを有している。すなわち、流入する排気の空燃比がリーン空燃比であるときに過剰分の酸素を吸蔵し、流入する排気の空燃比がリッチ空燃比であるときに不足分の酸素を放出することにより、排気を浄化する。このようなOSCの作用により、三元触媒3がHC,COおよびNOxを理論空燃比以外であっても浄化することができる。なお、三元触媒3の代わりに、新たに吸蔵還元型NOx触媒を備えてもよい。
NSR触媒4は、流入する排気の酸素濃度が高いときは排気中のNOxを吸蔵し、流入する排気の酸素濃度が低下し且つ還元剤が存在するときは吸蔵していたNOxを還元する。NSR触媒4に供給する還元剤には、内燃機関1から排出される未燃燃料であるHCまたはCOを利用することができる。NSR触媒4は、OSCを有している。すなわち、NSR触媒4は、流入する排気の空燃比がリーン空燃比であるときに酸素を吸蔵し、流入する排気の空燃比がリッチ空燃比であるときに酸素を放出する。
なお、三元触媒3またはNSR触媒4を排気が通過するときに、排気中のNOxがHCまたはHと反応してアンモニア(NH)が生成されることがある。例えば、水性ガスシフト反応または水蒸気改質反応により排気中のCOやHOからHが発生すれば、該Hが三元触媒3またはNSR触媒4においてNOと反応してNHが生成される。そして、三元触媒3またはNSR触媒4を通過する排気の空燃比がストイキ空燃比以下のときにNHが生成される。なお、本実施例においては三元触媒3またはNSR触媒4が、本発明における排気浄化触媒に相当する。
なお、本実施例では、NSR触媒4を排気浄化触媒として説明するが、OSCを有する三元触媒を排気浄化触媒としても同様に考えることができる。また、三元触媒3及びNS
R触媒4を合わせて、本発明における排気浄化触媒としてもよい。
SCR触媒5は、還元剤を吸着しておき、NOxが通過するときに、吸着していた還元剤によりNOxを選択還元する。SCR触媒5へ供給する還元剤には、三元触媒3またはNSR触媒4にて生成されるNHを利用することができる。
三元触媒3よりも下流でNSR触媒4よりも上流の排気通路2には、排気の空燃比を検出する第1の空燃比センサ12が取り付けられている。第1の空燃比センサ12により、内燃機関1の排気の空燃比、または、NSR触媒4に流入する排気の空燃比を検出することができる。第1の空燃比センサ12は、本発明の第1の検出手段に相当する。
また、NSR触媒4よりも下流で且つSCR触媒5よりも上流の排気通路2には、排気の空燃比を検出する第2の空燃比センサ13が取り付けられている。第2の空燃比センサ13により、NSR触媒4から流出する排気の空燃比を検出することができる。第2の空燃比センサ13は、本発明の第2の検出手段に相当する。
内燃機関1には、該内燃機関1へ燃料を供給する噴射弁6が取り付けられている。さらに、内燃機関1には、点火プラグ9が設けられている。
内燃機関1には、吸気通路7が接続されている。吸気通路7の途中には、内燃機関1の吸入空気量を調整するスロットル8が設けられている。また、スロットル8よりも上流の吸気通路7には、内燃機関1の吸入空気量を検出するエアフローメータ15が取り付けられている。
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。
また、ECU10には、上記センサの他、運転者がアクセルペダル16を踏み込んだ量に応じた電気信号を出力し機関負荷を検知するアクセル開度センサ17、および機関回転数を検知するクランクポジションセンサ18が電気配線を介して接続され、これら各種センサの出力信号がECU10に入力される。
ECU10には、噴射弁6、スロットル8、点火プラグ9が電気配線を介して接続されており、該ECU10により噴射弁6の開閉時期及びスロットル8の開度が制御される。
例えばECU10は、アクセル開度センサ17により検出されるアクセル開度とクランクポジションセンサ18により検出される機関回転数とから要求吸入空気量を決定する。そして、エアフローメータ15により検出される吸入空気量が要求吸入空気量となるように、スロットル8の開度が制御される。このときに変化する吸入空気量に応じた燃料噴射量を供給するように噴射弁6を制御する。このときに設定される空燃比は、内燃機関1の運転状態に応じて設定される空燃比である。なお、本実施例に係る内燃機関1は、リーンバーン運転が実施される。ただし、内燃機関1の冷間始動時や高負荷運転時等においては、ストイキ運転が実施される。リーンバーン運転時には、混合気の空燃比が例えば23となるように、噴射弁6またはスロットル8が制御される。また、ストイキ運転時には、混合気の空燃比が例えば14.5となるように、噴射弁6またはスロットル8が制御される。
ECU10には、記憶装置11が接続されており、ECU10は記憶装置11にデータ等を記憶させ、また、記憶装置11に記憶されているデータ等を記憶装置11から取得す
ることができる。
ECU10は、NSR触媒4に吸蔵されているNOxの還元処理を実施する。NSR触媒4に吸蔵されているNOxの還元時には、噴射弁6から噴射する燃料の量またはスロットル8の開度を調整することにより、NSR触媒4に流入する排気の空燃比を一時的に所定のリッチ空燃比まで低下させるリッチスパイク制御を実施する。
このリッチスパイク制御は、例えば、NSR触媒4に吸蔵されているNOx量が所定量となった場合に実施される。NSR触媒4に吸蔵されているNOx量は、たとえば、NSR触媒4に流入するNOx量と、NSR触媒4から流出するNOx量と、の差を積算することにより算出される。NSR触媒4に流入するNOx量と、NSR触媒4から流出するNOx量とは、センサを取り付けることにより検出できる。また、内燃機関1を搭載する車両の走行距離に応じてリッチスパイク制御を行ってもよい。
また、ECU10は、リーン空燃比のときにリッチスパイク制御を実施することにより、NSR触媒4にてNHを生成させる。このリッチスパイク制御は、SCR触媒5が吸着しているNH量が所定量まで減少したときに実施される。また、所定の間隔でリッチスパイク制御を実施するとしてもよい。
ECU10は、NSR触媒4に流入する排気の空燃比がリッチ空燃比からリーン空燃比に切り替えられることにともなって変化する第1の空燃比センサ12及び第2の空燃比センサ13による検出値に基づいてNSR触媒4のOSCを推定し、推定したOSCに基づいてNSR触媒4の劣化を判定する。本実施例では、ECU10は、上述したNOx還元処理等のために実施されるリッチスパイク制御において、空燃比がリッチ空燃比からリーン空燃比に切り替えられるときに、上記のOSCの推定を行う。NOx還元処理等のためのリッチスパイク制御の実施時にOSCの推定も行えるため、OSCの推定に係る燃料消費を抑制することができる。ここで、本実施例では、OSCの推定が行われるリッチスパイク制御の実施時には、ECU10は、排気の空燃比をリッチ空燃比(例えば12)からリーン空燃比(例えば23)に戻す途中に、排気の空燃比をストイキ空燃比と前記リーン空燃比(例えば23)との間の中間空燃比(例えば18)に制御する期間を設ける。つまり、ECU10は、リッチ空燃比からリーン空燃比へ一気に戻すのではなく、一旦、リッチ空燃比から中間空燃比へ戻す。そして、ECU10は、排気の空燃比がリッチ空燃比から中間空燃比へ戻されることにともなって変化する第1の空燃比センサ12及び第2の空燃比センサ13による検出値に基づいてNSR触媒4のOSCを推定する。
図2、図3に、リッチスパイク制御の実施時の第1の空燃比センサ12及び第2の空燃比センサ13の検出値の変化の一例を示す。図2は、リッチ空燃比からリーン空燃比へ戻した場合を示し、図3は、リッチ空燃比から中間空燃比へ戻した場合を示す。なお、本実施例では、NSR触媒4の上流に三元触媒3が配置されているため、排気の空燃比がリーン空燃比からリッチ空燃比に切り替えられると、リーン空燃比下で三元触媒3に吸蔵された酸素が放出される。そのため、リッチスパイク制御の実施時には、図2、図3に示すように、NSR触媒4に流入する排気の空燃比はストイキ空燃比まで低下した後しばらくの間ストイキ空燃比に保たれる。三元触媒3の酸素の放出が完了すると、NSR触媒4に流入する排気の空燃比がリッチ空燃比に変化する。
NSR触媒4に流入する排気の空燃比がリッチ空燃比に変化すると、NSR触媒4に吸蔵されている酸素が放出されるので、NSR触媒4に流入する排気の空燃比がリッチになっても、しばらくの期間は、NSR触媒4から流出する排気の空燃比はストイキ空燃比に保たれる。NSR触媒4に吸蔵されている酸素が全て放出されると、NSR触媒4から流出する排気の空燃比もリッチになる。つまり、NSR触媒4に流入する排気の空燃比の変
化に対し、NSR触媒4から流出する排気の空燃比の変化は、NSR触媒4が吸蔵していた酸素量に応じて遅れる。NSR触媒4に流入する排気の空燃比とNSR触媒4から流出する排気の空燃比の差分を積算した値(図2、図3の斜線部A)に基づいてNSR触媒4のOSCを推定することができる。
同様に、NSR触媒4に流入する排気の空燃比がリッチ空燃比からリーン空燃比に切り替えられたときは、NSR触媒4に酸素が吸蔵されていくので、NSR触媒4に流入する排気の空燃比がリーンになっても、しばらくの期間は、NSR触媒4から流出する排気の空燃比はストイキ空燃比に保たれる。NSR触媒4の酸素吸蔵量が上限に達すると、NSR触媒4から流出する排気の空燃比もリーンになる。つまり、NSR触媒4に流入する排気の空燃比の変化に対し、NSR触媒4から流出する排気の空燃比の変化は、NSR触媒4のOSCに応じて遅れる。NSR触媒4に流入する排気の空燃比とNSR触媒4から流出する排気の空燃比の差分を積算した値(図2の斜線部B、図3の斜線部C)に基づいてNSR触媒4のOSCを推定することができる。
ここで、NOx還元のためのリッチスパイク制御において排気の空燃比がリーン空燃比からリッチ空燃比に切り替えられたときは、還元剤はNOx還元反応でも消費されるため、図2,図3の斜線部Aに基づいてOSCを推定するには、NOx還元反応における還元剤の消費の影響を除外する必要がある。一方、排気の空燃比がリッチ空燃比からリーン空燃比に切り替えられたときは、NSR触媒4におけるNOx還元反応が完了した後であるため、図2の斜線部B又は図3の斜線部Cには、NOx還元反応の影響は含まれない。従って、リッチスパイク制御の実施時にOSCの推定を行う場合、排気の空燃比がリッチ空燃比からリーン空燃比へ切り替えられることに伴うNSR触媒4の上流と下流の排気の空燃比の変化に基づいて推定することで、より正確にOSCを推定することができる。
しかし、図2に示すように、空燃比をリッチ空燃比からリーン空燃比へ一気に戻した場合、NSR触媒4の酸素吸蔵量が短時間で上限に達してしまうため、NSR触媒4の下流の排気の空燃比がストイキ空燃比に保たれる時間が短い。従って、NSR触媒4に流入する排気の空燃比がNSR触媒4から流出する排気の空燃比よりリーンになる期間(NSR触媒4に流入する排気の空燃比とNSR触媒4から流出する排気の空燃比とに差が生じる期間)が短い。OSCの推定処理は、この期間(以下、計測期間という)における第1の空燃比センサ12と第2の空燃比センサ13による検出値に基づいて行うため、この期間が短過ぎると、ECU10の処理速度によっては検出値の取得処理や推定演算処理が適切に実行できない可能性がある。
また、計測期間が短く、かつ、空燃比の変化幅が大きいため、空燃比の変化が急激になる。空燃比センサの応答特性には個体差や経時変化によるばらつきがあり、応答特性が遅い空燃比センサでは、急激な空燃比の変化を精度良く検出できない。また、空燃比センサの公差は、空燃比がリーンになるほど大きくなる傾向がある。以上のことから、リッチスパイク制御において排気の空燃比をリッチ空燃比からリーン空燃比に切り替えたことにともなうNSR触媒4の上流及び下流の排気の空燃比の変化に基づいてNSR触媒4のOSCを推定すると、精度良くOSCを推定できないことが懸念される。
一方、図3に示すように、空燃比をリッチ空燃比から中間空燃比に戻した場合、NSR触媒4の酸素吸蔵量が上限に達するのに図2の場合よりも時間がかかるため、NSR触媒4の下流の排気の空燃比がストイキ空燃比に保たれる時間が長くなる。従って長い計測期間を確保することができ、ECU10が推定処理を適切に行うことが可能になる。
また、計測期間が長くなり、かつ、空燃比の変化幅も小さくなるため、空燃比の変化が緩やかになる。従って、空燃比センサの応答特性が遅くても、空燃比の変化を精度良く検
出することができる。また、空燃比を切り替えるときのリーン側の空燃比が図2の場合よりもストイキ空燃比に近くなるため、検出値における公差の影響が小さくなり、精度良い検出値が得られるようになる。
そこで、本実施例では、NOx還元処理等のためのリッチスパイク制御の実施時にOSCの推定を行う場合、リッチ空燃比からリーン空燃比へ戻す途中に、図3に示すように、排気の空燃比をストイキ空燃比と前記リーン空燃比との間の中間空燃比に制御する期間を設ける。ECU10は、排気の空燃比がリッチ空燃比から中間空燃比に切り替えられることにともなって変化する第1の空燃比センサ12による検出値と第2の空燃比センサ13による検出値とに基づいて、NSR触媒4のOSCを推定する。これにより、NSR触媒4のOSCを精度良く推定することが可能になるので、推定したOSCに基づいて正確にNSR触媒4の劣化判定を行うことが可能になる。ECU10は、OSCの推定が終わった後、図3に示すように、排気の空燃比をリーン空燃比まで戻す。従って、中間空燃比に維持される期間は、OSCの推定に必要な期間に限られるので、OSCの推定に係る燃料消費の増大を抑えることができる。
なお、本実施例において、リッチスパイク制御を行うとともに、OSCの推定を行う場合に、リッチスパイク制御で排気の空燃比をリッチ空燃比からリーン空燃比へ戻す途中に排気の空燃比を中間空燃比に制御する期間を設けるECU10が、本発明の制御手段に相当する。また、リッチスパイク制御において排気の空燃比をリッチ空燃比から中間空燃比へ切り替えたことにともなって変化する第1の空燃比センサ12による検出値と第2の空燃比センサ13による検出値とに基づいて、NSR触媒4のOSCを推定するECU10が、本発明の推定手段に相当する。また、推定したOSCに基づいてNSR触媒4の劣化を判定するECU10が、本発明の劣化判定手段に相当する。
図4のフローチャートに基づき、本実施例に係る触媒劣化判定処理について説明する。このフローチャートで示す処理は、NOx還元処理等のためのリッチスパイク制御の実施時にECU10によって実行される。
ステップS101において、ECU10は、リッチスパイク制御において空燃比をリーン空燃比に切り替える条件(リッチ運転を終了する条件)が成立したか判定する。例えばNOx還元処理のためのリッチスパイク制御の実施時の場合、ECU10は、NSR触媒4に吸蔵されたNOxが全て還元されたと判断できる場合に、空燃比をリーン空燃比に切り替える条件が成立したと判定する。空燃比をリーン空燃比に切り替える条件が成立したと判定した場合、ECU10はステップS102に進み、そうでない場合、このフローチャートの処理を抜ける。
ステップS102において、ECU10は、触媒劣化判定を実行するか否かを判定する。NOx還元処理のためのリッチスパイク制御は、例えば1分おき等、比較的短い間隔で実行されるが、触媒劣化判定はそれほど頻繁に行う必要は無い。NSR触媒4の劣化状態がそのような短い時間で大きく変化することは通常考えられないからである。ECU10は、例えば、前回触媒劣化判定を実行してからの経過時間をカウントしておき、経過時間が所定時間を超えた場合に、触媒劣化判定を実行する、と判定する。所定時間は、例えば、標準的な内燃機関の使用態様にて触媒劣化の進行が予想される時間に基づいて定めることができる。更に、正確な触媒劣化判定ができるように、内燃機関1の運転状態が安定しているか否か(例えば吸入空気量が所定範囲内の値であるか)を判定し、安定していると判定される場合に、触媒劣化判定を実行する、と判定するようにしても良い。触媒劣化判定を実行する、と判定した場合、ECU10は、ステップS103へ進む。触媒劣化判定を実行しない、と判定した場合、ECU10は、ステップS108へ進む。
ステップS103において、ECU10は、中間空燃比を取得する。本実施例では、ECU10は、別処理にて決定され、記憶装置11に記憶された中間空燃比の情報を記憶装置から読み出すことによって中間空燃比を取得する。中間空燃比の決定処理については後述する。
ステップS104において、ECU10は、排気の空燃比を中間空燃比に切り替える。すなわち、中間空燃比での運転を開始する。中間空燃比での運転開始後、ECU10は、第1の空燃比センサ12による検出値及び第2の空燃比センサ13による検出値を取得し続ける。
ステップS105において、ECU10は、第1の空燃比センサ12による検出値と第2の空燃比センサ13による検出値との差分がゼロになったか否かを判定する。ECU10は、第1の空燃比センサ12による検出値と第2の空燃比センサ13による検出値との差分がゼロとみなすことができる所定の範囲内の値になった場合に、差分がゼロになったと判定する。差分がゼロになったと判定されるまでステップS105の処理が繰り返される。差分がゼロになったと判定したら、ECU10はステップS106へ進む。
ステップS106において、ECU10は、NSR触媒4のOSCを算出する。具体的には、ECU10は、計測期間における第1の空燃比センサ12による検出値と第2の空燃比センサ13による検出値との差分の積算値、燃料噴射量、空気中の酸素の質量割合等に基づく所定の演算によりNSR触媒4のOSCを算出する。更に、ECU10は、算出したOSCに基づき、NSR触媒4の劣化判定を行う。例えば、算出したOSCが閾値を下回っていた場合に、NSR触媒4が劣化していると判定し、エンジンチェックランプの点灯等の警告処理を実行する。
ステップS107において、ECU10は、中間空燃比での運転を終了する。
ステップS108において、ECU10は、リッチスパイク制御を終了する。すなわち、空燃比をリーン空燃比に切り替える。
図5のフローチャートに基づき、本実施例に係る中間空燃比の決定処理について説明する。このフローチャートで示す処理は、内燃機関1の運転中、定期的にECU10により実行される。
ステップS201において、ECU10は、第1の空燃比センサ12及び第2の空燃比センサ13の応答遅れ時間の計測実行条件が成立するか否かを判定する。計測実行条件は、第1の空燃比センサ12及び第2の空燃比センサ13の応答遅れ時間を正確に計測することが可能であるか否かを判断できる条件であり、ECU10は、例えば、第1の空燃比センサ12及び第2の空燃比センサ13が活性状態であるか否か、吸入空気量が所定範囲内の値であるか否か、NSR触媒4の温度が所定範囲内の値であるか否か、等を判定する。計測実行条件が成立すると判定した場合、ECU10は、ステップS202に進む。それ以外の場合、ECU10はこのフローチャートの処理を抜ける。
ステップS202において、ECU10は、第1の空燃比センサ12及び第2の空燃比センサ13の応答遅れ時間の計測処理を実行する。応答遅れ時間の計測処理は、続くステップS203及びステップS204からなる。
ステップS203において、ECU10は、燃料カット運転が開始されたか否かを判定する。燃料カット運転が開始されたと判定した場合、ECU10は、ステップS204へ進む。それ以外の場合、ECU10はこのフローチャートの処理を抜ける。
ステップS204において、ECU10は、燃料カット運転の開始後の第1の空燃比センサ12及び第2の空燃比センサ13の検出値を取得し続け、第1の空燃比センサ12及び第2の空燃比センサ13の検出値が、燃料カット運転の直前の運転状態に対応する値から、燃料噴射をカットした状態に対応する値に変化するまでの時間を求める。ECU10は、この時間を応答遅れ時間として記憶装置11に記憶する。ECU10は、第1の空燃比センサ12及び第2の空燃比センサ13のそれぞれについて応答遅れ時間を求め、記憶装置11に記憶する。以上で第1の空燃比センサ12及び第2の空燃比センサ13の応答遅れ時間の計測処理が終了する。
ステップS205において、ECU10は、図6に示す空燃比センサの応答遅れ時間と中間空燃比との対応関係に基づき、中間空燃比を決定する。本実施例では、ECU10は、ステップS204で求めた第1の空燃比センサ12の応答遅れ時間と第2の空燃比センサ13の応答遅れ時間のうち長い方の応答遅れ時間に応じた中間空燃比を図6の対応関係に基づき求め、これを中間空燃比として決定する。図6に示す対応関係は、マップ又は関数として予め定められ、記憶装置11に記憶されている。上述したように、中間空燃比がストイキ空燃比に近いほど、リッチスパイク制御で排気の空燃比をリッチ空燃比から中間空燃比に切り替えるときの空燃比の変化幅が小さくなり、かつ、リーン側の空燃比のリーンの度合が小さくなるので、計測期間が長くなる。従って、空燃比センサの応答遅れ時間が長いほど中間空燃比がストイキ空燃比に近くなるように中間空燃比を決定することにより、空燃比センサの応答特性が遅い場合でも精度良くOSCを推定することが可能になる。ECU10は、決定した中間空燃比を記憶装置11に記憶させる。
本実施例では、以上の処理により中間空燃比を決定するECU10が、本発明の決定手段に相当する。
本実施例に係る触媒劣化判定装置によれば、NOx還元処理等のためのリッチスパイク制御において排気の空燃比がリッチ空燃比から戻されるときの第1の空燃比センサ12及び第2の空燃比センサ13の検出値に基づいて精度良くNSR触媒4のOSCを推定することができ、正確にNSR触媒4の劣化判定を行うことができる。
なお、本実施例では、NOx還元処理のためのリッチスパイク制御の実施時にOSCの推定を行う例を説明したが、リーン運転中に行われるリッチスパイク制御であれば、NOx還元処理時のリッチスパイク制御に限らない。
また、本実施例では、第1の空燃比センサ12及び第2の空燃比センサ13の両方の応答遅れ時間を計測し、長い方の応答遅れ時間に応じて中間空燃比を決定する例を説明したが、第1の空燃比センサ12及び第2の空燃比センサ13のいずれか一方の応答遅れ時間に応じて中間空燃比を決定しても良い。いずれか一方の空燃比センサの応答遅れ時間に応じて中間空燃比を決定する場合、当該一方の空燃比センサについてのみ応答遅れ時間の計測を行えばよい。
また、本実施例では、燃料カット運転時の空燃比センサの検出値の変化に基づいて空燃比センサの応答遅れ時間を計測する例を説明したが、空燃比センサの応答遅れ時間の計測方法はこれに限らない。例えば、空燃比をストイキ空燃比近傍でリッチ空燃比及びリーン空燃比に交互に切り替えるアクティブ制御を行ったときの空燃比センサの検出値の軌跡長に基づいて応答遅れ時間を求めることもできる。
(実施例2)
本実施例では、実施例1との相違点を中心に説明し、実施例1と同じ内容の構成要素に
ついては同じ符号及び名称を用いて説明を省略する。
本実施例では、ECU10は、OSCの推定処理における中間空燃比の情報を記憶装置11に記憶させ、次回のOSCの推定処理の実行時に前回のOSCの推定処理における中間空燃比の情報を参照して中間空燃比を決定する。
図7は、本実施例に係る触媒劣化判定処理を示すフローチャートである。このフローチャートで示す処理は、NOx還元処理等のためのリッチスパイク制御の実施時にECU10によって実行される。
ステップS101〜ステップS103の処理は実施例1と同様である。
ステップS103に続くステップS700において、ECU10は、記憶装置11から前回のOSCの推定処理における中間空燃比の情報を取得する。ECU10は、ステップS103で取得した中間空燃比と、記憶装置11から取得した中間空燃比と、を比較し、よりストイキ空燃比に近い方の中間空燃比を、今回のOSCの推定処理において用いる中間空燃比として決定する。
続くステップS104〜ステップS106の処理は実施例1と同様である。
ステップS106に続くステップS701において、ECU10は、今回のOSCの推定処理における計測期間を求める。具体的には、ECU10は、ステップS104で取得した第1の空燃比センサ12及び第2の空燃比センサ13の検出値から、リッチ空燃比から中間空燃比に切り替えた後、第1の空燃比センサ12の検出値と第2の空燃比センサ13の検出値の差分がある閾値(例えば0.1)より大きくなったタイミング(或いは、第1の空燃比センサ12の検出値が第2の空燃比センサ13の検出よりリーンになったタイミング)を開始時とし、その後、第1の空燃比センサ12による検出値と第2の空燃比センサ13による検出値との差分がある閾値(例えば0.1)より小さくなったタイミング(差分が略ゼロになったとみなせるタイミング)を終了時とし、前記開始時から前記終了時までの時間間隔を計測期間として求める。
ステップS702において、ECU10は、ステップS701で求めた計測期間が閾値より短いか否かを判定する。閾値は、計測期間がこの閾値より短い場合、空燃比の変化の傾きが大きく、空燃比の変化が急激になり、第1の検出手段や第2の検出手段の応答遅れのために空燃比の変化を精度良く検出できない可能性があると判断できるように定められる。或いは、閾値は、ECU10の処理速度に基づいて定められる。すなわち、計測期間が閾値より短い場合、ECU10による第1の空燃比センサ12及び第2の空燃比センサ13の検出値の取得処理やOSCの推定処理を適切に実行するために必要な時間が確保できない可能性があると判断できるように定められる。計測期間が閾値より短い場合、ECU10はステップS703に進む。それ以外の場合、ECU10はステップS704に進む。
ステップS703において、ECU10は、ステップS700で決定した今回の中間空燃比をよりストイキ空燃比に近い値に補正したうえで、記憶装置11に今回の中間空燃比として記憶させる。
ステップS704において、ECU10は、ステップS700で決定した今回の中間空燃比を記憶装置11に記憶させる。
続くステップS107〜ステップS108の処理は実施例1と同様である。
本実施例によれば、第1の空燃比センサ12及び第2の空燃比センサ13の応答遅れ時間に応じて求めた中間空燃比が、計測期間を確保するために不十分である場合には、次回以降のOSCの推定処理において、よりストイキ空燃比に近い中間空燃比が用いられる。従って、次回以降のOSCの推定処理における空燃比の変化がより緩やかになり、十分な計測期間が確保されるようになる。よって、より確実にNSR触媒4のOSCの推定精度の向上とNSR触媒4の劣化判定の正確性の向上を図ることが可能となる。
本実施例において、ステップS703で中間空燃比をストイキ空燃比に近い値に補正する際に、ガードを設けるようにすると良い。すなわち、補正後の中間空燃比がガード値よりストイキ空燃比に近い場合、補正を行わない、或いは、ガード値を補正後の中間空燃比とする。ガード値は、ストイキ空燃比よりもリーン側の値であり、かつ、OSCの推定が可能な値として定める。或いは、リッチスパイク制御においてリッチ空燃比からリーン空燃比へ戻す途中に中間空燃比に制御する期間を設けることに起因する燃料消費が多くなり過ぎないように定めることもできる。
1:内燃機関
2:排気通路
3:三元触媒
4:NSR触媒
5:SCR触媒
6:噴射弁
7:吸気通路
8:スロットル
9:点火プラグ
10:ECU
11:記憶装置
12:第1の空燃比センサ
13:第2の空燃比センサ
15:エアフローメータ
16:アクセルペダル
17:アクセル開度センサ
18:クランクポジションセンサ

Claims (9)

  1. 内燃機関の排気通路に設けられ、酸素吸蔵能力を有する排気浄化触媒の劣化判定を行う触媒劣化判定装置であって、
    前記排気浄化触媒に流入する排気の空燃比を検出する第1の検出手段と、
    前記排気浄化触媒から流出する排気の空燃比を検出する第2の検出手段と、
    排気の空燃比をリーン空燃比から一時的にリッチ空燃比まで低下させるリッチスパイク制御を行う制御手段であって、前記リッチスパイク制御で排気の空燃比を前記リッチ空燃比から前記リーン空燃比に戻す途中に、排気の空燃比をストイキ空燃比と前記リーン空燃比との間の中間空燃比に制御する期間を設ける制御手段と、
    前記リッチスパイク制御において排気の空燃比が前記リッチ空燃比から前記中間空燃比に切り替えられることにともなって変化する前記第1の検出手段による検出値と前記第2の検出手段による検出値とに基づいて前記排気浄化触媒の酸素吸蔵能力を推定する推定手段と、
    前記推定手段により推定される酸素吸蔵能力に基づいて前記排気浄化触媒の劣化を判定する劣化判定手段と、
    を備えることを特徴とする触媒劣化判定装置。
  2. 前記制御手段は、前記推定手段による前記排気浄化触媒の酸素吸蔵能力の推定が終わった後、排気の空燃比を前記中間空燃比から前記リーン空燃比へ戻す請求項1に記載の触媒劣化判定装置。
  3. 前記排気浄化触媒の劣化の判定の実行要否を判定する要否判定手段を更に備え、
    前記制御手段は、前記要否判定手段により前記排気浄化触媒の劣化の判定を実行すると判定されるときに限り、前記リッチスパイク制御で排気の空燃比を前記リッチ空燃比から前記リーン空燃比に戻す途中に前記中間空燃比に制御する期間を設ける請求項1または2に記載の触媒劣化判定装置。
  4. 前記第1の検出手段及び前記第2の検出手段のいずれか一方又は両方の応答遅れ時間に応じて前記中間空燃比を決定する決定手段を更に備える請求項1〜3のいずれか1項に記載の触媒劣化判定装置。
  5. 前記第1の検出手段の応答遅れ時間と前記第2の検出手段の応答遅れ時間のうち長い方の応答遅れ時間に応じて前記中間空燃比を決定する決定手段を更に備える請求項1〜3のいずれか1項に記載の触媒劣化判定装置。
  6. 前記決定手段は、前記応答遅れ時間が長いほど前記中間空燃比をストイキ空燃比に近くする請求項3〜5のいずれか1項に記載の触媒劣化判定装置。
  7. 前記制御手段は、前記決定手段により決定された中間空燃比と、前回の酸素吸蔵能力の推定で用いられた中間空燃比と、を比較し、ストイキ空燃比に近い方の中間空燃比を今回の酸素吸蔵能力の推定で用いる請求項4〜6のいずれか1項に記載の触媒劣化判定装置。
  8. 前記制御手段は、前記リッチスパイク制御において排気の空燃比を前記リッチ空燃比から前記中間空燃比に切り替えることにともなう前記第1の検出手段による検出値と前記第2の検出手段による検出値との変化において前記第1の検出手段による検出値が前記第2の検出手段による検出値よりもリーンになる期間である計測期間が、前回のリッチスパイク制御において閾値より短かった場合、前記決定手段により決定された中間空燃比と、前回の酸素吸蔵能力の推定で用いられた中間空燃比をよりストイキ空燃比に近くなるように補正した中間空燃比と、を比較し、ストイキ空燃比に近い方の中間空燃比を今回のリッチ
    スパイク制御において用いる請求項4〜6のいずれか1項に記載の触媒劣化判定装置。
  9. 前記内燃機関が燃料カット運転を行ったときに、
    前記第1の検出手段の検出値が、燃料カット運転を行う直前の運転状態に対応する検出値から燃料噴射をカットした状態に対応する検出値に変化するまでの時間に基づいて、前記第1の検出手段の応答遅れ時間を計測し、
    前記第2の検出手段の検出値が、燃料カット運転を行う直前の運転状態に対応する検出値から燃料噴射をカットした状態に対応する検出値に変化するまでの時間に基づいて、前記第2の検出手段の応答遅れ時間を計測する、
    計測手段を更に備え、
    前記決定手段は、前記計測手段により計測される前記第1の検出手段及び前記第2の検出手段の応答遅れ時間を用いて前記中間空燃比を決定する請求項4〜8のいずれか1項に記載の触媒劣化判定装置。
JP2013146687A 2013-07-12 2013-07-12 内燃機関の触媒劣化判定装置 Pending JP2015017592A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146687A JP2015017592A (ja) 2013-07-12 2013-07-12 内燃機関の触媒劣化判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013146687A JP2015017592A (ja) 2013-07-12 2013-07-12 内燃機関の触媒劣化判定装置

Publications (1)

Publication Number Publication Date
JP2015017592A true JP2015017592A (ja) 2015-01-29

Family

ID=52438794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146687A Pending JP2015017592A (ja) 2013-07-12 2013-07-12 内燃機関の触媒劣化判定装置

Country Status (1)

Country Link
JP (1) JP2015017592A (ja)

Similar Documents

Publication Publication Date Title
JP4729518B2 (ja) NOx触媒の劣化診断装置
WO2018097246A1 (ja) 排気浄化装置の異常診断システム
US9328646B2 (en) Integrated fuel catalyst monitor
US9261007B2 (en) Catalyst-degradation detection device
JP2008057404A (ja) 触媒劣化診断装置
EP2052137B1 (en) Catalyst monitoring system and method
US9932877B2 (en) Integrated fuel catalyst monitor
JP2010185325A (ja) NOx触媒の劣化診断装置
JP6278005B2 (ja) 排気浄化装置の劣化診断装置
JP2017025863A (ja) NOx吸蔵還元型触媒の異常診断装置
US10648391B2 (en) Abnormality diagnosis system for an exhaust gas purification apparatus
US10316776B2 (en) Control apparatus for an internal combustion engine
JP2012087749A (ja) 内燃機関の排気浄化装置
JP4366976B2 (ja) 排気ガスセンサの異常検出装置
US6912842B2 (en) Oxygen storage capacity estimation
US6594986B2 (en) Oxidant storage capacity estimation
JP5673797B2 (ja) 触媒劣化判定システム
JP2015017592A (ja) 内燃機関の触媒劣化判定装置
JP4779814B2 (ja) 内燃機関の触媒代表温度取得装置
JP2006329113A (ja) 触媒の劣化検出装置
US6591604B2 (en) Oxygen storage capacity estimation
JP2006138273A (ja) 内燃機関の排気浄化装置
JP2005090388A (ja) 内燃機関の排気浄化制御装置
JP2009013945A (ja) 内燃機関の触媒劣化判定システム