JP2015017230A - Conductive polymer composition, and production method thereof - Google Patents

Conductive polymer composition, and production method thereof Download PDF

Info

Publication number
JP2015017230A
JP2015017230A JP2013146874A JP2013146874A JP2015017230A JP 2015017230 A JP2015017230 A JP 2015017230A JP 2013146874 A JP2013146874 A JP 2013146874A JP 2013146874 A JP2013146874 A JP 2013146874A JP 2015017230 A JP2015017230 A JP 2015017230A
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer composition
acid
water
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013146874A
Other languages
Japanese (ja)
Other versions
JP6266241B2 (en
Inventor
信田 知希
Tomoki Shinoda
知希 信田
昌英 浦本
Masahide Uramoto
昌英 浦本
武市 裕介
Yusuke Takechi
裕介 武市
新史 小林
Shinji Kobayashi
新史 小林
晃浩 石田
Akihiro Ishida
晃浩 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomiyama Pure Chemical Industries Ltd
Original Assignee
Tomiyama Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomiyama Pure Chemical Industries Ltd filed Critical Tomiyama Pure Chemical Industries Ltd
Priority to JP2013146874A priority Critical patent/JP6266241B2/en
Publication of JP2015017230A publication Critical patent/JP2015017230A/en
Application granted granted Critical
Publication of JP6266241B2 publication Critical patent/JP6266241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a conductive polymer composition which has a high content of the conductive polymer, low viscosity, and excellent dispersibility, a conductive polymer material which has high conductivity and low hygroscopicity, a conductive base material, and further a solid electrolytic capacitor which has high capacity, low ESR, and excellent LC characteristics.SOLUTION: A conductive polymer composition contains: a conductive polymer (P1) doped with a polymeric organic acid or a salt thereof; a conductive polymer (P2) obtained by mixing a conductive polymer (P0) doped with an inorganic acid or a low molecular organic acid or a salt thereof with the conductive polymer (P1) in the presence of an oxidizing agent so that the inorganic acid or the low molecular organic acid or the salt thereof with which the conductive polymer (P0) is doped are replaced by the polymeric organic acid or the salt thereof with which the conductive polymer (P1) is doped; and water or a water-miscible organic solvent.

Description

本発明は、導電性ポリマー組成物及びその製造方法、さらには、導電性ポリマー材料、導電性基材、電極及び固体電解コンデンサに関する。   The present invention relates to a conductive polymer composition and a method for producing the same, and further relates to a conductive polymer material, a conductive substrate, an electrode, and a solid electrolytic capacitor.

導電性ポリマー材料は、帯電防止材、電磁波シールド材、コンデンサ(キャパシタ)等の電極、色素増感太陽電池、有機薄膜太陽電池等の電極及びエレクトロルミネッセンスディスプレイの電極等に用いられている。
このような導電性ポリマー材料としては、ピロール、チオフェン、3,4−エチレンジオキシチオフェン、アニリン等を重合して得られる導電性ポリマーが知られている。このような導電性ポリマーは、一般には水性溶媒中の分散液もしくは溶液、又は有機溶媒中の溶液(導電性ポリマー組成物)として提供されており、使用時に溶媒を除去して導電性ポリマー材料として使用される。
Conductive polymer materials are used for electrodes such as antistatic materials, electromagnetic wave shielding materials, capacitors (capacitors), dye-sensitized solar cells, organic thin film solar cells, and electroluminescent display electrodes.
As such a conductive polymer material, a conductive polymer obtained by polymerizing pyrrole, thiophene, 3,4-ethylenedioxythiophene, aniline, or the like is known. Such a conductive polymer is generally provided as a dispersion or solution in an aqueous solvent, or a solution (conductive polymer composition) in an organic solvent, and the solvent is removed at the time of use as a conductive polymer material. used.

しかし、導電性ポリマーの種類が同じであってもその製造方法によって得られる導電性ポリマー材料の物性は異なる。そのため、導電性ポリマー組成物の製造方法に関しては種々検討がなされている。   However, even if the kind of the conductive polymer is the same, the physical properties of the conductive polymer material obtained by the manufacturing method are different. For this reason, various studies have been made on methods for producing conductive polymer compositions.

特許文献1には、ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体が開示されている。該複合体の水分散体は、3,4−ジアルコキシチオフェンを、ポリ陰イオンの存在下で、ペルオキソ二硫酸を酸化剤として用い、水系溶媒中で重合することで得られることが開示されている。また、3,4−ジアルコキシチオフェンを、ポリ陰イオンの存在下で、酸化剤を用いて、水溶性の無機酸及び有機酸からなる群より選択される酸を添加し、反応溶液のpHを低下させて、水系溶媒中で化学酸化重合することで得られることが開示されている。   Patent Document 1 discloses an aqueous dispersion of a complex of poly (3,4-dialkoxythiophene) and a polyanion. It is disclosed that an aqueous dispersion of the complex can be obtained by polymerizing 3,4-dialkoxythiophene in the presence of a polyanion and using peroxodisulfuric acid as an oxidizing agent in an aqueous solvent. Yes. In addition, an acid selected from the group consisting of a water-soluble inorganic acid and an organic acid is added to 3,4-dialkoxythiophene using an oxidizing agent in the presence of a polyanion, and the pH of the reaction solution is adjusted. It is disclosed that it is obtained by lowering and chemical oxidative polymerization in an aqueous solvent.

特許文献2には、フェノールスルホン酸ノボラック樹脂、スルホン化ポリエステル又はポリスチレンスルホン酸の存在下で、チオフェン誘導体を水中又は水混和性溶剤との混合溶液からなる水性液中で電解重合することによって得られる導電性ポリマーの分散液が開示されている。   In Patent Document 2, it is obtained by electropolymerizing a thiophene derivative in water or an aqueous solution composed of a mixed solution with a water-miscible solvent in the presence of a phenol sulfonic acid novolak resin, sulfonated polyester or polystyrene sulfonic acid. Dispersions of conductive polymers are disclosed.

特許文献3には、ポリスチレンスルホン酸と、フェノールスルホン酸ノボラック樹脂及びスルホン化ポリエステルの少なくとも1種の存在下で、チオフェン誘導体を水中又は水混和性溶剤との混合溶液からなる水性液中で酸化重合することによって得られる導電性ポリマーの分散液が開示されている。   Patent Document 3 discloses oxidative polymerization of thiophene derivatives in water or a mixed solution of a water miscible solvent in the presence of at least one of polystyrene sulfonic acid, phenol sulfonic acid novolak resin and sulfonated polyester. Dispersions of conductive polymers obtained by doing so are disclosed.

特許文献4には、低い等価直列抵抗(ESR)を有する固体電解コンデンサを製造する方法であって、良好なエッジ被覆を持つ密なポリマー外層を、簡単にかつ再現性よく製造できる方法が開示されている。
また、電極物質の多孔質電極本体;電極物質の表面を覆う誘電体;及び誘電体表面を完全に又は部分的に覆う導電性材料を少なくとも含む固体電解質を少なくとも含むコンデンサ本体に、ポリアニリン及び/又はポリチオフェンを含む導電性ポリマーの粒子b)、結合剤c)及び分散剤d)を含む分散物a)を適用する工程;及び導電性ポリマー外層の形成のために、分散剤d)を少なくとも部分的に除去し、かつ/又は結合剤c)を硬化させる工程を含み、分散体a)中の700nm未満の粒径を有する導電性ポリマーの粒子b)の割合が、分散物の固形分の少なくとも5質量%である方法により電解質コンデンサを製造することが開示されている。
Patent Document 4 discloses a method of manufacturing a solid electrolytic capacitor having a low equivalent series resistance (ESR), and can easily and reproducibly form a dense polymer outer layer having a good edge coating. ing.
Also, a polyaniline and / or a capacitor body comprising at least a porous electrode body of electrode material; a dielectric covering the surface of the electrode material; and a solid electrolyte containing at least a conductive material covering the dielectric surface completely or partially. Applying a dispersion a) comprising conductive polymer particles b) comprising a polythiophene, a binder c) and a dispersing agent d); and for the formation of the outer conducting polymer layer, the dispersing agent d) is at least partially And / or curing the binder c), wherein the proportion of conductive polymer particles b) having a particle size of less than 700 nm in the dispersion a) is at least 5% of the solids content of the dispersion. It is disclosed that an electrolyte capacitor is manufactured by a method of mass%.

特許文献5、6には、高導電率な導電性ポリマー材料を提供するための導電性ポリマー懸濁液とその製造方法と、低ESRの固体電解コンデンサ及びその製造方法が開示されている。すなわち、低分子有機酸又はその塩からなるドーパントを含む溶媒中で、導電性ポリマーを与えるモノマーを酸化剤により化学酸化重合して、導電性ポリマーを合成して精製し、次いで、ポリ酸成分を含む水系溶媒中で、前記精製された導電性ポリマーと酸化剤とを混合して、導電性ポリマー懸濁液を製造することが開示されている。   Patent Documents 5 and 6 disclose a conductive polymer suspension and a manufacturing method thereof for providing a conductive polymer material having high conductivity, a low ESR solid electrolytic capacitor, and a manufacturing method thereof. That is, in a solvent containing a dopant composed of a low molecular organic acid or a salt thereof, a monomer that gives a conductive polymer is chemically oxidatively polymerized with an oxidizing agent to synthesize and purify the conductive polymer, and then the polyacid component is purified. It is disclosed that a conductive polymer suspension is produced by mixing the purified conductive polymer and an oxidizing agent in an aqueous solvent.

特開2004−59666号公報JP 2004-59666 A 国際公開第2009/131011号International Publication No. 2009/131101 国際公開第2009/131012号International Publication No. 2009/131012 特開2007−27767号公報JP 2007-27767 A 特開2010−40776号公報JP 2010-40776 A 特開2010−40770号公報JP 2010-40770 A

特許文献1、2、3に開示された方法では、ポリスチレンスルホン酸水溶液の存在下、過硫酸アンモニウム、鉄塩、エチレンジオキシチオフェン等を混合して反応し、導電性ポリマーの分散液を得る方法に基づき、さらに製造条件を変更することによってその性質を向上させている。   In the methods disclosed in Patent Documents 1, 2, and 3, in the presence of an aqueous polystyrenesulfonic acid solution, ammonium persulfate, iron salt, ethylenedioxythiophene, etc. are mixed and reacted to obtain a conductive polymer dispersion. Based on this, the properties are further improved by changing the manufacturing conditions.

しかし、これらの方法によって得られる導電性ポリマー組成物は、導電性ポリマーの含有量を増加させると、粘度が著しく上昇し、更に高濃度するとゲル化してしまう可能性もあり、分散安定性が損なわれてしまうため、高濃度で低粘度の導電性組成物を得ることは困難であった。また未ドープのポリ陰イオン、つまり導電性に寄与しないポリ陰イオンが余剰に存在してしまい、より高導電率なポリマーや吸湿性の少ないポリマー材料を得る製造方法としては、十分な方法とは言い難い。   However, the conductive polymer composition obtained by these methods has a markedly increased viscosity when the content of the conductive polymer is increased, and may be gelled at a higher concentration, thereby impairing dispersion stability. Therefore, it was difficult to obtain a conductive composition having a high concentration and a low viscosity. In addition, there is an excess of undoped poly anions, that is, poly anions that do not contribute to conductivity, and as a manufacturing method to obtain a polymer material with higher conductivity or less hygroscopicity, a sufficient method is It's hard to say.

特許文献4に開示されている導電性ポリマー分散体中に導電性ポリマーの粉末を混合する方法では、導電性ポリマーの総含有量を増加させることは容易である一方、分散体中の導電性ポリマーと粉末形態の導電性ポリマーが、相互作用もなく単に混ざり合っていることから、粉末の沈降が起こり導電性ポリマー溶液の分散安定性が乏しい。また、導電性ポリマー分散体から溶媒を除去して得られる導電性ポリマー材料は、海島状で凹凸が大きくフィルム状に乏しいという課題がある。   In the method of mixing the conductive polymer powder in the conductive polymer dispersion disclosed in Patent Document 4, it is easy to increase the total content of the conductive polymer, while the conductive polymer in the dispersion is easy to increase. And the conductive polymer in powder form are simply mixed together without interaction, so that powder sedimentation occurs and the dispersion stability of the conductive polymer solution is poor. In addition, the conductive polymer material obtained by removing the solvent from the conductive polymer dispersion has a problem that it has a sea-island shape with large irregularities and a poor film shape.

特許文献5、6に開示された方法では、導電性ポリマー粉末にポリ酸がドープして分散していることから良好な分散性を示し、結晶性が高い導電性ポリマー材料が得られるとしている。このような組成物は、未ドープのポリ陰イオン、つまり導電性に寄与しないポリ陰イオンが余剰に存在してしまい、より高導電率なポリマーや吸湿性の少ない導電性ポリマー材料を得る製造方法としては、十分な方法とは言い難い。また、当該導電性ポリマー分散体から溶媒を除去して得られる導電性ポリマー材料は、結晶性が高いために硬く柔軟性に欠けるという課題がある。   In the methods disclosed in Patent Documents 5 and 6, since a conductive acid powder is doped with a polyacid and dispersed therein, a conductive polymer material exhibiting good dispersibility and high crystallinity is obtained. In such a composition, an undoped poly anion, that is, a poly anion that does not contribute to conductivity is excessively present, and a production method for obtaining a polymer having a higher conductivity or a conductive polymer material having less hygroscopicity It is hard to say that it is a sufficient method. Further, the conductive polymer material obtained by removing the solvent from the conductive polymer dispersion has a problem that it is hard and lacks flexibility because of its high crystallinity.

本発明は、上記の課題を解決することにあり、具体的には導電性ポリマー成分の含有量が高く低粘度である分散性の良好な導電性ポリマー組成物を提供することを目的とする。また、導電率が高く、吸湿性の少ない導電性ポリマー材料、導電性基材を提供することを目的とする。さらに、高容量でESRが低く、LC特性に優れた固体電解コンデンサを提供することにある。   An object of the present invention is to solve the above-described problems. Specifically, an object of the present invention is to provide a conductive polymer composition having a high dispersibility having a high content of a conductive polymer component and a low viscosity. It is another object of the present invention to provide a conductive polymer material and a conductive base material having high conductivity and low hygroscopicity. It is another object of the present invention to provide a solid electrolytic capacitor having high capacity, low ESR, and excellent LC characteristics.

本発明者等は、前記課題を解決すべく鋭意検討を重ねた結果、下記を要旨とする本発明に到達した。
1.高分子有機酸又はその塩がドーピングされた導電性ポリマー(P1)と、
無機酸若しくは低分子有機酸又はそれらの塩がドーピングされた導電性ポリマー(P0)における無機酸若しくは低分子有機酸又はそれらの塩が、ド―パント交換によって導電性ポリマー(P1)にドーピングされた高分子有機酸又はその塩によりドーピングされた導電性ポリマー(P2)と、
水又は水混和性の有機溶媒からなる溶媒と、
を含有することを特徴とする導電性ポリマー組成物。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have arrived at the present invention having the following summary.
1. A conductive polymer (P1) doped with a high molecular organic acid or a salt thereof;
The conductive polymer (P1) is doped with the inorganic acid or the low molecular organic acid or the salt thereof in the conductive polymer (P0) doped with the inorganic acid or the low molecular organic acid or the salt thereof by dopant exchange. A conductive polymer (P2) doped with a high molecular organic acid or a salt thereof;
A solvent consisting of water or a water-miscible organic solvent;
A conductive polymer composition comprising:

2.導電性ポリマー(P1)の100質量部に対して、導電性ポリマー(P2)を0.01〜20質量部含有する上記1に記載の導電性ポリマー組成物。
3.導電性ポリマー(P1)と導電性ポリマー(P2)とを合計で0.1〜50質量%含有する上記1又は2に記載の導電性ポリマー組成物。
4.前記導電性ポリマー(P1)が、ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーと、ドーパントとしての高分子有機酸又はその塩とを、水又は水混和性有機溶媒中で、酸化剤を用いて酸化重合して得られる上記1〜3のいずれかに記載の導電性ポリマー組成物。
5.前記導電性ポリマー(P0)は、ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーと、ドーパントとしての無機酸若しくは低分子有機酸又はその塩とを、水又は有機溶媒を含む溶媒中で、酸化剤を用いて酸化重合して得られる上記1〜4のいずれかに記載の導電性ポリマー組成物。
6.前記高分子有機酸が、少なくともスルホン酸基(−SOH)を有する上記1〜5のいずれかに記載の導電性ポリマー組成物。
7.前記高分子有機酸が、ポリエステルスルホン酸、ポリスチレンスルホン酸及びその塩からなる群から選ばれる少なくとも1種である上記6に記載の導電性ポリマー組成物。
8.前記低分子有機酸が、ベンゼンスルホン酸、ナフタレンスルホン酸、カンファースルホン酸、アントラキノンスルホン酸、及びそれらの塩からなる群からなる群から選択される少なくとも1種である上記1〜7のいずれかに記載の導電性ポリマー組成物。
2. 2. The conductive polymer composition according to 1 above, containing 0.01 to 20 parts by mass of the conductive polymer (P2) with respect to 100 parts by mass of the conductive polymer (P1).
3. 3. The conductive polymer composition according to 1 or 2 above, which contains the conductive polymer (P1) and the conductive polymer (P2) in a total amount of 0.1 to 50% by mass.
4). The conductive polymer (P1) comprises at least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof, and a polymer organic acid or salt thereof as a dopant, water or a water-miscible organic solvent. 4. The conductive polymer composition according to any one of 1 to 3 obtained by oxidative polymerization using an oxidizing agent.
5. The conductive polymer (P0) comprises at least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof, an inorganic acid or a low molecular organic acid or a salt thereof as a dopant, water or an organic solvent The conductive polymer composition according to any one of the above 1 to 4, obtained by oxidative polymerization using an oxidizing agent in a solvent containing
6). 6. The conductive polymer composition according to any one of 1 to 5, wherein the high molecular organic acid has at least a sulfonic acid group (—SO 3 H).
7). 7. The conductive polymer composition according to 6 above, wherein the high molecular organic acid is at least one selected from the group consisting of polyester sulfonic acid, polystyrene sulfonic acid and salts thereof.
8). Any one of the above 1 to 7, wherein the low molecular organic acid is at least one selected from the group consisting of benzenesulfonic acid, naphthalenesulfonic acid, camphorsulfonic acid, anthraquinonesulfonic acid, and salts thereof. The conductive polymer composition described.

9.動的光散乱法で測定された体積換算の粒径(D50)が1〜200nmの粒子を含有する請求項1〜8のいずれかに記載の導電性ポリマー組成物。
10.ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーを、ドーパントである高分子有機酸又はその塩及び酸化剤を用い、水、有機溶媒又は水混和性の有機溶媒からなる溶媒中で酸化重合して導電性ポリマー(P1)の水又は水混和性の有機溶媒の分散液を得る工程(a)と、
ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーを、ドーパントである無機酸若しくは低分子有機酸又はそれらの塩及び酸化剤を用いて、水、有機溶媒叉は水混和性の有機溶媒からなる溶媒中で酸化重合し、導電性ポリマー(P0)を得る工程(b)と、
工程(b)で得られた導電性ポリマー(P0)を、工程(a)で得られた導電性ポリマー(P1)の水又は水混和性の有機溶媒の分散液と酸化剤の存在下に混合し、ド―パント交換する工程(c)と、
を有する請求項1に記載の導電性ポリマー組成物を製造する方法。
11.前記工程(c)における酸化剤が過硫酸塩である上記10に記載の導電性ポリマー組成物の製造方法。
12.さらに、導電性向上成分及び/又は密着性向上成分を混合する工程(d)を有する上記10又は11に記載の導電性ポリマーの製造方法。
13.さらに、湿式ビーズミル、湿式ジェットミル、又は超音波装置を用いた粉砕工程(e)を有する請求項10〜12のいずれかに記載の導電性ポリマー組成物の製造方法。
9. The conductive polymer composition according to any one of claims 1 to 8, wherein the conductive polymer composition contains particles having a volume-converted particle size (D50) measured by a dynamic light scattering method of 1 to 200 nm.
10. At least one monomer selected from the group consisting of pyrrole, thiophene, and derivatives thereof is composed of water, an organic solvent, or a water-miscible organic solvent using a high-molecular organic acid or salt thereof as a dopant and an oxidizing agent. A step (a) of obtaining a dispersion of water or a water-miscible organic solvent of the conductive polymer (P1) by oxidative polymerization in a solvent;
At least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof is mixed with water, an organic solvent or water using a dopant inorganic acid or low molecular organic acid or a salt thereof and an oxidizing agent. A step (b) of obtaining a conductive polymer (P0) by oxidative polymerization in a solvent composed of a conductive organic solvent;
The conductive polymer (P0) obtained in the step (b) is mixed in the presence of an oxidizing agent with a dispersion of the conductive polymer (P1) obtained in the step (a) in water or a water-miscible organic solvent. And (c) replacing the dopant,
A method for producing a conductive polymer composition according to claim 1.
11. 11. The method for producing a conductive polymer composition as described in 10 above, wherein the oxidizing agent in the step (c) is persulfate.
12 Furthermore, the manufacturing method of the conductive polymer of said 10 or 11 which has the process (d) which mixes an electroconductivity improvement component and / or an adhesive improvement component.
13. Furthermore, the manufacturing method of the conductive polymer composition in any one of Claims 10-12 which has the grinding | pulverization process (e) using a wet bead mill, a wet jet mill, or an ultrasonic device.

14.上記1〜9のいずれかに記載の導電性ポリマー組成物から前記溶媒を除去して得られる導電性ポリマー材料。
15.基材上に、上記14に記載の導電性ポリマー材料を含む層を備える導電性基材。
16.前記基材がポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、アクリル樹脂、ビニルエステル樹脂及びスチレン樹脂からなる群から選択される少なくとも1種を含む樹脂基材である上記15に記載の導電性基材。
17.上記16に記載の導電性基材を備える電極。
14 The electroconductive polymer material obtained by removing the said solvent from the electroconductive polymer composition in any one of said 1-9.
15. A conductive base material comprising a layer containing the conductive polymer material described in 14 above on a base material.
16. The above 15 wherein the substrate is a resin substrate containing at least one selected from the group consisting of polyester resin, polyamide resin, polyimide resin, polyurethane resin, polystyrene resin, polyolefin resin, acrylic resin, vinyl ester resin and styrene resin. The electroconductive base material as described in.
17. 17. An electrode comprising the conductive substrate according to 16 above.

本発明によれば、導電性ポリマーの導電性部位の含有量が高く、低粘度である分散性の良好な導電性ポリマー組成物が提供される。かかる本発明の導電性ポリマー組成物からは、導電率が高く、吸湿性の少ない導電性ポリマー材料、及び導電性基材、さらに、高容量でESRが低く、LC特性に優れた固体電解コンデンサが得られる。
本発明により何故に上記のごとき効果が得られるかについては必ずしも明らかではないがほぼ次のように推定される。
ADVANTAGE OF THE INVENTION According to this invention, the content of the electroconductive site | part of a conductive polymer is high, and the conductive polymer composition of the favorable dispersibility which is low viscosity is provided. From the conductive polymer composition of the present invention, a conductive polymer material having high conductivity and low hygroscopicity, and a conductive base material, and further, a solid electrolytic capacitor having high capacity, low ESR, and excellent LC characteristics are provided. can get.
The reason why the above-described effect is obtained by the present invention is not necessarily clear, but is estimated as follows.

導電性ポリマー(P2)は、導電性ポリマー(P1)における、未ドープのフリーな高分子有機酸をドーパントとすることで、高分子有機酸又はその塩を増やさずに導電性成分のみを増加させることができるため、導電性成分の高濃度化ができる。また、通常、高分子有機酸又はその塩は増加に伴って、3次元状架橋ネットワークの形成によって生じる粘度の増加を抑えることができる。また、導電性ポリマー(P2)は、高分子有機酸にドーピングされているため、沈降することなく良好な分散性の有する分散液である導電性ポリマー組成物が得られる。   The conductive polymer (P2) increases only the conductive component without increasing the high molecular organic acid or its salt by using the undoped free high molecular organic acid in the conductive polymer (P1) as a dopant. Therefore, the concentration of the conductive component can be increased. In general, as the organic organic acid or a salt thereof increases, an increase in viscosity caused by the formation of a three-dimensional crosslinked network can be suppressed. Moreover, since the conductive polymer (P2) is doped with a high molecular organic acid, a conductive polymer composition which is a dispersion having good dispersibility can be obtained without sedimentation.

また、本発明の導電性ポリマー組成物は、良好な分散性を有しているため、フィルム状で均一な膜が得られ、吸湿性の低い導電性ポリマー材料が得られる。また、本発明の導電性ポリマー組成物では、導電性ポリマー(P1)と(P2)の含有比率を調整することによって、高い柔軟性を有する導電性ポリマー材料のフィルムを得ることができる。   Further, since the conductive polymer composition of the present invention has good dispersibility, a film-like and uniform film can be obtained, and a conductive polymer material having low hygroscopicity can be obtained. Moreover, in the conductive polymer composition of the present invention, a film of a conductive polymer material having high flexibility can be obtained by adjusting the content ratio of the conductive polymers (P1) and (P2).

〔導電性ポリマー組成物の製造〕
本発明の導電性ポリマー組成物は、下記する工程(a)、工程(b)及び工程(c)を通じて製造される。
〔工程(a)〕
工程(a)では、ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーを、ドーパントである高分子有機酸若しくはその塩及び酸化剤を用い、水又は水混和性の有機溶媒からなる溶媒中で酸化重合して導電性ポリマー(P1)の水又は水混和性の有機溶媒の分散液が調製される。
[Production of conductive polymer composition]
The conductive polymer composition of the present invention is produced through the following step (a), step (b) and step (c).
[Step (a)]
In the step (a), at least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof is used as a water or water-miscible organic material using a high molecular organic acid or salt thereof as a dopant and an oxidizing agent. A conductive polymer (P1) water or water-miscible organic solvent dispersion is prepared by oxidative polymerization in a solvent comprising a solvent.

高分子有機酸若しくはその塩は水溶性を有し、ドーパントとしての機能と水系溶媒中での分散材としての機能とを備えているため、これによりドーピングすることにより良好な分散性の導電性ポリマー(P1)が得られる。
溶媒としては、水が好ましいが、水混和性の有機溶媒叉は水と水混和性の有機溶媒との混合溶媒でもよい。水混和性の有機溶媒の具体例としては、メタノール、エタノール、プロパノール、酢酸等のプロトン性極性溶媒;N,N−ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル、アセトン等の非プロトン性極性溶媒が挙げられる。
High molecular organic acid or its salt is water-soluble, and has a function as a dopant and a function as a dispersing agent in an aqueous solvent. (P1) is obtained.
The solvent is preferably water, but may be a water-miscible organic solvent or a mixed solvent of water and a water-miscible organic solvent. Specific examples of water-miscible organic solvents include protic polar solvents such as methanol, ethanol, propanol and acetic acid; and aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide, acetonitrile and acetone.

ピロールの誘導体の具体例としては、3−ヘキシルピロール等の3−アルキルピロール、3,4−ジヘキシルピロール等の3,4−ジアルキルピロール、3−メトキシピロール等の3−アルコキシピロール、3,4−ジメトキシピロール等の3,4−ジメトキシピロール等が挙げられる。チオフェンの誘導体の具体例としては、3,4−エチレンジオキシチオフェン叉はその誘導体、3−ヘキシルチオフェン等の3−アルキルチオフェン、3−メトキシチオフェン等の3−アルコキシチオフェンが挙げられる。3,4−エチレンジオキシチオフェンの誘導体としては、3,4−(1−ヘキシル)エチレンジオキシチオフェン等の3,4−(1−アルキル)エチレンジオキシチオフェンが挙げられる。   Specific examples of the pyrrole derivative include 3-alkylpyrrole such as 3-hexylpyrrole, 3,4-dialkylpyrrole such as 3,4-dihexylpyrrole, 3-alkoxypyrrole such as 3-methoxypyrrole, 3,4- Examples include 3,4-dimethoxypyrrole such as dimethoxypyrrole. Specific examples of the thiophene derivatives include 3,4-ethylenedioxythiophene or derivatives thereof, 3-alkylthiophenes such as 3-hexylthiophene, and 3-alkoxythiophenes such as 3-methoxythiophene. Examples of 3,4-ethylenedioxythiophene derivatives include 3,4- (1-alkyl) ethylenedioxythiophene such as 3,4- (1-hexyl) ethylenedioxythiophene.

これらのなかでも、モノマーとしては、下記式(1)で示される3,4−エチレンジオキシチオフェン誘導体が好ましい。

Figure 2015017230

(式中、Rは水素原子、又は直鎖若しくは分岐の、置換若しくは未置換のC1〜C18アルキル基、置換又は未置換のC5〜C12シクロアルキル基、置換又は未置換のC6〜C14アリール基、あるいは置換又は未置換のC7〜C18アラルキル基を示す。) Among these, 3,4-ethylenedioxythiophene derivatives represented by the following formula (1) are preferable as the monomer.
Figure 2015017230

Wherein R is a hydrogen atom, a linear or branched, substituted or unsubstituted C1-C18 alkyl group, a substituted or unsubstituted C5-C12 cycloalkyl group, a substituted or unsubstituted C6-C14 aryl group, Or a substituted or unsubstituted C7-C18 aralkyl group is shown.)

高分子有機酸としては、ドーパントとして知られている既知の高分子有機酸又はその塩
を用いる。高分子有機酸の具体例としては、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等のポリカルボン酸;ポリビニルスルホン酸、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)、ポリスチレンスルホン酸、ポリエステルスルホン酸等のポリスルホン酸又はこれらの構造単位を有する共重合体が挙げられる。高分子有機酸の塩の具体例としては、リチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩が挙げられる。
これらのなかでも、ポリスチレンスルホン酸又はポリエステルスルホン酸が好ましい。
As the high molecular organic acid, a known high molecular organic acid known as a dopant or a salt thereof is used. Specific examples of the high molecular organic acid include polycarboxylic acids such as polyacrylic acid, polymethacrylic acid, and polymaleic acid; polyvinyl sulfonic acid, poly (2-acrylamido-2-methylpropane sulfonic acid), polystyrene sulfonic acid, and polyester sulfone. Examples thereof include polysulfonic acids such as acids or copolymers having these structural units. Specific examples of the salt of the polymer organic acid include lithium salt, sodium salt, potassium salt, and ammonium salt.
Among these, polystyrene sulfonic acid or polyester sulfonic acid is preferable.

これらの高分子有機酸若しくはその塩は、1種のみを用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、下記式(2)で示されるポリスチレンスルホン酸が特に好ましい。これらは、1種を用いることもでき、2種以上を組み合わせて用いることもできる。

Figure 2015017230
These high molecular organic acids or salts thereof can be used alone or in combination of two or more. Of these, polystyrenesulfonic acid represented by the following formula (2) is particularly preferable. These may be used alone or in combination of two or more.
Figure 2015017230

高分子有機酸の重量平均分子量としては、良好な分散性と高い導電率を示す導電性ポリマー組成物が得られる点から、10,000〜2,000,000が好ましく、30,000〜500,000がより好ましく、50,000〜500,000が特に好ましい。重量平均分子量が10,000以下の場合、分散性が損なわれて導電性が低下する傾向がある。2,000,000以上の場合、粘度の増加が著しくなり分散性が損なわれる傾向にある。重量平均分子量は、GPC(ゲルパーミエションクロマトグラフ)測定で算出した値とする。   The weight average molecular weight of the high molecular organic acid is preferably 10,000 to 2,000,000, preferably 30,000 to 500,000 from the viewpoint of obtaining a conductive polymer composition exhibiting good dispersibility and high conductivity. 000 is more preferable, and 50,000 to 500,000 is particularly preferable. When the weight average molecular weight is 10,000 or less, the dispersibility is impaired and the conductivity tends to decrease. In the case of 2,000,000 or more, the viscosity is remarkably increased and the dispersibility tends to be impaired. The weight average molecular weight is a value calculated by GPC (gel permeation chromatography) measurement.

高分子有機酸若しくはその塩の使用量は、高い導電率を示す導電性ポリマー組成物が得られる点から、溶媒中に含まれるモノマー1質量部に対して0.5〜3.0質量部が好ましく、0.6〜2.5質量部がより好ましく、0.8〜1.8質量部が更に好ましく、1.0〜1.3質量部が特に好ましい。モノマー1質量部に対して、高分子有機酸若しくはその塩が0.5質量部以上であることにより、導電性ポリマーが十分に分散する。一方、モノマー1質量部に対して、3.0質量部以下であることにより、十分な導電性が得られる。   The amount of the polymeric organic acid or salt thereof used is 0.5 to 3.0 parts by mass with respect to 1 part by mass of the monomer contained in the solvent, from the point that a conductive polymer composition exhibiting high conductivity is obtained. Preferably, 0.6 to 2.5 parts by mass is more preferable, 0.8 to 1.8 parts by mass is further preferable, and 1.0 to 1.3 parts by mass is particularly preferable. When the polymer organic acid or salt thereof is 0.5 part by mass or more with respect to 1 part by mass of the monomer, the conductive polymer is sufficiently dispersed. On the other hand, sufficient electroconductivity is acquired by being 3.0 mass parts or less with respect to 1 mass part of monomers.

酸化剤は、特に制限はなく、塩化鉄(III)六水和物、無水塩化鉄(III)、硝酸鉄(III)九水和物、無水硝酸第二鉄、硫酸鉄(III)n水和物(n=3〜12)、硫酸鉄(III)アンモニウム十二水和物、過塩素酸鉄(III)n水和物(n=1,6)、テトラフルオロホウ酸鉄(III)等の無機酸の鉄(III)塩;塩化銅(II)、硫酸銅(II)、テトラフルオロホウ酸銅(II)等の無機酸の銅(II)塩;テトラフルオロホウ酸ニトロソニウム;過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩;過ヨウ素酸カリウム等の過ヨウ素酸塩;過酸化水素、オゾン、ヘキサシアノ鉄(III)酸カリウム、硫酸四アンモニウムセリウム(IV)二水和物、臭素、ヨウ素;p−トルエンスルホン酸鉄(III)等の有機酸の鉄(III)塩を用いることができる。   The oxidizing agent is not particularly limited, and iron (III) chloride hexahydrate, anhydrous iron (III) chloride, iron (III) nitrate nonahydrate, anhydrous ferric nitrate, iron (III) sulfate n hydrate Products (n = 3-12), iron (III) sulfate dodecahydrate, iron (III) perchlorate nhydrate (n = 1,6), iron (III) tetrafluoroborate, etc. Iron (III) salts of inorganic acids; copper (II) salts of inorganic acids such as copper (II) chloride, copper (II) sulfate, copper (II) tetrafluoroborate; nitrosonium tetrafluoroborate; ammonium persulfate; Persulfates such as sodium persulfate and potassium persulfate; periodates such as potassium periodate; hydrogen peroxide, ozone, potassium hexacyanoferrate (III), tetraammonium cerium sulfate (IV) dihydrate, Bromine, iodine; iron p-toluenesulfonate It may be used iron (III) salts of organic acids III), or the like.

なかでも、無機酸の鉄塩(III)、過硫酸塩が好ましく、硫酸鉄(III)n水和物、過硫酸アンモニウムがより好ましい。酸化剤は、1種を用いることもでき、2種以上を組み合わせて用いることもできる。   Of these, iron salts (III) and persulfates of inorganic acids are preferable, and iron (III) sulfate n hydrate and ammonium persulfate are more preferable. One oxidizing agent can be used, or two or more oxidizing agents can be used in combination.

酸化剤の使用量は、特に制限はないが、より穏やかな酸化雰囲気で反応させて高導電率の重合体を得る点から、モノマー1質量部に対して、酸化剤が0.5〜100質量部が好ましく、1〜40質量部がより好ましい。
酸化重合は、化学酸化重合でも電解酸化重合でもよい。化学酸化重合は、攪拌下で行うことが好ましい。化学酸化重合の反応温度は、特に限定されないが、使用する溶媒の還流温度を上限とすることができ、例えば、0〜100℃が好ましく、10〜50℃がより好ましい。化学酸化重合の反応時間は、酸化剤の種類や使用量、反応温度、攪拌条件等にもよるが、5〜100時間であることが好ましい。
なお、高分子有機酸がドーピングして導電性ポリマー(P1)が生成すると、反応液が濃紺色に変化する。
The amount of the oxidizing agent used is not particularly limited, but the oxidizing agent is used in an amount of 0.5 to 100 mass with respect to 1 mass part of the monomer from the viewpoint of obtaining a polymer having high conductivity by reacting in a milder oxidizing atmosphere. Part is preferable, and 1 to 40 parts by mass is more preferable.
The oxidation polymerization may be chemical oxidation polymerization or electrolytic oxidation polymerization. The chemical oxidative polymerization is preferably performed with stirring. Although the reaction temperature of chemical oxidative polymerization is not particularly limited, the upper limit may be the reflux temperature of the solvent used. For example, 0 to 100 ° C is preferable, and 10 to 50 ° C is more preferable. The reaction time of the chemical oxidative polymerization is preferably 5 to 100 hours, although it depends on the kind and amount of the oxidizing agent used, the reaction temperature, the stirring conditions, and the like.
Note that when the conductive polymer (P1) is formed by doping with a high molecular organic acid, the reaction solution changes to a dark blue color.

〔工程(b)〕
工程(b)では、ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーを、ドーパントである無機酸若しくは低分子有機酸若しくはそれらの塩及び酸化剤を用いて、水、有機溶媒又は水混和性の有機溶媒からなる溶媒中で酸化重合して導電性ポリマー(P0)を調製する。
モノマーとしては、前述の工程(a)におけるモノマーと同じもの、又は、同様のものを用いることが好ましい。溶媒中のモノマーの濃度は、たとえ過剰であっても、導電性ポリマー(P0)の合成後に分離して除去することが可能なため特に制限はないが、高い導電性ポリマー(P0)を収率良く得るために、0.5〜70質量%が好ましく、1〜50質量%がより好ましい。
[Step (b)]
In the step (b), at least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof is mixed with water using an inorganic acid or low molecular organic acid or a salt thereof as a dopant and an oxidizing agent. A conductive polymer (P0) is prepared by oxidative polymerization in a solvent comprising an organic solvent or a water-miscible organic solvent.
As a monomer, it is preferable to use the same thing as the monomer in the above-mentioned process (a), or the same thing. The concentration of the monomer in the solvent is not particularly limited because it can be separated and removed after the synthesis of the conductive polymer (P0) even if it is excessive, but the yield of the high conductive polymer (P0) is high. In order to obtain well, 0.5-70 mass% is preferable, and 1-50 mass% is more preferable.

溶媒は、モノマーとの相溶性が良好な溶媒を選定することが好ましく、水でも有機溶媒でも水混和性の有機溶媒でも、又はそれらの混合物でもよい。有機溶媒の具体例としては、メタノール、エタノール、プロパノール等のアルコール系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ヘキサン等の脂肪族炭化水素系溶媒が挙げられる。有機溶媒叉は水混和性の有機溶媒は、1種を用いることもでき、2種以上を組み合わせて用いることもできる。なかでも、エタノール又はエタノールと水との混合溶媒が好ましい。   The solvent is preferably a solvent having good compatibility with the monomer, and may be water, an organic solvent, a water-miscible organic solvent, or a mixture thereof. Specific examples of the organic solvent include alcohol solvents such as methanol, ethanol and propanol; aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as hexane. One organic solvent or water-miscible organic solvent can be used, or two or more organic solvents can be used in combination. Of these, ethanol or a mixed solvent of ethanol and water is preferable.

ドーパントとしては、無機酸及び/又は低分子有機酸若しくはその塩が用いられる。無機酸としては、例えば、硫酸、過塩素酸などのプロトン酸などが挙げられる。また、低分子有機酸若しくはその塩は、例えば、ベンゼンスルホン酸、ナフタレンスルホン酸、カンファースルホン酸、アントラキノンスルホン酸若しくはそれらの誘導体、及びそれらの塩からなる群から選択される少なくとも1種が好ましい。具体例としては、アルキルスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、アントラキノンスルホン酸、カンファースルホン酸若しくはそれらの誘導体等、又はそれらの鉄(III)塩が挙げられる。   As the dopant, an inorganic acid and / or a low molecular organic acid or a salt thereof is used. Examples of inorganic acids include protonic acids such as sulfuric acid and perchloric acid. The low molecular organic acid or salt thereof is preferably at least one selected from the group consisting of, for example, benzenesulfonic acid, naphthalenesulfonic acid, camphorsulfonic acid, anthraquinonesulfonic acid or derivatives thereof, and salts thereof. Specific examples include alkyl sulfonic acid, benzene sulfonic acid, naphthalene sulfonic acid, anthraquinone sulfonic acid, camphor sulfonic acid or derivatives thereof, or iron (III) salts thereof.

低分子有機酸は、モノスルホン酸でもジスルホン酸でもトリスルホン酸でもよい。アルキルスルホン酸の誘導体の具体例としては、2−アクリルアミド−2−メチルプロパンスルホン酸が挙げられる。ベンゼンスルホン酸の誘導体の具体例としては、フェノールスルホン酸、スチレンスルホン酸、トルエンスルホン酸、ドデシルベンゼンスルホン酸が挙げられる。ナフタレンスルホン酸の誘導体の具体例としては、1−ナフタレンスルホン酸、2−ナフタレンスルホン酸、1,3−ナフタレンジスルホン酸、1,3,6−ナフタレントリスルホン酸、6−エチル−1−ナフタレンスルホン酸が挙げられる。アントラキノンスルホン酸の誘導体の具体例としては、アントラキノン−1−スルホン酸、アントラキノン−2−スルホン酸、アントラキノン−2,6−ジスルホン酸、2−メチルアントラキノン−6−スルホン酸が挙げられる。   The low molecular organic acid may be monosulfonic acid, disulfonic acid, or trisulfonic acid. Specific examples of the alkylsulfonic acid derivative include 2-acrylamido-2-methylpropanesulfonic acid. Specific examples of the benzenesulfonic acid derivative include phenolsulfonic acid, styrenesulfonic acid, toluenesulfonic acid, and dodecylbenzenesulfonic acid. Specific examples of the naphthalene sulfonic acid derivatives include 1-naphthalene sulfonic acid, 2-naphthalene sulfonic acid, 1,3-naphthalene disulfonic acid, 1,3,6-naphthalene trisulfonic acid, and 6-ethyl-1-naphthalene sulfone. Examples include acids. Specific examples of the derivatives of anthraquinone sulfonic acid include anthraquinone-1-sulfonic acid, anthraquinone-2-sulfonic acid, anthraquinone-2,6-disulfonic acid, and 2-methylanthraquinone-6-sulfonic acid.

そのなかでも、1−ナフタレンスルホン酸、2−ナフタレンスルホン酸、1,3,6−ナフタレントリスルホン酸、アントラキノンジスルホン酸、p−トルエンスルホン酸、カンファースルホン酸又はこれらの鉄(III)塩が好ましい。特に、ドーパントを兼ねる性質を有していることから、p−トルエンスルホン酸鉄(III)がより好ましい。
ドーパントの使用量は、過剰に添加しても導電性ポリマーの合成後に分離することで除去が可能なため特に制限はないが、高い導電性ポリマーを得るためには、モノマー1質量部に対して1〜100質量部が好ましく、1〜30質量部がより好ましい。
Among these, 1-naphthalenesulfonic acid, 2-naphthalenesulfonic acid, 1,3,6-naphthalenetrisulfonic acid, anthraquinone disulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid or iron (III) salts thereof are preferable. . In particular, iron (III) p-toluenesulfonate is more preferable because it has the property of serving as a dopant.
The amount of the dopant used is not particularly limited because it can be removed by separation after the synthesis of the conductive polymer even if it is added excessively. However, in order to obtain a high conductive polymer, 1-100 mass parts is preferable and 1-30 mass parts is more preferable.

酸化重合は、攪拌下で行うことが好ましい。化学酸化重合の反応温度は、特に限定されないが、使用する溶媒の還流温度を上限として行い、0〜100℃が好ましく、10〜50℃がより好ましい。反応温度が好ましくないと、得られるポリマーの導電性が低下する場合がある。酸化重合の反応時間は、酸化剤の種類や使用量、反応温度、攪拌条件などに依存するが、5〜100時間程度が好ましい。なお、酸化重合が進行すると、反応液中に高分子が析出して生成する。   The oxidative polymerization is preferably performed with stirring. The reaction temperature of the chemical oxidative polymerization is not particularly limited, but the upper limit is the reflux temperature of the solvent to be used, preferably 0 to 100 ° C, more preferably 10 to 50 ° C. If the reaction temperature is not preferred, the conductivity of the resulting polymer may be reduced. The reaction time of oxidative polymerization depends on the type and amount of oxidant used, reaction temperature, stirring conditions, etc., but is preferably about 5 to 100 hours. As the oxidative polymerization proceeds, a polymer is deposited in the reaction solution.

工程(b)で得られた導電性ポリマー(P0)は、反応液から分離するのが好ましい。分離は、ろ過法、遠心分離法などで行われる。反応液は、必ずしも完全に分離されなくてもよい。分離後の導電性ポリマー(P0)は、洗浄してもよいし、また、乾燥して用いてもよい。
洗浄する溶媒は、導電性ポリマー(P0)を溶解することなく、モノマー及び/又は酸化剤を溶解可能な溶媒を用いることが好ましい。具体例としては、水や熱水、メタノール、エタノール、プロパノール等のアルコール系溶媒が挙げられる。洗浄溶媒は、1種、又は2種以上を用いることもできる。洗浄の程度は、洗浄後の洗浄溶媒のpH測定や比色観察により確認できる。また、導電性ポリマー(P0)の乾燥は、ポリマーの分解温度以下であればよいが、300℃未満で行うことが好ましい。
The conductive polymer (P0) obtained in the step (b) is preferably separated from the reaction solution. Separation is performed by filtration, centrifugation, or the like. The reaction liquid does not necessarily need to be completely separated. The separated conductive polymer (P0) may be washed or may be used after drying.
As the solvent to be washed, it is preferable to use a solvent that can dissolve the monomer and / or the oxidizing agent without dissolving the conductive polymer (P0). Specific examples include alcohol solvents such as water, hot water, methanol, ethanol, and propanol. 1 type or 2 types or more can also be used for a washing | cleaning solvent. The degree of washing can be confirmed by pH measurement or colorimetric observation of the washing solvent after washing. Further, the conductive polymer (P0) may be dried at a temperature lower than the decomposition temperature of the polymer, but is preferably performed at less than 300 ° C.

〔工程(c)〕
〔工程(c)〕では、工程(b)で得られた導電性ポリマー(P0)を、工程(a)で得られた導電性ポリマー(P1)の分散液と混合し、これを酸化剤の存在下に撹拌せしめることにより、ドーパント交換を通じて導電性ポリマー(P2)を調製する。
工程(c)における、酸化剤は前述の酸化剤と同様のものを用いることができるが、なかでも過硫酸塩が好ましく、特に、過硫酸アンモニウムのアルキル金属塩若しくはアンモニムム塩が好ましい。酸化剤の使用量は、導電性ポリマー(P0)の1質量部に対して、0.5〜50質量部が好ましく、1〜30質量部がより好ましい。0.5質量部以下とすると、十分なドーピングが進行せず分散性が乏しくなり好ましくない。
[Step (c)]
In [Step (c)], the conductive polymer (P0) obtained in Step (b) is mixed with the dispersion of the conductive polymer (P1) obtained in Step (a), and this is mixed with an oxidizing agent. Conductive polymer (P2) is prepared through dopant exchange by stirring in the presence.
As the oxidizing agent in the step (c), the same oxidizing agents as those described above can be used, but persulfates are preferable, and alkyl metal salts or ammonium salts of ammonium persulfate are particularly preferable. 0.5-50 mass parts is preferable with respect to 1 mass part of conductive polymer (P0), and, as for the usage-amount of an oxidizing agent, 1-30 mass parts is more preferable. If it is 0.5 parts by mass or less, sufficient doping does not proceed and the dispersibility becomes poor.

混合、攪拌温度は、特に限定されないが、0℃〜100℃が好ましく、10℃〜50℃がより好ましい。反応時間は、特に制限されないが、5〜100時間程度である。
工程(b)で得られた導電性ポリマー(P0)を、工程(a)で得られた導電性ポリマー(P1)の分散液に混合する場合、導電性ポリマー(P0)は、工程(a)で得られた分散液に含有される導電性ポリマー(P1)の1質量部に対して、好ましくは0.01〜30質量部、より好ましくは0.01〜20質量部混合される。導電性ポリマー(P0)を導電性ポリマー(P1)の分散液に混合し、酸化剤の存在下に攪拌することによって、導電性ポリマー(P0)にドープしている低分子有機酸若しくはその塩が、導電性ポリマー(P1)にドーピングしている高分子有機酸若しくはその塩によってドーパント交換されて、導電性ポリマー(P0)に高分子有機酸若しくはその塩がドーピングする。このとき、ドーパント交換の前後で導電性ポリマーの外観色の変化が生じる。
Although mixing and stirring temperature are not specifically limited, 0 to 100 degreeC is preferable and 10 to 50 degreeC is more preferable. The reaction time is not particularly limited, but is about 5 to 100 hours.
When the conductive polymer (P0) obtained in the step (b) is mixed with the dispersion of the conductive polymer (P1) obtained in the step (a), the conductive polymer (P0) is converted into the step (a). Preferably it is 0.01-30 mass parts with respect to 1 mass part of the conductive polymer (P1) contained in the dispersion liquid obtained by 0.01, More preferably, 0.01-20 mass parts is mixed. By mixing the conductive polymer (P0) with the dispersion of the conductive polymer (P1) and stirring in the presence of an oxidizing agent, the low molecular organic acid or a salt thereof doped in the conductive polymer (P0) can be obtained. The dopant is exchanged by the polymer organic acid or salt thereof doped in the conductive polymer (P1), and the polymer organic acid or salt thereof is doped in the conductive polymer (P0). At this time, the appearance color of the conductive polymer changes before and after the dopant exchange.

このようにして、高分子有機酸若しくはその塩によりドーピングされた導電性ポリマー(P2)が良好に分散した均一な分散液が得られる。酸化剤を混合しなかった場合は、高分子有機酸若しくはその塩が、導電性ポリマー(P0)のドーパントと交換せずドーピングしないため、導電性ポリマーが沈降してしまい均一な分散液は得られない。   In this way, a uniform dispersion in which the conductive polymer (P2) doped with the high molecular organic acid or its salt is well dispersed is obtained. When the oxidizing agent is not mixed, the polymer organic acid or salt thereof is not exchanged with the dopant of the conductive polymer (P0) and is not doped, so that the conductive polymer settles and a uniform dispersion is obtained. Absent.

〔導電性ポリマー組成物〕
本発明の導電性ポリマー組成物は、高分子有機酸又はその塩がドーピングされた導電性ポリマー(P1)と、無機酸若しくは低分子有機酸又はその塩がドーピングされた導電性ポリマー(P0)における無機酸若しくは低分子有機酸又はその塩が、ド―パント交換によって導電性ポリマー(P1)にドーピングされた高分子有機酸又はその塩によりドーピングされた導電性ポリマー(P2)と、水又は水混和性の有機溶媒と、を含有する。
かかる導電性ポリマー組成物は、上記の工程(a)、工程(b)及び工程(c)により製造されるが、導電性ポリマー(P1)及び導電性ポリマー(P2)を含む分散液である。
[Conductive polymer composition]
The conductive polymer composition of the present invention includes a conductive polymer (P1) doped with a high molecular organic acid or a salt thereof, and a conductive polymer (P0) doped with an inorganic acid or a low molecular organic acid or a salt thereof. An inorganic acid or a low molecular organic acid or a salt thereof, water or water miscible with a conductive polymer (P2) doped with a high molecular organic acid or a salt thereof doped in the conductive polymer (P1) by dopant exchange An organic solvent.
Such a conductive polymer composition is produced by the above steps (a), (b) and (c), and is a dispersion containing the conductive polymer (P1) and the conductive polymer (P2).

本発明の導電性ポリマー組成物は、通常、濃紺色〜黒紺色を呈している。その外観色は、導電性ポリマー(P1)と(P2)の含有比率によって異なり、導電性ポリマー(P1)の含有比率が高いと濃紺色を呈し、導電性ポリマー(P2)の含有比率が高いと黒紺色を呈する。導電性ポリマー組成物における導電性ポリマー(P1)と(P2)の含有比率は、良好な分散性と高い導電性の導電性を得る点から、ポリマー(P1)の1質量部に対して、ポリマー(P2)を0.01〜20質量部が好ましく、0.01〜10質量部がより好ましく、0.01〜2.5がさらに好ましい。20質量部を超えると、分散性が損なわれる可能性があり、0.01質量未満で導電性が小さい。   The conductive polymer composition of the present invention usually exhibits a dark blue to black amber color. The appearance color differs depending on the content ratio of the conductive polymers (P1) and (P2). When the content ratio of the conductive polymer (P1) is high, the appearance color is dark blue, and when the content ratio of the conductive polymer (P2) is high Shows a black amber color. The content ratio of the conductive polymers (P1) and (P2) in the conductive polymer composition is such that the polymer with respect to 1 part by mass of the polymer (P1) has good dispersibility and high conductivity. 0.01 to 20 parts by mass of (P2) is preferable, 0.01 to 10 parts by mass is more preferable, and 0.01 to 2.5 is more preferable. If it exceeds 20 parts by mass, the dispersibility may be impaired, and if it is less than 0.01 mass, the conductivity is small.

導電性ポリマー(P1)と(P2)の総含有量は、特に制限されず、導電性ポリマー組成物の用途によって、調整することができる。良好な分散性の導電性ポリマー組成物を得る点からは、導電性ポリマー(P1)と(P2)の総含有量は、分散液中に0.1〜50質量%であることが好ましく、特には、0.5〜20質量%であるのが好ましい。
例えば、固体電解コンデンサの製造において、導電性ポリマー組成物にコンデンサ陽極体を浸漬する場合は、導電性ポリマー組成物の濃度が高く、粘度が低いことが好ましい。また、基材等に印刷するプロセスに用いる場合は、ある程度粘度が高いことが好ましい。
The total content of the conductive polymers (P1) and (P2) is not particularly limited, and can be adjusted depending on the use of the conductive polymer composition. From the viewpoint of obtaining a conductive polymer composition with good dispersibility, the total content of the conductive polymers (P1) and (P2) is preferably 0.1 to 50% by mass in the dispersion, particularly Is preferably 0.5 to 20% by mass.
For example, in the production of a solid electrolytic capacitor, when the capacitor anode body is immersed in the conductive polymer composition, it is preferable that the concentration of the conductive polymer composition is high and the viscosity is low. Moreover, when using for the process printed on a base material etc., it is preferable that viscosity is high to some extent.

本発明の導電性ポリマー組成物の粘度は、増粘に寄与する高分子有機酸若しくはその塩の含有量、すなわち、導電性ポリマー(P1)の含有量で適宜調整することが好ましい。
導電性ポリマー組成物の濃度は、導電性組成物の分散性を損なわない範囲で、導電性ポリマー(P2)の含有量で適宜調整することが好ましい。
例えば、粘度を増加させる場合には導電性ポリマー(P2)の含有量を一定にして、導電性ポリマー(P1)の含有量を増加させるとその効果は大きく、粘度の増加を抑えて濃度を増加させる場合は、導電性ポリマー(P1)の含有量を一定にして導電性ポリマー(P2)の含有量を増加させるとその効果は大きい。
The viscosity of the conductive polymer composition of the present invention is preferably adjusted as appropriate depending on the content of the high-molecular organic acid or salt thereof that contributes to thickening, that is, the content of the conductive polymer (P1).
The concentration of the conductive polymer composition is preferably adjusted as appropriate by the content of the conductive polymer (P2) within a range that does not impair the dispersibility of the conductive composition.
For example, when increasing the viscosity, if the content of the conductive polymer (P2) is kept constant and the content of the conductive polymer (P1) is increased, the effect is significant, and the concentration is increased by suppressing the increase in viscosity. In this case, the effect is large if the content of the conductive polymer (P2) is increased while the content of the conductive polymer (P1) is kept constant.

このように、本発明の導電性ポリマー組成物は、導電性ポリマー(P1)と(P2)のそれぞれの含有比率と、総含有量を適宜調整することで、高濃度でかつ、粘度の低い導電性ポリマー組成物を得ることができる。
本発明の導電性ポリマー組成物は、さらに導電性を高める目的で、さらに、導電性向上成分を含有してもよい。導電性向上成分としては、金属粒子、金属酸化物等の無機物、炭素材料、スルホキシド類、水酸基を有する水溶性化合物等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
Thus, the conductive polymer composition of the present invention is a conductive polymer having a high concentration and a low viscosity by appropriately adjusting the content ratio and the total content of the conductive polymers (P1) and (P2). A functional polymer composition can be obtained.
The conductive polymer composition of the present invention may further contain a conductivity improving component for the purpose of further increasing the conductivity. Examples of the conductivity improving component include inorganic particles such as metal particles and metal oxides, carbon materials, sulfoxides, and water-soluble compounds having a hydroxyl group. These may use only 1 type and may use 2 or more types together.

本発明の導電性ポリマー組成物は、基材への密着性を高めるために、さらに、バインダー、有機官能性シラン及びそれらの水解物などの密着性向上成分を含有してもよい。バインダーとしては、導電性ポリマー組成物と相溶又は導電性ポリマー組成物に分散可能であれば特に限定されず、熱硬化性樹脂であっても、熱可塑性樹脂であってもよい。   The conductive polymer composition of the present invention may further contain an adhesion improving component such as a binder, an organofunctional silane, and a hydrolyzate thereof in order to improve the adhesion to the substrate. The binder is not particularly limited as long as it is compatible with the conductive polymer composition or can be dispersed in the conductive polymer composition, and may be a thermosetting resin or a thermoplastic resin.

バインダーとしては、例えば、ポリエチレン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂、ポリイミド、ポリアミドイミド等のポリイミド樹脂、ポリアミド6、ポリアミド6,6、ポリアミド12、ポリアミド11等のポリアミド樹脂、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレンコポリマー、ポリクロロトリフルオロエチレン等のフッ素樹脂、ポリビニルアルコール、ポリビニルエーテル、ポリビニルブチラール、ポリ酢酸ビニル、ポリ塩化ビニル等のビニル樹脂、ポリスチレン樹脂、エポキシ樹脂、キシレン樹脂、アラミド樹脂、ポリウレタン樹脂、ポリウレア樹脂、メラミン樹脂、フェノール樹脂、ポリエーテル樹脂、ポリアクリル樹脂及びこれらの共重合体等が挙げられる。   Examples of binders include polyester resins such as polyethylene resin, polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyimide resins such as polyimide and polyamideimide, polyamide resins such as polyamide 6, polyamide 6,6, polyamide 12, and polyamide 11. , Fluorine resins such as polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethylene, ethylene tetrafluoroethylene copolymer, polychlorotrifluoroethylene, vinyl resins such as polyvinyl alcohol, polyvinyl ether, polyvinyl butyral, polyvinyl acetate, polyvinyl chloride , Polystyrene resin, epoxy resin, xylene resin, aramid resin, polyurethane resin, polyurea resin, melamine resin, phenol resin Polyether resins, polyacrylic resins and copolymers thereof, and the like.

有機官能性シランとしては、例えば、3 − グリシドキシプロピルトリアルコキシシラン、3 − アミノプロピルトリエトキシシラン、3 − メルカプトプロピルトリメトキシシラン、3 − メタクリルオキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、オクチルトリエトキシシラン等が挙げられる
また、熱縮合性の化合物も含まれ、前記バインダーを合成するための前駆体化合物又はモノマーが導電性ポリマー組成物に含まれてもよい。この場合、導電性ポリマー組成物を乾燥する際に、バインダーが形成される。これらのバインダーは一種のみを用いてもよく、二種以上を併用してもよい。
Examples of the organofunctional silane include 3-glycidoxypropyltrialkoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, and octyl. Examples include triethoxysilane and the like. Thermally condensable compounds are also included, and a precursor compound or monomer for synthesizing the binder may be included in the conductive polymer composition. In this case, a binder is formed when the conductive polymer composition is dried. These binders may use only 1 type and may use 2 or more types together.

バインダーの含有量は、導電性ポリマー100質量部に対し、10〜400質量部であることが好ましく、10〜100質量部であることがより好ましい。該含有量を10質量部以上とすることにより密着性が向上し、該含有量を400質量部以下とすることにより高い導電性が得られる。   The content of the binder is preferably 10 to 400 parts by mass, and more preferably 10 to 100 parts by mass with respect to 100 parts by mass of the conductive polymer. Adhesiveness improves by making this content 10 mass parts or more, and high electroconductivity is obtained by making this content 400 mass parts or less.

本発明の導電性ポリマー組成物は、後述する基材に導電性ポリマー組成物を塗布する各工程に適合させるために、さらに粘度を制御する目的で増粘剤を添加してもよい。増粘剤としては、アルギナン酸誘導体、キサンタンガム誘導体、カラギーナンやセルロース等の糖類化合物等の水溶性高分子等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。増粘剤の添加量は特に限定されないが、導電性を損なわないために、導電性ポリマー組成物中に60質量%以下の割合で含まれることが好ましい。   In order to adapt the conductive polymer composition of the present invention to each step of applying the conductive polymer composition to the substrate described later, a thickener may be added for the purpose of controlling the viscosity. Examples of the thickener include alginic acid derivatives, xanthan gum derivatives, water-soluble polymers such as saccharide compounds such as carrageenan and cellulose. These may use only 1 type and may use 2 or more types together. Although the addition amount of a thickener is not specifically limited, In order not to impair electroconductivity, it is preferable to contain in the ratio of 60 mass% or less in a conductive polymer composition.

本発明の導電性ポリマー組成物に含有される導電性ポリマーの粒径は、特に制限されないが、長期的に分散安定性の高い導電性ポリマー組成物を得る観点から、ポリマー組成物について、必要に応じて、高圧機構のジェットミルやビーズミル、超音波装置などを使用する湿式粉砕を行うことができる。かくして、本発明の導電性ポリマー組成物に含有される導電性ポリマーの粒子は、動的光散乱法で測定された体積換算の粒径(D50)が、好ましくは1〜200nm、より好ましくは1〜100nmであるのが好ましい。   The particle size of the conductive polymer contained in the conductive polymer composition of the present invention is not particularly limited, but from the viewpoint of obtaining a conductive polymer composition having high dispersion stability in the long term, the polymer composition is necessary. Accordingly, wet pulverization using a jet mill, a bead mill, an ultrasonic device or the like of a high-pressure mechanism can be performed. Thus, the conductive polymer particles contained in the conductive polymer composition of the present invention preferably have a volume-converted particle size (D50) measured by a dynamic light scattering method of 1 to 200 nm, more preferably 1 It is preferably ˜100 nm.

導電性ポリマー組成物は、未反応モノマーや酸化剤由来の残留成分、ドーパント交換されて生じた無機酸又は低分子有機酸等の本発明の導電性ポリマー組成物を使用する場合に不適切な成分を含む場合がある。この場合、限外濾過、遠心分離等による抽出やイオン交換処理、透析処理によって、該成分を除去することが好ましい。なお、導電性ポリマー組成物に含まれる不要な成分は、ICP発光分析やイオンクロマトグラフィー、UV吸収等により定性定量可能である。   The conductive polymer composition is an unsuitable component when using the conductive polymer composition of the present invention, such as a residual component derived from an unreacted monomer or an oxidizing agent, an inorganic acid or a low molecular organic acid generated by dopant exchange. May be included. In this case, it is preferable to remove the component by extraction by ultrafiltration, centrifugation, etc., ion exchange treatment, or dialysis treatment. Note that unnecessary components contained in the conductive polymer composition can be qualitatively quantified by ICP emission analysis, ion chromatography, UV absorption, or the like.

〔導電性ポリマー材料〕
導電性ポリマー材料は、導電性ポリマー組成物から前記溶媒を除去して得られる。本発明に係る導電性ポリマー材料は、導電性ポリマー(P1)と異なる製法で得られた導電性ポリマー(P2)が、ドーパントとしての高分子有機酸にドーピングされている。
導電性ポリマー(P1)と(P2)は、前記高分子有機酸の同一分子鎖上にドーピングされており、同一の導電性マトリックス中に存在している。このような導電性ポリマー材料は、導電性が高く、吸湿性が低い。また良好な成膜性を有している。
導電性ポリマー組成物からの溶媒の除去は溶媒の乾燥により行うことができる。乾燥温度は、80℃以上が好ましく、水の沸点である100℃以上で行うことがより好ましい。乾燥温度は、導電性ポリマー材料の分解温度以下であれば特に制限されないが、300℃以下が好ましい。
[Conductive polymer material]
The conductive polymer material is obtained by removing the solvent from the conductive polymer composition. In the conductive polymer material according to the present invention, a high molecular organic acid as a dopant is doped with a conductive polymer (P2) obtained by a production method different from that of the conductive polymer (P1).
The conductive polymers (P1) and (P2) are doped on the same molecular chain of the high-molecular organic acid and exist in the same conductive matrix. Such a conductive polymer material has high conductivity and low hygroscopicity. Also, it has good film forming properties.
Removal of the solvent from the conductive polymer composition can be performed by drying the solvent. The drying temperature is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher, which is the boiling point of water. Although a drying temperature will not be restrict | limited especially if it is below the decomposition temperature of a conductive polymer material, 300 degrees C or less is preferable.

〔導電性基材、電極、電子デバイス〕
導電性基材は、基材上に本発明に係る導電性ポリマー材料を含む層(以下、導電性ポリマー層とも示す)を備える。また、電極は、本発明に係る導電性基材を備える。電子デバイスは、電極を備える。
このような導電性基材、電極、電子デバイスにおける要求特性の一つとして耐湿特性が挙げられるが、本発明の導電性ポリマー材料は吸湿性が少ないため、耐湿特性に優れた導電性基材を提供することができる。
[Conductive substrate, electrode, electronic device]
The conductive substrate includes a layer containing the conductive polymer material according to the present invention (hereinafter also referred to as a conductive polymer layer) on the substrate. Moreover, an electrode is equipped with the electroconductive base material which concerns on this invention. The electronic device includes an electrode.
One of the required characteristics of such conductive substrates, electrodes, and electronic devices is moisture resistance. However, the conductive polymer material of the present invention has low moisture absorption, so a conductive substrate excellent in moisture resistance characteristics should be used. Can be provided.

本発明における基材は樹脂基材であることが好ましく、透明樹脂基材であることがより好ましい。例えば、前記基材は、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、アクリル樹脂、ビニルエステル樹脂及びスチレン樹脂からなる群から選択される少なくとも一種を含む樹脂基材であることが好ましい。具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネート等のフィルム又はシートが挙げられる。また、ガラス基板、シリコン基板等も使用できる。さらに、基材と導電性ポリマー層との間に、ITOを含む層を備えてもよい。   The base material in the present invention is preferably a resin base material, and more preferably a transparent resin base material. For example, the base material is a resin base material including at least one selected from the group consisting of polyester resin, polyamide resin, polyimide resin, polyurethane resin, polystyrene resin, polyolefin resin, acrylic resin, vinyl ester resin, and styrene resin. It is preferable. Specifically, films such as polyethylene terephthalate (PET), polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, cellulose acetate propionate, or the like Sheet. Moreover, a glass substrate, a silicon substrate, etc. can also be used. Furthermore, you may provide the layer containing ITO between a base material and a conductive polymer layer.

本発明に係る導電性基材は基材の少なくとも片面に導電性ポリマー層が形成されている。導電性基材は透明樹脂基材の少なくとも片面に導電性ポリマー層が形成された透明導電性基材であることが好ましい。
導電性ポリマー層の形成方法としては、本発明に係る導電性ポリマー組成物を基材表面に塗布して形成することができる。基材表面への塗布方法は特に限定されない。例えば、スピンコーティング、グラビアコーティング、バーコーティング、ディップコーティング、カーテンコーティング、ダイコーティング、スプレーコーティング等が挙げられる。さらに、スクリーン印刷、スプレー印刷、インクジェット印刷、凸版印刷、凹版印刷、平版印刷等の印刷法も採用することが可能である。
In the conductive substrate according to the present invention, a conductive polymer layer is formed on at least one surface of the substrate. The conductive substrate is preferably a transparent conductive substrate having a conductive polymer layer formed on at least one surface of a transparent resin substrate.
As a method for forming the conductive polymer layer, the conductive polymer composition according to the present invention can be formed by applying it to the surface of a substrate. The application method to the substrate surface is not particularly limited. Examples thereof include spin coating, gravure coating, bar coating, dip coating, curtain coating, die coating, and spray coating. Furthermore, printing methods such as screen printing, spray printing, ink jet printing, letterpress printing, intaglio printing, and planographic printing can also be employed.

基材上に形成される塗膜の厚みは特に限定されず、目的に応じて適宜選択することができる。例えば、乾燥後の厚みが0.01μm以上、300μm以下であることが好ましく、0.03μm以上、100μm以下であることがより好ましい。0.01μm以上であることにより十分な導電性を発現することができる。また、300μm以下であることにより、膜厚に比例した導電性が得られる。   The thickness of the coating film formed on the substrate is not particularly limited and can be appropriately selected according to the purpose. For example, the thickness after drying is preferably 0.01 μm or more and 300 μm or less, and more preferably 0.03 μm or more and 100 μm or less. Sufficient electrical conductivity can be expressed by being 0.01 micrometer or more. Moreover, the electroconductivity proportional to a film thickness is obtained by being 300 micrometers or less.

次いで、これらを乾燥して溶媒を除去することで、基材上に導電性ポリマー層を形成することができる。溶媒を乾燥する方法は特に限定されない。溶媒を除去するための乾燥温度は、80℃以上であることが好ましく、水の沸点である100℃以上であることがより好ましい。乾燥温度の上限は、導電性ポリマーの分解温度以下であれば特に制限されないが、300℃以下が好ましい。また、基材の耐熱性を考慮して決定することが好ましい。   Next, these are dried to remove the solvent, whereby a conductive polymer layer can be formed on the substrate. The method for drying the solvent is not particularly limited. The drying temperature for removing the solvent is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher, which is the boiling point of water. The upper limit of the drying temperature is not particularly limited as long as it is not higher than the decomposition temperature of the conductive polymer, but is preferably 300 ° C. or lower. Moreover, it is preferable to determine in consideration of the heat resistance of the substrate.

導電性基材は、全光線透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。導電性ポリマー層の膜厚を任意に調整することによって、全光線透過率を70%以上とすることができる。全光線透過率は、HAZE MATER NHD−5000 (日本電色工業社製)にて測定した値とする。   The conductive substrate preferably has a total light transmittance of 70% or more, more preferably 80% or more, and still more preferably 85% or more. The total light transmittance can be made 70% or more by arbitrarily adjusting the film thickness of the conductive polymer layer. The total light transmittance is a value measured with HAZE MATER NHD-5000 (manufactured by Nippon Denshoku Industries Co., Ltd.).

本発明に係る導電性基材は、電極、特に透明電極として用いることができる。例えば、太陽電池、有機エレクトロルミネッセンスディスプレイ等の電子デバイスの正孔注入層や正極として用いることができる。また、タッチパネル、電子ペーパー等の電子デバイスの電極として用いることができる。   The conductive substrate according to the present invention can be used as an electrode, particularly as a transparent electrode. For example, it can be used as a hole injection layer or a positive electrode of an electronic device such as a solar cell or an organic electroluminescence display. Moreover, it can use as an electrode of electronic devices, such as a touch panel and electronic paper.

〔固体電解コンデンサ〕
固体電解コンデンサは、上記の導電性ポリマー材料を含む固体電解質を備える。本発明の導電性ポリマー組成物は濃度が高く粘度が低い。コンデンサの製造において、例えば浸漬プロセス(陽極導体を浸漬する)において、粘度が低いため多孔質内部への含浸性がよく、濃度が高いため電解質の形成量が多く高い容量が得られる。また、コンデンサ陽極体の外周部への付着量も多いため、外周部を均一に被覆することもでき、LC特性の良好な固体電解コンデンサを得ることができる。また、本発明の導電性ポリマー材料は導電性が高く吸湿が少ないため、低いESR(等価直列抵抗)で、耐湿特性に優れる。
[Solid electrolytic capacitor]
The solid electrolytic capacitor includes a solid electrolyte containing the above conductive polymer material. The conductive polymer composition of the present invention has a high concentration and a low viscosity. In the production of a capacitor, for example, in the dipping process (dipping the anode conductor), the viscosity is low, so that the inside of the porous body is well impregnated, and the concentration is high, so that a large amount of electrolyte is formed and a high capacity is obtained. Further, since the amount of adhesion to the outer peripheral portion of the capacitor anode body is large, the outer peripheral portion can be uniformly coated, and a solid electrolytic capacitor having good LC characteristics can be obtained. Moreover, since the conductive polymer material of the present invention has high conductivity and low moisture absorption, it has low ESR (equivalent series resistance) and excellent moisture resistance.

固体電解コンデンサは、陽極導体上に、誘電体層、固体電解質層及び陰極導体がこの順に積層された構造を有し、外装としてエポキシ樹脂などで加圧モールドして製品とされる。陽極導体は、弁作用金属の板、箔又は線;弁作用金属の微粒子からなる焼結体;エッチングによって拡面処理された多孔質体金属等によって形成される。弁作用金属の具体例としては、タンタル、アルミニウム、チタン、ニオブ、ジルコニウム及びこれらの合金等が挙げられる。これらの中でも、アルミニウム、タンタル及びニオブからなる群から選択される少なくとも1種であることが好ましい。   A solid electrolytic capacitor has a structure in which a dielectric layer, a solid electrolyte layer, and a cathode conductor are laminated in this order on an anode conductor, and is pressure-molded with an epoxy resin or the like as an exterior to obtain a product. The anode conductor is formed of a valve metal plate, foil, or wire; a sintered body made of fine particles of the valve metal; a porous metal that has been subjected to surface expansion by etching, or the like. Specific examples of the valve action metal include tantalum, aluminum, titanium, niobium, zirconium, and alloys thereof. Among these, at least one selected from the group consisting of aluminum, tantalum and niobium is preferable.

誘電体層は、陽極導体の表面を電解酸化することで形成することができる層であり、焼結体や多孔質体等の空孔部にも形成される。誘電体層の厚みは、電解酸化の電圧によって適宜調整できる。
固体電解質層は、少なくとも、本発明に係る導電性ポリマー組成物から溶媒を除去して得られる導電性ポリマー材料を含む。固体電解質層の形成方法としては、例えば誘電体層上に本発明に係る導電性ポリマー組成物を塗布又は含浸し、該導電性ポリマー組成物の溶媒を除去する方法が挙げられる。
The dielectric layer is a layer that can be formed by electrolytic oxidation of the surface of the anode conductor, and is also formed in pores such as a sintered body and a porous body. The thickness of the dielectric layer can be adjusted as appropriate by the voltage of electrolytic oxidation.
The solid electrolyte layer includes at least a conductive polymer material obtained by removing a solvent from the conductive polymer composition according to the present invention. Examples of the method for forming the solid electrolyte layer include a method in which the conductive polymer composition according to the present invention is applied or impregnated on the dielectric layer, and the solvent of the conductive polymer composition is removed.

塗布又は含浸の方法としては特に制限はないが、十分に多孔質細孔内部へ導電性ポリマー組成物を充填するために、塗布又は含浸後に数分〜数十分放置することが好ましい。浸漬の繰り返しや、減圧方式又は加圧方式が好ましい。
導電性ポリマー組成物からの溶媒の除去は、導電性ポリマー組成物を乾燥することで行うことができる。溶媒を乾燥する方法は特に限定されない。溶媒を除去するための乾燥温度は、80℃以上であることが好ましく、水の沸点である100℃以上であることがより好ましい。乾燥温度の上限は、導電性ポリマーの分解温度以下であれば特に制限されないが、熱による素子劣化防止の観点から300℃以下が好ましい。また、基材の耐熱性を考慮して決定することが好ましい。乾燥時間は、乾燥温度によって適宜最適化する必要があるが、導電性が損なわれない範囲であれば特に制限されない。
Although there is no restriction | limiting in particular as a method of application | coating or impregnation, In order to fully fill the inside of a porous pore with a conductive polymer composition, it is preferable to leave it for several minutes to several tens of minutes after application | coating or impregnation. Repeated immersion, reduced pressure method or pressurized method is preferred.
The removal of the solvent from the conductive polymer composition can be performed by drying the conductive polymer composition. The method for drying the solvent is not particularly limited. The drying temperature for removing the solvent is preferably 80 ° C. or higher, and more preferably 100 ° C. or higher, which is the boiling point of water. The upper limit of the drying temperature is not particularly limited as long as it is equal to or lower than the decomposition temperature of the conductive polymer, but is preferably 300 ° C. or lower from the viewpoint of preventing element deterioration due to heat. Moreover, it is preferable to determine in consideration of the heat resistance of the substrate. The drying time must be appropriately optimized depending on the drying temperature, but is not particularly limited as long as the conductivity is not impaired.

固体電解質層は、さらに、ピロール、チオフェン、アニリン及びその誘導体からなる導電性重合体;二酸化マンガン、酸化ルテニウム等の酸化物誘導体;TCNQ(7,7,8,8−テトラシアノキノジメタンコンプレックス塩)等の有機物半導体を含んでもよい。
固体電解質層は、第一の固体電解質層と第二の固体電解質層の2層構造とすることもできる。例えば、導電性ポリマーを与えるモノマーを化学酸化重合若しくは電解重合して、又は本発明の導電性ポリマー組成物を塗布若しくは含浸し溶媒を除去して、誘電体層上に導電性ポリマーを含む第一の固体電解質層を形成する。第一の固体電解質層上に、本発明に係る導電性ポリマー組成物を塗布又は含浸し、溶媒を除去して第二の固体電解質層を形成することができる。
The solid electrolyte layer further comprises a conductive polymer composed of pyrrole, thiophene, aniline and derivatives thereof; oxide derivatives such as manganese dioxide and ruthenium oxide; TCNQ (7,7,8,8-tetracyanoquinodimethane complex salt) ) And other organic semiconductors.
The solid electrolyte layer can also have a two-layer structure of a first solid electrolyte layer and a second solid electrolyte layer. For example, a first polymer containing a conductive polymer on a dielectric layer may be obtained by chemical oxidative polymerization or electrolytic polymerization of a monomer that provides a conductive polymer, or by applying or impregnating the conductive polymer composition of the present invention to remove the solvent. The solid electrolyte layer is formed. The conductive polymer composition according to the present invention can be applied or impregnated on the first solid electrolyte layer, and the solvent can be removed to form the second solid electrolyte layer.

前記モノマーとしては、ピロール、チオフェン、アニリン及びそれらの誘導体からなる群から選択される少なくとも1種を用いることができる。モノマーを化学酸化重合又は電解重合して導電性ポリマーを得る際に使用するドーパントとしては、アルキルスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、アントラキノンスルホン酸及びカンファースルホン酸、ならびにそれらの誘導体等のスルホン酸系化合物が好ましい。これらは一種のみを用いてもよく、二種以上を併用してもよい。ドーパントの分子量としては、低分子化合物から高分子量体まで適宜選択して用いることができる。溶媒としては、水のみでもよく、水と水に可溶な有機溶媒とを含む混合溶媒を用いてもよい。   As the monomer, at least one selected from the group consisting of pyrrole, thiophene, aniline and derivatives thereof can be used. As a dopant used when a monomer is chemically oxidatively polymerized or electrolytically polymerized to obtain a conductive polymer, alkylsulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, anthraquinonesulfonic acid and camphorsulfonic acid, and sulfones such as derivatives thereof are used. Acid compounds are preferred. These may use only 1 type and may use 2 or more types together. The molecular weight of the dopant can be appropriately selected from low molecular weight compounds to high molecular weight compounds. As the solvent, only water or a mixed solvent containing water and an organic solvent soluble in water may be used.

第一の固体電解質層に含まれる導電性ポリマーと、第二の固体電解質層に含まれる導電性ポリマーとは、同一種の重合体であることが好ましい。陰極導体は、導体であれば特に限定されないが、例えば、グラファイト等のカーボン層と、銀導電性樹脂とからなる2層構造とすることができる。   The conductive polymer contained in the first solid electrolyte layer and the conductive polymer contained in the second solid electrolyte layer are preferably the same type of polymer. Although it will not specifically limit if a cathode conductor is a conductor, For example, it can be set as the 2 layer structure which consists of carbon layers, such as a graphite, and silver conductive resin.

以下、本発明を実施例に基づき、さらに具体的に説明するが、本発明はこれらの実施例に限定して解釈されるものではない。
〔実施例1〕
工程(a)
高分子有機酸としての20質量%ポリスチレンスルホン酸水溶液(重量平均分子量:50,000)12.2gを、水187.5gに混合して10分間攪拌した。次に、モノマーとしての3,4−エチレンジオキシチオフェン2.04gを投入してさらに15分間攪拌し反応溶液を調製した。得られた反応溶液は、薄い黄色を呈していた。
反応溶液に含まれるポリスチレンスルホン酸の量は、反応溶液に含まれる3,4−エチレンジオキシチオフェン1質量部に対して1.19質量部であった。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is limited to these Examples and is not interpreted.
[Example 1]
Step (a)
12.20 g of a 20% by mass polystyrenesulfonic acid aqueous solution (weight average molecular weight: 50,000) as a high molecular organic acid was mixed with 187.5 g of water and stirred for 10 minutes. Next, 2.04 g of 3,4-ethylenedioxythiophene as a monomer was added and further stirred for 15 minutes to prepare a reaction solution. The resulting reaction solution had a pale yellow color.
The amount of polystyrene sulfonic acid contained in the reaction solution was 1.19 parts by mass with respect to 1 part by mass of 3,4-ethylenedioxythiophene contained in the reaction solution.

反応溶液を攪拌しながら、酸化剤としての1.5質量%硫酸鉄(III)水溶液5.8gと、11.0質量%過硫酸アンモニウム水溶液13.3gを滴下して、室温下で15時間攪拌して化学酸化重合を行った。これにより、ポリスチレンスルホン酸がドーピングされたポリ(3,4−エチレンジオキシチオフェン)からなる導電性ポリマー(P1)を合成した。このとき反応溶液は、薄い黄色から濃紺色へ変化し、P1の含有量は1.3質量%であった。   While stirring the reaction solution, 5.8 g of a 1.5% by mass iron (III) sulfate aqueous solution as an oxidizing agent and 13.3 g of an 11.0% by mass ammonium persulfate aqueous solution were dropped, and the mixture was stirred at room temperature for 15 hours. Then, chemical oxidative polymerization was performed. As a result, a conductive polymer (P1) made of poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid was synthesized. At this time, the reaction solution changed from light yellow to dark blue, and the content of P1 was 1.3% by mass.

工程(b)
モノマーとしての3,4−エチレンジオキシチオフェン1gと、酸化剤及びドーパントとして機能するp−トルエンスルホン酸鉄(III)9gとを、溶媒としてのエタノール30mlに溶解させた。得られた溶液を室温下24時間攪拌して化学酸化重合をおこない、反応溶液中に導電性ポリマー(P0)が析出して沈降した。
得られた反応溶液を、減圧ろ過装置を用いてろ過して導電性ポリマー(P0)を回収した。次いで、導電性ポリマー(P0)を純水とエタノールを用いて洗浄して、未反応モノマーと酸化剤の残渣を除去した。ろ液の酸性度がpH6〜7に、無色透明になるまで洗浄した後、100℃で30分乾燥して、黒色の導電性ポリマー(P0)を得た。
Step (b)
1 g of 3,4-ethylenedioxythiophene as a monomer and 9 g of iron (III) p-toluenesulfonate functioning as an oxidizing agent and a dopant were dissolved in 30 ml of ethanol as a solvent. The obtained solution was stirred at room temperature for 24 hours to conduct chemical oxidative polymerization, and the conductive polymer (P0) was precipitated and precipitated in the reaction solution.
The obtained reaction solution was filtered using a vacuum filtration device to recover the conductive polymer (P0). Next, the conductive polymer (P0) was washed with pure water and ethanol to remove unreacted monomer and oxidant residues. The filtrate was washed until the acidity of the filtrate became pH 6 to 7 and became colorless and transparent, and then dried at 100 ° C. for 30 minutes to obtain a black conductive polymer (P0).

工程(c)
工程(b)で得た導電性ポリマー(P0)の0.12gを、工程(a)で調製した1.3質量%の導電性ポリマー(P1)を含有する濃紺色の反応液54gに投入して、10分間撹拌した。この混合液に、酸化剤としての40質量%過硫酸アンモニウム0.35gを混合し、室温下に24時間攪拌した。これにより、前記導電性ポリマー(P0)がポリスチレンスルホン酸でドーピングされている導電性ポリマー(P2)を含む液を調製した。
得られた液は、導電性ポリマー(P1)を1.3質量%と、導電性ポリマー(P2)を0.22質量%含む濃紺色である導電性ポリマー組成物(P1:P2の質量比=1:0.17)。であった。
Step (c)
0.12 g of the conductive polymer (P0) obtained in the step (b) was added to 54 g of a dark blue reaction solution containing 1.3% by mass of the conductive polymer (P1) prepared in the step (a). And stirred for 10 minutes. To this mixed solution , 0.35 g of 40% by mass ammonium persulfate as an oxidant was mixed and stirred at room temperature for 24 hours. Thereby, the liquid containing the conductive polymer (P2) in which the conductive polymer (P0) is doped with polystyrene sulfonic acid was prepared.
The liquid obtained is a dark blue conductive polymer composition (P1: P2 mass ratio = 1.3% by mass of the conductive polymer (P1) and 0.22% by mass of the conductive polymer (P2) = 1: 0.17). Met.

次いで、得られた導電性ポリマー組成物に対して、両性イオン交換樹脂(商品名:MB−1、イオン交換形:−H、−OH、オルガノ社製)を27.9g投入して、2時間攪拌した。これにより、導電性ポリマー組成物のpHは1.23から1.88に変化し、濃紺色を呈した。   Next, 27.9 g of amphoteric ion exchange resin (trade name: MB-1, ion exchange type: —H, —OH, manufactured by Organo Corporation) was added to the obtained conductive polymer composition for 2 hours. Stir. Thereby, the pH of the conductive polymer composition changed from 1.23 to 1.88 and exhibited a dark blue color.

得られた導電性ポリマー組成物について、粘度と分散性の評価をおこなった。結果を表1に示す。
粘度は、常温下で、SV−10(AND社)を用いて測定した。
分散性の評価は、導電性ポリマー組成物を20ccのガラス瓶に10g採取して1週間、常温下で静置した後、ガラス瓶を逆さまにした時の導電性ポリマー組成物の流動性を目視で、以下の基準で評価をおこなった。
○:沈降成分なし、かつ、流動性の変化なし。
△:沈降成分はないが、流動性の低下(凝集・ゲル)傾向がある。
×:沈降成分がある、又は、流動性が明らかに低下(凝集・ゲル)。
The obtained conductive polymer composition was evaluated for viscosity and dispersibility. The results are shown in Table 1.
The viscosity was measured at room temperature using SV-10 (AND).
Evaluation of dispersibility was conducted by collecting 10 g of the conductive polymer composition in a 20 cc glass bottle and leaving it at room temperature for 1 week, and then visually checking the fluidity of the conductive polymer composition when the glass bottle was turned upside down. Evaluation was performed according to the following criteria.
○: No sediment component and no change in fluidity.
Δ: There is no sediment component, but there is a tendency to decrease fluidity (aggregation / gel).
X: Precipitation component is present or fluidity is clearly reduced (aggregation / gel).

次いで、導電性ポリマー材料について、導電性、吸湿性の評価を行った。結果を表1に示す。
導電性(S/cm)は、導電性ポリマー組成物にさらに導電性向上剤としてジメチルスルホキシドを5質量%混合して、ガラス基板上に100μl滴下し、120℃の恒温槽中で20分間乾燥して導電性ポリマー材料を形成し、表面抵抗(Ω/□)と、膜厚を計測して算出した。表面抵抗は、ロレスタ−GP(三菱化学アナリテックス社)で測定した。
吸湿性は、前記形成した導電性ポリマー材料を、85℃85%RH雰囲気に5時間放置した後の水分量を、CA−100(三菱化学社)を用いて測定した。
Next, the conductive polymer material was evaluated for conductivity and hygroscopicity. The results are shown in Table 1.
For conductivity (S / cm), 5% by mass of dimethyl sulfoxide as a conductivity improver is further mixed with the conductive polymer composition, 100 μl is dropped on a glass substrate, and dried in a constant temperature bath at 120 ° C. for 20 minutes. Then, a conductive polymer material was formed, and the surface resistance (Ω / □) and film thickness were measured and calculated. The surface resistance was measured by Loresta-GP (Mitsubishi Chemical Analytex).
The hygroscopicity was measured using CA-100 (Mitsubishi Chemical Corporation) for the moisture content after the conductive polymer material thus formed was left in an atmosphere of 85 ° C. and 85% RH for 5 hours.

〔実施例2〕
工程(c)において、導電性ポリマー(P0)を0.30gとし、40質量%過硫酸アンモニウム1.0gを使用した以外は、実施例1と同様にして導電性ポリマー組成物を製造した。導電性ポリマー組成物は、P1成分を1.3質量%とP2成分を0.55質量%含み(P1:P2の質量比=1:0.42)、若干黒みがかった紺色であった。
[Example 2]
In the step (c), a conductive polymer composition was produced in the same manner as in Example 1 except that the conductive polymer (P0) was 0.30 g and 40% by mass of ammonium persulfate 1.0 g was used. The conductive polymer composition contained 1.3% by mass of the P1 component and 0.55% by mass of the P2 component (P1: P2 mass ratio = 1: 0.42) and had a slightly blackish amber color.

〔実施例3〕
工程(c)において、導電性ポリマー(P0)を0.61gとし、40質量%過硫酸アンモニウム2.1gを使用した以外は、実施例1と同様にして導電性ポリマー組成物を製造した。導電性ポリマー組成物は、P1成分を1.3質量%とP2成分を1.1質量%含み(P1:P2の質量比=1:0.84)、黒みがかった紺色であった。
Example 3
In the step (c), a conductive polymer composition was produced in the same manner as in Example 1 except that the conductive polymer (P0) was 0.61 g, and 2.1 g of 40% by mass ammonium persulfate was used. The conductive polymer composition contained 1.3% by mass of the P1 component and 1.1% by mass of the P2 component (P1: P2 mass ratio = 1: 0.84), and had a blackish amber color.

〔実施例4〕
工程(c)において、導電性ポリマー(P0)を1.1gとし、40質量%過硫酸アンモニウム3.7gを使用した以外は、実施例1と同様にして導電性ポリマー組成物を製造した。導電性ポリマー組成物は、P1成分を1.3質量%とP2成分を2.0質量%含み(P1:P2の質量比=1:1.53)、黒紺色であった。
Example 4
In the step (c), a conductive polymer composition was produced in the same manner as in Example 1 except that 1.1 g of the conductive polymer (P0) was used and 3.7 g of 40% by mass ammonium persulfate was used. The conductive polymer composition contained 1.3% by mass of the P1 component and 2.0% by mass of the P2 component (P1: P2 mass ratio = 1: 1.53), and had a black amber color.

〔比較例1〕
高分子有機酸としての20質量%ポリスチレンスルホン酸水溶液(重量平均分子量:50,000)12.2gを、水187.5gに混合して10分間攪拌した。次に、モノマーとしての3,4−エチレンジオキシチオフェン2.04gを投入してさらに15分間攪拌し反応溶液を調製した。得られた反応溶液は、薄い黄色を呈していた。
反応溶液に含まれるポリスチレンスルホン酸の量は、反応溶液に含まれる3,4−エチレンジオキシチオフェン100質量部に対して119質量部であった。
[Comparative Example 1]
12.20 g of a 20% by mass polystyrenesulfonic acid aqueous solution (weight average molecular weight: 50,000) as a high molecular organic acid was mixed with 187.5 g of water and stirred for 10 minutes. Next, 2.04 g of 3,4-ethylenedioxythiophene as a monomer was added and further stirred for 15 minutes to prepare a reaction solution. The resulting reaction solution had a pale yellow color.
The amount of polystyrene sulfonic acid contained in the reaction solution was 119 parts by mass with respect to 100 parts by mass of 3,4-ethylenedioxythiophene contained in the reaction solution.

反応溶液を攪拌しながら、酸化剤としての硫酸鉄(III)0.012gと、過硫酸アンモニウム4.46gを滴下して、室温下で15時間攪拌して化学酸化重合を行った。このとき反応液は、薄い黄色から濃紺色へ変化した。
次いで、得られた反応液に対して、両性イオン交換樹脂(商品名:MB−1、イオン交換形:−H、−OH、オルガノ社製)を50.1g投入して、2時間攪拌した。これにより、反応溶液のpHは1.15から1.83に変化した。これにより、1.3質量%のポリスチレンスルホン酸がドーピングされたポリ(3,4−エチレンジオキシチオフェン)を含有する導電性ポリマー組成物を調製した。
While stirring the reaction solution, 0.012 g of iron (III) sulfate as an oxidizing agent and 4.46 g of ammonium persulfate were added dropwise, and the mixture was stirred at room temperature for 15 hours to perform chemical oxidative polymerization. At this time, the reaction liquid changed from light yellow to dark blue.
Next, 50.1 g of amphoteric ion exchange resin (trade name: MB-1, ion exchange type: -H, -OH, manufactured by Organo Corporation) was added to the obtained reaction solution, and the mixture was stirred for 2 hours. This changed the pH of the reaction solution from 1.15 to 1.83. Thus, a conductive polymer composition containing poly (3,4-ethylenedioxythiophene) doped with 1.3% by mass of polystyrene sulfonic acid was prepared.

〔比較例2〜4〕
表1に示す導電性ポリマーの含有量となるように、20質量%ポリスチレンスルホン酸水溶液(重量平均分子量:50,000)、3,4−エチレンジオキシチオフェンを増加し、伴って酸化剤を同じ比率で増加させて合成した以外は、比較例1と同様にして導電性ポリマー組成物を合成した。結果を表1に示す。
なお、分散性が悪かった導電性ポリマー組成物については、導電性ポリマー材料の形成性が悪く、導電性と吸湿性の評価が困難であるため行わなかった。
[Comparative Examples 2 to 4]
20 mass% polystyrene sulfonic acid aqueous solution (weight average molecular weight: 50,000) and 3,4-ethylenedioxythiophene are increased so that the conductive polymer content shown in Table 1 is obtained, and the same oxidizing agent is used. A conductive polymer composition was synthesized in the same manner as in Comparative Example 1 except that it was synthesized by increasing the ratio. The results are shown in Table 1.
In addition, about the conductive polymer composition with bad dispersibility, since the formability of the conductive polymer material was bad and evaluation of electroconductivity and hygroscopicity was difficult, it did not carry out.

〔比較例5〕
比較例1で合成した導電性ポリマー組成物54gに、実施例1の工程(b)で得られた導電性ポリマーを、0.3g混合して、室温下に24時間攪拌した。これにより導電性ポリマーを0.55質量%含む、黒みがかった紺色の導電性ポリマー組成物を得た。結果を表1に示す。
導電性ポリマー組成物の分散性は悪かったが、強く撹拌して一時的に再分散させた状態で導電性、吸湿性の評価をおこなった。
[Comparative Example 5]
To 54 g of the conductive polymer composition synthesized in Comparative Example 1, 0.3 g of the conductive polymer obtained in Step (b) of Example 1 was mixed and stirred at room temperature for 24 hours. As a result, a dark blue conductive polymer composition containing 0.55% by mass of the conductive polymer was obtained. The results are shown in Table 1.
Although the dispersibility of the conductive polymer composition was poor, the conductivity and hygroscopicity were evaluated in a state where the conductive polymer composition was vigorously stirred and temporarily redispersed.

〔比較例6〕
モノマーとしての3,4−エチレンジオキシチオフェン1gと、酸化剤及びドーパントとして機能するp−トルエンスルホン酸鉄(III)9gとを、溶媒としてのエタノール30mlに溶解させた。得られた溶液を室温下24時間攪拌して化学酸化重合を行い、ポリ(3,4−エチレンジオキシチオフェン)を合成した。
[Comparative Example 6]
1 g of 3,4-ethylenedioxythiophene as a monomer and 9 g of iron (III) p-toluenesulfonate functioning as an oxidizing agent and a dopant were dissolved in 30 ml of ethanol as a solvent. The resulting solution was stirred at room temperature for 24 hours to perform chemical oxidative polymerization to synthesize poly (3,4-ethylenedioxythiophene).

得られた溶液を減圧ろ過装置を用いてろ過して、粉末を回収した。純水とエタノールを用いて粉末を洗浄した。
精製後の粉末0.5gを水50ml中に分散させた後、ポリ酸成分としてのポリスチレンスルホン酸(重量平均分子量:50,000)を20質量%含有する水溶液3.3gを添加した。この混合液に、酸化剤としての過硫酸アンモニウム1.5gを添加し、室温下24時間攪拌した。
次いで、比較例1と同様にしてイオン交換処理をおこなって、2.3質量%のポリスチレンスルホン酸がドーピングされたポリ(3,4−エチレンジオキシチオフェン)を含有する導電性ポリマー組成物を合成した。実施例1と同様にして評価をおこなった結果を表1に示す。
The obtained solution was filtered using a vacuum filtration device to recover the powder. The powder was washed with pure water and ethanol.
After 0.5 g of the purified powder was dispersed in 50 ml of water, 3.3 g of an aqueous solution containing 20% by mass of polystyrenesulfonic acid (weight average molecular weight: 50,000) as a polyacid component was added. To this mixed solution, 1.5 g of ammonium persulfate as an oxidizing agent was added and stirred at room temperature for 24 hours.
Next, an ion exchange treatment was performed in the same manner as in Comparative Example 1 to synthesize a conductive polymer composition containing poly (3,4-ethylenedioxythiophene) doped with 2.3% by mass of polystyrene sulfonic acid. did. Table 1 shows the results of evaluation performed in the same manner as in Example 1.

Figure 2015017230
Figure 2015017230

表1から、実施例1〜4は、導電性成分の増加に伴う粘度の上昇が小さく、良好な分散性の導電性ポリマー組成物であることがわかる。また導電性が高く、吸湿が少ない導電性ポリマー材料ことがわかる。   From Table 1, it can be seen that Examples 1 to 4 are electrically conductive polymer compositions having good dispersibility, with little increase in viscosity accompanying an increase in the conductive component. It can also be seen that the conductive polymer material has high conductivity and low moisture absorption.

比較例1〜4は、導電性成分の増加に伴う、粘度の上昇が著しく大きくゲル化が認めら
れた。比較例5は、粉末成分が沈降してしまい分散性が悪い。また導電性が低く、吸湿が大きい。また実施例2と比較すると、単に粉末を混合するよりもドーピングされていることで導電性が高く、吸湿が小さいことがわかる。比較例6は、分散性は良好であったがポリスチレンスルホン酸の含有量が多いため、導電性が低く、吸湿が大きい。
In Comparative Examples 1 to 4, the increase in the viscosity accompanying the increase in the conductive component was remarkably large, and gelation was observed. In Comparative Example 5, the powder component settles and the dispersibility is poor. Also, the conductivity is low and the moisture absorption is large. Moreover, when compared with Example 2, it can be seen that the doping is higher than the simple mixing of powder, resulting in high conductivity and low moisture absorption. In Comparative Example 6, the dispersibility was good, but since the content of polystyrene sulfonic acid was large, the conductivity was low and the moisture absorption was large.

〔実施例5〕
工程(a)において、反応溶液に含まれるポリスチレンスルホン酸の量は、反応溶液に含まれる3,4−エチレンジオキシチオフェン1質量部に対して2.44質量部とし、実施例3と同様にして導電性ポリマー組成物を製造した。こうしてP1成分を1.3質量%とP2成分を1.1質量%含む若干黒みがかった紺色である導電性ポリマー組成物を得た(含有比率 P1:P2=1:0.84)。実施例1と同様にして粘度を測定した結果を表2に示す。
Example 5
In the step (a), the amount of polystyrene sulfonic acid contained in the reaction solution is 2.44 parts by mass with respect to 1 part by mass of 3,4-ethylenedioxythiophene contained in the reaction solution, and the same as in Example 3. Thus, a conductive polymer composition was produced. Thus, a conductive polymer composition having a slightly blackish amber color containing 1.3% by mass of the P1 component and 1.1% by mass of the P2 component was obtained (content ratio P1: P2 = 1: 0.84). The results of measuring the viscosity in the same manner as in Example 1 are shown in Table 2.

〔比較例7〕
表2に示す導電性ポリマーの含有量となるように、(反応溶液に含まれるポリスチレンスルホン酸の量は、反応溶液に含まれる3,4−エチレンジオキシチオフェン1質量部に対して2.44質量部)、20質量%ポリスチレンスルホン酸水溶液(重量平均分子量:50,000)と、3,4−エチレンジオキシチオフェンを増加し、伴って酸化剤を同じ比率で増加させて合成した以外は、比較例1と同様にして導電性ポリマー組成物を合成した。実施例5と同様にして粘度を評価した結果を表2に示す。
[Comparative Example 7]
(The amount of polystyrene sulfonic acid contained in the reaction solution is 2.44 with respect to 1 part by mass of 3,4-ethylenedioxythiophene contained in the reaction solution so that the content of the conductive polymer shown in Table 2 is obtained. Parts by weight), 20% by weight polystyrene sulfonic acid aqueous solution (weight average molecular weight: 50,000), and 3,4-ethylenedioxythiophene are increased, and the oxidant is increased at the same ratio. A conductive polymer composition was synthesized in the same manner as in Comparative Example 1. The results of evaluating the viscosity in the same manner as in Example 5 are shown in Table 2.

Figure 2015017230
これより、工程(a)においてポリスチレンスルホン酸と、3,4−エチレンジオキシチオフェンの混合比率を変化させた場合も、粘度の低い導電性ポリマー組成物が得られることがわかった。
Figure 2015017230
From this, it was found that a conductive polymer composition having a low viscosity can be obtained even when the mixing ratio of polystyrenesulfonic acid and 3,4-ethylenedioxythiophene is changed in the step (a).

〔実施例6〕
工程(a)において、20質量%ポリスチレンスルホン酸水溶液(重量平均分子量:50,000)に代えて、25質量%水溶性ポリエステルスルホン酸樹脂(重量平均分子量:28,000)を用いた以外は実施例1と同様にしてP1成分を1.3質量%とP2成分を0.22質量%含む濃紺色である導電性ポリマー組成物を得て(含有比率 P1:P2=1:0.17)、評価をおこなった。結果を表3に示す。
Example 6
In step (a), a 25 mass% water-soluble polyester sulfonic acid resin (weight average molecular weight: 28,000) was used in place of the 20 mass% polystyrene sulfonic acid aqueous solution (weight average molecular weight: 50,000). In the same manner as in Example 1, a dark blue conductive polymer composition containing 1.3% by mass of P1 component and 0.22% by mass of P2 component was obtained (content ratio P1: P2 = 1: 0.17). Evaluation was performed. The results are shown in Table 3.

〔実施例7〕
工程(b)に使用するモノマーとして、ピロールを用いた以外は実施例1と同様にして導電性ポリマー組成物を得て、評価をおこなった。結果を表3に示す。
Example 7
A conductive polymer composition was obtained and evaluated in the same manner as in Example 1 except that pyrrole was used as the monomer used in the step (b). The results are shown in Table 3.

〔実施例8〕
工程(b)において、酸化剤としてp−トルエンスルホン酸鉄(III)に代えて、過硫酸アンモニウムを、溶媒としてエタノールに代えて水を用いた以外は実施例1と同様にして導電性ポリマー組成物を得て、評価をおこなった。結果を表3に示す。
Example 8
In the step (b), a conductive polymer composition was prepared in the same manner as in Example 1 except that ammonium persulfate was used instead of iron (III) p-toluenesulfonate as an oxidizing agent and water was used instead of ethanol as a solvent. And evaluated. The results are shown in Table 3.

〔実施例9〕
工程(c)において、導電性ポリマー(P0)を0.05gとした以外は実施例1と同様にして、P1成分を1.3質量%とP2成分を0.09質量%含む濃紺色である導電性ポリマー組成物を得て(含有比率 P1:P2=1:0.07)、評価をおこなった。結果を表3に示す。
Example 9
In the step (c), it is a dark blue color containing 1.3% by mass of the P1 component and 0.09% by mass of the P2 component in the same manner as in Example 1 except that the amount of the conductive polymer (P0) is 0.05 g. A conductive polymer composition was obtained (content ratio P1: P2 = 1: 0.07) and evaluated. The results are shown in Table 3.

〔実施例10〕
実施例1の工程(a)において、モノマーとして〔化1〕のRがエチル基であるモノマーを用いた以外は実施例1と同様にして導電性ポリマー組成物を得て、評価をおこなった。結果を表3に示す。
Example 10
In the step (a) of Example 1, a conductive polymer composition was obtained and evaluated in the same manner as in Example 1 except that a monomer in which R in [Chemical Formula 1] was an ethyl group was used as the monomer. The results are shown in Table 3.

〔実施例11〕
実施例1の工程(b)において、モノマーとして〔化1〕のRがエチル基であるモノマーを用いた以外は実施例1と同様にして導電性ポリマー組成物を得て、評価をおこなった。結果を表3に示す。
Example 11
In the step (b) of Example 1, a conductive polymer composition was obtained and evaluated in the same manner as in Example 1 except that a monomer in which R in [Chemical Formula 1] was an ethyl group was used as the monomer. The results are shown in Table 3.

Figure 2015017230
Figure 2015017230

表3に示されるように、実施例6では、ドーパントとしての高分子有機酸を変更しても、また、実施例7では、モノマーとしてピロールを用いても、実施例8では、ドーパントとしての低分子有機酸を含まない酸化剤を用いても、実施例9では、導電性ポリマー(P2)の比率を変化させても、実施例10、11では、モノマーを変更しても、いずれも、本発明の効果が得られることがわかる。   As shown in Table 3, in Example 6, even if the polymeric organic acid as the dopant was changed, in Example 7, pyrrole was used as the monomer, and in Example 8, the low as the dopant was used. Even if an oxidizing agent not containing a molecular organic acid is used, in Example 9, the ratio of the conductive polymer (P2) is changed, and in Examples 10 and 11, the monomer is changed. It turns out that the effect of invention is acquired.

〔実施例12〕
実施例1で得られた導電性ポリマー組成物を、市販の高圧粉砕装置を用いて処理した。得られた導電性ポリマー組成物を、動的光散乱原理の装置を用いて粒度分布を測定した結果、体積換算の粒径(D50)は、48.5nmであった。
次いで、該導電性ポリマー組成物10gに、さらに導電性向上成分としジメチルスルホキシドを5質量%と、密着性向上成分として市販の水溶性ポリエステル樹脂(固形分25質量%)を0.53g混合して60分攪拌して、導電性ポリマー組成物を調製した。
Example 12
The conductive polymer composition obtained in Example 1 was treated using a commercially available high-pressure pulverizer. As a result of measuring the particle size distribution of the obtained conductive polymer composition using an apparatus based on the dynamic light scattering principle, the volume-converted particle size (D50) was 48.5 nm.
Subsequently, 10 g of the conductive polymer composition was further mixed with 5% by mass of dimethyl sulfoxide as a conductivity improving component and 0.53 g of a commercially available water-soluble polyester resin (solid content 25% by mass) as an adhesion improving component. The mixture was stirred for 60 minutes to prepare a conductive polymer composition.

基材としての、厚さ100μmのポリエステルフィルム(商品名:DIAFOIL MR−100、三菱化学ポリエステルフィルム製)上に、前記混合物を100μl滴下した。スピンコーターを用いて、1,000rpmで5秒、連続して3,000prmで30秒コートした。その後、120℃で15分間乾燥して導電性基材を得た。
得られた導電性基材について耐湿性試験をおこなった。耐湿性試験は、60℃90%RH雰囲気に100時間放置した場合の初期値に対する導電性の変化率(倍)を算出した。結果を表4に示す。
100 μl of the mixture was dropped onto a 100 μm-thick polyester film (trade name: DIAFOIL MR-100, manufactured by Mitsubishi Chemical Polyester Film) as a substrate. Using a spin coater, coating was performed at 1,000 rpm for 5 seconds, and continuously at 3,000 prm for 30 seconds. Then, it dried at 120 degreeC for 15 minutes, and obtained the electroconductive base material.
The obtained conductive base material was subjected to a moisture resistance test. In the moisture resistance test, the change rate (times) of conductivity with respect to the initial value when left in an atmosphere of 60 ° C. and 90% RH for 100 hours was calculated. The results are shown in Table 4.

〔比較例8、9〕
良好な分散性を示した比較例2及び6で得られた導電性ポリマー組成物をそれぞれ用いて、密着性向上成分の量をそれぞれ0.56g、0.81gとした以外は、実施例12と同様にして導電性ポリマー組成物を調製して、導電性基材を得た後、同様の評価をおこなった。結果を表4に示す。
[Comparative Examples 8 and 9]
Example 12 and Example 12 except that the conductive polymer compositions obtained in Comparative Examples 2 and 6 that showed good dispersibility were used, respectively, and the amounts of the adhesion improving components were 0.56 g and 0.81 g, respectively. Similarly, after preparing a conductive polymer composition and obtaining a conductive substrate, the same evaluation was performed. The results are shown in Table 4.

Figure 2015017230
Figure 2015017230

表4に示されるように、実施例12では、耐湿性試験の導電性の劣化が小さいが、比較例8、9では、導電性の劣化も大きい。   As shown in Table 4, in Example 12, the deterioration in conductivity in the moisture resistance test is small, but in Comparative Examples 8 and 9, the deterioration in conductivity is also large.

〔実施例13〕
弁作用金属からなる陽極導体として多孔質性の直方体タンタル素子を用い、リン酸水溶液中で50V印加して陽極酸化によりタンタルの表面に誘電体層となる酸化皮膜を形成した。次いで、誘電体層を形成した陽極導体を、実施例12で調製した導電性ポリマー組成物に浸漬し引き上げた後、120℃で15分間乾燥して、固体電解質層を形成した。
Example 13
A porous rectangular parallelepiped tantalum element was used as an anode conductor made of a valve metal, and an oxide film serving as a dielectric layer was formed on the surface of tantalum by anodic oxidation by applying 50 V in an aqueous phosphoric acid solution. Next, the anode conductor on which the dielectric layer was formed was immersed in the conductive polymer composition prepared in Example 12 and pulled up, and then dried at 120 ° C. for 15 minutes to form a solid electrolyte layer.

次いで、実施例3の導電性ポリマー組成物を市販の高圧粉砕装置を用いて処理した。得られた導電性ポリマー組成物を、動的光散乱原理の装置を用いて粒度分布を測定した結果、体積換算の粒径(D50)は、68.9nmであった。該導電性ポリマー組成物10gに、さらに導電性向上成分としジメチルスルホキシドを0.67gと、密着性向上成分として市販の水溶性ポリエステル樹脂(固形分25質量%)を1.01g混合して60分攪拌して調製した導電性ポリマー組成物に、浸漬し引き上げて120℃15分間乾燥した。   Next, the conductive polymer composition of Example 3 was processed using a commercially available high-pressure pulverizer. As a result of measuring the particle size distribution of the obtained conductive polymer composition using an apparatus based on the dynamic light scattering principle, the volume-converted particle size (D50) was 68.9 nm. The conductive polymer composition 10 g was further mixed with 0.67 g of dimethyl sulfoxide as a conductivity improving component and 1.01 g of a commercially available water-soluble polyester resin (solid content 25 mass%) as an adhesion improving component for 60 minutes. It was immersed in a conductive polymer composition prepared by stirring, pulled up and dried at 120 ° C. for 15 minutes.

次いで、固体電解質層の上に、グラファイト層及び銀含有樹脂層を順番に形成して、エポキシ樹脂で加圧モールドして、固体電解コンデンサを得た。
固体電解コンデンサの容量(120Hz)、ESR(100kHz)を、LCRメーターを用いて各周波数で測定した後、25Vの電圧を3分間印加した後のLC(漏れ電流)測定をおこなった。結果を表5に示す。
Next, a graphite layer and a silver-containing resin layer were sequentially formed on the solid electrolyte layer, and pressure molded with an epoxy resin to obtain a solid electrolytic capacitor.
After measuring the capacity (120 Hz) and ESR (100 kHz) of the solid electrolytic capacitor at each frequency using an LCR meter, LC (leakage current) was measured after applying a voltage of 25 V for 3 minutes. The results are shown in Table 5.

〔比較例10〕
比較例2で得られた導電性ポリマー組成物を市販の高圧粉砕装置を用いて処理した。次いで、該導電性ポリマー組成物10gに、さらに導電性向上成分としジメチルスルホキシドを5質量%と、密着性向上成分として市販の水溶性ポリエステル樹脂(固形分25質量%)を0.56g混合して60分攪拌して、導電性ポリマー組成物を調製した。次いで、実施例13で用いたタンタル素子を用いて、誘電体層を形成した陽極導体を該導電性ポリマー組成物に浸漬し引き上げた後、120℃で15分間乾燥して、固体電解質層を形成した。次いで、固体電解質層の上に、グラファイト層及び銀含有樹脂層を順番に形成して、エポキシ樹脂で加圧モールドして固体電解コンデンサを得て、同様に評価をおこなった。結果を表5に示す。
[Comparative Example 10]
The conductive polymer composition obtained in Comparative Example 2 was treated using a commercially available high-pressure pulverizer. Next, 10 g of the conductive polymer composition was further mixed with 0.56 g of dimethyl sulfoxide as a conductivity improving component and 5% by mass of a commercially available water-soluble polyester resin (solid content 25% by mass) as an adhesion improving component. The mixture was stirred for 60 minutes to prepare a conductive polymer composition. Next, using the tantalum element used in Example 13, the anode conductor on which the dielectric layer was formed was immersed in the conductive polymer composition and pulled up, and then dried at 120 ° C. for 15 minutes to form a solid electrolyte layer. did. Next, a graphite layer and a silver-containing resin layer were sequentially formed on the solid electrolyte layer, and pressure-molded with an epoxy resin to obtain a solid electrolytic capacitor, which was similarly evaluated. The results are shown in Table 5.

〔比較例11、12〕
比較例5、6で得られた導電性ポリマー組成物をそれぞれ用いて、密着性向上成分の量をそれぞれ0.66g、0.81gとした以外は、比較例10と同様にして調製して、固体電解コンデンサを得て評価をおこなった。結果を表6に示す。
なお、比較例5で得られた導電性ポリマー組成物は、用いる際に強く再撹拌して沈降成分を一時的に分散させて用いた。
[Comparative Examples 11 and 12]
Each of the conductive polymer compositions obtained in Comparative Examples 5 and 6 was used in the same manner as in Comparative Example 10 except that the amount of the adhesion improving component was 0.66 g and 0.81 g, respectively. A solid electrolytic capacitor was obtained and evaluated. The results are shown in Table 6.
In addition, the conductive polymer composition obtained in Comparative Example 5 was used by strongly re-stirring and temporarily dispersing the precipitated component when used.

Figure 2015017230
Figure 2015017230

表6に示されるように、実施例13では、容量が大きく、ESRが低く、LCが小さく良好な固体電解コンデンサが得られる。これは、導電性ポリマー材料の高分散性、高導電性を有し、高濃度でも安定した分散性を有し、導電性ポリマーが陽極導体の外周部を均一に覆っていることに起因すると考えられる。   As shown in Table 6, in Example 13, a solid electrolytic capacitor having a large capacity, a low ESR, a small LC, and an excellent solid electrolytic capacitor can be obtained. This is thought to be due to the high dispersibility and high conductivity of the conductive polymer material, stable dispersibility even at high concentrations, and the conductive polymer uniformly covering the outer periphery of the anode conductor. It is done.

比較例10では、ESRが高く、LCが大きく好ましくない。これは、導電性ポリマー材料の導電性が低いこと、陽極導体の外周部を導電性ポリマーで覆えていないことに起因し、外周部を覆えなかったのは濃度が低いことも要因であると考えられる。
比較例11では、容量が低く、ESRが高く、LCが高い。これは、導電性ポリマー組成物の分散安定性が悪く、導電性が低いこと、陽極導体の外周部を導電性ポリマーで覆えていないことに起因すると考えられる。
比較例12では、ESRが高く、LCが大きい。これは、導電性ポリマー組成物の導電性が低いこと、さらに陽極導体の外周部を覆う導電性ポリマー材料が硬いために加圧モールド時の機械的ストレスによって割れが生じ悪化した可能性が考えられる。
In Comparative Example 10, ESR is high and LC is large, which is not preferable. This is because the conductive polymer material has low conductivity, the outer periphery of the anode conductor is not covered with the conductive polymer, and the reason why the outer periphery was not covered is also due to the low concentration. It is done.
In Comparative Example 11, the capacity is low, the ESR is high, and the LC is high. This is thought to be because the dispersion stability of the conductive polymer composition is poor, the conductivity is low, and the outer peripheral portion of the anode conductor is not covered with the conductive polymer.
In Comparative Example 12, ESR is high and LC is large. This may be because the conductive polymer composition has low conductivity, and the conductive polymer material covering the outer periphery of the anode conductor is hard, so that cracking may have occurred due to mechanical stress during pressure molding. .

本発明の導電性ポリマー組成物から得られる導電性ポリマー材料は、導電性基材、電極、特に固体電解コンデンサ、帯電防止材、電磁波シールド材、色素増感太陽電池、有機薄膜太陽電池等の電極、及びエレクトロルミネッセンスディスプレイの電極等に広く使用される。   The conductive polymer material obtained from the conductive polymer composition of the present invention includes a conductive substrate, an electrode, particularly an electrode such as a solid electrolytic capacitor, an antistatic material, an electromagnetic shielding material, a dye-sensitized solar cell, and an organic thin film solar cell. And widely used for electrodes of electroluminescent displays.

Claims (19)

高分子有機酸又はその塩がドーピングされた導電性ポリマー(P1)と、
無機酸若しくは低分子有機酸又はそれらの塩がドーピングされた導電性ポリマー(P0)における無機酸若しくは低分子有機酸又はそれらの塩が、ド―パント交換によって導電性ポリマー(P1)にドーピングされた高分子有機酸又はその塩によりドーピングされた導電性ポリマー(P2)と、
水又は水混和性の有機溶媒からなる溶媒と、
を含有することを特徴とする導電性ポリマー組成物。
A conductive polymer (P1) doped with a high molecular organic acid or a salt thereof;
The conductive polymer (P1) is doped with the inorganic acid or the low molecular organic acid or the salt thereof in the conductive polymer (P0) doped with the inorganic acid or the low molecular organic acid or the salt thereof by dopant exchange. A conductive polymer (P2) doped with a high molecular organic acid or a salt thereof;
A solvent consisting of water or a water-miscible organic solvent;
A conductive polymer composition comprising:
導電性ポリマー(P1)の1質量部に対して、導電性ポリマー(P2)を0.01〜20質量部含有する請求項1に記載の導電性ポリマー組成物。   The conductive polymer composition according to claim 1, comprising 0.01 to 20 parts by mass of the conductive polymer (P2) with respect to 1 part by mass of the conductive polymer (P1). 導電性ポリマー(P1)と導電性ポリマー(P2)とを合計で0.1〜50質量%含有する請求項1又は2に記載の導電性ポリマー組成物。   The conductive polymer composition according to claim 1 or 2, comprising 0.1 to 50% by mass of the conductive polymer (P1) and the conductive polymer (P2) in total. 前記導電性ポリマー(P1)が、ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーと、ドーパントとしての高分子有機酸又はその塩とを、水又は水混和性有機溶媒中で、酸化剤を用いて酸化重合して得られる請求項1〜3のいずれかに記載の導電性ポリマー組成物。   The conductive polymer (P1) comprises at least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof, and a polymer organic acid or salt thereof as a dopant, water or a water-miscible organic solvent. The conductive polymer composition according to claim 1, wherein the conductive polymer composition is obtained by oxidative polymerization using an oxidizing agent. 前記導電性ポリマー(P0)は、ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーと、ドーパントとしての無機酸若しくは低分子有機酸又はその塩とを、水又は有機溶媒を含む溶媒中で、酸化剤を用いて酸化重合して得られる請求項1〜4のいずれかに記載の導電性ポリマー組成物。   The conductive polymer (P0) comprises at least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof, an inorganic acid or a low molecular organic acid or a salt thereof as a dopant, water or an organic solvent The conductive polymer composition according to claim 1, which is obtained by oxidative polymerization using an oxidizing agent in a solvent containing. 前記高分子有機酸が、少なくともスルホン酸基(−SOH)を有する請求項1〜5のいずれかに記載の導電性ポリマー組成物。 The conductive polymer composition according to claim 1, wherein the high molecular organic acid has at least a sulfonic acid group (—SO 3 H). 前記高分子有機酸が、ポリエステルスルホン酸、ポリスチレンスルホン酸及びその塩からなる群から選ばれる少なくとも1種である請求項6に記載の導電性ポリマー組成物。   The conductive polymer composition according to claim 6, wherein the high molecular organic acid is at least one selected from the group consisting of polyester sulfonic acid, polystyrene sulfonic acid, and salts thereof. 前記低分子有機酸が、ベンゼンスルホン酸、ナフタレンスルホン酸、カンファースルホン酸、アントラキノンスルホン酸、及びそれらの塩からなる群からなる群から選択される少なくとも1種である請求項1〜7のいずれかに記載の導電性ポリマー組成物。   The low molecular organic acid is at least one selected from the group consisting of benzenesulfonic acid, naphthalenesulfonic acid, camphorsulfonic acid, anthraquinonesulfonic acid, and salts thereof. The conductive polymer composition described in 1. 動的光散乱法で測定された体積換算の粒径(D50)が1〜200nmの粒子を含有する請求項1〜8のいずれかに記載の導電性ポリマー組成物。   The conductive polymer composition according to any one of claims 1 to 8, wherein the conductive polymer composition contains particles having a volume-converted particle size (D50) measured by a dynamic light scattering method of 1 to 200 nm. ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーを、ドーパントである高分子有機酸又はその塩及び酸化剤を用い、水又は水混和性の有機溶媒中で酸化重合して導電性ポリマー(P1)の水又は水混和性の有機溶媒の分散液を得る工程(a)と、
ピロール、チオフェン及びそれらの誘導体からなる群から選択される少なくとも1種のモノマーを、ドーパントである無機酸若しくは低分子有機酸又はそれらの塩及び酸化剤を用いて、水、有機溶媒、又は水混和性の有機溶媒からなる溶媒中で酸化重合し、導電性ポリマー(P0)を得る工程(b)と、
工程(b)で得られた導電性ポリマー(P0)を、工程(a)で得られた導電性ポリマー(P1)の水又は水混和性の有機溶媒の分散液と酸化剤の存在下に混合し、ド―パント交換する工程(c)と、
を有する請求項1に記載の導電性ポリマー組成物の製造する方法。
Oxidative polymerization of at least one monomer selected from the group consisting of pyrrole, thiophene and derivatives thereof in water or a water-miscible organic solvent using a high-molecular organic acid or salt thereof as a dopant and an oxidizing agent. (A) obtaining a dispersion of water or a water-miscible organic solvent of the conductive polymer (P1);
At least one monomer selected from the group consisting of pyrrole, thiophene, and derivatives thereof is mixed with water, an organic solvent, or water miscible with an inorganic acid or low-molecular organic acid or a salt thereof and an oxidizing agent as a dopant. A step (b) of obtaining a conductive polymer (P0) by oxidative polymerization in a solvent composed of a conductive organic solvent;
The conductive polymer (P0) obtained in the step (b) is mixed in the presence of an oxidizing agent with a dispersion of the conductive polymer (P1) obtained in the step (a) in water or a water-miscible organic solvent. And (c) replacing the dopant,
The method for producing a conductive polymer composition according to claim 1, comprising:
前記工程(c)における酸化剤が過硫酸塩である請求項10に記載の導電性ポリマー組成物の製造方法。   The method for producing a conductive polymer composition according to claim 10, wherein the oxidizing agent in the step (c) is a persulfate. さらに、導電性向上成分及び/又は密着性向上成分を混合する工程(d)を有する請求項10又は11に記載の導電性ポリマーの製造方法。   Furthermore, the manufacturing method of the conductive polymer of Claim 10 or 11 which has the process (d) which mixes an electroconductivity improvement component and / or an adhesive improvement component. さらに、湿式ビーズミル、湿式ジェットミル、又は超音波装置を用いた粉砕工程(e)を有する請求項10〜12のいずれかに記載の導電性ポリマー組成物の製造方法。   Furthermore, the manufacturing method of the conductive polymer composition in any one of Claims 10-12 which has the grinding | pulverization process (e) using a wet bead mill, a wet jet mill, or an ultrasonic device. 請求項1〜9のいずれかに記載の導電性ポリマー組成物から前記溶媒を除去して得られる導電性ポリマー材料。   The conductive polymer material obtained by removing the said solvent from the conductive polymer composition in any one of Claims 1-9. 基材上に、請求項14に記載の導電性ポリマー材料を含む層を備える導電性基材。   A conductive substrate comprising a layer comprising the conductive polymer material according to claim 14 on a substrate. 前記基材がポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリオレフィン樹脂、アクリル樹脂、ビニルエステル樹脂及びスチレン樹脂からなる群から選択される少なくとも1種を含む樹脂基材である請求項15に記載の導電性基材。   The base material is a resin base material including at least one selected from the group consisting of a polyester resin, a polyamide resin, a polyimide resin, a polyurethane resin, a polystyrene resin, a polyolefin resin, an acrylic resin, a vinyl ester resin, and a styrene resin. 15. The conductive substrate according to 15. 請求項16に記載の導電性基材を備える電極。   An electrode comprising the conductive substrate according to claim 16. 請求項17に記載の電極を備える電子デバイス。   An electronic device comprising the electrode according to claim 17. 請求項14に記載の導電性ポリマー材料を含む固体電解質を備える固体電解コンデンサ。   A solid electrolytic capacitor comprising a solid electrolyte containing the conductive polymer material according to claim 14.
JP2013146874A 2013-07-12 2013-07-12 Conductive polymer composition and method for producing the same Active JP6266241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013146874A JP6266241B2 (en) 2013-07-12 2013-07-12 Conductive polymer composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013146874A JP6266241B2 (en) 2013-07-12 2013-07-12 Conductive polymer composition and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017126555A Division JP6417452B2 (en) 2017-06-28 2017-06-28 Conductive polymer and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015017230A true JP2015017230A (en) 2015-01-29
JP6266241B2 JP6266241B2 (en) 2018-01-24

Family

ID=52438526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013146874A Active JP6266241B2 (en) 2013-07-12 2013-07-12 Conductive polymer composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP6266241B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318589A1 (en) * 2016-11-02 2018-05-09 Heraeus Deutschland GmbH & Co. KG Pedot/pss with coarse particle size and high pedot-content
JP2019196464A (en) * 2018-05-11 2019-11-14 信越ポリマー株式会社 Conductive polymer dispersion liquid and method for producing the same, and method for producing conductive film
US11417472B2 (en) 2019-06-28 2022-08-16 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method of electrolytic capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040770A (en) * 2008-08-05 2010-02-18 Nec Tokin Corp Conductive polymer suspension, method of manufacturing same, conductive polymer material, electrolytic capacitor, solid electrolytic capacitor, and method of manufacturing same
JP2010040776A (en) * 2008-08-05 2010-02-18 Nec Tokin Corp Conductive polymer suspension and method of preparing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method of manufacturing the same
JP2010275378A (en) * 2009-05-27 2010-12-09 Nec Tokin Corp Conductive polymer suspension, method of production thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
JP2013122016A (en) * 2011-12-12 2013-06-20 Nec Tokin Corp Conductive polymer composition, conductive polymer material, conductive substrate, electrode and solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040770A (en) * 2008-08-05 2010-02-18 Nec Tokin Corp Conductive polymer suspension, method of manufacturing same, conductive polymer material, electrolytic capacitor, solid electrolytic capacitor, and method of manufacturing same
JP2010040776A (en) * 2008-08-05 2010-02-18 Nec Tokin Corp Conductive polymer suspension and method of preparing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method of manufacturing the same
JP2010275378A (en) * 2009-05-27 2010-12-09 Nec Tokin Corp Conductive polymer suspension, method of production thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
JP2013122016A (en) * 2011-12-12 2013-06-20 Nec Tokin Corp Conductive polymer composition, conductive polymer material, conductive substrate, electrode and solid electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3318589A1 (en) * 2016-11-02 2018-05-09 Heraeus Deutschland GmbH & Co. KG Pedot/pss with coarse particle size and high pedot-content
WO2018083013A1 (en) * 2016-11-02 2018-05-11 Heraeus Deutschland Gmbh & Co Kg Pedot/pss with coarse particle size and high pedot-content
JP2019196464A (en) * 2018-05-11 2019-11-14 信越ポリマー株式会社 Conductive polymer dispersion liquid and method for producing the same, and method for producing conductive film
JP7007987B2 (en) 2018-05-11 2022-01-25 信越ポリマー株式会社 Method for manufacturing conductive polymer dispersion liquid and method for manufacturing conductive film
US11417472B2 (en) 2019-06-28 2022-08-16 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor and manufacturing method of electrolytic capacitor

Also Published As

Publication number Publication date
JP6266241B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US11600449B2 (en) Layer compositions with improved electrical parameters comprising PEDOT/PSS and a stabilizer
JP5872872B2 (en) Method for producing conductive polymer composition, method for producing conductive polymer material, method for producing conductive substrate, method for producing electrode, and method for producing solid electrolytic capacitor
JP5465025B2 (en) Conductive polymer suspension and manufacturing method thereof, conductive polymer material, solid electrolytic capacitor and manufacturing method thereof
JP5491246B2 (en) Conductive polymer and method for producing the same, conductive polymer dispersion, solid electrolytic capacitor and method for producing the same
JP4903759B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP4903760B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP5410251B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP4454041B2 (en) Dispersion liquid of conductive composition, conductive composition and use thereof
JP5952551B2 (en) Conductive polymer composition and method for producing the same, method for producing conductive polymer material, method for producing conductive substrate, method for producing electrode, method for producing electronic device, and method for producing solid electrolytic capacitor
US8804312B2 (en) Electroconductive polymer composition, method for producing the same, and solid electrolytic capacitor using electroconductive polymer composition
JP6415146B2 (en) Conductive polymer dispersion for electrolytic capacitor production and electrolytic capacitor produced using the same.
JP6016780B2 (en) Conductive polymer solution and method for producing the same, conductive polymer material, solid electrolytic capacitor using the same, and method for producing the same
JP2015021100A (en) Conductive polymer dispersion, conductive polymer material, and solid electrolyte capacitor
JP6266241B2 (en) Conductive polymer composition and method for producing the same
JP6223703B2 (en) Conductive polymer solution and method for producing the same, conductive polymer material, and solid electrolytic capacitor
JP6417452B2 (en) Conductive polymer and method for producing the same
JP2013089648A (en) Conductive polymer suspension and production method therefor, conductive polymer material, and solid electrolytic capacitor and manufacturing method therefor
JP5053461B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP5053460B2 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP2018166145A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6266241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250