JP2015016583A - Hollow container having deoxidation property - Google Patents

Hollow container having deoxidation property Download PDF

Info

Publication number
JP2015016583A
JP2015016583A JP2013143762A JP2013143762A JP2015016583A JP 2015016583 A JP2015016583 A JP 2015016583A JP 2013143762 A JP2013143762 A JP 2013143762A JP 2013143762 A JP2013143762 A JP 2013143762A JP 2015016583 A JP2015016583 A JP 2015016583A
Authority
JP
Japan
Prior art keywords
layer
hollow container
oxygen
container
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013143762A
Other languages
Japanese (ja)
Inventor
清智 道場
Kiyotomo Dojo
清智 道場
芳樹 伊東
Yoshiki Ito
芳樹 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2013143762A priority Critical patent/JP2015016583A/en
Publication of JP2015016583A publication Critical patent/JP2015016583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow container having a deoxidation property, which is restrained from being expanded when produced and has excellent external appearance.SOLUTION: The hollow container having the deoxidation property, at the least, has: an isolation layer (b layer) containing a thermoplastic resin β; an oxygen absorption layer (a layer) comprising a resin composition having the deoxidation property, which composition contains (I) an iron-based oxygen absorbent and (II) another thermoplastic resin α; and a gas barrier layer (c layer) in this order from the inside of the hollow container having the deoxidation property toward the outside thereof. The hollow container having the deoxidation property is molded by a direct blow method. The resin composition having the deoxidation property has 0.2 wt.% or lower water content.

Description

本発明は、脱酸素性成形容器及びそれを利用した密閉容器に関し、ボイル・レトルト等の高温高湿処理によるガスバリア層のガスバリア性低下に起因する内容物の酸化劣化を防ぐことができ、長期間にわたって保存物品の品質を良好に保つことが可能な容器に関する。ガスバリア性を高めた中空容器及び、小袋状脱酸素剤を使用すること無く容器内を低酸素状態から無酸素状態に維持できる中空容器に関するものである。   The present invention relates to a deoxygenated molded container and a sealed container using the same, and can prevent oxidative deterioration of contents due to a decrease in gas barrier properties of a gas barrier layer due to high-temperature and high-humidity treatment such as boil and retort. The present invention relates to a container capable of keeping the quality of stored articles in good condition. The present invention relates to a hollow container having an improved gas barrier property and a hollow container capable of maintaining the inside of the container from a low oxygen state to an oxygen-free state without using a pouch-like oxygen absorber.

食品、医薬品等の被包装物を収納する包装容器として、包装容器内の酸素を除去し、被保存物の酸化劣化、変色、カビ、好気性菌繁殖等の変質を防止する包装技術の一つとして、熱可塑性樹脂に酸素吸収剤を配合した脱酸素性樹脂組成物からなる酸素吸収層を用いて容器を形成し、容器のガスバリア性向上を図ると共に、容器自体に酸素吸収機能を付与した脱酸素性容器が使われている。脱酸素性容器は一般に内層、酸素吸収層、ガスバリア層、外層の4種以上の層構成からなるもので、目的に応じてトレイやパウチ、ボトル又はチューブ等の各種形状の容器に成形される。   One packaging technology that removes oxygen in the packaging container to store stuff to be packaged such as food and pharmaceuticals, and prevents oxidative degradation, discoloration, mold, aerobic bacterial growth, etc. As described above, a container is formed using an oxygen absorbing layer made of a deoxygenating resin composition in which an oxygen absorbent is blended with a thermoplastic resin to improve the gas barrier property of the container, and the container itself has an oxygen absorbing function. An oxygen container is used. A deoxygenating container is generally composed of four or more layers, an inner layer, an oxygen absorbing layer, a gas barrier layer, and an outer layer, and is formed into various shapes such as a tray, a pouch, a bottle, or a tube according to the purpose.

脱酸素性容器としては、例えば、特許文献1に開示されている、鉄粉の酸化を利用したものが利用できる。鉄粉は脱酸素性材料としては安価で扱い易いため、熱可塑性樹脂に配合しシートやフィルムに加工することで容易に脱酸素性能を付与できる。特許文献2には、脱酸素剤配合樹脂層とガスバリア層の間にポリオレフィン層を介在させる構成の技術、特許文献3では脱酸素性多層体の真空成型技術、特許文献4では高濃度の酸素吸収剤を均一に分散、工業的な連続的製造を可能にする技術が、開示されている。   As the deoxidizing container, for example, a container utilizing iron powder oxidation disclosed in Patent Document 1 can be used. Since iron powder is inexpensive and easy to handle as a deoxidizing material, it can be easily provided with deoxidizing performance by blending it into a thermoplastic resin and processing it into a sheet or film. Patent Document 2 discloses a technique in which a polyolefin layer is interposed between a deoxidant-containing resin layer and a gas barrier layer, Patent Document 3 discloses a vacuum forming technique for a deoxidizing multilayer body, and Patent Document 4 absorbs a high concentration of oxygen. A technique that uniformly disperses the agent and enables industrial continuous production is disclosed.

特許3962882号公報Japanese Patent No. 3682882 特開平8−132573号公報JP-A-8-132573 特許3838289号公報Japanese Patent No. 3838289 特開2001−354817号公報JP 2001-354817 A

しかしながら、本発明者らが検討したところ、鉄系酸素吸収剤を熱可塑性樹脂に配合した脱酸素性樹脂組成物を、ダイレクトブロー成形で脱酸素性中空容器とする際、鉄系酸素吸収剤に含まれる水分量が多い場合、中空容器の製造時に発泡するという課題があることを見出した。   However, the present inventors have examined that when a deoxygenating resin composition in which an iron-based oxygen absorber is blended with a thermoplastic resin is used as a deoxygenating hollow container by direct blow molding, the iron-based oxygen absorber is used. It has been found that when the amount of water contained is large, there is a problem of foaming during the production of the hollow container.

また、脱酸素性多層体を用いた容器は、酸素吸収層と内容物が接触しないよう、酸素吸収層と内容物との間に隔離層を設ける。しかし、脱酸素性樹脂組成物に含まれる水分が成形時に高温に曝されることにより発泡し、隔離層に凹凸が発生し外観を損ねたり、隔離層に穴が開いて鉄系酸素吸収剤と内容物が直接接触したりするおそれがあった。   Moreover, the container using a deoxidation multilayer body provides an isolation layer between an oxygen absorption layer and the content so that an oxygen absorption layer and the content may not contact. However, the moisture contained in the deoxidizing resin composition is foamed by being exposed to a high temperature at the time of molding, and the separation layer is uneven and the appearance is deteriorated, or the separation layer has a hole and an iron-based oxygen absorbent. There was a risk that the contents would come into direct contact.

本発明は従来技術における脱酸素性中空容器の上記課題を解決し、製造時の発泡が抑制され、外観が良好な脱酸素性中空容器を提供する事を目的とする。   An object of the present invention is to solve the above-mentioned problems of the deoxidizing hollow container in the prior art, and to provide a deoxygenating hollow container having a good appearance, in which foaming during production is suppressed.

本発明者らは、上記の従来技術の問題点に鑑み、鋭意検討を重ねた結果、容器内側から容器外側に向かって、少なくとも、熱可塑性樹脂βを含有する隔離層(b層)と、(I)鉄系酸素吸収剤、及び(II)熱可塑性樹脂αを含有する脱酸素性樹脂組成物からなる酸素吸収層(a層)と、ガスバリア層(c層)とをこの順に有する、ダイレクトブロー法によって成形された脱酸素性中空容器において、前記脱酸素性樹脂組成物の含水率を0.2重量%以下とすることにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above-described problems of the prior art, the present inventors have at least a separating layer (b layer) containing a thermoplastic resin β from the inside of the container toward the outside of the container, Direct blow having an oxygen absorption layer (a layer) made of a deoxygenating resin composition containing I) an iron-based oxygen absorbent and (II) a thermoplastic resin α, and a gas barrier layer (c layer) in this order. In the deoxygenated hollow container formed by the method, it was found that the above problem can be solved by setting the water content of the deoxygenated resin composition to 0.2% by weight or less, and the present invention has been completed. .

本発明により、製造時の発泡が抑制され、外観が良好な脱酸素性中空容器が提供される。また、製品の歩留まり向上が期待できるものであり、容器コスト削減にも寄与するものである。   According to the present invention, a deoxygenating hollow container having a good appearance and suppressing foaming during production is provided. In addition, improvement in product yield can be expected, which contributes to reduction of container costs.

本発明の容器は、容器内側から容器外側に向かって、少なくとも、熱可塑性樹脂βを含有する隔離層(b層)と、(I)鉄系酸素吸収剤、及び(II)熱可塑性樹脂αを含有する脱酸素性樹脂組成物からなる酸素吸収層(a層)と、ガスバリア層(c層)とをこの順に有する、ダイレクトブロー法によって成形された脱酸素性中空容器であって、酸素吸収層(a層)に使用する脱酸素性樹脂組成物として、成形前の脱酸素性樹脂組成物の含水率が0.2重量%以下であることを特徴とする脱酸素性中空容器である。   The container of the present invention comprises at least a separating layer (b layer) containing a thermoplastic resin β, (I) an iron-based oxygen absorbent, and (II) a thermoplastic resin α from the inside of the container toward the outside of the container. A deoxygenating hollow container formed by a direct blow method, having an oxygen absorbing layer (a layer) comprising a deoxygenating resin composition and a gas barrier layer (c layer) in this order, the oxygen absorbing layer The deoxidizing resin composition used for (a layer) is a deoxidizing hollow container characterized in that the moisture content of the deoxidizing resin composition before molding is 0.2% by weight or less.

[鉄系酸素吸収剤]
本発明に用いる酸素吸収剤としては、従来この種の用途に使用されている鉄系酸素吸収剤は全て使用できるが、鉄粉としては、例えば、噴霧鉄粉、海綿鉄粉、電解鉄粉、鉄研削粉、粉砕鉄等が用いられるが、不純物としての酸素及び珪素等の含量が少なく、金属鉄含量95重量%以上の鉄粉が特に好ましく用いられる。また、鉄粉の粒子径は、平均粒径1〜100μmの範囲から選ぶことが好ましい。これらは必要に応じてアルカリ金属、アルカリ土類金属の水酸化物、炭酸塩、亜硫酸塩、チオ硫酸塩、第三リン酸塩、第二リン酸塩、有機酸塩、ハロゲン化物等の酸化促進剤乃至触媒と組合せて使用することができる。
[Iron-based oxygen absorber]
As the oxygen absorbent used in the present invention, all iron-based oxygen absorbents conventionally used for this type of application can be used. Examples of the iron powder include sprayed iron powder, sponge iron powder, electrolytic iron powder, Iron grinding powder, pulverized iron or the like is used, and iron powder having a low content of oxygen and silicon as impurities and a metal iron content of 95% by weight or more is particularly preferably used. Moreover, it is preferable to select the particle diameter of iron powder from the range of an average particle diameter of 1-100 micrometers. These promote the oxidation of alkali metals, alkaline earth metal hydroxides, carbonates, sulfites, thiosulfates, tertiary phosphates, secondary phosphates, organic acid salts, halides, etc. as required It can be used in combination with an agent or a catalyst.

本発明に用いる鉄系酸素吸収剤は、還元性鉄粉と上記酸化促進剤乃至触媒がブレンドされたものでもよいが、還元性鉄粉のコア粒子と、これにコーティングされた酸化促進剤乃至触媒の層とからなるのがより好ましい。また、酸化促進剤乃至触媒が還元性鉄粉当たり0.1乃至20.0重量%、好ましくは0.1乃至10.0重量%の量で存在するのがよい。   The iron-based oxygen absorbent used in the present invention may be a blend of reducing iron powder and the above-mentioned oxidation promoter or catalyst, but the core particles of the reducing iron powder and the oxidation promoter or catalyst coated thereon. It is more preferable to consist of these layers. Further, the oxidation promoter or catalyst should be present in an amount of 0.1 to 20.0% by weight, preferably 0.1 to 10.0% by weight, per reducing iron powder.

還元性鉄粉と共存させる酸化促進剤乃至触媒としては、水溶性乃至潮解性無機電解質を挙げることができる。その具体例として、塩化ナトリウム、塩化カルシウム、塩化亜鉛、塩化アンモニウム、ヨウ化ナトリウム、ヨウ化カリウム、硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、リン酸水素二ナトリウム、二リン酸ナトリウム、炭酸カリウム、硝酸ナトリウム等の無機塩類等が挙げられる。   Examples of the oxidation promoter or catalyst that coexists with the reducing iron powder include water-soluble or deliquescent inorganic electrolytes. Specific examples thereof include sodium chloride, calcium chloride, zinc chloride, ammonium chloride, sodium iodide, potassium iodide, ammonium sulfate, sodium sulfate, magnesium sulfate, disodium hydrogen phosphate, sodium diphosphate, potassium carbonate, sodium nitrate, etc. And inorganic salts.

[脱酸素性樹脂組成物]
本発明の脱酸素性樹脂組成物は、上述した鉄系酸素吸収剤を樹脂に配合して混合することにより得ることができる。混合はメルトブレンドでもドライブレンドの何れでもよく、少量の酸素吸収剤を配合する場合には、酸素吸収剤を高濃度で含有するマスターバッチを調製し、このマスターバッチを樹脂に混合することが好ましい。本発明の酸素吸収剤を配合し得る樹脂としては、これに限定されないが、従来包装材料に用いられていた熱可塑性樹脂に配合し得る。具体的には、低−、中−或いは高−密度のポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、ポリメチルペンテン−1、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸共重合体、イオン架橋オレフィン共重合体(アイオノマー)、エチレン−ビニルアルコール共重合体或いはこれらのブレンド物等のオレフィン系樹脂、ポリスチレン、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、ABS樹脂等のスチレン系樹脂や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリテトラメチレンテレフタレート、グリコール変性ポリエチレンテレフタレート、ポリ乳酸、ポリブチレンサクシネート等のポリエステル、ナイロン6、ナイロン66等のポリアミドやポリカーボネート等に配合することができる。
[Deoxygenating resin composition]
The deoxidizing resin composition of the present invention can be obtained by blending the above-described iron-based oxygen absorbent into a resin. Mixing may be either melt blending or dry blending. When a small amount of oxygen absorbent is blended, it is preferable to prepare a masterbatch containing a high concentration of oxygen absorbent and mix this masterbatch with the resin. . Although it is not limited to this as resin which can mix | blend the oxygen absorbent of this invention, It can mix | blend with the thermoplastic resin conventionally used for the packaging material. Specifically, low-, medium- or high-density polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, ethylene- Propylene-butene-1 copolymer, polymethylpentene-1, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ion-crosslinked olefin copolymer (ionomer), ethylene-vinyl alcohol copolymer Olefin resins such as blends or blends thereof, styrene resins such as polystyrene, styrene-butadiene copolymer, styrene-isoprene copolymer, ABS resin, polyethylene terephthalate, polyethylene naphthalate, polytetramethylene terephthalate, glycol Modified polyethylene terephthalate DOO, polylactic acid, polyesters such as polybutylene succinate, nylon 6, can be incorporated into the polyamide and polycarbonate such as nylon 66.

本発明の脱酸素性樹脂組成物の含水率は0.2重量%以下であり、0.15重量%以下が好ましく、0.1重量%以下がより好ましい。脱酸素性樹脂組成物の含水率を抑制することで、発泡を抑制し、隔離層における凹凸に起因する外観不良や、鉄系酸素吸収剤と内容物との直接接触を防止できる。   The water content of the deoxidizing resin composition of the present invention is 0.2% by weight or less, preferably 0.15% by weight or less, more preferably 0.1% by weight or less. By suppressing the water content of the deoxidizing resin composition, foaming can be suppressed, and poor appearance due to unevenness in the isolation layer and direct contact between the iron-based oxygen absorbent and the contents can be prevented.

これらの樹脂に対する本発明の酸素吸収剤の配合量は、樹脂100重量部当たり1乃至100重量部、特に5乃至70重量部の範囲にあることが好ましい。酸素吸収剤の配合量が、上記範囲より少ない場合は、期待される酸素吸収性能を得ることができず、一方上記範囲よりも多い場合には、成形性や包装体としての特性が低下するおそれがある。   The blending amount of the oxygen absorbent of the present invention with respect to these resins is preferably in the range of 1 to 100 parts by weight, particularly 5 to 70 parts by weight per 100 parts by weight of the resin. When the amount of the oxygen absorbent is less than the above range, the expected oxygen absorption performance cannot be obtained. On the other hand, when it exceeds the above range, the formability and characteristics as a package may be deteriorated. There is.

本発明の酸素吸収層には、必要に応じて、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の各種添加剤、クレー、マイカ、シリカ、炭酸カルシウム、硫酸カルシウム、硫酸バリウム等の充填剤、消臭剤、活性炭やゼオライト等の吸着剤等を添加しても良い。   In the oxygen absorbing layer of the present invention, various additives such as a color pigment such as titanium oxide, an antioxidant, a slip agent, an antistatic agent and a stabilizer, clay, mica, silica, calcium carbonate, sulfuric acid are optionally added. Fillers such as calcium and barium sulfate, deodorizers, adsorbents such as activated carbon and zeolite, and the like may be added.

[熱可塑性樹脂]
内外層を構成する樹脂としては、これに限定されないが、低−、中−或いは高−密度のポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、ポリブテン−1、エチレン−ブテン−1共重合体、プロピレン−ブテン−1共重合体、エチレン−プロピレン−ブテン−1共重合体、ポリメチルペンテン−1、エチレン−酢酸ビニル共重合体、エチレン−(メタ)アクリル酸共重合体、イオン架橋オレフィン共重合体(アイオノマー) 或いはこれらのブレンド物等のオレフィン系樹脂、ポリスチレン、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、ABS樹脂等のスチレン系樹脂や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリテトラメチレンテレフタレート、グリコール変性ポリエチレンテレフタレート、ポリ乳酸、ポリブチレンサクシネート等のポリエステル、ナイロン6 、ナイロン66等のポリアミドやポリカーボネート等を挙げることができる。
[Thermoplastic resin]
The resin constituting the inner and outer layers is not limited to this, but low-, medium- or high-density polyethylene, polypropylene, ethylene-propylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene -Butene-1 copolymer, ethylene-propylene-butene-1 copolymer, polymethylpentene-1, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ion-crosslinked olefin copolymer (Ionomers) Or olefin resins such as blends thereof, styrene resins such as polystyrene, styrene-butadiene copolymer, styrene-isoprene copolymer, ABS resin, polyethylene terephthalate, polyethylene naphthalate, polytetramethylene terephthalate , Glycol-modified polyethylene terf Mention may be made of polyesters such as tartrate, polylactic acid and polybutylene succinate, polyamides such as nylon 6 and nylon 66, polycarbonates and the like.

積層に際しては、接着剤樹脂を用いることもでき、これに限定されないが、エチレン−アクリル酸共重合体、イオン架橋オレフィン共重合体、無水マレイン酸グラフトポリエチレン、無水マレイン酸グラフトポリプロピレン、アクリル酸グラフトポリオレフィン、エチレン−酢酸ビニル共重合体、共重合ポリエステル、共重合ポリアミド等の1種又は2種以上の組合せを用いることができる。   In the lamination, an adhesive resin can be used, but is not limited thereto, but is not limited to ethylene-acrylic acid copolymer, ion-crosslinked olefin copolymer, maleic anhydride grafted polyethylene, maleic anhydride grafted polypropylene, acrylic acid grafted polyolefin. One or a combination of two or more of ethylene-vinyl acetate copolymer, copolymerized polyester, copolymerized polyamide and the like can be used.

ガスバリア層を構成する樹脂としては、エチレン−ビニルアルコール共重合体、ナイロンMXD6、ポリグリコール酸等のガスバリア性樹脂を用いることができる。   As the resin constituting the gas barrier layer, a gas barrier resin such as an ethylene-vinyl alcohol copolymer, nylon MXD6, or polyglycolic acid can be used.

本発明の脱酸素性樹脂組成物には、本容器のスクラップやトリムロスを適宜混合して、酸素吸収層に混入再使用することができる。   The deoxygenating resin composition of the present invention can be mixed and reused in the oxygen absorbing layer by appropriately mixing scraps and trim loss of the container.

本発明の酸素吸収性積層体には、食品、医薬品等が制限なく収納される。例えば、果肉入りゼリー、羊羹、プリン等の菓子類、パイン、みかん、桃、あんず、なし、りんご等のフルーツ類、液体だし、マヨネーズ、味噌、すり下ろし香辛料等の調味料、ジャム、クリーム、チョコレートペースト等のペースト状食品、カレー、液体スープ、煮物、漬物、シチュー等の液体加工食品に代表される液体系食品や、そば、うどん、ラーメン等の生麺及びゆで麺、精米、調湿米、無洗米等の調理前の米類や調理された炊飯米、五目飯、赤飯、米粥等の加工米製品類、粉末スープ、だしの素等の粉末調味料等に代表される高水分食品、その他農薬や殺虫剤等の固体状や溶液状の化学薬品、液体及びペースト状の医薬品、化粧水、化粧クリーム、化粧乳液、整髪料、染毛剤、シャンプー、石鹸、洗剤等、種々の物品を収納することができ、容器外部から酸素が侵入することがなく、また容器内部の酸素は脱酸素剤組成物によって吸収されることから、物品の酸化劣化等が防止され、長期間の良好な品質保持が可能となる。   In the oxygen-absorbing laminate of the present invention, foods, pharmaceuticals and the like are stored without limitation. For example, jelly with pulp, confectionery such as sheep crab, pudding, pine, oranges, peaches, apricots, none, fruits such as apples, liquid soup, seasonings such as mayonnaise, miso, grated spices, jam, cream, chocolate Pasty foods such as paste, liquid foods represented by liquid processed foods such as curry, liquid soup, boiled food, pickles, stew Pre-cooked rice such as non-washed rice, cooked cooked rice, processed rice products such as gomoku rice, red rice and rice bran, high-moisture foods represented by powder seasonings such as powdered soup and dashi nomoto Stores various articles such as solid and solution chemicals such as agricultural chemicals and insecticides, liquid and paste pharmaceuticals, lotion, cosmetic cream, cosmetic milk, hair conditioner, hair dye, shampoo, soap, detergent, etc. To do Oxygen does not enter from the outside of the container, and oxygen inside the container is absorbed by the oxygen scavenger composition, preventing oxidative degradation of the article and maintaining good quality over a long period of time. It becomes.

また、本発明の密封容器を、加熱処理しても良い。加熱処理としては、80℃〜100℃のボイル処理、煮沸処理や100℃〜135℃のセミレトルト、レトルト、ハイレトルト等のレトルト処理等が挙げられる。   Moreover, you may heat-process the sealed container of this invention. Examples of the heat treatment include boil treatment at 80 ° C. to 100 ° C., boiling treatment, retort treatment such as semi-retort, retort, and high retort at 100 ° C. to 135 ° C.

本発明を実施例に沿ってさらに詳しく説明する。尚、本発明は実施例に必ずしも限定されない。   The present invention will be described in more detail with reference to examples. In addition, this invention is not necessarily limited to an Example.

[実施例1]
(脱酸素剤組成物の製造)
平均粒径30μmの還元鉄粉500kgを加熱ジャケット付き真空混合乾燥機中に投入し、−720mmHgの減圧下110℃で加熱しつつ、塩化カルシウム50重量%水溶液5kgを噴霧、2時間乾燥した後、篩い分けして50μmより大きな粗粒を除き、最大径50μmの脱酸素剤組成物Aを得た。
[Example 1]
(Production of oxygen scavenger composition)
500 kg of reduced iron powder having an average particle size of 30 μm was put into a vacuum mixing dryer equipped with a heating jacket, sprayed with 5 kg of a 50 wt% calcium chloride aqueous solution while being heated at 110 ° C. under a reduced pressure of −720 mmHg, and dried for 2 hours. The coarser particle larger than 50 μm was removed by sieving to obtain an oxygen scavenger composition A having a maximum diameter of 50 μm.

(脱酸素性樹脂組成物の製造)
次にベント付き45mmφ同方向回転二軸押出機と定量フィーダーからなる押出し装置を用いて、融点133℃の高密度ポリエチレン(メルトインデックス=0.3g/10min;190℃)と上記脱酸素剤組成物を重量比50:50で混練し、ストランドダイから押し出した後、空冷、破砕して脱酸素性樹脂組成物Aを得た。なお、その際に鉄粉の凝集物を除去することを目的に二軸押出機のブレーカープレート部に100メッシュのスクリーンメッシュを設置した。脱酸素性樹脂組成物Aの含水率をカールフィッシャー水分計で185℃条件にて測定を実施したところ、含水率は0.06%であった。
(Manufacture of deoxygenating resin composition)
Next, using a vented 45 mmφ co-rotating twin screw extruder and a metering feeder, high-density polyethylene (melt index = 0.3 g / 10 min; 190 ° C.) having a melting point of 133 ° C. and the oxygen scavenger composition described above Was kneaded at a weight ratio of 50:50, extruded from a strand die, then air-cooled and crushed to obtain a deoxygenating resin composition A. At that time, a screen mesh of 100 mesh was installed on the breaker plate part of the twin screw extruder for the purpose of removing the aggregate of iron powder. When the moisture content of the deoxidizing resin composition A was measured with a Karl Fischer moisture meter at 185 ° C., the moisture content was 0.06%.

(酸素吸収中空容器の製造)
次に以下の様にして酸素吸収中空容器を得た。酸素吸収層(a層)に脱酸素性樹脂組成物ペレットAを、熱可塑性樹脂層(b層)にもHDPE1を用い、ガスバリア層(c層)の樹脂としてエチレンビニルアルコール共重合樹脂(日本合成化学工業株式会社製、商品名:ソアノール「DC3203RB」)を用い、接着性樹脂層(d)の樹脂として、カルボン酸変性ポリオレフィン樹脂(三菱化学(株)製、商品名:ゼラス「MC721AP」)を使用した。4種6層のダイレクトブロー成形機で容量100mLの容器を作成した。寸法は高さ83.5mm、容器底外径48mm、口部内径25.2mmであった。最内層の表面積は0.013m2であった。製造温度は200℃で成形した。酸素吸収中空容器の層構成は、外側面から内側面へ、熱可塑性樹脂層(b層)/接着性樹脂層(d層)/バリア層(c層)/接着性樹脂層(d層)/酸素吸収層(a層)/熱可塑性樹脂層(b層)であり、各層の厚みは、外側面から内側面へ、600μm/100μm/100μm/100μm/100μm/200μm/100μmであった。
(Manufacture of oxygen-absorbing hollow containers)
Next, an oxygen-absorbing hollow container was obtained as follows. Oxygen-absorbing resin composition pellet A is used for the oxygen absorption layer (a layer), HDPE1 is used for the thermoplastic resin layer (b layer), and ethylene vinyl alcohol copolymer resin (Nippon Synthetic Co., Ltd.) is used as the gas barrier layer (c layer) resin. Chemical Industry Co., Ltd., trade name: Soarnol “DC3203RB”), and the resin of the adhesive resin layer (d) is carboxylic acid-modified polyolefin resin (Mitsubishi Chemical Corporation, trade name: Zelas “MC721AP”) used. A container with a capacity of 100 mL was prepared with a direct blow molding machine of 4 types and 6 layers. The dimensions were a height of 83.5 mm, a container bottom outer diameter of 48 mm, and a mouth inner diameter of 25.2 mm. The surface area of the innermost layer was 0.013 m2. The production temperature was 200 ° C. The layer structure of the oxygen-absorbing hollow container is from the outer surface to the inner surface, thermoplastic resin layer (b layer) / adhesive resin layer (d layer) / barrier layer (c layer) / adhesive resin layer (d layer) / Oxygen absorbing layer (a layer) / thermoplastic resin layer (b layer). The thickness of each layer was 600 μm / 100 μm / 100 μm / 100 μm / 100 μm / 200 μm / 100 μm from the outer surface to the inner surface.

成形された中空容器を観察したところ、隔離層に凹凸など外観不良はみられず、成形状態は良好であった。   When the molded hollow container was observed, appearance defects such as irregularities were not seen in the isolation layer, and the molded state was good.

[実施例2]
脱酸素剤組成物の製造工程において、乾燥時間を2時間から1時間にしたこと以外は実施例1と同様にして脱酸素剤組成物を製造した。以下、実施例1と同様に脱酸素性樹脂組成物と中空容器を製造した。得られた脱酸素性樹脂組成物の含水率は0.12%であった。成形された中空容器を観察したところ、実施例1と同様、隔離層に凹凸など外観不良はみられず、成形状態は良好であった。
[Example 2]
In the production process of the oxygen scavenger composition, an oxygen scavenger composition was produced in the same manner as in Example 1 except that the drying time was changed from 2 hours to 1 hour. Thereafter, a deoxygenating resin composition and a hollow container were produced in the same manner as in Example 1. The water content of the obtained deoxygenating resin composition was 0.12%. When the molded hollow container was observed, as in Example 1, the isolation layer did not show any appearance defects such as irregularities, and the molded state was good.

[比較例1]
脱酸素剤組成物の製造工程において、乾燥時間を2時間から30分にしたこと以外は実施例1と同様にして脱酸素剤組成物を製造した。以下、実施例1と同様に脱酸素性樹脂組成物と中空容器を製造した。得られた脱酸素性樹脂組成物含水率は0.34%であった。成形された中空容器を観察したところ、隔離層に凹凸が発生しており、酸素吸収層の鉄系酸素吸収剤の露出が認められた。
[Comparative Example 1]
In the production process of the oxygen scavenger composition, an oxygen scavenger composition was produced in the same manner as in Example 1 except that the drying time was changed from 2 hours to 30 minutes. Thereafter, a deoxygenating resin composition and a hollow container were produced in the same manner as in Example 1. The water content of the obtained deoxidizing resin composition was 0.34%. When the molded hollow container was observed, irregularities were generated in the isolation layer, and exposure of the iron-based oxygen absorbent in the oxygen absorption layer was observed.

以上の結果から明らかなように、脱酸素性樹脂組成物の含水率を0.2%以下とすることで発泡を抑制し、隔離層における凹凸に起因する外観不良や、鉄系酸素吸収剤と内容物との直接接触を防止できる。   As is clear from the above results, foaming is suppressed by setting the moisture content of the deoxidizing resin composition to 0.2% or less, and poor appearance due to irregularities in the isolation layer, and an iron-based oxygen absorbent Direct contact with the contents can be prevented.

Claims (4)

容器内側から容器外側に向かって、少なくとも、熱可塑性樹脂βを含有する隔離層(b層)と、(I)鉄系酸素吸収剤、及び(II)熱可塑性樹脂αを含有する脱酸素性樹脂組成物からなる酸素吸収層(a層)と、ガスバリア層(c層)とをこの順に有する、ダイレクトブロー法によって成形された脱酸素性中空容器であって、前記脱酸素性樹脂組成物の含水率が0.2重量%以下である脱酸素性中空容器。   From the inside of the container toward the outside of the container, at least a separating layer (b layer) containing a thermoplastic resin β, (I) an iron-based oxygen absorbent, and (II) a deoxygenating resin containing a thermoplastic resin α An oxygen-absorbing hollow container formed by a direct blow method, having an oxygen absorption layer (a layer) and a gas barrier layer (c layer) made of the composition in this order, the water content of the oxygen-absorbing resin composition A deoxidizing hollow container having a rate of 0.2% by weight or less. 前記鉄系酸素吸収剤は、鉄粉100重量部に対しハロゲン化金属を0.1〜10重量部被覆したものである、請求項1記載の脱酸素性中空容器。   2. The deoxygenating hollow container according to claim 1, wherein the iron-based oxygen absorbent is obtained by coating 0.1 to 10 parts by weight of a metal halide with respect to 100 parts by weight of iron powder. 前記ハロゲン化金属が、塩化カルシウム及び塩化ナトリウムから選択される少なくとも一つである、請求項1又は2記載の脱酸素性中空容器。   The deoxygenating hollow container according to claim 1 or 2, wherein the metal halide is at least one selected from calcium chloride and sodium chloride. 前記熱可塑性樹脂αのメルトフローレイトと、前記熱可塑性樹脂βのメルトフローレイトとの差が0〜2g/10分である、請求項1〜3の何れかに記載の脱酸素性中空容器。   The deoxidizing hollow container according to any one of claims 1 to 3, wherein a difference between the melt flow rate of the thermoplastic resin α and the melt flow rate of the thermoplastic resin β is 0 to 2 g / 10 minutes.
JP2013143762A 2013-07-09 2013-07-09 Hollow container having deoxidation property Pending JP2015016583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013143762A JP2015016583A (en) 2013-07-09 2013-07-09 Hollow container having deoxidation property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013143762A JP2015016583A (en) 2013-07-09 2013-07-09 Hollow container having deoxidation property

Publications (1)

Publication Number Publication Date
JP2015016583A true JP2015016583A (en) 2015-01-29

Family

ID=52438089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013143762A Pending JP2015016583A (en) 2013-07-09 2013-07-09 Hollow container having deoxidation property

Country Status (1)

Country Link
JP (1) JP2015016583A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238923A (en) * 1989-03-13 1990-09-21 Kyoraku Co Ltd Preparation of antifungal molded item
JPH06116404A (en) * 1992-10-02 1994-04-26 Nippon Unicar Co Ltd Agricultural film
JPH1076590A (en) * 1996-07-12 1998-03-24 Mitsubishi Gas Chem Co Inc Deoxidative multilayer structure and packaging container

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238923A (en) * 1989-03-13 1990-09-21 Kyoraku Co Ltd Preparation of antifungal molded item
JPH06116404A (en) * 1992-10-02 1994-04-26 Nippon Unicar Co Ltd Agricultural film
JPH1076590A (en) * 1996-07-12 1998-03-24 Mitsubishi Gas Chem Co Inc Deoxidative multilayer structure and packaging container

Similar Documents

Publication Publication Date Title
JP5288079B1 (en) Oxygen-absorbing resin composition, oxygen-absorbing multilayer body, and oxygen-absorbing hollow container
US5820956A (en) Multi-layer structural body
US5908676A (en) Oxygen absorbing resin, deoxidizing multi-layer structure using resin, and packaging container
JP2011132502A (en) Oxygen-absorbing resin composition
JP2001105540A (en) Oxygen absorbent multi-layer body and packaging container
JP2011126270A (en) Oxygen-absorbing multilayer body
JP4793229B2 (en) Oxygen absorbing multilayer film and packaging container
JP3687720B2 (en) Oxygen absorbing multilayer film and oxygen absorbing packaging container
JP2011094021A (en) Oxygen absorbing resin composition
JP2003088344A (en) Oxygen and carbon dioxide-adsorbing multilayer body
JP5581833B2 (en) Oxygen absorbing resin composition
JP3166817B2 (en) Deoxidizing multilayer structure and package comprising the same
JP2001354817A (en) Oxygen absorbing rubber composition
JP2001121652A (en) Oxygen absorbing multi layer film and deoxygenating container
JP3781062B2 (en) Lid packing
JP2015016583A (en) Hollow container having deoxidation property
JP2010013638A (en) Oxygen-absorbing resin composition
JP2008006635A (en) Oxygen-absorbent multilayer film superior in tearability and oxygen absorbing packaging container
JP2002238521A (en) Method for preserving food
JP4139924B2 (en) Deoxygenating film and method for producing the same
JP4186035B2 (en) Deoxygenated sealed container
JP2000186219A (en) Iron-based, oxygen-absorptive resin composition and packaging material and container using this
JP2000062102A (en) Deoxidizing multilayer body of paper base material and paper container
JP4544377B2 (en) Oxygen-absorbing multilayer
JPH1076590A (en) Deoxidative multilayer structure and packaging container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829