JP2015015088A - Method for processing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery - Google Patents

Method for processing positive electrode active material for lithium ion secondary batteries, positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery Download PDF

Info

Publication number
JP2015015088A
JP2015015088A JP2013139716A JP2013139716A JP2015015088A JP 2015015088 A JP2015015088 A JP 2015015088A JP 2013139716 A JP2013139716 A JP 2013139716A JP 2013139716 A JP2013139716 A JP 2013139716A JP 2015015088 A JP2015015088 A JP 2015015088A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013139716A
Other languages
Japanese (ja)
Other versions
JP6056685B2 (en
Inventor
正則 原田
Masanori Harada
正則 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013139716A priority Critical patent/JP6056685B2/en
Publication of JP2015015088A publication Critical patent/JP2015015088A/en
Application granted granted Critical
Publication of JP6056685B2 publication Critical patent/JP6056685B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for processing a positive electrode active material for lithium ion secondary batteries which enables the suppression of the reaction between a positive electrode active material and an electrolytic solution, and the improvement in high-temperature shelf life.SOLUTION: A method for processing a positive electrode active material for lithium ion secondary batteries comprises: the first step of mixing a mixed process liquid prepared by mixing a first process liquid including a first solvent and a fluoride salt dissolved in the first solvent, and a second process liquid including a second solvent and an erbium salt dissolved in the second solvent with a positive electrode active material including a lithium-containing oxide; and the second step of baking the positive electrode active material after the first step at a temperature of 300-600°C. In the first step, the mixed process liquid and the positive electrode active material are mixed under the condition that no erbium fluoride is precipitated. In the second step, a quality-modified surface layer portion including F and Er elements is formed on the surface of the positive electrode active material.

Description

本発明は、リチウムイオン二次電池用正極活物質の処理方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池に関するものである。   The present invention relates to a method for treating a positive electrode active material for a lithium ion secondary battery, a positive electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery.

近年、携帯電話やノート型パソコンなどの携帯機器の普及に伴い、高いエネルギー密度を有し、小型、軽量で高い容量を持つ二次電池の開発が強く望まれている。現在、高容量二次電池としては、正極材料としてコバルト酸リチウム(LiCoO)、負極材料として炭素系材料を用いたリチウムイオン二次電池が商品化されている。 In recent years, with the widespread use of mobile devices such as mobile phones and notebook computers, development of secondary batteries having high energy density, small size, light weight and high capacity is strongly desired. Currently, lithium ion secondary batteries using lithium cobalt oxide (LiCoO 2 ) as a positive electrode material and a carbon-based material as a negative electrode material are commercialized as high capacity secondary batteries.

リチウムイオン二次電池は、充放電の繰り返しや充電状態での高温保存によって電池容量が低下するという問題点がある。この原因として、充電時に正極近傍で電解液の酸化分解が生じ、酸化分解により生じた酸などによって正極活物質などの金属成分が溶出することが考えられている。正極活物質から金属成分が溶出すると、正極の容量が下がり、結果としてサイクル特性や高温保存特性が悪化する。また電解液の酸化分解や金属成分の溶出によって生じた、電解液の分解物や金属成分の溶出物は、正極側から負極側に移動して、負極表面で還元分解される。その結果、分解物が負極活物質表面に堆積し、その堆積物により、負極活物質へのリチウムの挿入が阻害され、結果としてサイクル特性や高温保存特性が悪化する。   Lithium ion secondary batteries have a problem in that the battery capacity decreases due to repeated charge and discharge and high-temperature storage in a charged state. As a cause of this, it is considered that oxidative decomposition of the electrolytic solution occurs in the vicinity of the positive electrode during charging, and metal components such as the positive electrode active material are eluted by acid generated by oxidative decomposition. When the metal component is eluted from the positive electrode active material, the capacity of the positive electrode decreases, and as a result, the cycle characteristics and the high temperature storage characteristics deteriorate. Also, the electrolytic solution decomposition product and metal component elution product generated by the oxidative decomposition of the electrolytic solution and the elution of the metal component move from the positive electrode side to the negative electrode side, and are reductively decomposed on the negative electrode surface. As a result, a decomposition product is deposited on the surface of the negative electrode active material, and the deposit inhibits lithium insertion into the negative electrode active material, resulting in deterioration of cycle characteristics and high-temperature storage characteristics.

サイクル特性や高温保存特性を改善するために、様々な検討が行われている。   Various studies have been conducted to improve cycle characteristics and high-temperature storage characteristics.

例えば、特許文献1では、正極活物質の表面に希土類水酸化物または希土類オキシ水酸化物の粒子を付着させることによって、正極活物質と電解液との反応を抑制し、高温保存試験後の容量維持率及び高温連続充電試験後の容量維持率を向上できることを開示している。   For example, in Patent Literature 1, the rare earth hydroxide or rare earth oxyhydroxide particles are adhered to the surface of the positive electrode active material, thereby suppressing the reaction between the positive electrode active material and the electrolytic solution, and the capacity after the high temperature storage test. It discloses that the maintenance ratio and the capacity maintenance ratio after the high-temperature continuous charge test can be improved.

また特許文献2では、正極活物質の表面に金属フッ素化合物の粉末を付着させることでサイクル特性を向上できることを開示している。   Patent Document 2 discloses that cycle characteristics can be improved by attaching a metal fluorine compound powder to the surface of the positive electrode active material.

しかし、これら特許文献1及び2に記載の技術では、正極活物質の表面に所定の粒子を付着させているため、この粒子よりなるコーティング層によって、電極抵抗が上がって電池容量が下がってしまうおそれがある。   However, in the techniques described in Patent Documents 1 and 2, since predetermined particles are attached to the surface of the positive electrode active material, the coating layer made of these particles may increase the electrode resistance and decrease the battery capacity. There is.

特開2010−165657号公報JP 2010-165657 A 特表2008−536285号公報Special table 2008-536285 gazette

本発明はこのような事情に鑑みて為されたものであり、正極活物質の表面に粒子を付着させることなく、高温保存特性を向上させることができるリチウムイオン二次電池用正極活物質の処理方法を提供することを目的とする。   This invention is made | formed in view of such a situation, The process of the positive electrode active material for lithium ion secondary batteries which can improve a high temperature storage characteristic, without making a particle adhere to the surface of a positive electrode active material It aims to provide a method.

本発明者等が鋭意検討した結果、正極活物質の表面に特定の元素が存在するように正極活物質の表面を改質処理することによって高温保存特性を高めることができることを見いだした。   As a result of intensive studies by the present inventors, it has been found that the high-temperature storage characteristics can be enhanced by modifying the surface of the positive electrode active material so that a specific element exists on the surface of the positive electrode active material.

すなわち、本発明のリチウムイオン二次電池用正極活物質の処理方法は、フッ化物塩を第一溶媒に溶解した第一処理液とエルビウム塩を第二溶媒に溶解した第二処理液とを混合した混合処理液と、リチウム含有酸化物よりなる正極活物質と、を混合する第1工程と、第1工程後の正極活物質を300℃以上600℃以下で焼成する第2工程と、を有し、第1工程においてフッ化エルビウムが析出しない条件で混合処理液と正極活物質とを混合し、第2工程において、F元素とEr元素とを含む改質表層部を正極活物質の表面に形成することを特徴とする。   That is, the method for treating a positive electrode active material for a lithium ion secondary battery of the present invention comprises mixing a first treatment liquid in which a fluoride salt is dissolved in a first solvent and a second treatment liquid in which an erbium salt is dissolved in a second solvent. And a second step of firing the positive electrode active material after the first step at a temperature of 300 ° C. or higher and 600 ° C. or lower. In the first step, the mixed treatment liquid and the positive electrode active material are mixed under the condition that erbium fluoride does not precipitate. In the second step, the modified surface layer portion containing the F element and the Er element is formed on the surface of the positive electrode active material. It is characterized by forming.

上記処理方法を行うと、正極活物質の表面に粒子を析出させることなく、正極活物質の表面にF元素とEr元素とを含む改質表層部を形成させることができる。理由は明確ではないが、この処理方法を施した正極活物質をリチウムイオン二次電池に用いると、リチウムイオン二次電池の高温保存特性を向上させることができる。   When the treatment method is performed, a modified surface layer portion containing F element and Er element can be formed on the surface of the positive electrode active material without depositing particles on the surface of the positive electrode active material. Although the reason is not clear, when the positive electrode active material subjected to this treatment method is used in a lithium ion secondary battery, the high-temperature storage characteristics of the lithium ion secondary battery can be improved.

リチウム含有酸化物はマンガンを含むことが好ましい。   The lithium-containing oxide preferably contains manganese.

リチウム含有酸化物は、層状岩塩型構造またはスピネル型構造を有することが好ましい。   The lithium-containing oxide preferably has a layered rock salt structure or a spinel structure.

リチウム含有酸化物は、一般式: LiCoNiMn (Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選ばれる少なくとも一種であり、p+q+r+s=1、0≦p<1、0≦q<1、0<r≦1、0≦s<1、0.8≦a<2.0、−0.2≦x−(a+p+q+r+s)≦0.2)で表される層状岩塩構造を有するリチウム含有複合酸化物であることが好ましい。 Lithium-containing oxide represented by the general formula: Li a Co p Ni q Mn r D s O x (D is, Al, Mg, Ti, Sn , Zn, W, Zr, Mo, at least one selected from Fe and Na Yes, p + q + r + s = 1, 0 ≦ p <1, 0 ≦ q <1, 0 <r ≦ 1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) A lithium-containing composite oxide having a layered rock salt structure represented by ≦ 0.2) is preferable.

リチウム含有酸化物は、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiNi0.5Mn1.5及びLiMnから選択される少なくとも一つであることが好ましい。 Lithium-containing oxides are LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.5 Mn 1.5 O 4 and LiMn 2 O 4 are preferable.

本発明のリチウムイオン二次電池用正極活物質は、粒子を析出させることなく表面を改質した改質表層部を有するリチウム含有酸化物よりなり、改質表層部はF元素とEr元素とを含むことを特徴とする。   The positive electrode active material for a lithium ion secondary battery of the present invention is made of a lithium-containing oxide having a modified surface layer whose surface has been modified without precipitating particles, and the modified surface layer contains F element and Er element. It is characterized by including.

リチウム含有酸化物は、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiNi0.5Mn1.5及びLiMnから選択される少なくとも一つであることが好ましい。 Lithium-containing oxides are LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.5 Mn 1.5 O 4 and LiMn 2 O 4 are preferable.

他の本発明のリチウムイオン二次電池用正極活物質は、上記リチウムイオン二次電池用正極活物質の処理方法で処理されたことを特徴とする。   Another positive electrode active material for a lithium ion secondary battery of the present invention is characterized by being treated by the above-described method for treating a positive electrode active material for a lithium ion secondary battery.

また本発明のリチウムイオン二次電池は、上記リチウムイオン二次電池用正極活物質を有することを特徴とする。   Moreover, the lithium ion secondary battery of this invention has the said positive electrode active material for lithium ion secondary batteries, It is characterized by the above-mentioned.

本発明のリチウムイオン二次電池用正極活物質の処理方法によれば、正極活物質の表面に粒子を析出させることなく、正極活物質の表面にF元素とEr元素とを含む改質表層部を形成させることができる。この処理方法を施した正極活物質をリチウムイオン二次電池に用いると、リチウムイオン二次電池の高温保存特性を向上させることができる。   According to the method for treating a positive electrode active material for a lithium ion secondary battery of the present invention, a modified surface layer portion containing F element and Er element on the surface of the positive electrode active material without depositing particles on the surface of the positive electrode active material. Can be formed. When the positive electrode active material subjected to this treatment method is used in a lithium ion secondary battery, the high-temperature storage characteristics of the lithium ion secondary battery can be improved.

本実施形態のリチウムイオン二次電池用正極活物質を説明する模式断面図である。It is a schematic cross section explaining the positive electrode active material for lithium ion secondary batteries of this embodiment. 実施例1の正極活物質の走査型電子顕微鏡(SEM:Scanning Electron Microscope)とエネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)で観察した画像である。It is the image observed with the scanning electron microscope (SEM: Scanning Electron Microscope) and the energy dispersive X ray spectroscopy (EDX: Energy Dispersive X-ray Spectroscopy) of the positive electrode active material of Example 1. FIG. 図2のSEM画像を拡大した画像である。It is the image which expanded the SEM image of FIG.

<リチウムイオン二次電池用正極活物質の処理方法>
本発明のリチウムイオン二次電池用正極活物質の処理方法は、第1工程と、第2工程とを有する。
<Method of treating positive electrode active material for lithium ion secondary battery>
The processing method of the positive electrode active material for lithium ion secondary batteries of this invention has a 1st process and a 2nd process.

第1工程では、フッ化物塩を第一溶媒に溶解した第一処理液とエルビウム塩を第二溶媒に溶解した第二処理液とを混合した混合処理液と、リチウム含有酸化物よりなる正極活物質と、を混合する。   In the first step, a positive electrode active comprising a mixed treatment liquid obtained by mixing a first treatment liquid in which a fluoride salt is dissolved in a first solvent and a second treatment liquid in which an erbium salt is dissolved in a second solvent, and a lithium-containing oxide. The substance is mixed.

フッ化物塩としては、例えば、フッ化アンモニウム、フッ化カリウム、フッ化ナトリウムを挙げることができる。   Examples of fluoride salts include ammonium fluoride, potassium fluoride, and sodium fluoride.

エルビウム塩としては、例えば、硝酸エルビウム、塩酸エルビウム、硫酸エルビウム、シュウ酸エルビウムを挙げることができる。   Examples of erbium salts include erbium nitrate, erbium hydrochloride, erbium sulfate, and erbium oxalate.

第一溶媒と第二溶媒とは、お互いに異なるものでもよいが、同じものが好ましい。溶媒としては、例えば、水、エタノール、エーテル、アセトンが挙げられる。   The first solvent and the second solvent may be different from each other, but the same is preferable. Examples of the solvent include water, ethanol, ether, and acetone.

第1工程においてフッ化エルビウムが析出しない条件で混合処理液と正極活物質とを混合する。   In the first step, the mixed treatment liquid and the positive electrode active material are mixed under the condition that erbium fluoride does not precipitate.

フッ化エルビウムが析出しない条件とは、例えば、混合処理液の濃度調整、混合処理液と正極活物質との混合割合の調整、混合時の温度、混合時間が挙げられる。   Examples of conditions under which erbium fluoride does not precipitate include adjustment of the concentration of the mixed treatment liquid, adjustment of the mixing ratio of the mixed treatment liquid and the positive electrode active material, temperature during mixing, and mixing time.

混合処理液の濃度の調整は、第一処理液のフッ化物塩の濃度、第二処理液のエルビウム塩の濃度及び混合処理液の第一処理液と第二処理液との混合割合を調整することによって行うことができる。混合処理液の濃度の調整方法は適宜選択できる。例えば以下の条件で第1工程を行うことができる。   The concentration of the mixed treatment liquid is adjusted by adjusting the concentration of the fluoride salt in the first treatment liquid, the concentration of the erbium salt in the second treatment liquid, and the mixing ratio of the first treatment liquid and the second treatment liquid in the mixed treatment liquid. Can be done. The adjustment method of the density | concentration of a mixed process liquid can be selected suitably. For example, the first step can be performed under the following conditions.

第一処理液におけるフッ化物塩の濃度は、50mmol/l以上200mmol/lであることが好ましい。   The concentration of the fluoride salt in the first treatment liquid is preferably 50 mmol / l or more and 200 mmol / l.

第二処理液におけるエルビウム塩の濃度は、50mmol/l以上200mmol/lであることが好ましい。   The concentration of the erbium salt in the second treatment liquid is preferably 50 mmol / l or more and 200 mmol / l.

混合処理液における第一処理液と第二処理液との混合割合は、第一処理液:第二処理液=3:7〜7:3(体積比)が好ましい。混合割合がこの範囲から外れると、混合溶液中に反応に関与しないエルビウム塩あるいはフッ化物塩が多量に存在することになり、材料が無駄になる。   The mixing ratio of the first treatment liquid and the second treatment liquid in the mixed treatment liquid is preferably first treatment liquid: second treatment liquid = 3: 7 to 7: 3 (volume ratio). When the mixing ratio is out of this range, a large amount of erbium salt or fluoride salt not involved in the reaction is present in the mixed solution, and the material is wasted.

混合処理液と正極活物質との混合割合は、正極活物質:混合処理液=1:1〜1:5(質量比)が好ましい。正極活物質がこの範囲より多いと処理が不十分となり、混合処理液がこの範囲より多いと処理が過剰になる。   The mixing ratio of the mixed treatment liquid and the positive electrode active material is preferably positive electrode active material: mixed treatment liquid = 1: 1 to 1: 5 (mass ratio). If the amount of the positive electrode active material exceeds this range, the treatment becomes insufficient, and if the amount of the mixed treatment liquid exceeds this range, the treatment becomes excessive.

混合時間は0.5時間以上10時間以下が好ましい。混合時間が0.5時間より短いと反応が不十分であり、10時間より長くしてもそれ以上の反応はほとんど起こらない。   The mixing time is preferably 0.5 hours or more and 10 hours or less. When the mixing time is shorter than 0.5 hours, the reaction is insufficient, and even longer than 10 hours hardly causes further reaction.

混合時の温度はほとんど処理に影響を与えないので、特に限定されない。   The temperature at the time of mixing hardly affects the treatment and is not particularly limited.

本発明のリチウムイオン二次電池用正極活物質の処理方法によって、正極活物質の表面に改質表層部が形成される。正極活物質はリチウム含有酸化物よりなる。改質表層部では、正極活物質の酸素の一部がフッ素に置換され、正極活物質の表面にエルビウムがドープされると推測される。正極活物質は、正極活物質の表面に改質表層部を有することにより、正極活物質の結晶構造が安定すると推測される。そのため、電池の充放電によってリチウムが正極活物質から出入りしても、結晶構造が安定しているため、他の金属成分が溶出しにくいと推測される。   The modified surface layer portion is formed on the surface of the positive electrode active material by the method for treating a positive electrode active material for a lithium ion secondary battery of the present invention. The positive electrode active material is made of a lithium-containing oxide. In the modified surface layer portion, it is presumed that a part of oxygen in the positive electrode active material is substituted with fluorine, and the surface of the positive electrode active material is doped with erbium. The positive electrode active material is presumed that the crystal structure of the positive electrode active material is stabilized by having the modified surface layer portion on the surface of the positive electrode active material. Therefore, even if lithium enters and exits the positive electrode active material due to charging / discharging of the battery, it is presumed that other metal components are not easily eluted because the crystal structure is stable.

リチウム含有酸化物はマンガンを含むことが好ましい。マンガンを含むリチウム含有酸化物は、マンガンが電解液に溶出されやすい。そのため上記処理方法による効果が顕著に表れる。   The lithium-containing oxide preferably contains manganese. In the lithium-containing oxide containing manganese, manganese is easily eluted into the electrolytic solution. Therefore, the effect by the said processing method appears notably.

リチウム含有酸化物は、層状岩塩型構造またはスピネル型構造を有することが好ましい。層状岩塩型構造またはスピネル型構造を有するリチウム含有酸化物は第1工程時にリチウムとエルビウムのイオン交換反応が起こりやすい。そのため、層状岩塩型構造またはスピネル型構造を有するリチウム含有酸化物は、改質表層部が形成されやすい。   The lithium-containing oxide preferably has a layered rock salt structure or a spinel structure. In the lithium-containing oxide having a layered rock salt structure or a spinel structure, an ion exchange reaction between lithium and erbium is likely to occur during the first step. Therefore, in the lithium-containing oxide having a layered rock salt structure or a spinel structure, a modified surface layer portion is easily formed.

リチウム含有酸化物は、一般式: LiCoNiMn (Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選ばれる少なくとも一種であり、p+q+r+s=1、0≦p<1、0≦q<1、0<r≦1、0≦s<1、0.8≦a<2.0、−0.2≦x−(a+p+q+r+s)≦0.2)で表される層状岩塩構造を有するリチウム含有複合酸化物であることが好ましい。 Lithium-containing oxide represented by the general formula: Li a Co p Ni q Mn r D s O x (D is, Al, Mg, Ti, Sn , Zn, W, Zr, Mo, at least one selected from Fe and Na Yes, p + q + r + s = 1, 0 ≦ p <1, 0 ≦ q <1, 0 <r ≦ 1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s) A lithium-containing composite oxide having a layered rock salt structure represented by ≦ 0.2) is preferable.

リチウム含有酸化物は、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiNi0.5Mn1.5及びLiMnから選択される少なくとも一つであることが好ましい。 Lithium-containing oxides are LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.5 Mn 1.5 O 4 and LiMn 2 O 4 are preferable.

正極活物質は、粉末形状であることが好ましく、その平均粒径D50は1μm〜20μmであることが好ましく、5μm〜10μmであることがさらに好ましい。正極活物質の平均粒径D50は、正極活物質としての使用に適した大きさであればよい。なお正極活物質の平均粒径D50に応じて処理条件を制御してやれば、平均粒径D50の大きさにかかわらず各平均粒径D50を有する正極活物質に処理が可能である。ただし、正極活物質の平均粒径D50が1μmより小さいと正極活物質が凝集しやすくなるので、正極活物質と混合処理液とを混合しにくくなるおそれがある。 The positive electrode active material is preferably in the form of a powder, and the average particle diameter D50 is preferably 1 μm to 20 μm, and more preferably 5 μm to 10 μm. The average particle diameter D 50 of the positive electrode active material may be any size suitable for use as a positive electrode active material. Note do it by controlling the processing conditions according to the average particle diameter D 50 of the positive electrode active material can be treated as a positive electrode active material having the average particle size D 50 regardless of the size of the average particle diameter D 50. However, the average particle diameter D 50 of 1μm smaller than a cathode active material of the positive electrode active material tends to agglomerate, it may become difficult to mix the cathode active material and mixing treatment liquid.

正極活物質の平均粒径D50は、粒度分布測定法によって計測できる。平均粒径D50とはレーザー回析法による粒度分布測定における体積分布の積算値が50%に相当する粒子径のことである。つまり、平均粒径D50とは、体積基準で測定したメディアン径を意味する。 The average particle diameter D 50 of the positive electrode active material can be measured by particle size distribution measurement method. The average particle diameter D 50 is that the particle size cumulative value of the volume distribution in the particle size distribution measurement by laser diffraction method is equivalent to 50%. That is, the average particle diameter D 50 means the median size measured by volume.

第1工程後で第2工程の前に濾過工程を行ってもよい。濾過工程において、第1工程後の混合処理液から正極活物質を濾過して分離すればよい。   The filtration step may be performed after the first step and before the second step. In the filtration step, the positive electrode active material may be separated from the mixed treatment liquid after the first step by filtration.

第2工程において、第1工程後の正極活物質を300℃以上600℃以下の温度で焼成する。第2工程は3時間〜10時間程度行えばよい。正極活物質を300℃よりも低い温度で焼成すると、正極活物質から水分が十分に除去されず、正極活物質を600℃よりも高い温度で焼成するとエルビウムが正極活物質の内部まで拡散し、表面保護の効果が弱まる。   In the second step, the positive electrode active material after the first step is fired at a temperature of 300 ° C. to 600 ° C. The second step may be performed for about 3 hours to 10 hours. When the positive electrode active material is fired at a temperature lower than 300 ° C., moisture is not sufficiently removed from the positive electrode active material, and when the positive electrode active material is fired at a temperature higher than 600 ° C., erbium diffuses into the positive electrode active material, The effect of surface protection is weakened.

また第2工程の前にさらに乾燥工程を加えてもよい。乾燥工程は、濾過物を120℃程度の温度の乾燥炉に入れて6時間〜12時間乾燥すればよい。   Further, a drying step may be further added before the second step. The drying step may be performed by putting the filtrate in a drying furnace at a temperature of about 120 ° C. and drying for 6 hours to 12 hours.

第2工程において、F元素とEr元素とを含む改質表層部を正極活物質の表面に形成する。第1工程と第2工程とを行うことによって、詳細は不明であるが、正極活物質の表面にフッ化エルビウム粒子が析出することなく、正極活物質の表面にF元素とEr元素とを含む改質表層部が形成される。   In the second step, a modified surface layer portion containing F element and Er element is formed on the surface of the positive electrode active material. Although the details are unclear by performing the first step and the second step, F element and Er element are included on the surface of the positive electrode active material without precipitation of erbium fluoride particles on the surface of the positive electrode active material. A modified surface layer portion is formed.

図1に本実施形態のリチウムイオン二次電池用正極活物質を説明する模式断面図を示す。図1に記載のように、正極活物質1の表面全体に改質表層部2が配置される。   FIG. 1 is a schematic cross-sectional view illustrating the positive electrode active material for a lithium ion secondary battery according to this embodiment. As shown in FIG. 1, the modified surface layer portion 2 is disposed on the entire surface of the positive electrode active material 1.

改質表層部の厚みは1nm以上100nm以下であることが好ましい。改質表層部の厚みが1nmよりも薄いと表面保護の効果が小さく、改質表層部の厚みが100nmよりも厚くなると電池の抵抗が高くなる。   The thickness of the modified surface layer portion is preferably 1 nm or more and 100 nm or less. When the thickness of the modified surface layer portion is less than 1 nm, the effect of surface protection is small, and when the thickness of the modified surface layer portion is greater than 100 nm, the resistance of the battery increases.

改質表面部の厚みは、本発明のリチウムイオン二次電池用正極活物質を切断した切断面を、例えば、透過型電子顕微鏡(TEM)で観察すること、または、透過型電子顕微鏡と分散型X線分析装置を組み合わせたTEM−EDXで測定し、組成分析することで確認できる。   The thickness of the modified surface portion is determined by, for example, observing a cut surface obtained by cutting the positive electrode active material for a lithium ion secondary battery of the present invention with a transmission electron microscope (TEM), or a transmission electron microscope and a dispersion type. It can be confirmed by measuring with a TEM-EDX combined with an X-ray analyzer and analyzing the composition.

正極活物質の表面の改質表層部にF元素とEr元素の両方が含まれると、理由は明確ではないが、正極活物質の表面はフッ酸に対する耐性が高くなり、正極活物質の表面から金属成分が溶出することが抑制される。またその正極活物質を用いたリチウムイオン二次電池は高温保存特性が向上する。   If both the F element and the Er element are included in the modified surface layer portion of the surface of the positive electrode active material, the reason is not clear, but the surface of the positive electrode active material is highly resistant to hydrofluoric acid, and the surface of the positive electrode active material is The elution of the metal component is suppressed. In addition, a lithium ion secondary battery using the positive electrode active material has improved high-temperature storage characteristics.

ここで正極活物質の表面には、フッ化エルビウム粒子は付着していないため、電極抵抗が高くなりにくい。   Here, since the erbium fluoride particles are not attached to the surface of the positive electrode active material, the electrode resistance is difficult to increase.

<リチウムイオン二次電池用正極活物質>
本発明のリチウムイオン二次電池用正極活物質は、粒子を析出させることなく表面を改質した改質表層部を有するリチウム含有酸化物よりなり、改質表層部はF元素とEr元素とを含むことを特徴とする。
<Positive electrode active material for lithium ion secondary battery>
The positive electrode active material for a lithium ion secondary battery of the present invention is made of a lithium-containing oxide having a modified surface layer whose surface has been modified without precipitating particles, and the modified surface layer contains F element and Er element. It is characterized by including.

リチウム含有酸化物、改質表層部の説明は、上記処理方法で説明したものと同じである。   The description of the lithium-containing oxide and the modified surface layer is the same as that described in the above processing method.

本発明のリチウムイオン二次電池用正極活物質は、上記した正極活物質の処理方法で処理されることによって得られる。   The positive electrode active material for a lithium ion secondary battery of the present invention can be obtained by being treated by the above-described method for treating a positive electrode active material.

本発明のリチウムイオン二次電池用正極活物質は、その平均粒径D50が1μm〜20μmである粉末形状であることが好ましく、5μm〜10μmであることがさらに好ましい。平均粒径D50が1μmより小さいと正極活物質の比表面積が大きくなり正極活物質と電解液との反応面積が増える。正極活物質の平均粒径D50が20μmより大きいとリチウムイオン二次電池の抵抗が大きくなり、リチウムイオン二次電池の出力特性が下がるおそれがある。 The positive electrode active material for a lithium ion secondary battery of the present invention preferably has a powder shape with an average particle diameter D50 of 1 μm to 20 μm, and more preferably 5 μm to 10 μm. Reaction area of the specific surface area of an average particle diameter D 50 of 1μm smaller than the positive electrode active material greatly becomes the positive electrode active material and the electrolyte increases. The average particle diameter D 50 of the positive electrode active material becomes large 20μm greater than the resistance of the lithium ion secondary battery, there is a possibility that the output characteristics of the lithium ion secondary battery decreases.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、上述したリチウムイオン二次電池用正極活物質を有する。
<Lithium ion secondary battery>
The lithium ion secondary battery of this invention has the positive electrode active material for lithium ion secondary batteries mentioned above.

正極は、上記リチウムイオン二次電池用正極活物質が結着剤で結着されてなる正極活物質層が、集電体に付着してなる。   The positive electrode is formed by adhering a positive electrode active material layer formed by binding the positive electrode active material for a lithium ion secondary battery with a binder to a current collector.

集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体をいう。集電体に用いることのできる材料として、例えばステンレス鋼、チタン、ニッケル、アルミニウム、銅などの金属材料または導電性樹脂を挙げることができる。また集電体は、箔、シート、フィルムなどの形態をとることができる。そのため、集電体として、例えば銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体の厚みは、10μm〜100μmであることが好ましい。   The current collector refers to a chemically inert electronic high conductor that keeps a current flowing through an electrode during discharge or charging of a lithium ion secondary battery. Examples of materials that can be used for the current collector include metal materials such as stainless steel, titanium, nickel, aluminum, and copper, or conductive resins. The current collector can take the form of a foil, a sheet, a film, or the like. Therefore, metal foils, such as copper foil, nickel foil, aluminum foil, stainless steel foil, can be used suitably as a collector. The thickness of the current collector is preferably 10 μm to 100 μm.

正極活物質層はさらに導電助剤を含んでもよい。正極は、正極活物質および結着剤、並びに必要に応じて導電助剤を含む正極活物質層形成用組成物を調製し、さらにこの組成物に適当な溶剤を加えてペースト状にしてから、集電体の表面に塗布後、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成することができる。   The positive electrode active material layer may further contain a conductive additive. The positive electrode is prepared by forming a positive electrode active material layer-forming composition containing a positive electrode active material and a binder and, if necessary, a conductive additive, and further adding a suitable solvent to the composition to make a paste. After applying to the surface of the current collector, it can be dried and compressed to increase the electrode density as necessary.

正極活物質層形成用組成物の塗布方法としては、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。   As a method for applying the composition for forming a positive electrode active material layer, conventionally known methods such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, and a curtain coating method may be used.

粘度調整のための溶剤としては、N−メチル−2−ピロリドン(NMP)、メタノール、メチルイソブチルケトン(MIBK)などが使用可能である。   As a solvent for adjusting the viscosity, N-methyl-2-pyrrolidone (NMP), methanol, methyl isobutyl ketone (MIBK) and the like can be used.

結着剤は、上記正極活物質及び導電助剤を集電体に繋ぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンおよびフッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレンおよびポリ酢酸ビニル系樹脂等の熱可塑性樹脂、ポリイミドおよびポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、並びにスチレンブタジエンゴム(SBR)等のゴムを用いることができる。   The binder serves to bind the positive electrode active material and the conductive additive to the current collector. For example, the binder includes a fluorine-containing resin such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, polypropylene, polyethylene and poly Thermoplastic resins such as vinyl acetate resins, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, and rubbers such as styrene butadiene rubber (SBR) can be used.

導電助剤は、電極の導電性を高めるために添加される。導電助剤として、例えば、炭素質微粒子であるカーボンブラック、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(登録商標)(KB)、気相法炭素繊維(VGCF)等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、例えば、正極に含有される活物質100質量部に対して、1質量部〜30質量部程度とすることができる。   The conductive assistant is added to increase the conductivity of the electrode. As the conductive assistant, for example, carbon black, graphite, acetylene black (AB), ketjen black (registered trademark) (KB), vapor grown carbon fiber (VGCF), etc., which are carbonaceous fine particles, are used alone or in combination of two or more. They can be added in combination. The amount of the conductive auxiliary agent used is not particularly limited, but can be, for example, about 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the active material contained in the positive electrode.

(その他の構成要素)
本発明のリチウムイオン二次電池は、電池構成要素として、上記した正極に加えて、負極、セパレータ、電解液を有する。
(Other components)
The lithium ion secondary battery of this invention has a negative electrode, a separator, and electrolyte solution in addition to the above-mentioned positive electrode as a battery component.

負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。負極活物質層は、負極活物質、結着剤を含み、必要に応じて導電助剤を含む。集電体、結着剤、導電助剤は正極で説明したものと同様である。   The negative electrode has a current collector and a negative electrode active material layer bound to the surface of the current collector. A negative electrode active material layer contains a negative electrode active material and a binder, and contains a conductive support agent as needed. The current collector, binder and conductive additive are the same as those described for the positive electrode.

負極活物質としては、リチウムを吸蔵、放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物、あるいは高分子材料などを用いることができる。   As the negative electrode active material, a carbon-based material that can occlude and release lithium, an element that can be alloyed with lithium, a compound that includes an element that can be alloyed with lithium, a polymer material, or the like can be used.

炭素系材料としては、例えば、難黒鉛化性炭素、人造黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が挙げられる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適当な温度で焼成して炭素化したものをいう。   Examples of the carbon-based material include non-graphitizable carbon, artificial graphite, coke, graphite, glassy carbon, organic polymer compound fired body, carbon fiber, activated carbon, or carbon black. Here, the organic polymer compound fired body refers to a material obtained by firing and carbonizing a polymer material such as phenols and furans at an appropriate temperature.

リチウムと合金化可能な元素として、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb及びBiが例示される。中でも、リチウムと合金化可能な元素は、珪素(Si)または錫(Sn)であるとよい。   Elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, Si, Ge, Sn , Pb, Sb and Bi. Among them, the element that can be alloyed with lithium is preferably silicon (Si) or tin (Sn).

リチウムと合金化可能な元素を有する化合物としては、例えば、ZnLiAl、AlSb、SiB、SiB、MgSi、MgSn、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、SnO(0<w≦2)、SnSiO、LiSiOあるいはLiSnOが使用できる。リチウムと合金化可能な元素を有する化合物としては、珪素化合物または錫化合物が好ましい。珪素化合物としては、SiO(0.5≦x≦1.5)が好ましい。錫化合物としては、例えば、スズ合金(Cu−Sn合金、Co−Sn合金等)が好ましい。 Examples of the compound having an element that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , and CaSi. 2, CrSi 2, Cu 5 Si , FeSi 2, MnSi 2, NbSi 2, TaSi 2, VSi 2, WSi 2, ZnSi 2, SiC, Si 3 N 4, Si 2 N 2 O, SiO v (0 <v ≦ 2), SnO w (0 <w ≦ 2), SnSiO 3 , LiSiO or LiSnO can be used. As the compound having an element that can be alloyed with lithium, a silicon compound or a tin compound is preferable. As the silicon compound, SiO x (0.5 ≦ x ≦ 1.5) is preferable. As the tin compound, for example, a tin alloy (Cu—Sn alloy, Co—Sn alloy, etc.) is preferable.

高分子材料としては、例えば、ポリアセチレン、ポリピロールが使用できる。   As the polymer material, for example, polyacetylene or polypyrrole can be used.

負極活物質は粉末形状であることが好ましい。負極活物質が粉末形状の場合、負極活物質の平均粒径D50は0.1μm以上30μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。負極活物質の平均粒径D50が0.1μmより小さいと、負極活物質の粉末の比表面積が大きくなり、負極活物質の粉末と電解液との接触面積が大きくなって、電解液の分解が進んでしまい、サイクル特性が悪くなる。また、負極活物質の平均粒径D50が30μmより大きいと、電極全体の導電性が不均一になり、充放電特性が低下する。負極活物質の平均粒径D50は、粒度分布測定法によって計測できる。 The negative electrode active material is preferably in powder form. If the anode active material is in powder form, it is preferable that the average particle size D 50 of the negative electrode active material is 0.1μm or more 30μm or less, and more preferably 1μm or more 10μm or less. The average particle diameter D 50 of the negative electrode active material 0.1μm smaller, the specific surface area of the powder of the negative electrode active material is increased, the contact area of the powder of the anode active material and the electrolyte solution is increased, the decomposition of the electrolyte solution Advances and the cycle characteristics deteriorate. Further, the average particle diameter D 50 of the negative electrode active material is larger than 30 [mu] m, the conductivity of the whole electrode becomes uneven, charging and discharging characteristics are degraded. The average particle diameter D 50 of the negative electrode active material can be measured by particle size distribution measurement method.

セパレータは正極と負極とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータは、例えば、ポリテトラフルオロエチレン、ポリプロピレン、若しくはポリエチレンなどの合成樹脂製の多孔質膜、またはセラミックス製の多孔質膜が使用できる。   The separator separates the positive electrode and the negative electrode and allows lithium ions to pass through while preventing a short circuit of current due to contact between the two electrodes. As the separator, for example, a porous film made of synthetic resin such as polytetrafluoroethylene, polypropylene, or polyethylene, or a porous film made of ceramics can be used.

電解液は、溶媒とこの溶媒に溶解された電解質とを含んでいる。   The electrolytic solution includes a solvent and an electrolyte dissolved in the solvent.

溶媒として、例えば、環状エステル類、鎖状エステル類、エーテル類が使用できる。環状エステル類として、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンが使用できる。鎖状エステル類として、例えば、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステルが使用できる。エーテル類として、例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンが使用できる。   As the solvent, for example, cyclic esters, chain esters, and ethers can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of the chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, methyl ethyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers that can be used include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.

また上記電解液に溶解させる電解質として、例えば、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を使用することができる。 Moreover, as an electrolyte dissolved in the electrolytic solution, for example, a lithium salt such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 can be used.

電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの溶媒にLiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/lから1.7mol/l程度の濃度で溶解させた溶液を使用することができる。 As an electrolytic solution, for example, a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 is added to a solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate, and the like from 0.5 mol / l to 1.7 mol / l. A solution dissolved at a certain concentration can be used.

上記リチウムイオン二次電池は車両に搭載することができる。上記リチウムイオン二次電池は、優れた放電容量を有するため、そのリチウムイオン二次電池を搭載した車両は、出力の面で高性能となる。   The lithium ion secondary battery can be mounted on a vehicle. Since the lithium ion secondary battery has an excellent discharge capacity, a vehicle equipped with the lithium ion secondary battery has high performance in terms of output.

車両としては、電池による電気エネルギーを動力源の全部または一部に使用する車両であればよく、例えば、電気自動車、ハイブリッド自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、電動フォークリフト、電気車椅子、電動アシスト自転車、電動二輪車が挙げられる。   The vehicle may be a vehicle that uses electric energy from a battery as a whole or a part of a power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, an electric forklift, an electric wheelchair, and an electric assist. Bicycles and electric motorcycles are examples.

以上、本発明のリチウムイオン二次電池用正極活物質の処理方法及びリチウムイオン二次電池用正極活物質およびそれを有するリチウムイオン二次電池の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although the processing method of the positive electrode active material for lithium ion secondary batteries of the present invention, the positive electrode active material for lithium ion secondary batteries, and the lithium ion secondary battery having the same have been described, the present invention has been described above. The form is not limited. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下、実施例を挙げて本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<正極活物質の処理の準備>
正極活物質として平均粒径D50が10μmのNCM523(LiNi0.5Co0.2Mn0.3)を準備した。第1処理液及び第2処理液の材料として、純水と、NHF(関東化学株式会社製)と、Er(NO・5HO(株式会社高純度化学研究所製)と、Al(NO・9HO(株式会社高純度化学研究所製)を準備した。
<Preparation for treatment of positive electrode active material>
NCM523 (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) having an average particle diameter D 50 of 10 μm was prepared as a positive electrode active material. As materials for the first treatment liquid and the second treatment liquid, pure water, NH 4 F (manufactured by Kanto Chemical Co., Inc.), Er (NO 3 ) 3 / 5H 2 O (manufactured by Kojundo Chemical Laboratory Co., Ltd.), , was prepared Al (NO 3) 3 · 9H 2 O ( manufactured by Kojundo Chemical Laboratory Co., Ltd.).

(実施例1)
<第一処理液の作成>
純水にNHFを50mmol/Lの濃度で溶解して第一処理液とした。
Example 1
<Creation of the first treatment liquid>
NH 4 F was dissolved in pure water at a concentration of 50 mmol / L to obtain a first treatment liquid.

<第二処理液の作成>
純水にEr(NO・5HOを50mmol/Lの濃度で溶解して第二処理液とした。
<Creation of second treatment liquid>
Er (NO 3 ) 3 .5H 2 O was dissolved in pure water at a concentration of 50 mmol / L to obtain a second treatment liquid.

<混合処理液の作成>
第一処理液と第二処理液とを1:1の体積比で混合し、攪拌して混合処理液とした。
<Creation of mixed processing solution>
The first treatment liquid and the second treatment liquid were mixed at a volume ratio of 1: 1 and stirred to obtain a mixed treatment liquid.

<正極活物質の処理>
混合処理液100mlにNCM523を30g入れ、室温でガラス製ビーカーを用いて5時間攪拌した。攪拌後の混合処理液を吸引濾過し、スラリー状の濾過物を120℃で6時間乾燥した。塊状になった乾燥後の濾過物を乳棒および乳鉢を用いて粉砕し、坩堝にいれて400℃で5時間焼成した。焼成後に正極活物質の平均粒径D50が10μmとなるように乳棒および乳鉢を用いて粉砕し、実施例1の正極活物質を得た。
<Treatment of positive electrode active material>
30 g of NCM523 was placed in 100 ml of the mixed treatment solution and stirred at room temperature for 5 hours using a glass beaker. The mixed treatment liquid after stirring was subjected to suction filtration, and the slurry-like filtrate was dried at 120 ° C. for 6 hours. The dried filtrate that had become agglomerated was pulverized using a pestle and mortar, placed in a crucible, and baked at 400 ° C. for 5 hours. The average particle diameter D 50 of the cathode active material was ground using a pestle and mortar so as to 10μm after firing, to obtain a positive electrode active material of Example 1.

(実施例2)
第一処理液のNHFの濃度を100mmol/Lとし、第二処理液のEr(NO・5HOの濃度を100mmol/Lとした以外は実施例1と同様にして、実施例2の正極活物質を得た。
(Example 2)
Implementation was performed in the same manner as in Example 1 except that the concentration of NH 4 F in the first treatment liquid was 100 mmol / L and the concentration of Er (NO 3 ) 3 .5H 2 O in the second treatment liquid was 100 mmol / L. The positive electrode active material of Example 2 was obtained.

(実施例3)
第一処理液のNHFの濃度を200mmol/Lとし、第二処理液のEr(NO・5HOの濃度を200mmol/Lとした以外は実施例1と同様にして、実施例3の正極活物質を得た。
Example 3
Implementation was performed in the same manner as in Example 1 except that the concentration of NH 4 F in the first treatment liquid was 200 mmol / L and the concentration of Er (NO 3 ) 3 .5H 2 O in the second treatment liquid was 200 mmol / L. The positive electrode active material of Example 3 was obtained.

(比較例1)
混合処理液の代わりに、第一処理液を用いた以外は実施例1と同様にして比較例1の正極活物質を得た。
(Comparative Example 1)
A positive electrode active material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the first treatment liquid was used instead of the mixed treatment liquid.

(比較例2)
混合処理液の代わりに、第一処理液を用いた以外は実施例2と同様にして比較例2の正極活物質を得た。
(Comparative Example 2)
A positive electrode active material of Comparative Example 2 was obtained in the same manner as in Example 2 except that the first treatment liquid was used instead of the mixed treatment liquid.

(比較例3)
混合処理液の代わりに、第一処理液を用いた以外は実施例3と同様にして比較例3の正極活物質を得た。
(Comparative Example 3)
A positive electrode active material of Comparative Example 3 was obtained in the same manner as in Example 3 except that the first treatment liquid was used instead of the mixed treatment liquid.

(比較例4)
未処理のNCM523を比較例4の正極活物質とした。
(Comparative Example 4)
Untreated NCM523 was used as the positive electrode active material of Comparative Example 4.

(比較例5)
第二処理液として、純水にAl(NO・9HOを50mmol/Lの濃度で溶解したものを用いた以外は実施例1と同様にして比較例5の正極活物質を得た。
(Comparative Example 5)
As the second treatment liquid, to obtain a positive electrode active material of Al (NO 3) 3 · 9H 2 O , except that used was dissolved at a concentration of 50 mmol / L in the same manner as in Example 1 Comparative Example 5 in deionized water It was.

(比較例6)
第二処理液として、純水にAl(NO・9HOを100mmol/Lの濃度で溶解したものを用いた以外は実施例2と同様にして比較例6の正極活物質を得た。
(Comparative Example 6)
As the second treatment liquid, to obtain a positive electrode active material of pure water Al (NO 3) 3 · 9H 2 O , except that used was dissolved at a concentration of 100 mmol / L in the same manner as in Example 2 Comparative Example 6 It was.

(比較例7)
第二処理液として、純水にAl(NO・9HOを200mmol/Lの濃度で溶解したものを用いた以外は実施例3と同様にして比較例7の正極活物質を得た。
(Comparative Example 7)
As the second treatment liquid, to obtain a positive electrode active material of pure water Al (NO 3) 3 · 9H 2 O except for using a solution at a concentration of 200 mmol / L and in the same manner as in Example 3 Comparative Example 7 It was.

<SEM−EDX観察>
実施例1の正極活物質の表面観察をSEM−EDX装置で行った。図2に実施例1の正極活物質のSEM−EDX装置による画像を示す。図2の(a)がSEM画像で、図2の(b)がF元素を測定したEDX画像であり、図2の(c)がEr元素を測定したEDX画像である。図2の(a)(b)(c)より、F元素及びEr元素が正極活物質の表面の全体に存在することがわかった。
<SEM-EDX observation>
Surface observation of the positive electrode active material of Example 1 was performed with a SEM-EDX apparatus. The image by the SEM-EDX apparatus of the positive electrode active material of Example 1 is shown in FIG. 2A is an SEM image, FIG. 2B is an EDX image obtained by measuring the F element, and FIG. 2C is an EDX image obtained by measuring the Er element. 2A, 2B, and 2C, it was found that the F element and the Er element exist on the entire surface of the positive electrode active material.

また図3に図2のSEM画像の拡大画像を示す。図2の(a)のSEM画像と図3のSEM画像とを見ると、実施例1の正極活物質は、一次粒子が集合して二次粒子を形成していた。また図3の画像からもわかるように正極活物質の一次粒子の表面には、他の粒子は析出していないことがわかった。   FIG. 3 shows an enlarged image of the SEM image of FIG. When the SEM image of FIG. 2A and the SEM image of FIG. 3 are viewed, the positive electrode active material of Example 1 has aggregated primary particles to form secondary particles. Further, as can be seen from the image of FIG. 3, it was found that no other particles were deposited on the surface of the primary particles of the positive electrode active material.

[ラミネート型リチウムイオンリチウムイオン二次電池の作製]
(実施例1のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池を次のようにして作製した。
[Production of laminated lithium ion lithium ion secondary battery]
(Laminated lithium ion secondary battery of Example 1)
The laminated lithium ion secondary battery of Example 1 was produced as follows.

まず実施例1の正極活物質と、導電助剤としてアセチレンブラックと、結着剤としてポリフッ化ビニリデン(PVDF)とを、それぞれ94質量部、3質量部、3質量部の割合で混合し、この混合物を適量のN−メチル−2−ピロリドン(NMP)に分散させて、スラリーを作製した。   First, the positive electrode active material of Example 1, acetylene black as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder were mixed in a ratio of 94 parts by mass, 3 parts by mass, and 3 parts by mass, respectively. The mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone (NMP) to prepare a slurry.

集電体として厚み20μmのアルミニウム箔を準備した。ドクターブレードを用いて集電体の表面にスラリーを膜状に塗布し、80℃で20分間乾燥してNMPを揮発させて除去した。その後、ロ−ルプレス機により、集電体と集電体上の塗布物を密着接合させた。この時電極密度は3.2g/cmとなるようにした。接合物を120℃で6時間、真空乾燥機で加熱した。加熱後の接合物を、所定の形状(25mm×30mmの矩形状)に切り取り、正極とした。正極活物質層の厚さは40μm程度であった。 An aluminum foil having a thickness of 20 μm was prepared as a current collector. The slurry was applied to the surface of the current collector in the form of a film using a doctor blade and dried at 80 ° C. for 20 minutes to volatilize and remove NMP. Thereafter, the current collector and the coated material on the current collector were tightly bonded with a roll press. At this time, the electrode density was set to 3.2 g / cm 2 . The bonded product was heated in a vacuum dryer at 120 ° C. for 6 hours. The bonded product after heating was cut into a predetermined shape (rectangular shape of 25 mm × 30 mm) to obtain a positive electrode. The thickness of the positive electrode active material layer was about 40 μm.

負極は以下のように作製した。負極活物質として、平均粒子径D50が4μmのSiO(アルドリッチ社製)及び黒鉛(平均粒子径D50が20μmの天然黒鉛(日立化成工業株式会社製))を準備した。バインダー樹脂としてアルコキシ基含有シラン変性ポリアミドイミド樹脂(荒川化学工業株式会社製、商品名コンポセラン、品番H900−2)を準備した。導電助剤としてケッチェンブラックインターナショナル社製のKB(ケッチェンブラック)を準備した。 The negative electrode was produced as follows. As the negative electrode active material, SiO (manufactured by Aldrich) having an average particle diameter D 50 of 4 μm and graphite (natural graphite (manufactured by Hitachi Chemical Co., Ltd.) having an average particle diameter D 50 of 20 μm) were prepared. As a binder resin, an alkoxy group-containing silane-modified polyamideimide resin (Arakawa Chemical Industries, Ltd., trade name Composeran, product number H900-2) was prepared. KB (Ketjen Black) manufactured by Ketjen Black International Co., Ltd. was prepared as a conductive aid.

上記負極活物質、導電助剤及びバインダー樹脂を、SiO:黒鉛:導電助剤:バインダー樹脂=22:60:3:15の質量比で混合した。ここで、黒鉛の質量とSiOの質量を合計したものを100質量%としたときに、SiOの配合割合は27質量%である。上記混合物に、溶媒としてNMPを適量入れて調整してスラリーとし、負極活物質層用スラリートした。   The negative electrode active material, the conductive auxiliary agent, and the binder resin were mixed at a mass ratio of SiO: graphite: conductive auxiliary agent: binder resin = 22: 60: 3: 15. Here, when the total of the mass of graphite and the mass of SiO is 100 mass%, the mixing ratio of SiO is 27 mass%. An appropriate amount of NMP was added as a solvent to the above mixture to prepare a slurry, which was then slurried for the negative electrode active material layer.

負極の集電体として20μmの銅箔を準備し、銅箔にドクターブレードを用いて、上記負極活物質層用スラリーを膜状に塗布した。負極活物質層用スラリーが塗布された銅箔を80℃で20分間乾燥してNMPを揮発させて除去した後、ロ−ルプレス機により、プレスして接合物を得た。この時電極密度は1.6g/cmとなるようにした。接合物を200℃で2時間、真空乾燥機で加熱した後、所定の形状(26mm×31mmの矩形状)に切り取り、負極活物質層の厚さが20μmの負極とした。 A 20 μm copper foil was prepared as a current collector for the negative electrode, and the slurry for negative electrode active material layer was applied to the copper foil in a film form using a doctor blade. The copper foil coated with the negative electrode active material layer slurry was dried at 80 ° C. for 20 minutes to volatilize and remove NMP, and then pressed by a roll press to obtain a bonded product. At this time, the electrode density was set to 1.6 g / cm 2 . The bonded product was heated with a vacuum dryer at 200 ° C. for 2 hours, and then cut into a predetermined shape (26 mm × 31 mm rectangular shape) to form a negative electrode having a negative electrode active material layer thickness of 20 μm.

上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(27×32mm、厚さ25μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としてエチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)をEC:EMC:DMC=3:3:4(体積比)で混合した溶媒にLiPF6を1モル/lとなるように溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネート型リチウムイオン二次電池を得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネート型リチウムイオン二次電池の外側に延出している。以上の工程で、実施例1のラミネート型リチウムイオン二次電池を作製した。 A laminate type lithium ion secondary battery was manufactured using the positive electrode and the negative electrode. Specifically, a rectangular sheet (27 × 32 mm, thickness 25 μm) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then an electrolyte solution was injected into the bag-like laminated film. 1 mol / liter of LiPF 6 was added to a solvent obtained by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) as an electrolytic solution in EC: EMC: DMC = 3: 3: 4 (volume ratio). A solution dissolved so as to be 1 was used. Thereafter, the remaining one side was sealed to obtain a laminate type lithium ion secondary battery in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed. Note that the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminated lithium ion secondary battery. The laminated lithium ion secondary battery of Example 1 was produced through the above steps.

また、作製したラミネート型リチウムイオン二次電池に対してコンディショニング処理を実施した。コンディショニング処理では、作製したラミネート型リチウムイオン二次電池を4.5Vまで段階的に充電し、最終的に1Cレートで4.5Vまで充電後、5時間CV充電した。そして、0.33Cレートで2.5Vまで放電後、2.5Vで5時間CV放電した。   In addition, conditioning treatment was performed on the manufactured laminated lithium ion secondary battery. In the conditioning process, the manufactured laminated lithium ion secondary battery was charged stepwise to 4.5V, finally charged to 4.5V at a 1C rate, and then CV charged for 5 hours. Then, after discharging to 2.5 V at a 0.33 C rate, CV discharging was performed at 2.5 V for 5 hours.

(実施例2のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を実施例2の正極活物質とした以外は実施例1と同様にして、実施例2のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Example 2)
A laminated lithium ion secondary battery of Example 2 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Example 2 in the laminated lithium ion secondary battery of Example 1. .

(実施例3のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を実施例3の正極活物質とした以外は実施例1と同様にして、実施例3のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Example 3)
A laminated lithium ion secondary battery of Example 3 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Example 3 in the laminated lithium ion secondary battery of Example 1. .

(比較例1のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を比較例1の正極活物質とした以外は実施例1と同様にして、比較例1のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 1)
A laminated lithium ion secondary battery of Comparative Example 1 was prepared in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Comparative Example 1 in the laminated lithium ion secondary battery of Example 1. .

(比較例2のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を比較例2の正極活物質とした以外は実施例1と同様にして、比較例2のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 2)
A laminated lithium ion secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Comparative Example 2 in the laminated lithium ion secondary battery of Example 1. .

(比較例3のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を比較例3の正極活物質とした以外は実施例1と同様にして、比較例3のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 3)
A laminated lithium ion secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Comparative Example 3 in the laminated lithium ion secondary battery of Example 1. .

(比較例4のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を比較例4の正極活物質とした以外は実施例1と同様にして、比較例4のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 4)
A laminated lithium ion secondary battery of Comparative Example 4 was prepared in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Comparative Example 4 in the laminated lithium ion secondary battery of Example 1. .

(比較例5のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を比較例5の正極活物質とした以外は実施例1と同様にして、比較例5のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 5)
A laminated lithium ion secondary battery of Comparative Example 5 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Comparative Example 5 in the laminated lithium ion secondary battery of Example 1. .

(比較例6のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を比較例6の正極活物質とした以外は実施例1と同様にして、比較例6のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 6)
A laminated lithium ion secondary battery of Comparative Example 6 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Comparative Example 6 in the laminated lithium ion secondary battery of Example 1. .

(比較例7のラミネート型リチウムイオン二次電池)
実施例1のラミネート型リチウムイオン二次電池において、正極活物質を比較例7の正極活物質とした以外は実施例1と同様にして、比較例7のラミネート型リチウムイオン二次電池を作製した。
(Laminated lithium ion secondary battery of Comparative Example 7)
A laminated lithium ion secondary battery of Comparative Example 7 was produced in the same manner as in Example 1 except that the positive electrode active material was changed to the positive electrode active material of Comparative Example 7 in the laminated lithium ion secondary battery of Example 1. .

<初期放電容量測定>
実施例1〜3及び比較例1〜7のラミネート型リチウムイオン二次電池を用いて初期放電容量を測定した。
<Initial discharge capacity measurement>
The initial discharge capacity was measured using the laminated lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 7.

初期放電容量測定は以下のように行った。室温で0.33Cレート、電圧4.5VまでCC充電(定電流充電)をした後、電圧4.5Vで1.5時間CV充電(定電圧充電)をした。そして電圧2.5Vまで、0.33CレートでCC放電(定電流放電)を行い、電圧2.5Vで2時間CV放電をした。その後、0.33Cにおける放電容量を測定し、初期放電容量とした。   The initial discharge capacity was measured as follows. After performing CC charge (constant current charge) to 0.33C rate and voltage 4.5V at room temperature, CV charge (constant voltage charge) was performed at voltage 4.5V for 1.5 hours. Then, CC discharge (constant current discharge) was performed at a rate of 0.33 C up to a voltage of 2.5 V, and CV discharge was performed at a voltage of 2.5 V for 2 hours. Thereafter, the discharge capacity at 0.33 C was measured and used as the initial discharge capacity.

<60℃保存試験>
実施例1〜3および比較例1〜7のラミネート型リチウムイオン二次電池について、60℃保存試験を行った。この試験では、実施例1〜3および比較例1〜7のラミネート型リチウムイオン二次電池に対して以下の条件で充放電試験を一回行い、再度充電した電池を60℃の恒温槽に6日間静置した。充電の際は60℃においてSOC(State of charge)90%時の電圧(4.3V)で、1CレートでCCCV充電(定電流定電圧充電)をした。そして充電後の電圧で一時間保持した。その後の放電の際は2.5V、0.33CレートでCC放電(定電流放電)を行った。
<60 ° C storage test>
About the laminated type lithium ion secondary battery of Examples 1-3 and Comparative Examples 1-7, the 60 degreeC storage test was done. In this test, a charge / discharge test was performed once on the laminated lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 7 under the following conditions, and the recharged battery was placed in a 60 ° C. constant temperature bath. Let stand for days. At the time of charging, CCCV charging (constant current constant voltage charging) was performed at a rate of 1 C at a voltage (4.3 V) when SOC (State of charge) 90% at 60 ° C. And it hold | maintained for 1 hour with the voltage after charge. During the subsequent discharge, CC discharge (constant current discharge) was performed at a rate of 2.5 V and 0.33 C.

ここで保存試験は充電した状態が維持されるので、電解液と活物質との間で副反応を起こしやすく、ラミネート型リチウムイオン二次電池は自己放電しやすい。   Here, since the charged state is maintained in the storage test, a side reaction is likely to occur between the electrolytic solution and the active material, and the laminated lithium ion secondary battery is easily self-discharged.

この保存試験後に室温に戻し、初期放電容量の測定と同じ条件で放電容量を測定し、保存後容量とした。   After this storage test, the temperature was returned to room temperature, and the discharge capacity was measured under the same conditions as the measurement of the initial discharge capacity.

結果を表1に示す。なお容量維持率(%)は、容量維持率(%)=(保存試験後の放電容量/初期容量)×100の式で計算した。   The results are shown in Table 1. The capacity retention rate (%) was calculated by the formula: capacity retention rate (%) = (discharge capacity after storage test / initial capacity) × 100.

<負極のMn量測定>
実施例1〜3および比較例1〜4のラミネート型リチウムイオン二次電池について60℃保存試験後の負極のMn量を測定した。60℃保存試験後の各ラミネート型リチウムイオン二次電池を解体し、各負極を分離した。分離した負極をジメチルカーボネート(DMC)で洗浄し、誘導結合プラズマ質量分析計(ICP−MS)で負極のMn量を測定した。
<Measurement of Mn content of negative electrode>
For the laminated lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 4, the amount of Mn of the negative electrode after the 60 ° C. storage test was measured. Each laminated lithium ion secondary battery after the 60 ° C. storage test was disassembled, and each negative electrode was separated. The separated negative electrode was washed with dimethyl carbonate (DMC), and the amount of Mn of the negative electrode was measured with an inductively coupled plasma mass spectrometer (ICP-MS).

結果を表1に示す。   The results are shown in Table 1.

表1の結果から、未処理の正極活物質を用いた比較例4のラミネート型リチウムイオン二次電池の負極のMn量が15μgだったのに対して、比較例1〜3のラミネート型リチウムイオン二次電池の負極のMn量は、8.8μg〜9.5μgと少なくなった。このことから正極活物質の表面にフッ素(F)元素が存在するとMnの溶出が抑制されることがわかった。さらに、実施例1〜3のラミネート型リチウムイオン二次電池の負極のMn量は、0.9μg〜1.3μgと劇的に低減した。このことから、正極活物質の表面にF元素とEr元素の両方が存在すると、理由は明確ではないが、Mnの溶出が劇的に抑制されることがわかった。   From the results in Table 1, the negative electrode Mn amount of the laminate type lithium ion secondary battery of Comparative Example 4 using the untreated positive electrode active material was 15 μg, whereas the laminate type lithium ions of Comparative Examples 1 to 3 were used. The amount of Mn in the negative electrode of the secondary battery was reduced to 8.8 μg to 9.5 μg. From this, it was found that the elution of Mn is suppressed when the fluorine (F) element is present on the surface of the positive electrode active material. Furthermore, the Mn content of the negative electrodes of the laminated lithium ion secondary batteries of Examples 1 to 3 was dramatically reduced to 0.9 μg to 1.3 μg. From this, it was found that when both the F element and the Er element exist on the surface of the positive electrode active material, the elution of Mn is dramatically suppressed, although the reason is not clear.

高温保存試験の容量維持率(%)を比較すると、実施例1〜3のラミネート型リチウムイオン二次電池の高温保存試験の容量維持率(%)が、比較例1〜7のラミネート型リチウムイオン二次電池の高温保存試験の容量維持率(%)に比べて大幅に高くなった。比較例1〜3のラミネート型リチウムイオン二次電池及び比較例5〜7のラミネート型リチウムイオン二次電池の高温保存試験の容量維持率(%)は未処理の正極活物質を用いた比較例4のラミネート型リチウムイオン二次電池の高温保存試験の容量維持率(%)とほとんど変わりはなかった。ここで、第二処理液にAl(NO・9HOを使用した比較例5の正極活物質の表面を観察したところ、比較例5の正極活物質の表面にAl元素が存在することが確認できた。これによりF元素とAl元素が正極活物質の表面に存在しても高温保存試験の容量維持率(%)は高くならないことがわかった。 Comparing the capacity retention rate (%) of the high temperature storage test, the capacity retention rate (%) of the high temperature storage test of the laminate type lithium ion secondary batteries of Examples 1 to 3 is the laminate type lithium ion of Comparative Examples 1 to 7. The capacity retention rate (%) of the secondary battery high-temperature storage test was significantly higher. The capacity retention rate (%) in the high-temperature storage test of the laminated lithium ion secondary batteries of Comparative Examples 1 to 3 and the laminated lithium ion secondary batteries of Comparative Examples 5 to 7 is a comparative example using an untreated positive electrode active material. 4 was almost the same as the capacity retention rate (%) of the high temperature storage test of the laminate type lithium ion secondary battery. Here, observation of the surface of the positive electrode active material of Comparative Example 5 using Al (NO 3) 3 · 9H 2 O to a second treatment liquid, there are Al element to the surface of the positive electrode active material of Comparative Example 5 I was able to confirm. As a result, it was found that the capacity retention rate (%) in the high-temperature storage test did not increase even when F element and Al element were present on the surface of the positive electrode active material.

以上のことから、正極活物質の表面にF元素とEr元素とが存在すると、ラミネート型リチウムイオン二次電池の高温保存試験の容量維持率(%)が大幅に向上することがわかった。   From the above, it was found that when F element and Er element exist on the surface of the positive electrode active material, the capacity retention rate (%) in the high temperature storage test of the laminated lithium ion secondary battery is greatly improved.

1:正極活物質、2:改質表層部。   1: Positive electrode active material, 2: Modified surface layer part.

Claims (9)

フッ化物塩を第一溶媒に溶解した第一処理液とエルビウム塩を第二溶媒に溶解した第二処理液とを混合した混合処理液と、リチウム含有酸化物よりなる正極活物質と、を混合する第1工程と、
前記第1工程後の前記正極活物質を300℃以上600℃以下で焼成する第2工程と、
を有し、
前記第1工程においてフッ化エルビウムが析出しない条件で前記混合処理液と前記正極活物質とを混合し、
前記第2工程において、F元素とEr元素とを含む改質表層部を前記正極活物質の表面に形成することを特徴とするリチウムイオン二次電池用正極活物質の処理方法。
Mixing a mixed treatment liquid in which a first treatment liquid in which a fluoride salt is dissolved in a first solvent and a second treatment liquid in which an erbium salt is dissolved in a second solvent is mixed with a positive electrode active material made of a lithium-containing oxide. A first step of
A second step of firing the positive electrode active material after the first step at 300 ° C. or higher and 600 ° C. or lower;
Have
In the first step, the mixed treatment liquid and the positive electrode active material are mixed under the condition that erbium fluoride does not precipitate,
In the second step, a modified surface layer portion containing an F element and an Er element is formed on the surface of the positive electrode active material. A method for treating a positive electrode active material for a lithium ion secondary battery.
前記リチウム含有酸化物はマンガンを含む請求項1に記載のリチウムイオン二次電池用正極活物質の処理方法。   The method for treating a positive electrode active material for a lithium ion secondary battery according to claim 1, wherein the lithium-containing oxide contains manganese. 前記リチウム含有酸化物は、層状岩塩型構造またはスピネル型構造を有する請求項2に記載のリチウムイオン二次電池用正極活物質の処理方法。   The method for treating a positive electrode active material for a lithium ion secondary battery according to claim 2, wherein the lithium-containing oxide has a layered rock salt structure or a spinel structure. 前記リチウム含有酸化物は、一般式: LiCoNiMn (Dは、Al、Mg、Ti、Sn、Zn、W、Zr、Mo、Fe及びNaから選ばれる少なくとも一種であり、p+q+r+s=1、0≦p<1、0≦q<1、0<r≦1、0≦s<1、0.8≦a<2.0、−0.2≦x−(a+p+q+r+s)≦0.2)で表される層状岩塩構造を有するリチウム含有複合酸化物である請求項1〜3のいずれに記載のリチウムイオン二次電池用正極活物質の処理方法。 The lithium-containing oxide has the general formula: at least one Li a Co p Ni q Mn r D s O x (D is the Al, Mg, Ti, Sn, Zn, W, Zr, Mo, selected from Fe and Na P + q + r + s = 1, 0 ≦ p <1, 0 ≦ q <1, 0 <r ≦ 1, 0 ≦ s <1, 0.8 ≦ a <2.0, −0.2 ≦ x− (a + p + q + r + s The method for treating a positive electrode active material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the lithium-containing composite oxide has a layered rock salt structure represented by: ≤ 0.2). 前記リチウム含有酸化物は、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiNi0.5Mn1.5及びLiMnから選択される少なくとも一つである請求項4に記載のリチウムイオン二次電池用正極活物質の処理方法。 The lithium-containing oxides are LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2, LiNi 0.5 Mn 1.5 O 4 and at least one processing method of the positive electrode active material for a lithium ion secondary battery according to claim 4 which is selected from LiMn 2 O 4. 粒子を析出させることなく表面を改質した改質表層部を有するリチウム含有酸化物よりなり、前記改質表層部はF元素とEr元素とを含むことを特徴とするリチウムイオン二次電池用正極活物質。   A positive electrode for a lithium ion secondary battery comprising a lithium-containing oxide having a modified surface layer portion whose surface is modified without precipitating particles, the modified surface layer portion including an F element and an Er element Active material. 前記リチウム含有酸化物は、LiCo1/3Ni1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiNi0.5Co0.2Mn0.3、LiNi0.5Mn1.5及びLiMnから選択される少なくとも一つである請求項6に記載のリチウムイオン二次電池用正極活物質。 The lithium-containing oxides are LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2. The positive electrode active material for a lithium ion secondary battery according to claim 6, wherein the positive electrode active material is at least one selected from LiNi 0.5 Mn 1.5 O 4 and LiMn 2 O 4 . 請求項1〜5のいずれか一項に記載のリチウムイオン二次電池用正極活物質の処理方法で処理されたリチウムイオン二次電池用正極活物質。   The positive electrode active material for lithium ion secondary batteries processed with the processing method of the positive electrode active material for lithium ion secondary batteries as described in any one of Claims 1-5. 請求項6〜8に記載のリチウムイオン二次電池用正極活物質を有するリチウムイオン二次電池。   The lithium ion secondary battery which has a positive electrode active material for lithium ion secondary batteries of Claims 6-8.
JP2013139716A 2013-07-03 2013-07-03 Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery Expired - Fee Related JP6056685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139716A JP6056685B2 (en) 2013-07-03 2013-07-03 Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139716A JP6056685B2 (en) 2013-07-03 2013-07-03 Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015015088A true JP2015015088A (en) 2015-01-22
JP6056685B2 JP6056685B2 (en) 2017-01-11

Family

ID=52436710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139716A Expired - Fee Related JP6056685B2 (en) 2013-07-03 2013-07-03 Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6056685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125444A1 (en) * 2014-02-19 2015-08-27 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
WO2016031147A1 (en) * 2014-08-26 2016-03-03 三洋電機株式会社 Positive-electrode active material for nonaqueous-electrolyte secondary battery
WO2016103591A1 (en) * 2014-12-26 2016-06-30 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069702A1 (en) * 2002-02-15 2003-08-21 Seimi Chemical Co., Ltd. Particulate positive electrode active material for lithium secondary cell
WO2012176904A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for manufacturing positive-electrode active material for lithium ion secondary cell
JP2013093171A (en) * 2011-10-25 2013-05-16 Mitsubishi Chemicals Corp Positive electrode for lithium secondary battery and lithium secondary battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069702A1 (en) * 2002-02-15 2003-08-21 Seimi Chemical Co., Ltd. Particulate positive electrode active material for lithium secondary cell
WO2012176904A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for manufacturing positive-electrode active material for lithium ion secondary cell
JP2013093171A (en) * 2011-10-25 2013-05-16 Mitsubishi Chemicals Corp Positive electrode for lithium secondary battery and lithium secondary battery using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125444A1 (en) * 2014-02-19 2015-08-27 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
US10218000B2 (en) 2014-02-19 2019-02-26 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
WO2016031147A1 (en) * 2014-08-26 2016-03-03 三洋電機株式会社 Positive-electrode active material for nonaqueous-electrolyte secondary battery
US10418626B2 (en) 2014-08-26 2019-09-17 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
WO2016103591A1 (en) * 2014-12-26 2016-06-30 三洋電機株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2016103591A1 (en) * 2014-12-26 2017-10-05 三洋電機株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10096830B2 (en) 2014-12-26 2018-10-09 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP6056685B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
EP1711971B1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
WO2017169616A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
KR20160026402A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
WO2017056364A1 (en) Positive active material for nonaqueous-electrolyte secondary battery
JP6811404B2 (en) Non-aqueous electrolyte secondary battery
JP5664943B2 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE
WO2016017074A1 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using same
WO2016017073A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6061143B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5668845B2 (en) ELECTRODE FOR LITHIUM ION SECONDARY BATTERY, MANUFACTURING METHOD THEREOF, AND LITHIUM ION SECONDARY BATTERY USING THE ELECTRODE
WO2013035632A1 (en) Positive electrode material for lithium ion secondary batteries, positive electrode member for lithium ion secondary batteries, lithium ion secondary battery, and method for producing positive electrode material for lithium ion secondary batteries
JP5534377B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
JP6056685B2 (en) Method for treating positive electrode active material for lithium ion secondary battery, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
KR101796344B1 (en) Positive electrode material for lithium secondary battery, preparation thereof, and lithium secondary battery comprising the same
JP2014082084A (en) Lithium ion secondary battery
JP6016029B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5557067B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5862490B2 (en) Lithium ion secondary battery
EP3121883B1 (en) Electrode for non-aqueous electrolyte secondary battery
JP5610031B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5999430B2 (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same
JP6136869B2 (en) Method of treating lithium nickel-containing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery having the same
JP5857943B2 (en) Nonaqueous electrolyte secondary battery
JP6124076B2 (en) Method for forming protective layer on aluminum foil, current collector for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R151 Written notification of patent or utility model registration

Ref document number: 6056685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees