JP2015014494A - Optical probe current sensor using magnetic substance having shape magnetic anisotropy - Google Patents

Optical probe current sensor using magnetic substance having shape magnetic anisotropy Download PDF

Info

Publication number
JP2015014494A
JP2015014494A JP2013140477A JP2013140477A JP2015014494A JP 2015014494 A JP2015014494 A JP 2015014494A JP 2013140477 A JP2013140477 A JP 2013140477A JP 2013140477 A JP2013140477 A JP 2013140477A JP 2015014494 A JP2015014494 A JP 2015014494A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic body
optical probe
current sensor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013140477A
Other languages
Japanese (ja)
Inventor
敏郎 佐藤
Toshiro Sato
敏郎 佐藤
誠 曽根原
Makoto Sonehara
誠 曽根原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2013140477A priority Critical patent/JP2015014494A/en
Publication of JP2015014494A publication Critical patent/JP2015014494A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problem: when an optical probe current sensor which applies magnetic anisotropy in an in-plane direction of a magnetic substance with induction magnetic anisotropy or crystal magnetic anisotropy to obtain sensor sensitivity, is disposed inside a vehicle or in an environment at about 200°C, magnetic moment direction of the magnetic substance is changed, thereby changing sensor sensitivity.SOLUTION: An optical probe current sensor includes: a magnetic substance which is arranged near a conductor where a current to be measured flows, has shape magnetic anisotropy, and is configured so that a length of a part along an axis of easy magnetization is longer than a part along an axis of difficult magnetization; a light source which irradiates the magnetic substance with light; a magnetic field detection unit which detects a magnetic field applied to the magnetic substance, on the basis of polarization state of reflected light reflected by the magnetic substance; and a current calculation unit which calculates the current flowing in the conductor, on the basis of the magnetic field detected by the magnetic field detection unit.

Description

本発明は、光プローブ電流センサに関し、特に形状磁気異方性を有する磁性体を備えた光プローブ電流センサに関する。   The present invention relates to an optical probe current sensor, and more particularly to an optical probe current sensor provided with a magnetic body having shape magnetic anisotropy.

家電製品、電気/ハイブリッド自動車など各種電子機器には、電流量を観測するための電流センサが多く利用されている。特に近年は、外部から伝搬する電磁ノイズあるいは機器自身から発生するノイズが測定電流に与える影響が問題視されており、S/N比が良い高精度な電流センサが要求されている。   Current sensors for observing the amount of current are widely used in various electronic devices such as home appliances and electric / hybrid vehicles. Particularly in recent years, the influence of electromagnetic noise propagating from the outside or noise generated from the device itself on the measurement current has been regarded as a problem, and a highly accurate current sensor with a good S / N ratio is required.

しかしながら、従来利用されているホール素子を用いた電流センサは、センサに接続された導線(ワイヤハーネス)にノイズが誘導されることにより、高精度な電流測定ができないという問題が生じていた。そこで、光磁気ディスクの技術を応用した磁性体における磁気カー(Kerr)効果を利用した光プローブ電流センサが報告されている(例えば、特許文献1)。これは電磁ノイズの影響を受けない光をプローブとしているため、劣悪な電磁ノイズ環境下でも高精度な電流検出が可能であるというものである。   However, a current sensor using a Hall element that has been conventionally used has a problem that current cannot be measured with high accuracy because noise is induced in a conductive wire (wire harness) connected to the sensor. Therefore, an optical probe current sensor using a magnetic Kerr effect in a magnetic material applying the magneto-optical disk technology has been reported (for example, Patent Document 1). This is because light that is not affected by electromagnetic noise is used as a probe, so that highly accurate current detection is possible even in a poor electromagnetic noise environment.

図1に従来の光プローブ電流センサの構成を示す。図1(a)は導体に電流を流していない状態を示し、図1(b)は導体に電流を流した状態を示す。図1(a)に示すように、導体2の近傍に磁性体100を配置して導体2に流れる電流によって生じる磁界を検出する。磁性体100は磁気異方性を有しており、初期の磁気モーメントの方向mp0を導体2に流れる電流の向きと一致させておく。磁性体100には、例えば誘導磁気異方性あるいはまた結晶磁気異方性を利用して磁気異方性を付与している。 FIG. 1 shows a configuration of a conventional optical probe current sensor. FIG. 1A shows a state in which no current flows through the conductor, and FIG. 1B shows a state in which current flows through the conductor. As shown in FIG. 1A, a magnetic body 100 is disposed in the vicinity of the conductor 2 to detect a magnetic field generated by a current flowing through the conductor 2. The magnetic body 100 has magnetic anisotropy, and the initial magnetic moment direction mp 0 is made to coincide with the direction of the current flowing through the conductor 2. The magnetic body 100 is provided with magnetic anisotropy using, for example, induced magnetic anisotropy or crystal magnetic anisotropy.

磁性体100には、光源11から偏光プリズム12を通して直線偏光を含む入射光Liを照射する。入射光Liは磁性体100の表面で反射され、反射光Lrとして磁界検出部20へ出射される。磁界検出部20において、反射光Lrは1/2波長板あるいは1/4波長板13で方位調整されたのち、偏光ビームスプリッタ14に入射され、S偏光LsとP偏光Lpに分離される。S偏光Ls及びP偏光Lpはそれぞれ第1受光素子15及び第2受光素子16に入射され、それぞれの出力電圧がオペアンプ17の反転入力端子と非反転入力端子に入力され両者の差分が検出される。オペアンプ17の出力電圧は導体2に流れる電流と相関関係があるため、電流算出部30においてオペアンプ17の出力電圧に基づいて導体2に流れる電流を算出することができる。 The magnetic body 100 is irradiated with incident light L i including linearly polarized light through the polarization prism 12 from the light source 11. Incident light L i is reflected by the surface of the magnetic body 100 and emitted to the magnetic field detector 20 as reflected light L r . In the magnetic field detection unit 20, the reflected light L r is azimuthally adjusted by the half-wave plate or the quarter-wave plate 13 and then incident on the polarization beam splitter 14 and separated into S-polarized light L s and P-polarized light L p. The The S-polarized light L s and the P-polarized light L p are respectively incident on the first light receiving element 15 and the second light receiving element 16, and the respective output voltages are input to the inverting input terminal and the non-inverting input terminal of the operational amplifier 17, and the difference between the two is detected. Is done. Since the output voltage of the operational amplifier 17 has a correlation with the current flowing through the conductor 2, the current calculation unit 30 can calculate the current flowing through the conductor 2 based on the output voltage of the operational amplifier 17.

ここで、導体2に電流が流れていない場合には、反射光Lrは直線偏光のままであり、1/2波長板あるいは1/4波長板13を通った光は円偏光を示す。従って、P偏光Lp及びS偏光Lsの大きさは同一であり、電流は検出されない。 Here, when no current flows through the conductor 2, the reflected light L r remains linearly polarized light, and the light passing through the half-wave plate or the quarter-wave plate 13 shows circularly polarized light. Accordingly, the P-polarized light L p and the S-polarized light L s have the same magnitude, and no current is detected.

一方、図1(b)に示すように、導体2に電流Iが流れる場合は、電流Iによって生じた磁界mにより、磁性体100の磁気モーメントの方向がmp0からmpへ変化する。磁性体100に光を照射する様子を図2に示す。導体2の上に磁性体100が配置されており、導体2には矢印yの方向に電流Iが流れているとする。また、磁性体100は幅w0、長さlo、厚さt0の大きさを有するものとする。長さlo及び幅w0は入射光Liの照射領域10に比べて十分大きい。光源11から出射された光Liは矢印diの方向から入射し、磁性体100の表面上の照射領域10で反射されて矢印drの方向へ反射光Lrとして反射される。このとき、照射領域10において磁性体100の磁気モーメントの方向がmp0からmpに変化しているため、反射光Lrは楕円偏光となる。このように、磁化した磁性体の表面に直線偏光を照射した場合に、反射光が楕円偏光となる現象を「磁気カー効果」という。 On the other hand, as shown in FIG. 1B, when the current I flows through the conductor 2, the direction of the magnetic moment of the magnetic body 100 changes from mp 0 to mp by the magnetic field m generated by the current I. FIG. 2 shows how the magnetic body 100 is irradiated with light. It is assumed that the magnetic body 100 is disposed on the conductor 2 and a current I flows through the conductor 2 in the direction of the arrow y. The magnetic body 100 is assumed to have a width w 0 , a length l o , and a thickness t 0 . The length l o and the width w 0 is sufficiently larger than the irradiation region 10 of the incident light L i. Light L i emitted from the light source 11 is incident from the direction of arrow d i, is reflected as reflected light L r is reflected by the illuminated area 10 on the surface of the magnetic body 100 in the direction of arrow d r. At this time, since the direction of the magnetic moment of the magnetic body 100 is changed from mp 0 to mp in the irradiation region 10, the reflected light L r becomes elliptically polarized light. The phenomenon that the reflected light becomes elliptically polarized light when the surface of the magnetized magnetic material is irradiated with linearly polarized light is called “magnetic Kerr effect”.

反射光Lrが楕円偏光となると、P偏光Lp及びS偏光Lsの大きさに差が生じ、差分に比例した電流が検出される。このようにして、光を利用して電流を検出できるため、電磁波等のノイズが存在する環境下においても正確に電流を検出することができる。 When the reflected light L r becomes elliptically polarized light, a difference occurs between the magnitudes of the P-polarized light L p and the S-polarized light L s , and a current proportional to the difference is detected. In this way, since the current can be detected using light, the current can be accurately detected even in an environment where noise such as electromagnetic waves exists.

電流センサは様々な環境下において使用されることが要求されており、特に電気/ハイブリッド自動車において利用する場合には、周囲温度が200℃程度まで高温になってもセンサ感度や特性が変わらないことが要求されている。   Current sensors are required to be used in various environments. Especially when used in electric / hybrid vehicles, sensor sensitivity and characteristics do not change even when the ambient temperature reaches as high as 200 ° C. Is required.

特開2012−193981号公報JP 2012-193981 A

しかしながら、従来の光プローブ電流センサにおいては、磁性体の面内方向に誘導磁気異方性あるいはまた結晶磁気異方性を用いて磁気異方性を付与させ、センサ感度を得ているが、自動車の内部等、200℃程度の環境下に置かれると、磁性体の磁気モーメントの方向が変化してしまい、センサ感度が低下してしまうという問題が生じていた。   However, in the conventional optical probe current sensor, magnetic anisotropy is imparted in the in-plane direction of the magnetic material by using induced magnetic anisotropy or crystal magnetic anisotropy to obtain sensor sensitivity. When placed in an environment of about 200 ° C., such as inside, the direction of the magnetic moment of the magnetic material changes, causing a problem that the sensor sensitivity is lowered.

本発明の光プローブ電流センサは、測定対象である電流が流れる導体の近傍に配置され、形状磁気異方性を備え、磁化容易軸方向に沿った部分の長さが磁化困難軸方向に沿った部分の長さより長い磁性体と、磁性体に光を照射する光源と、磁性体で反射された反射光の偏光状態に基づいて磁性体に印加された磁界を検出する磁界検出部と、磁界検出部が検出した磁界に基づいて、導体に流れる電流を算出する電流算出部と、を有することを特徴とする。   The optical probe current sensor of the present invention is disposed in the vicinity of the conductor through which the current to be measured flows, has shape magnetic anisotropy, and the length of the portion along the easy magnetization axis direction is along the hard magnetization axis direction A magnetic material longer than the length of the part, a light source for irradiating the magnetic material with light, a magnetic field detector for detecting a magnetic field applied to the magnetic material based on a polarization state of reflected light reflected by the magnetic material, and magnetic field detection And a current calculation unit that calculates a current flowing through the conductor based on the magnetic field detected by the unit.

本発明の光プローブ電流センサによれば、形状磁気異方性を利用して磁性体に磁気異方性を付与しているため、周囲温度が変化してもセンサ感度に影響する磁気異方性が変化せず、温度特性の良い光プローブ電流センサを構成することができるという効果が得られる。   According to the optical probe current sensor of the present invention, the magnetic anisotropy is imparted to the magnetic body by utilizing the shape magnetic anisotropy, and therefore the magnetic anisotropy that affects the sensor sensitivity even if the ambient temperature changes. There is an effect that an optical probe current sensor having good temperature characteristics can be configured.

従来の光プローブ電流センサの構成を示す図である。It is a figure which shows the structure of the conventional optical probe current sensor. 従来の光プローブ電流センサに用いられる磁性体の斜視図である。It is a perspective view of the magnetic body used for the conventional optical probe current sensor. 本発明の実施例1に係る光プローブ電流センサの構成を示す図である。It is a figure which shows the structure of the optical probe current sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る光プローブ電流センサに用いられる磁性体の斜視図及び断面図である。It is the perspective view and sectional drawing of a magnetic body used for the optical probe current sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る光プローブ電流センサの動作手順を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement procedure of the optical probe current sensor which concerns on Example 1 of this invention. 本発明の実施例1に係る光プローブ電流センサを構成する磁性体のサイズと反磁界係数との関係を示す図である。It is a figure which shows the relationship between the size of the magnetic body which comprises the optical probe current sensor which concerns on Example 1 of this invention, and a demagnetizing-field coefficient. 本発明の実施例1に係る光プローブ電流センサの温度特性を示すグラフである。It is a graph which shows the temperature characteristic of the optical probe current sensor which concerns on Example 1 of this invention. 本発明の実施例2に係る光プローブ電流センサに用いられる磁性体の斜視図及び断面図である。It is the perspective view and sectional drawing of a magnetic body used for the optical probe current sensor which concerns on Example 2 of this invention. 本発明の実施例3に係る光プローブ電流センサに用いられる磁性体の斜視図及び断面図である。It is the perspective view and sectional drawing of a magnetic body which are used for the optical probe current sensor which concerns on Example 3 of this invention.

以下、図面を参照して、本発明に係る光プローブ電流センサについて説明する。ただし、本発明の技術的範囲はそれらの実施の形態には限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。   Hereinafter, an optical probe current sensor according to the present invention will be described with reference to the drawings. However, it should be noted that the technical scope of the present invention is not limited to these embodiments, but extends to the invention described in the claims and equivalents thereof.

〔実施例1〕
本発明の実施例1に係る光プローブ電流センサについて説明する。図3に本発明の実施例1に係る光プローブ電流センサの構成を示す。図3(a)は導体2に電流が流れていない状態を示し、図3(b)は導体2に電流が流れている状態を示している。また、図4に、本発明の実施例1に係る光プローブ電流センサに用いられる磁性体の斜視図及び断面図を示す。本発明の実施例1に係る光プローブ電流センサは、測定対象である電流Iが流れる導体2の近傍に配置された磁性体であって、形状磁気異方性を備え、磁化容易軸方向Aeに沿った部分の長さlmが磁化困難軸方向Ahに沿った部分の長さwsより長い磁性体1と、磁性体1に光Liを照射する光源11と、磁性体1で反射された反射光Lrの偏光状態に基づいて磁性体1に印加された磁界を検出する磁界検出部20と、磁界検出部20が検出した磁界に基づいて、導体2に流れる電流Iを算出する電流算出部30と、を有する。
[Example 1]
An optical probe current sensor according to Example 1 of the present invention will be described. FIG. 3 shows the configuration of the optical probe current sensor according to the first embodiment of the present invention. FIG. 3A shows a state where no current flows through the conductor 2, and FIG. 3B shows a state where current flows through the conductor 2. FIG. 4 shows a perspective view and a cross-sectional view of a magnetic body used in the optical probe current sensor according to the first embodiment of the present invention. The optical probe current sensor according to Example 1 of the present invention is a magnetic body disposed in the vicinity of a conductor 2 through which a current I to be measured flows, has a shape magnetic anisotropy, and has an easy magnetization axis direction Ae. portion and the magnetic body 1 is longer than the length w s of along the length l m is the magnetization hard axis Ah of along the portion, a light source 11 for irradiating light L i in the magnetic body 1, is reflected by the magnetic substance 1 The magnetic field detection unit 20 that detects the magnetic field applied to the magnetic body 1 based on the polarization state of the reflected light L r , and the current that calculates the current I that flows through the conductor 2 based on the magnetic field detected by the magnetic field detection unit 20 And a calculation unit 30.

光源11は、直線偏光を含む光を出力する光源である。例えば、He−Neレーザ等の気体レーザや半導体レーザなどのレーザ光を出力するレーザ光源を用いることができる。光源11が出力する光は例えば直径が100μm程度である。   The light source 11 is a light source that outputs light including linearly polarized light. For example, a laser light source that outputs laser light such as a gas laser such as a He—Ne laser or a semiconductor laser can be used. The light output from the light source 11 has a diameter of about 100 μm, for example.

光源11から出力された光は、偏光子12に入射され、偏光子12は光源11から出射される光を所定の偏光軸方向を有する直線偏光に偏光する。直線偏光した光は磁性体1に入射されるため、これを入射光Liと呼ぶ。偏光子12として、例えば、グラントムソン偏光プリズムやグランテーラー偏光プリズムを用いることができる。 The light output from the light source 11 enters the polarizer 12, and the polarizer 12 polarizes the light emitted from the light source 11 into linearly polarized light having a predetermined polarization axis direction. Since the linearly polarized light is incident on the magnetic body 1, it referred to as the incident light L i this. As the polarizer 12, for example, a Glan-Thompson polarizing prism or a Grand Taylor polarizing prism can be used.

本発明の実施例1に係る光プローブ電流センサに用いられる磁性体の斜視図及び断面図をそれぞれ図4(a)及び図4(b)に示す。図4(b)の断面図は、図4(a)のA−Aにおいて、導体2の水平面に対して垂直方向に切った断面図である。磁性体1は測定対象である電流が流れる導体2の近傍に配置されるが、接している必要はない。また、磁性体1は導体2上に直接配置してもよいが、SiO2膜等の層間絶縁膜(図示せず)を磁性体1と導体2との間に設けてもよい。 FIGS. 4A and 4B are a perspective view and a cross-sectional view, respectively, of a magnetic body used in the optical probe current sensor according to the first embodiment of the present invention. The cross-sectional view of FIG. 4B is a cross-sectional view taken in the direction perpendicular to the horizontal plane of the conductor 2 in AA of FIG. Although the magnetic body 1 is disposed in the vicinity of the conductor 2 through which the current to be measured flows, it is not necessary to be in contact therewith. The magnetic body 1 may be disposed directly on the conductor 2, but an interlayer insulating film (not shown) such as a SiO 2 film may be provided between the magnetic body 1 and the conductor 2.

磁性体1は、形状磁気異方性を備え、いわゆる短冊状の形状を備えている。磁性体1は、Fe、Co、Ni、Gdのうちの少なくとも一種を含む軟磁性体であり、例えばイットリウム−鉄−ガーネット(YIG:Yttrium-Iron-Garnet)フェライト単結晶である。形状磁気異方性を備えた磁性体は、磁化容易軸方向と磁化困難軸方向を有するが、「短冊状」とは、磁性体1の磁化容易軸方向Aeに沿った部分の長さlmが、磁化困難軸方向Ahに沿った部分の長さwsより長いことを意味している。磁性体を短冊状に加工することで、結晶磁気異方性などに対して周囲温度の影響を受け難い形状磁気異方性が支配的になる。その結果、磁性体の異方性磁界(センサ感度)の温度特性が改善する。 The magnetic body 1 has shape magnetic anisotropy, and has a so-called strip shape. The magnetic body 1 is a soft magnetic body containing at least one of Fe, Co, Ni, and Gd, and is, for example, a yttrium-iron-garnet (YIG: Yttrium-Iron-Garnet) ferrite single crystal. A magnetic body having shape magnetic anisotropy has an easy magnetization axis direction and a hard magnetization axis direction, but the “strip shape” means the length l m of the magnetic body 1 along the easy magnetization axis direction Ae. Means longer than the length w s of the portion along the hard axis direction Ah. By processing the magnetic material into a strip shape, the shape magnetic anisotropy that is hardly affected by the ambient temperature with respect to the crystal magnetic anisotropy or the like becomes dominant. As a result, the temperature characteristic of the anisotropic magnetic field (sensor sensitivity) of the magnetic material is improved.

図3(a)に示すように、導体2に電流が流れていない状態、即ち、磁性体1に磁界が印加されていない状態における磁性体1の磁気モーメントの方向mp1は磁化容易軸方向Aeと一致している。磁性体1の厚さをtmとすると、tmは入射光Liが透過しない程度に厚ければよく、例えば0.1μm程度あれば十分である。 As shown in FIG. 3A, the direction mp 1 of the magnetic moment of the magnetic body 1 in the state where no current flows through the conductor 2, that is, the state where no magnetic field is applied to the magnetic body 1, is the easy axis direction Ae. Is consistent with When the thickness of the magnetic substance 1 and t m, t m may be thicker to such an extent that the incident light L i is not transmitted, it is sufficient for example 0.1μm about.

磁性体1には、入射光Liがdiの方向から入射し、照射領域10でdrの方向に反射光Lrとして反射される。入射光Liの全てが磁性体1の表面で反射されるためには、磁性体1の磁化困難軸方向Ahの長さwsが、照射領域10の幅以上であればよい。即ち、磁性体の磁化困難軸方向Ahに沿った部分の長さwsは、光源からの光が磁性体1上に照射される領域における磁化困難軸方向の長さより大きいことが好ましい。例えば、入射光Liが磁性体1に対して角度θで入射し、円形状の入射光Liの径がφである場合は、ws≧φ/sinθを満たすようにwsを決めればよい。 The magnetic substance 1, the incident light L i is incident from the direction of d i, is reflected in the direction of d r in the irradiation region 10 as reflected light L r. For all of the incident light L i is reflected by the surface of the magnetic substance 1, the length w s hard axis magnetic Ah of the magnetic body 1, may be at greater than width of the irradiation region 10. That is, the length w s of the magnetic material along the hard axis direction Ah is preferably larger than the length in the hard axis direction in the region where the light from the light source is irradiated onto the magnetic material 1. For example, the incident light Li is incident at an angle θ with respect to the magnetic substance 1, if the diameter of the circular incident light L i is phi, may be determined to w s to satisfy w s ≧ φ / sinθ .

磁界検出部20は、磁気カー効果を利用して磁性体1に印加される外部磁界の磁界強度を検出するものである。磁界検出部20は、1/2波長板あるいは1/4波長板13と、偏光ビームスプリッタ14と、第1受光素子15と、第2受光素子16と、オペアンプ17と、を備えている。1/2波長板あるいは1/4波長板13は、反射光Lrの偏光方向を微調整する。偏光ビームスプリッタ14は、反射光LrをS偏光Ls及びP偏光Lpに分離する。S偏光Lsは第1受光素子15によって受光され、P偏光Lpは第2受光素子16によって受光される。第1受光素子15及び第2受光素子16として、例えば、フォトダイオード、フォトトランジスタ、またはCCDセンサを用いることができる。第1受光素子15及び第2受光素子16は、それぞれオペアンプ17の反転入力端子及び非反転入力端子に光電変換した信号を出力する。電流算出部30は、オペアンプ17の出力結果である差分値に基づいて導体2に流れる電流を算出する。 The magnetic field detector 20 detects the magnetic field strength of the external magnetic field applied to the magnetic body 1 using the magnetic Kerr effect. The magnetic field detection unit 20 includes a half-wave plate or quarter-wave plate 13, a polarizing beam splitter 14, a first light receiving element 15, a second light receiving element 16, and an operational amplifier 17. The half-wave plate or the quarter-wave plate 13 finely adjusts the polarization direction of the reflected light L r . The polarization beam splitter 14 splits the reflected light L r into S-polarized light L s and P-polarized light L p . S-polarized light L s is received by the first light receiving element 15, and P-polarized light L p is received by the second light receiving element 16. As the first light receiving element 15 and the second light receiving element 16, for example, a photodiode, a phototransistor, or a CCD sensor can be used. The first light receiving element 15 and the second light receiving element 16 output photoelectrically converted signals to the inverting input terminal and the non-inverting input terminal of the operational amplifier 17, respectively. The current calculation unit 30 calculates the current flowing through the conductor 2 based on the difference value that is the output result of the operational amplifier 17.

次に、本発明の実施例1に係る光プローブ電流センサの動作について、図5のフローチャートを用いて説明する。まず、磁性体1に外部磁界が印加されていない状態で、光プローブ電流センサの調整を行うために、導体2に電流を流さない状態(I=0[A])とする(S101)。   Next, the operation of the optical probe current sensor according to the first embodiment of the present invention will be described with reference to the flowchart of FIG. First, in order to adjust the optical probe current sensor in a state where no external magnetic field is applied to the magnetic body 1, a state in which no current flows through the conductor 2 (I = 0 [A]) is set (S101).

次に、ステップS102において、1/4波長板(あるいは1/2波長板)13でP・S偏光の強度を揃える。具体的には以下のように調整する。導体2に電流が流れていない場合、即ち磁性体1に印加される磁界がゼロである場合に、偏光ビームスプリッタ14で分離される2つの偏光成分Ls、Lpの強度が等しくなるように、1/2波長板あるいは1/4波長板13の遅相軸の角度を調整する。具体的には、1/2波長板あるいは1/4波長板13の遅相軸を入射光Liの偏光面に対して45度傾けることにより、偏光ビームスプリッタ14で分離される2つの偏光成分LsとLpの光強度をほぼ等しくする。このように調整することにより、LsとLpの強度の差分を検出することにより、磁性体1における磁界の大きさを検出することができる。導体2に電流が流れていない状態では、オペアンプ17の差動出力Vは0[V]となる(S103)。 Next, in step S <b> 102, the intensity of the P / S polarized light is made uniform by the ¼ wavelength plate (or ½ wavelength plate) 13. Specifically, the adjustment is performed as follows. When no current flows through the conductor 2, that is, when the magnetic field applied to the magnetic body 1 is zero, the two polarization components L s and L p separated by the polarization beam splitter 14 are equal in intensity. The angle of the slow axis of the half-wave plate or quarter-wave plate 13 is adjusted. Specifically, by tilting 45 degrees relative to the polarization plane of the incident light L i slow axis 1/2-wave plate or a quarter-wave plate 13, the two polarization components separated by the polarization beam splitter 14 The light intensities of L s and L p are made almost equal. By adjusting in this way, the magnitude of the magnetic field in the magnetic body 1 can be detected by detecting the difference in intensity between L s and L p . In a state where no current flows through the conductor 2, the differential output V of the operational amplifier 17 is 0 [V] (S103).

次に、ステップS104において、導体2に電流Iを流す(I=I[A])。導体2に流れる電流Iの向きは矢印yの方向であり、磁性体1の磁化容易軸方向Ae、即ち、短冊状の磁性体1の長尺方向と一致している。図3(b)に示すように、導体2に電流Iが矢印yの方向に流れた場合、導体2の周りに磁界mが発生する。その結果、磁性体1の磁気モーメントはmp2の方向に変化する。この状態で、磁性体1に入射光Liを照射すると、入射光Liが磁性体1の磁化ベクトルmp2により磁気カー効果を受けて偏光面が回転し、反射光Lrは楕円偏光となる(S105)。その結果、その旋光角の大きさに応じて2つの偏光成分LsとLpの間に強度差が生じ、P・S偏光の強度差から差動出力V=Vo[V]を検出することができる(S106)。次に、ステップS107において、電流算出部30が差動出力Voから導体2に流れる電流Iを算出する。 Next, in step S104, a current I is passed through the conductor 2 (I = I [A]). The direction of the current I flowing through the conductor 2 is the direction of the arrow y, which coincides with the easy magnetization axis direction Ae of the magnetic body 1, that is, the longitudinal direction of the strip-shaped magnetic body 1. As shown in FIG. 3B, when the current I flows through the conductor 2 in the direction of the arrow y, a magnetic field m is generated around the conductor 2. As a result, the magnetic moment of the magnetic body 1 is changed in the direction of mp 2. In this state, is irradiated with incident light L i in the magnetic body 1, the polarization plane rotates incident light L i is subjected to the magnetic Kerr effect by the magnetization vector mp 2 of the magnetic body 1, the reflected light L r is the elliptically polarized light (S105). As a result, an intensity difference is generated between the two polarization components L s and L p according to the magnitude of the optical rotation angle, and the differential output V = Vo [V] is detected from the intensity difference between the P and S polarizations. (S106). Next, in step S107, the current calculation unit 30 calculates the current I flowing through the conductor 2 from the differential output Vo.

次に、本発明の実施例1に係る光プローブ電流センサに用いる磁性体の形状の設計方法について説明する。磁性体の形状は、磁性体に生じる異方性磁界Hkに基づいて設計することができる。形状磁気異方性による反磁界Hdが優勢である場合、異方性磁界Hkは概ねHdに一致する。図4(a)のように磁性体1を短冊状に加工した場合、反磁界Hdは次式で表される。
Hd=NMs・・・・・・・・・(1)
ここで、Nは反磁界係数、Msは磁性体の飽和磁化である。飽和磁化Msは、磁性体材料に固有の値であるので、磁性体の形状と反磁界係数Nとの関係が重要である。反磁界係数Nは次式で表される(ただし、lm≫ws≧tm)。
Next, a method for designing the shape of the magnetic material used for the optical probe current sensor according to the first embodiment of the present invention will be described. The shape of the magnetic body can be designed based on the anisotropic magnetic field Hk generated in the magnetic body. When the demagnetizing field Hd due to the shape magnetic anisotropy is dominant, the anisotropic magnetic field Hk substantially coincides with Hd. When the magnetic body 1 is processed into a strip shape as shown in FIG. 4A, the demagnetizing field Hd is expressed by the following equation.
Hd = NMs (1)
Here, N is the demagnetizing field coefficient, and Ms is the saturation magnetization of the magnetic material. Since the saturation magnetization Ms is a value inherent to the magnetic material, the relationship between the shape of the magnetic material and the demagnetizing factor N is important. The demagnetizing factor N is expressed by the following equation (where l m >> w s ≥t m ).

Figure 2015014494
上式を用いることにより、一例として以下のような組み合わせが得られる。
Figure 2015014494
By using the above formula, the following combinations are obtained as an example.

Figure 2015014494
この場合、反磁界係数NはN = 0.0099と算出される。
式(1)より反磁界Hdは
Hd = 0.0099 × 2.15 × 104 ≒ 213 [Oe] = 16.9 [kA/m] (純鉄の場合)
と求められる。
Figure 2015014494
In this case, the demagnetizing field coefficient N is calculated as N = 0.0099.
From equation (1), the demagnetizing field Hd is
Hd = 0.0099 × 2.15 × 10 4 ≒ 213 [Oe] = 16.9 [kA / m] (in the case of pure iron)
Is required.

式(2)を用いることにより、反磁界係数Nから磁性体1の形状を決定することができる。例えば、磁性体1の磁化容易軸方向の長さlmをパラメータとした場合の反磁界係数Nと磁性体1の磁化困難軸方向の長さwsとの関係を図6に示す。ここで、磁性体1の厚さtmは0.1[μm]としている。反磁界係数Nは、wsの増加に伴って単調に減少するが、lmが5または10[μm]の場合は、wsの増加に伴って増加する場合が現れる。この結果から、磁性体1の短冊形状の長手方向の長さ、即ち、磁化容易軸方向の長さlmは10[μm]より大きいことが望ましいと言える。 By using Equation (2), the shape of the magnetic body 1 can be determined from the demagnetizing factor N. For example, FIG. 6 shows the relationship between the demagnetizing factor N and the length w s of the magnetic body 1 in the hard axis direction when the length 1 m of the magnetic body 1 in the easy axis direction is used as a parameter. Here, the thickness t m of the magnetic body 1 is set to 0.1 [μm]. Demagnetizing factor N is decreased monotonically with increasing w s, if l m is 5 or 10 [[mu] m], it appears may increase with increasing w s. From this result, the length in the longitudinal direction of the strip-shaped magnetic body 1, i.e., the length l m of the easy magnetization axis direction is said to be greater than 10 [μm].

図7に、実施例1に係る光プローブ電流センサに用いられる磁性体の温度特性のグラフを示す。同図には、磁性体を配置した環境の温度を25℃から150℃まで変化させたときの印加磁界強度H[Oe]と磁化4πM[kG]との関係を示している。温度を25℃から150℃まで変化させても磁気特性に大きな変化は見られないことから、実施例1に係る光プローブ電流センサに用いる磁性体を利用することにより、少なくとも150℃まで環境温度を上昇させても磁気特性が変動しないことがわかる。この結果から、本発明のように磁性体の形状を磁化容易軸方向に沿った部分の長さが磁化困難軸方向に沿った部分の長さより長くなるようにして形状磁気異方性を付与することにより、高温の環境下においても正確に磁界を測定することができ、ひいては正確な電流測定が可能であることがわかる。   FIG. 7 shows a graph of temperature characteristics of a magnetic material used in the optical probe current sensor according to the first embodiment. This figure shows the relationship between the applied magnetic field strength H [Oe] and the magnetization 4πM [kG] when the temperature of the environment in which the magnetic material is arranged is changed from 25 ° C. to 150 ° C. Even if the temperature is changed from 25 ° C. to 150 ° C., there is no significant change in the magnetic characteristics. Therefore, by using the magnetic material used in the optical probe current sensor according to Example 1, the environmental temperature is reduced to at least 150 ° C. It can be seen that the magnetic properties do not change even when the temperature is raised. From this result, shape magnetic anisotropy is imparted so that the length of the portion along the easy magnetization axis direction is longer than the length of the portion along the hard magnetization axis direction as in the present invention. Thus, it can be seen that the magnetic field can be accurately measured even in a high-temperature environment, and thus accurate current measurement is possible.

〔実施例2〕
次に、本発明の実施例2に係る光プローブ電流センサについて説明する。測定システムや測定手順は実施例1と同様であるので詳細な説明は省略する。実施例2の光プローブ電流センサが、実施例1の光プローブ電流センサと異なっている点は、磁性体が、磁化容易軸方向に沿って1つまたは複数の溝を有する点である。図8に本発明の実施例2に係る光プローブ電流センサに用いられる磁性体の斜視図及び断面図を示す。図8(b)は図8(a)のB−B線で導体2の水平面に対して垂直方向に切断した断面図である。磁性体1´には、磁化容易軸方向Aeに沿って溝1aが設けられている。溝1aは磁性体1´の厚さ(t)方向に向かって貫通するように形成されている。溝1aは磁性体1´の磁化容易軸方向Aeの全ての領域に渡って形成されている必要はないが、形状磁気異方性が十分に現れる長さであることが好ましい。溝1aが磁性体1´の磁化容易軸方向Aeの全ての領域に渡って形成されている場合は、2つの磁性体を並列させて配置したのと同じ状態となる。
[Example 2]
Next, an optical probe current sensor according to Example 2 of the present invention will be described. Since the measurement system and the measurement procedure are the same as those in the first embodiment, detailed description thereof is omitted. The optical probe current sensor according to the second embodiment is different from the optical probe current sensor according to the first embodiment in that the magnetic body has one or a plurality of grooves along the easy magnetization axis direction. FIG. 8 shows a perspective view and a cross-sectional view of a magnetic body used in the optical probe current sensor according to the second embodiment of the present invention. FIG. 8B is a cross-sectional view taken along the line BB in FIG. 8A in a direction perpendicular to the horizontal plane of the conductor 2. The magnetic body 1 ′ is provided with a groove 1 a along the easy axis direction Ae. The groove 1a is formed so as to penetrate in the thickness (t m ) direction of the magnetic body 1 ′. The groove 1a does not need to be formed over the entire region in the easy magnetization axis direction Ae of the magnetic body 1 ′, but is preferably long enough to exhibit shape magnetic anisotropy. When the groove 1a is formed over the entire region in the easy axis direction Ae of the magnetic body 1 ′, the state is the same as when two magnetic bodies are arranged in parallel.

また、図8(a)、(b)には溝1aを1つだけ形成した例を示したが、これには限られず、溝を複数設けてもよい。さらに、同図には、溝1aを入射光Liの反射領域10と重なるように形成した例を示したが、これには限られず、wsを反射領域10の磁化困難軸方向の長さよりも十分大きくして、反射領域10の外部に設けるようにしてもよい。 8A and 8B show an example in which only one groove 1a is formed. However, the present invention is not limited to this, and a plurality of grooves may be provided. Further, in the figure, an example is shown in which the formed so as to overlap the groove 1a and the reflection region 10 of the incident light L i, this not limited, than the length of the hard magnetization axis direction of the reflection regions 10 and w s May be sufficiently large to be provided outside the reflective region 10.

実施例2に係る光プローブ電流センサによれば、形状磁気異方性を備えた磁性体に1つまたは複数の溝を設けているので、溝を形成していない場合に比べて形状磁気異方性を強く出現させることができる。また、磁性体の形状磁気異方性のレベルは磁化容易軸方向の長さと磁化困難軸方向の長さの比によって決まるため、溝を設けることによって、実効的な磁化困難軸方向の長さを短縮し、磁化容易軸方向の長さも短縮することができるため、磁性体のサイズを縮小することができる。   According to the optical probe current sensor according to the second embodiment, one or more grooves are provided in a magnetic body having shape magnetic anisotropy, so that the shape magnetic anisotropy is greater than when no groove is formed. Sex can be made to appear strongly. In addition, since the level of shape magnetic anisotropy of the magnetic material is determined by the ratio of the length in the easy axis direction and the length in the hard axis direction, providing a groove reduces the effective length in the hard axis direction. Since it can be shortened and the length in the easy axis direction can be shortened, the size of the magnetic body can be reduced.

〔実施例3〕
次に、本発明の実施例3に係る光プローブ電流センサについて説明する。測定システムや測定手順は実施例1と同様であるので詳細な説明は省略する。実施例3の光プローブ電流センサが、実施例1の光プローブ電流センサと異なっている点は、磁性体が、磁化容易軸方向に沿って1つまたは複数の溝を有し、1つまたは複数の溝のうちの少なくとも1つの溝の深さdは、磁性体の厚さt以下である点である。図9に本発明の実施例3に係る光プローブ電流センサに用いられる磁性体の斜視図及び断面図を示す。図9(b)は図9(a)のC−C線で導体2の水平面に対して垂直方向に切断した断面図である。磁性体1´´には、磁化容易軸方向Aeに沿って溝1bが設けられている。溝1bは磁性体1´´の厚さ方向に向かって形成されているが、貫通はしていない。溝1bは磁性体1´´の磁化容易軸方向Aeの全ての領域に渡って形成されている必要はないが、形状磁気異方性が十分に現れる長さであることが好ましい。
Example 3
Next, an optical probe current sensor according to Example 3 of the present invention will be described. Since the measurement system and the measurement procedure are the same as those in the first embodiment, detailed description thereof is omitted. The optical probe current sensor according to the third embodiment is different from the optical probe current sensor according to the first embodiment in that the magnetic body has one or a plurality of grooves along the easy axis of magnetization. The depth d of at least one of the grooves is that it is not more than the thickness t m of the magnetic material. FIG. 9 shows a perspective view and a cross-sectional view of a magnetic body used in the optical probe current sensor according to Embodiment 3 of the present invention. FIG. 9B is a cross-sectional view taken along a line CC in FIG. 9A in a direction perpendicular to the horizontal plane of the conductor 2. The magnetic body 1 ″ is provided with a groove 1b along the easy axis direction Ae. The groove 1b is formed in the thickness direction of the magnetic body 1 ″, but does not penetrate therethrough. The groove 1b does not have to be formed over the entire region in the easy magnetization axis direction Ae of the magnetic body 1 ″, but it is preferable that the groove 1b has such a length that the shape magnetic anisotropy sufficiently appears.

また、図9(a)、(b)には溝1bを1つだけ形成した例を示したが、これには限られず、溝を複数設けてもよい。溝を複数設けた場合には、溝が磁性体の厚さ方向に向かって貫通しているもの(d=t)と貫通していないもの(d<t)とを混在させてもよい。さらに、同図には、溝1bを入射光Liの反射領域10と重なるように形成した例を示したが、これには限られず、磁性体の磁化困難軸方向の長さwsを反射領域10の大きさよりも十分大きくして、溝1bを反射領域10の外部に設けるようにしてもよい。 9A and 9B show an example in which only one groove 1b is formed. However, the present invention is not limited to this, and a plurality of grooves may be provided. In the case where a plurality of grooves are provided, a groove that penetrates in the thickness direction of the magnetic material (d = t m ) and a groove that does not penetrate (d <t m ) may be mixed. . Further, in the figure, an example of forming such a groove 1b overlapping with the reflective area 10 of the incident light L i, this not limited, reflecting the length w s of the hard magnetization axis direction of the magnetic material The groove 1b may be provided outside the reflective region 10 by making it sufficiently larger than the size of the region 10.

実施例3に係る光プローブ電流センサによれば、形状磁気異方性を備えた磁性体に1つまたは複数の溝を設けているので、溝を形成していない場合に比べて形状磁気異方性を強く出現させることができる。さらに溝を磁性体の厚さ方向に貫通させないようにすることにより、入射光Liが磁性体から漏れることを防止することができる。 According to the optical probe current sensor according to the third embodiment, one or a plurality of grooves are provided in the magnetic body having shape magnetic anisotropy, so that the shape magnetic anisotropy is compared with the case where no groove is formed. Sex can be made to appear strongly. Further, by so as not to penetrate the grooves in the thickness direction of the magnetic body, it is possible to incident light L i is prevented from leaking from the magnetic body.

以上のように、磁性体に形状磁気異方性を付与させる方法として、磁性体を細長い短冊状に形成する構成について説明したが、磁性体の面内の一方向に細長い針状の結晶構造を有するようにしてもよい。   As described above, as a method for imparting shape magnetic anisotropy to a magnetic material, the configuration in which the magnetic material is formed in an elongated strip shape has been described. However, a needle-like crystal structure elongated in one direction in the plane of the magnetic material You may make it have.

また、以上の実施例においては磁性体を光プローブ電流センサに応用した例について説明したが、これには限られず、上述した磁性体を用いて磁界を検出する他の用途にも応用可能である。   Moreover, although the example which applied the magnetic body to the optical probe current sensor was demonstrated in the above Example, it is not restricted to this, It can apply also to the other use which detects a magnetic field using the magnetic body mentioned above. .

1 磁性体
2 導体
11 光源
12 偏光子
13 1/2波長板あるいは1/4波長板
14 偏光ビームスプリッタ
15 第1受光素子
16 第2受光素子
17 オペアンプ
20 磁界検出部
30 電流算出部
DESCRIPTION OF SYMBOLS 1 Magnetic body 2 Conductor 11 Light source 12 Polarizer 13 1/2 wavelength plate or 1/4 wavelength plate 14 Polarizing beam splitter 15 1st light receiving element 16 2nd light receiving element 17 Operational amplifier 20 Magnetic field detection part 30 Current calculation part

Claims (5)

測定対象である電流が流れる導体の近傍に配置され、形状磁気異方性を備え、磁化容易軸方向に沿った部分の長さが磁化困難軸方向に沿った部分の長さより長い磁性体と、
前記磁性体に光を照射する光源と、
前記磁性体で反射された反射光の偏光状態に基づいて前記磁性体に印加された磁界を検出する磁界検出部と、
前記磁界検出部が検出した磁界に基づいて、導体に流れる電流を算出する電流算出部と、
を有することを特徴とする光プローブ電流センサ。
A magnetic body that is disposed in the vicinity of a conductor through which a current to be measured flows, has shape magnetic anisotropy, and a length of a portion along the easy magnetization axis direction is longer than a length of a portion along the hard magnetization axis direction;
A light source for irradiating the magnetic material with light;
A magnetic field detector that detects a magnetic field applied to the magnetic body based on a polarization state of reflected light reflected by the magnetic body;
A current calculation unit that calculates a current flowing through the conductor based on the magnetic field detected by the magnetic field detection unit;
An optical probe current sensor comprising:
前記磁性体の磁化困難軸方向に沿った部分の長さは、前記光源からの光が前記磁性体上に照射される領域における磁化困難軸方向の長さより大きい、請求項1に記載の光プローブ電流センサ。   2. The optical probe according to claim 1, wherein a length of a portion of the magnetic body along a hard axis direction is larger than a length of a hard axis direction in a region irradiated with light from the light source on the magnetic body. Current sensor. 前記磁性体は、磁化容易軸方向に沿って1つまたは複数の溝を有する、請求項1または2に記載の光プローブ電流センサ。   The optical probe current sensor according to claim 1, wherein the magnetic body has one or a plurality of grooves along the easy axis direction. 前記1つまたは複数の溝のうちの少なくとも1つの溝の深さは、前記磁性体の厚さ以下である、請求項3に記載の光プローブ電流センサ。   The optical probe current sensor according to claim 3, wherein a depth of at least one of the one or more grooves is equal to or less than a thickness of the magnetic body. 導体を流れる電流の方向が、前記磁性体の磁化容易軸方向と一致している、請求項1乃至4のいずれか一項に記載の光プローブ電流センサ。   The optical probe current sensor according to any one of claims 1 to 4, wherein a direction of a current flowing through the conductor coincides with an easy axis direction of magnetization of the magnetic body.
JP2013140477A 2013-07-04 2013-07-04 Optical probe current sensor using magnetic substance having shape magnetic anisotropy Pending JP2015014494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013140477A JP2015014494A (en) 2013-07-04 2013-07-04 Optical probe current sensor using magnetic substance having shape magnetic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013140477A JP2015014494A (en) 2013-07-04 2013-07-04 Optical probe current sensor using magnetic substance having shape magnetic anisotropy

Publications (1)

Publication Number Publication Date
JP2015014494A true JP2015014494A (en) 2015-01-22

Family

ID=52436311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013140477A Pending JP2015014494A (en) 2013-07-04 2013-07-04 Optical probe current sensor using magnetic substance having shape magnetic anisotropy

Country Status (1)

Country Link
JP (1) JP2015014494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064595A (en) * 2017-05-25 2017-08-18 上海大学 The crystal current sensor being vortexed based on complex light

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963706A (en) * 1982-10-04 1984-04-11 Matsushita Electric Ind Co Ltd Magnetic thin film body
JP2002374015A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Magnetic detection apparatus and manufacturing method therefor
JP2012193981A (en) * 2011-03-15 2012-10-11 Shinshu Univ Sensor and adjusting method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963706A (en) * 1982-10-04 1984-04-11 Matsushita Electric Ind Co Ltd Magnetic thin film body
JP2002374015A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Magnetic detection apparatus and manufacturing method therefor
JP2012193981A (en) * 2011-03-15 2012-10-11 Shinshu Univ Sensor and adjusting method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064595A (en) * 2017-05-25 2017-08-18 上海大学 The crystal current sensor being vortexed based on complex light
CN107064595B (en) * 2017-05-25 2019-08-06 上海大学 The crystal current sensor being vortexed based on complex light

Similar Documents

Publication Publication Date Title
Lee et al. Direct measurement of proximity-induced magnetism at the interface between a topological insulator and a ferromagnet
Feng et al. Spin Hall angle quantification from spin pumping and microwave photoresistance
Fan et al. All-optical vector measurement of spin-orbit-induced torques using both polar and quadratic magneto-optic Kerr effects
JP2016053569A (en) Device and method for measuring magnetic material
Wisniowski et al. Reduction of low frequency magnetic noise by voltage-induced magnetic anisotropy modulation in tunneling magnetoresistance sensors
US11243276B2 (en) Magnetometer based on spin wave interferometer
Soh et al. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique
Gui et al. Resonances in ferromagnetic gratings detected by microwave photoconductivity
Kikuchi et al. Influence of demagnetizing field on thin-film GMI magnetic sensor elements with uniaxial magnetic anisotropy
US10663773B2 (en) Optical modulator using the spin hall effect in metals
Aoki et al. In-plane spin-orbit torque magnetization switching and its detection using the spin rectification effect at subgigahertz frequencies
JP5761787B2 (en) Sensor and adjustment method thereof
JP2015014494A (en) Optical probe current sensor using magnetic substance having shape magnetic anisotropy
Schell et al. Exchange biased surface acoustic wave magnetic field sensors
US7986140B2 (en) Systems and methods for RF magnetic-field vector detection based on spin rectification effects
Kikuchi et al. Observation of static domain structures of thin-film magnetoimpedance elements with DC bias current
JP7313932B2 (en) Magnetic sensors and magnetic sensor modules
Edwards et al. A microwave interferometer of the michelson-type to improve the dynamic range of broadband ferromagnetic resonance measurements
Kikuchi et al. Magneto-Impedance of Micromachined Thin Films Less Than 100$\mu $ m in Length
Yamazaki et al. Lock-in thermoreflectance as a tool for investigating spin caloritronics
KR100662744B1 (en) Bulk type optical current/potential sensor
Nagai et al. Time-domain magnetic field-difference spectroscopy for semiconductors using circularly polarized terahertz pulses
RU2439637C1 (en) Method of modulating infrared radiation
RU2451942C1 (en) Selective detector of microwave power
Pradeep et al. Simple quadratic magneto-optic Kerr effect measurement system using permanent magnets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170912