JP2015014387A - Fluid bed dehydration system - Google Patents

Fluid bed dehydration system Download PDF

Info

Publication number
JP2015014387A
JP2015014387A JP2013139997A JP2013139997A JP2015014387A JP 2015014387 A JP2015014387 A JP 2015014387A JP 2013139997 A JP2013139997 A JP 2013139997A JP 2013139997 A JP2013139997 A JP 2013139997A JP 2015014387 A JP2015014387 A JP 2015014387A
Authority
JP
Japan
Prior art keywords
steam
fluidized bed
bed drying
fluid bed
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013139997A
Other languages
Japanese (ja)
Other versions
JP6129663B2 (en
Inventor
靖崇 浦下
Yasutaka Uraka
靖崇 浦下
福田 憲弘
Norihiro Fukuda
憲弘 福田
紀人 香月
Norito Kozuki
紀人 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013139997A priority Critical patent/JP6129663B2/en
Publication of JP2015014387A publication Critical patent/JP2015014387A/en
Application granted granted Critical
Publication of JP6129663B2 publication Critical patent/JP6129663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PROBLEM TO BE SOLVED: To provide a fluid bed dehydration system capable of realizing the improvement of system efficiency by effectively utilizing the exhaust steam of a fluid bed drier.SOLUTION: In a fluid bed dehydration system 1A, having a vapor-flow fluid bed layer type fluid bed drier 10 for indirectly drying brown coal with the latent heat of super-heated steam, for obtaining the super-heated steam by introducing dry steam produced from the brown coal which is dried within the fluid bed drier 10 to a steam compressor 20 to compress the dry steam by the steam compressor 20, the fluid bed dehydration system 1A comprises a steam trace 30 for ventilating a dry-steam pipeline 21 for connecting between the fluid bed drier 10 and the steam compressor 20 with hot insulation steam, in which the exhaust steam of the super-heated steam discharged after the brown coal is dried in the fluid bed drier 10 is blended, after decompression, with drive steam supplied from a hot insulation steam supply source as the hot insulation steam.

Description

本発明は、例えば石炭をガス化するガス化システムに適用され流動層乾燥システムに係り、特に、水分の多い褐炭等の低品位炭を蒸気流動層方式により乾燥させる流動層乾燥システムに関する。   The present invention relates to a fluidized bed drying system applied to, for example, a gasification system for gasifying coal, and more particularly to a fluidized bed drying system that dries low-grade coal such as lignite with a high moisture content by a steam fluidized bed system.

従来の石炭火力発電と比較して、高効率化や高環境性を達成できる石炭ガス化複合発電(Integrated Coal Gasification Combined Cycle;IGCC)システムが知られている。この石炭ガス化複合発電システムは、石炭をガス化し、ガスタービン及び蒸気タービンからなるコンバインドサイクル発電と組み合わせたものである。   An integrated coal gasification combined cycle (IGCC) system that can achieve higher efficiency and higher environmental performance than conventional coal-fired power generation is known. This combined coal gasification combined power generation system gasifies coal and combines it with combined cycle power generation including a gas turbine and a steam turbine.

このような石炭ガス化発電システムは、適用炭種の拡大が図られており、例えば褐炭や亜瀝青炭等のように水分量の多い低品位炭を使用する場合、水分による発電効率の低下を防止または抑制することが必要となる。このため、たとえば下記の特許文献1に開示されているように、水分の多い低品位炭を過熱蒸気の潜熱で間接的に乾燥させる蒸気流動層方式の流動層乾燥装置を備えた流動層乾燥システムが知られている。   Such coal gasification power generation system is designed to expand the applicable coal types. For example, when using low-grade coal with a high water content such as lignite and sub-bituminous coal, the reduction in power generation efficiency due to moisture is prevented. Or it becomes necessary to suppress. For this reason, as disclosed in, for example, Patent Document 1 below, a fluidized bed drying system including a fluidized bed drying apparatus of a steam fluidized bed type that indirectly dries low-grade coal with a lot of moisture by the latent heat of superheated steam. It has been known.

この流動層乾燥システムは、例えば図3に示すように構成されている。
図示の流動層乾燥システム1は褐炭(低品位炭)を乾燥させるものであり、流動層乾燥装置10の蒸気流動層11内には、過熱蒸気を流す伝熱管12が多数の往復を繰り返すように密に配置されている。
蒸気流動層11内に投入された褐炭は、伝熱管12内を流れる過熱蒸気との熱交換により加熱されて乾燥する。なお、流動層乾燥装置10の蒸気流動層11内には、流動層を形成するための流動化蒸気が底部から投入されている。
This fluidized bed drying system is configured, for example, as shown in FIG.
The illustrated fluidized bed drying system 1 is for drying lignite (low-grade coal), and in the steam fluidized bed 11 of the fluidized bed drying apparatus 10, a heat transfer tube 12 for flowing superheated steam repeats many reciprocations. Closely arranged.
The lignite charged in the steam fluidized bed 11 is heated and dried by heat exchange with the superheated steam flowing in the heat transfer tube 12. Note that fluidized steam for forming a fluidized bed is introduced into the steam fluidized bed 11 of the fluidized bed drying apparatus 10 from the bottom.

一方、流動層乾燥システム1では、褐炭が乾燥する際に蒸発する蒸気を蒸気圧縮機20に導入して再圧縮し、高温高圧の過熱蒸気に再生してから流動層乾燥装置10の伝熱管12へ通気している。
なお、伝熱管12内を流れた過熱蒸気は、熱交換により蒸気クオリティが低下して流動層乾燥装置10の外部へ流出するので、廃蒸気として処理される。
On the other hand, in the fluidized bed drying system 1, steam evaporated when the lignite is dried is introduced into the steam compressor 20, recompressed and regenerated into high-temperature and high-pressure superheated steam, and then the heat transfer tube 12 of the fluidized bed drying apparatus 10. Ventilate to.
The superheated steam that has flowed through the heat transfer pipe 12 is treated as waste steam because the steam quality is lowered by heat exchange and flows out of the fluidized bed drying apparatus 10.

特開2011−214809号公報JP 2011-214809 A

上述したように、従来の流動層乾燥システム1では、褐炭等の低品位炭が乾燥する際に蒸発する蒸気を蒸気圧縮機20にて再圧縮し、高温高圧の過熱蒸気にして流動層乾燥装置10の伝熱管12へ通気している。
すなわち、低品位炭の乾燥により蒸発した低温の乾燥蒸気(例えば0.1Mp−A,100℃程度)を蒸気圧縮機20にて再圧縮し、高温高圧の過熱蒸気(例えば0.4Mp−A、140℃程度)にして伝熱管12へ通気している。
As described above, in the conventional fluidized bed drying system 1, steam that evaporates when low-grade coal such as lignite is dried is recompressed by the steam compressor 20, and is converted into high-temperature and high-pressure superheated steam. 10 heat transfer tubes 12 are ventilated.
That is, low-temperature dry steam (for example, about 0.1 Mp-A, about 100 ° C.) evaporated by drying low-grade coal is recompressed with the steam compressor 20, and high-temperature and high-pressure superheated steam (for example, 0.4 Mp-A, About 140 ° C.) and ventilated to the heat transfer tube 12.

一方、蒸気圧縮機20は、高速で回転しているため、ドレンの混入がエロージョン発生の原因となる。このため、流動層乾燥装置10と蒸気圧縮機20との間を接続する乾燥蒸気配管21には、保温用の蒸気(以下、「保温蒸気」と呼ぶ)を通気する図示しない蒸気トレースが施工されている。この保温蒸気には、例えば隣接するボイラ等の蒸気供給源から供給される高圧の駆動蒸気が使用されている。なお、蒸気圧縮機20と伝熱管12との間は、過熱蒸気配管22により接続されている。   On the other hand, since the vapor compressor 20 rotates at a high speed, mixing of drain causes erosion. For this reason, a steam trace (not shown) for ventilating steam for heat retention (hereinafter referred to as “heat retaining steam”) is applied to the drying steam pipe 21 connecting the fluidized bed drying apparatus 10 and the steam compressor 20. ing. For this heat retaining steam, for example, high-pressure driving steam supplied from a steam supply source such as an adjacent boiler is used. The steam compressor 20 and the heat transfer pipe 12 are connected by a superheated steam pipe 22.

上述した従来の流動層乾燥装置10において、伝熱管12内の過熱蒸気は、例えば低品位炭との熱交換により蒸気クオリティが0.1程度まで低下した後に排出される。この廃蒸気は、現状の流動層乾燥システム1では再利用されておらず、最終的に凝縮水として廃棄されている。しかし、流動層乾燥装置1の廃蒸気は、蒸気純度は低いものの利用できる熱エネルギーが残っており、従って、この廃蒸気を有効に再利用することが望まれる。
本発明は、上記の課題を解決するためになされたもので、その目的とするところは、流動層乾燥装置の廃蒸気を有効利用してシステム効率の向上を実現できる流動層乾燥システムを提供することにある。
In the conventional fluidized bed drying apparatus 10 described above, the superheated steam in the heat transfer tube 12 is discharged after the steam quality is reduced to about 0.1 by heat exchange with, for example, low-grade coal. The waste steam is not reused in the current fluidized bed drying system 1 and is finally discarded as condensed water. However, although the waste steam of the fluidized bed drying apparatus 1 has low steam purity, usable heat energy remains. Therefore, it is desired to reuse this waste steam effectively.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fluidized bed drying system capable of improving system efficiency by effectively using waste steam of a fluidized bed drying apparatus. There is.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る流動層乾燥システムは、過熱蒸気の潜熱で間接的に低品位炭を乾燥させる蒸気流動層方式の流動層乾燥装置を備え、前記流動層乾燥装置内で乾燥される前記低品位炭から発生する乾燥蒸気を蒸気圧縮機に導入し、該蒸気圧縮機で前記乾燥蒸気を圧縮して前記過熱蒸気を得る流動層乾燥システムにおいて、前記流動層乾燥装置と前記蒸気圧縮機との間を接続する乾燥蒸気配管に保温蒸気を通気する蒸気トレースを設け、前記保温蒸気が、保温用蒸気供給源から供給される駆動蒸気に、前記流動層乾燥装置内で前記低品位炭を乾燥後に排出される前記過熱蒸気の廃蒸気を減圧後に混合して使用されることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The fluidized bed drying system according to the present invention comprises a steam fluidized bed type fluidized bed drying device that indirectly dries low-grade coal with latent heat of superheated steam, and the low-grade coal dried in the fluidized bed drying device. In a fluidized bed drying system that introduces dry steam generated from a steam compressor and compresses the dry steam with the steam compressor to obtain the superheated steam, a gap between the fluidized bed drying apparatus and the steam compressor is provided. A steam trace is provided in the drying steam pipe to be connected to vent the heat retaining steam, and the heat retaining steam is discharged into the driving steam supplied from the heat retaining steam supply source after drying the low-grade coal in the fluidized bed drying apparatus. The superheated steam waste steam is used after being decompressed and mixed.

このような流動層乾燥システムによれば、流動層乾燥装置と蒸気圧縮機との間を接続する乾燥蒸気配管に保温蒸気を通気する蒸気トレースを設け、保温蒸気が、保温用蒸気供給源から供給される駆動蒸気に、流動層乾燥装置内で低品位炭を乾燥後に排出される過熱蒸気の廃蒸気を減圧後に混合して使用されるので、廃蒸気の有効利用によって駆動蒸気の使用量を低減することが可能になる。   According to such a fluidized bed drying system, a steam trace for ventilating the heat retaining steam is provided in the drying steam pipe connecting the fluidized bed drying apparatus and the steam compressor, and the heat retaining steam is supplied from the heat retaining steam supply source. The waste steam of superheated steam that is discharged after drying low-grade coal in the fluidized bed dryer is mixed with the driven steam that is used after depressurization. It becomes possible to do.

上記の発明において、前記保温蒸気は、前記駆動蒸気の流れに前記廃蒸気を吸引するエゼクタにより混合されることが好ましく、これにより、専用の動力を用いることなく駆動蒸気に廃蒸気を混合させることができる。   In the above invention, it is preferable that the heat retaining steam is mixed in the flow of the driving steam by an ejector that sucks the waste steam, so that the driving steam is mixed with the driving steam without using dedicated power. Can do.

上記の発明においては、前記エゼクタの上流側に気水分離器を備え、該気水分離器の気体空間部分が飽和温度以上の状態で前記エゼクタから前記廃蒸気の吸引を開始することが好ましい。   In the above invention, it is preferable that a steam separator is provided on the upstream side of the ejector, and suction of the waste steam from the ejector is started in a state where a gas space portion of the steam separator is equal to or higher than a saturation temperature.

上述した本発明によれば、従来システムでは廃棄していた廃蒸気を有効利用し、駆動蒸気に廃蒸気を混合して蒸気トレースの保温蒸気とするので、廃蒸気の保有熱エネルギーを有効利用した乾燥蒸気配管の保温が可能になる。この結果、流動層乾燥システムは、駆動蒸気使用量の低減によりシステム効率が向上するという顕著な効果を奏する。   According to the present invention described above, the waste steam that has been discarded in the conventional system is effectively used, and the waste steam is mixed with the driving steam to obtain the heat retaining steam of the steam trace. Therefore, the retained heat energy of the waste steam is effectively utilized. It is possible to keep the dry steam piping warm. As a result, the fluidized bed drying system has a remarkable effect that the system efficiency is improved by reducing the amount of driving steam used.

本発明に係る流動層乾燥システムの一実施形態を示す構成図(系統図)である。It is a block diagram (system diagram) which shows one Embodiment of the fluid bed drying system which concerns on this invention. 図1に示したエゼクタの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the ejector shown in FIG. 流動層乾燥システムの従来例を示す構成図(系統図)である。It is a block diagram (system diagram) which shows the prior art example of a fluidized bed drying system.

以下、本発明に係る流動層乾燥システムの一実施形態を図面に基づいて説明する。
図1に示す実施形態の流動層乾燥システム1Aは、低品位炭の一例として褐炭を乾燥させるものとして説明するが、例えば亜瀝青炭等のように、水分の多い他の炭種にも適用可能なことは言うまでもない。
流動層乾燥システム1Aは、過熱蒸気の潜熱で間接的に褐炭を乾燥させる蒸気流動層方式の流動層乾燥装置10を備えている。この流動層乾燥装置10は、蒸気流動層11を形成する容器底部より、蒸気流動層11内に流動化蒸気の供給を受けている。この結果、蒸気流動層11内では、乾燥対象の褐炭を浮遊状態にして流動させながら加熱することができる。
Hereinafter, an embodiment of a fluidized bed drying system according to the present invention will be described with reference to the drawings.
The fluidized bed drying system 1A of the embodiment shown in FIG. 1 will be described as one that dries lignite as an example of low-grade coal, but can also be applied to other coal types with high moisture, such as subbituminous coal. Needless to say.
The fluidized bed drying system 1A includes a fluidized bed drying apparatus 10 of a steam fluidized bed type that indirectly dries lignite with latent heat of superheated steam. The fluidized bed drying apparatus 10 is supplied with fluidized steam in the steam fluidized bed 11 from the bottom of the container forming the steam fluidized bed 11. As a result, in the steam fluidized bed 11, the lignite to be dried can be heated while being floated and flowing.

流動層乾燥装置10の蒸気流動層11内には、褐炭と熱交換して加熱するため、高温高圧の過熱蒸気を流す伝熱管12が配置されている。この伝熱管12は、蒸気流動層11を形成する容器内の空間において、多数の往復を繰り返すなどして密に配置された構成となっている。
伝熱管12に通気される過熱蒸気は、過熱蒸気配管22を介して蒸気圧縮機20から供給される。この蒸気圧縮機20は、流動層乾燥装置10の蒸気流動層11内で乾燥される褐炭から発生する蒸気(以下、「乾燥蒸気」と呼ぶ)を集め、乾燥蒸気配管21を介して導入する。この乾燥蒸気は、例えば0.1Mp−A,100℃程度の蒸気である。
In the steam fluidized bed 11 of the fluidized bed drying apparatus 10, a heat transfer tube 12 is arranged to flow high-temperature and high-pressure superheated steam in order to heat and exchange heat with lignite. This heat transfer tube 12 has a configuration in which the heat transfer tube 12 is densely arranged in a space in the container forming the steam fluidized bed 11 by repeating many reciprocations.
The superheated steam that is ventilated to the heat transfer pipe 12 is supplied from the steam compressor 20 via the superheated steam pipe 22. The steam compressor 20 collects steam generated from lignite dried in the steam fluidized bed 11 of the fluidized bed drying apparatus 10 (hereinafter referred to as “dry steam”) and introduces the steam through a dry steam pipe 21. This dry steam is, for example, 0.1 Mp-A, about 100 ° C. steam.

蒸気圧縮機20は、導入した乾燥蒸気を圧縮することにより、例えば0.4Mp−A、140℃程度の過熱蒸気にして伝熱管12へ供給する。この過熱蒸気は、伝熱管12の周囲を流動している褐炭との熱交換により、褐炭を加熱して乾燥させる熱源となる。
従って、流動層乾燥システム1は、過熱蒸気の潜熱で流動中の褐炭を間接的に乾燥させる流動層乾燥装置10を備え、この流動層乾燥装置10内で乾燥される褐炭から発生する乾燥蒸気を集めて蒸気圧縮機20に導入するとともに、この蒸気圧縮機20で乾燥蒸気を圧縮して過熱蒸気を得るように構成されている。
The steam compressor 20 compresses the introduced dry steam and supplies it to the heat transfer tube 12 as superheated steam of, for example, about 0.4 Mp-A, 140 ° C. This superheated steam becomes a heat source for heating and drying the lignite by heat exchange with the lignite flowing around the heat transfer tube 12.
Therefore, the fluidized bed drying system 1 includes a fluidized bed drying device 10 that indirectly dries the flowing lignite with the latent heat of the superheated steam, and generates the dry steam generated from the lignite dried in the fluidized bed drying device 10. While being collected and introduced into the steam compressor 20, the steam compressor 20 is configured to compress the dry steam to obtain superheated steam.

そして、本実施形態の流動層乾燥システム1Aでは、流動層乾燥装置10と蒸気圧縮機20との間を接続する乾燥蒸気配管21に対して、保温蒸気を通気する蒸気トレース30を設けてある。この蒸気トレース30は、乾燥蒸気配管21内を流れる乾燥蒸気が凝縮するのを防止するため、乾燥蒸気配管21の外周部を保温蒸気により加熱して乾燥蒸気を保温するための装置である。すなわち、蒸気トレース30は、乾燥蒸気とともに凝縮したドレンが高速回転する蒸気圧縮機20に混入しないようにすることで、エロージョンの発生を防止するものである。   In the fluidized bed drying system 1 </ b> A of the present embodiment, a steam trace 30 that ventilates the heat retaining steam is provided to the drying steam pipe 21 that connects between the fluidized bed drying apparatus 10 and the steam compressor 20. The steam trace 30 is an apparatus for heating the outer peripheral portion of the dry steam pipe 21 with heat retaining steam to keep the dry steam warm in order to prevent the dry steam flowing in the dry steam pipe 21 from condensing. That is, the steam trace 30 prevents the occurrence of erosion by preventing the drain condensed together with the dry steam from entering the steam compressor 20 that rotates at high speed.

さて、本実施形態の流動層乾燥システム1Aでは、蒸気トレース30で使用する保温蒸気として、隣接するボイラ(不図示)等の保温蒸気供給源から供給される駆動蒸気に加えて、流動層乾燥装置10内で褐炭を乾燥させた後に排出される過熱蒸気の廃蒸気を利用する。すなわち、過熱蒸気は、流動層乾燥装置10内で褐炭を乾燥させた後、蒸気クオリティが0.1程度まで低下した状態の廃蒸気として排出されるが、この廃蒸気は熱エネルギーを保有しているので、減圧後の廃蒸気を駆動蒸気に混合して保温蒸気に使用する。   In the fluidized bed drying system 1A of the present embodiment, as the heat retaining steam used in the steam trace 30, in addition to the driving steam supplied from a heat retaining steam supply source such as an adjacent boiler (not shown), the fluidized bed drying apparatus. The waste steam of the superheated steam discharged | emitted after drying lignite in 10 is utilized. That is, the superheated steam is discharged as waste steam in a state where the steam quality is reduced to about 0.1 after drying the lignite in the fluidized bed drying apparatus 10, but this waste steam retains thermal energy. Therefore, waste steam after decompression is mixed with driving steam and used as heat retaining steam.

廃蒸気は、伝熱管12と接続される廃蒸気配管23を通って流動層乾燥装置10の外部へ排出される。この廃蒸気は、廃蒸気配管23に設けた減圧弁24により所定圧力まで減圧された後、蒸気(気体)と水(液体)とに分離させる気水分離器40へ導かれる。
気液分離器40には、廃蒸気配管23に加えて、エゼクタ50と接続された廃蒸気供給配管41が設けられている。
The waste steam is discharged to the outside of the fluidized bed drying apparatus 10 through the waste steam pipe 23 connected to the heat transfer pipe 12. The waste steam is decompressed to a predetermined pressure by a pressure reducing valve 24 provided in the waste steam pipe 23 and then guided to a steam / water separator 40 that separates steam (gas) and water (liquid).
In addition to the waste steam pipe 23, the gas-liquid separator 40 is provided with a waste steam supply pipe 41 connected to the ejector 50.

エゼクタ50には、駆動蒸気を供給する保温蒸気供給源(不図示)に接続された駆動蒸気配管51と、廃蒸気(吸込蒸気)を供給する廃蒸気供給配管41と、駆動蒸気に廃蒸気が混合された混合蒸気を蒸気トレース30へ供給する保温蒸気配管31とが接続されている。このエゼクタ50においては、図2に示すように、駆動蒸気が相対的に廃蒸気より高圧(例えば1Mpa程度)の状態で流れており、従って、低圧側(例えば0.1MPa程度)の廃蒸気は、駆動蒸気の流れに吸引されるようにして混合される。   The ejector 50 includes a drive steam pipe 51 connected to a heat-retaining steam supply source (not shown) for supplying drive steam, a waste steam supply pipe 41 for supplying waste steam (suction steam), and waste steam in the drive steam. A heat insulating steam pipe 31 that supplies the mixed steam to the steam trace 30 is connected. In this ejector 50, as shown in FIG. 2, the driving steam flows at a relatively higher pressure (for example, about 1 MPa) than the waste steam, and therefore, the waste steam on the low pressure side (for example, about 0.1 MPa) The mixture is sucked into the driving steam flow.

この結果、エゼクタ50から流出する混合蒸気は、高圧の混合蒸気と低圧の廃蒸気とが混合されたことにより、混合蒸気と廃蒸気との中間圧力(例えば0.3MPa程度)に低下した中圧を有する保温蒸気(以下では、「保温用混合蒸気」とも呼ぶ)となる。すなわち、この保温用混合蒸気は、駆動蒸気より低圧で、かつ、廃蒸気より高圧となる。
なお、廃蒸気を減圧弁24で減圧するのは、例えば0.4Mp−A、140℃程度で供給された過熱蒸気が、所望の設定圧力まで確実に圧力低下した状態の廃蒸気として気水分離器40へ供給するためである。
As a result, the mixed steam flowing out of the ejector 50 is reduced to an intermediate pressure (for example, about 0.3 MPa) between the mixed steam and the waste steam by mixing the high pressure mixed steam and the low pressure waste steam. (Hereinafter, also referred to as “mixed steam for heat insulation”). That is, the heat-insulating mixed steam has a lower pressure than the driving steam and a higher pressure than the waste steam.
Note that the pressure of the waste steam is reduced by the pressure reducing valve 24 because, for example, the superheated steam supplied at about 0.4 Mp-A and about 140 ° C. is separated into steam as waste steam in a state where the pressure is surely reduced to a desired set pressure. This is for supplying to the container 40.

このような構成の流動層乾燥システム1Aは、流動層乾燥装置10と蒸気圧縮機20との間を接続する乾燥蒸気配管21に保温用混合蒸気を通気する蒸気トレース30を設け、保温用混合蒸気として、駆動蒸気に減圧後の廃蒸気を混合して使用するので、従来は凝縮水として廃棄されていた廃蒸気が保有する熱エネルギーを有効利用し、その分だけ駆動蒸気の使用量を低減できる。このような駆動蒸気の使用量低減は、保温蒸気供給源のボイラ負荷を低減できるなど、流動層乾燥システム1Aのシステム効率向上に有効となる。
また、エゼクタ50を用いた駆動蒸気及び廃蒸気の混合は、混合用として電動機等の専用動力が不要であり、これによってもシステム効率の向上に貢献している。
The fluidized bed drying system 1 </ b> A having such a configuration is provided with a steam trace 30 for ventilating the heat-insulating mixed steam in the drying steam pipe 21 connecting between the fluidized-bed drying device 10 and the steam compressor 20, and the heat-insulating mixed steam. Because the waste steam after decompression is mixed with the drive steam and used, the thermal energy held by the waste steam that has been discarded as condensed water can be used effectively, and the amount of drive steam used can be reduced by that amount. . Such reduction in the amount of driving steam used is effective in improving the system efficiency of the fluidized bed drying system 1A, such as reducing the boiler load of the heat retaining steam supply source.
Moreover, the mixing of the driving steam and the waste steam using the ejector 50 does not require a dedicated power such as an electric motor for mixing, and this also contributes to the improvement of the system efficiency.

ところで、上述した廃蒸気は、流動層乾燥システム1Aを起動しても、システム全体が所定の運転温度またはその近傍温度となるまで入手することはできない。
このため、起動時から所定の運転状態になるまでの間は、上述した保温用混合蒸気を蒸気トレース30の熱源として使用することができず、従って、例えば図示しない開閉弁の閉弁操作等により、廃蒸気配管23からエゼクタ50への廃蒸気供給を実施しない。この結果、起動時から所定の運転状態に到達するまでの間は、例えば駆動蒸気を単独で使用する保温を行うこととなる。
By the way, even if the fluidized-bed drying system 1A is started, the above-described waste steam cannot be obtained until the entire system reaches a predetermined operating temperature or a temperature in the vicinity thereof.
For this reason, during the period from the start to the predetermined operation state, the above-described mixed steam for heat retention cannot be used as a heat source for the steam trace 30, and therefore, for example, by a closing operation of an on-off valve (not shown) or the like. The waste steam is not supplied from the waste steam pipe 23 to the ejector 50. As a result, from the time of startup until reaching a predetermined operation state, for example, heat insulation using drive steam alone is performed.

しかし、例えば気水分離器40の気体空間部分が、すなわち廃蒸気の存在空間が飽和温度以上になると、廃蒸気の保有熱を利用可能と判断できる。
そこで、上述した開閉弁の弁操作等により、廃蒸気配管23からエゼクタ50への廃蒸気供給が可能な状態に切り換える。この結果、エゼクタ50に対して上述した熱エネルギーを保有する廃蒸気の供給が可能になるので、上述した実施形態のように、蒸気トレース30に対して保温用混合蒸気を供給して保温する運転に移行すればよい。
However, for example, when the gas space portion of the steam separator 40, that is, the space where the waste steam is present reaches or exceeds the saturation temperature, it can be determined that the retained heat of the waste steam can be used.
Therefore, the state is switched to a state in which waste steam can be supplied from the waste steam pipe 23 to the ejector 50 by the valve operation of the on-off valve described above. As a result, it becomes possible to supply the waste steam having the above-mentioned thermal energy to the ejector 50, and therefore, as in the above-described embodiment, the operation is performed by supplying the heat-insulating mixed steam to the steam trace 30 and keeping the temperature. You can move to.

このように、上述した本実施形態の流動層乾燥システム1Aによれば、廃棄されていた廃蒸気を有効利用し、保温用の蒸気として駆動蒸気に廃蒸気を混合した保温用混合蒸気を蒸気トレース30で使用可能となるので、廃蒸気の保有熱エネルギーを有効利用した乾燥蒸気配管21の保温が可能になる。この結果、流動層乾燥システム1Aは、駆動蒸気使用量の低減により、システム全体としての効率が向上する。
なお、本発明は上述した実施形態に限定されることはなく、例えば水分を保有する低品位炭以外の固形物を乾燥させるシステムにも適用可能であるなど、その要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the fluidized bed drying system 1A of the present embodiment described above, the waste steam that has been discarded is effectively used, and the heat-insulating mixed steam obtained by mixing the waste steam with the driving steam as the heat-retaining steam is steam traced. Therefore, the drying steam pipe 21 can be kept warm by effectively using the retained heat energy of the waste steam. As a result, in the fluidized bed drying system 1A, the efficiency of the entire system is improved by reducing the amount of driving steam used.
In addition, this invention is not limited to embodiment mentioned above, For example, it can apply also to the system which dries solids other than the low grade coal which hold | maintains moisture, for example, in the range which does not deviate from the summary. Can be changed.

1,1A 流動層乾燥システム
10 流動層乾燥装置
11 蒸気流動層
12 伝熱管
20 蒸気圧縮機
21 乾燥蒸気配管
24 減圧弁
30 蒸気トレース
40 気水分離器
50 エゼクタ
DESCRIPTION OF SYMBOLS 1,1A Fluidized bed drying system 10 Fluidized bed drying apparatus 11 Steam fluidized bed 12 Heat transfer pipe 20 Steam compressor 21 Drying steam piping 24 Pressure reducing valve 30 Steam trace 40 Steam separator 50 Ejector

Claims (3)

過熱蒸気の潜熱で間接的に低品位炭を乾燥させる蒸気流動層方式の流動層乾燥装置を備え、前記流動層乾燥装置内で乾燥される前記低品位炭から発生する乾燥蒸気を蒸気圧縮機に導入し、該蒸気圧縮機で前記乾燥蒸気を圧縮して前記過熱蒸気を得る流動層乾燥システムにおいて、
前記流動層乾燥装置と前記蒸気圧縮機との間を接続する乾燥蒸気配管に保温蒸気を通気する蒸気トレースを設け、
前記保温蒸気が、保温用蒸気供給源から供給される駆動蒸気に、前記流動層乾燥装置内で前記低品位炭を乾燥後に排出される前記過熱蒸気の廃蒸気を減圧後に混合して使用されることを特徴とする流動層乾燥システム。
A fluidized bed drying device of a steam fluidized bed system that indirectly dries low-grade coal with the latent heat of superheated steam, and the dry steam generated from the low-grade coal dried in the fluidized bed drying device is used as a steam compressor. In a fluidized bed drying system that introduces and compresses the dry steam with the steam compressor to obtain the superheated steam,
Providing a steam trace for ventilating the heat-retaining steam in a drying steam pipe connecting the fluidized bed drying apparatus and the steam compressor;
The heat retaining steam is used by mixing the driving steam supplied from the heat retaining steam supply source with the waste steam of the superheated steam discharged after drying the low-grade coal in the fluidized bed drying apparatus after decompression. A fluidized bed drying system.
前記保温蒸気は、前記駆動蒸気の流れに前記廃蒸気を吸引するエゼクタにより混合されることを特徴とする請求項1に記載の流動層乾燥システム。   The fluidized bed drying system according to claim 1, wherein the heat retaining steam is mixed with the flow of the driving steam by an ejector that sucks the waste steam. 前記エゼクタの上流側に気水分離器を備え、該気水分離器の気体空間部分が飽和温度以上の状態で前記エゼクタから前記廃蒸気の吸引を開始することを特徴とする請求項2に記載の流動層乾燥システム。
3. A steam separator is provided on the upstream side of the ejector, and suction of the waste steam from the ejector is started in a state where a gas space portion of the steam separator is equal to or higher than a saturation temperature. Fluidized bed drying system.
JP2013139997A 2013-07-03 2013-07-03 Fluidized bed drying system Active JP6129663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139997A JP6129663B2 (en) 2013-07-03 2013-07-03 Fluidized bed drying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139997A JP6129663B2 (en) 2013-07-03 2013-07-03 Fluidized bed drying system

Publications (2)

Publication Number Publication Date
JP2015014387A true JP2015014387A (en) 2015-01-22
JP6129663B2 JP6129663B2 (en) 2017-05-17

Family

ID=52436222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139997A Active JP6129663B2 (en) 2013-07-03 2013-07-03 Fluidized bed drying system

Country Status (1)

Country Link
JP (1) JP6129663B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210724A1 (en) * 2017-05-15 2018-11-22 Bma Braunschweigische Maschinenbauanstalt Ag Evaporation dryer and method for operating same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127071A (en) * 1986-11-14 1988-05-30 三井造船株式会社 Ejector type drier
JP2007132617A (en) * 2005-11-11 2007-05-31 Seiji Ohara Drying method for high moisture content combustible
US20110061610A1 (en) * 2009-09-16 2011-03-17 Speirs Brian C Heat and Water Recovery From Oil Sands Waste Streams
JP2011214809A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Low-grade coal drying system
JP2012092989A (en) * 2010-10-25 2012-05-17 Tsukishima Kikai Co Ltd Heating processing facility and method
US20130125412A1 (en) * 2010-08-06 2013-05-23 Geert Haarlemmer Sludge Drying Method and Installation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127071A (en) * 1986-11-14 1988-05-30 三井造船株式会社 Ejector type drier
JP2007132617A (en) * 2005-11-11 2007-05-31 Seiji Ohara Drying method for high moisture content combustible
US20110061610A1 (en) * 2009-09-16 2011-03-17 Speirs Brian C Heat and Water Recovery From Oil Sands Waste Streams
JP2011214809A (en) * 2010-04-02 2011-10-27 Mitsubishi Heavy Ind Ltd Low-grade coal drying system
US20130125412A1 (en) * 2010-08-06 2013-05-23 Geert Haarlemmer Sludge Drying Method and Installation
JP2012092989A (en) * 2010-10-25 2012-05-17 Tsukishima Kikai Co Ltd Heating processing facility and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210724A1 (en) * 2017-05-15 2018-11-22 Bma Braunschweigische Maschinenbauanstalt Ag Evaporation dryer and method for operating same
CN110637205A (en) * 2017-05-15 2019-12-31 Bma不伦瑞克机械制造企业股份公司 Evaporative dryer and method for operating the same
JP2020519838A (en) * 2017-05-15 2020-07-02 ベーエムアー・ブラウンシュバイキッシェ・マシネンバウアンシュタルト・アーゲー Steam dryer and method of operating it
RU2740211C1 (en) * 2017-05-15 2021-01-12 Бма Брауншвайгише Машиненбауанштальт Аг Evaporating dryer and method of its operation
US11320199B2 (en) 2017-05-15 2022-05-03 Bma Braunschweigische Maschinenbauanstalt Ag Evaporation dryer and method for operating same
JP7134185B2 (en) 2017-05-15 2022-09-09 ベーエムアー・ブラウンシュバイキッシェ・マシネンバウアンシュタルト・アーゲー Steam dryer and method of operating same

Also Published As

Publication number Publication date
JP6129663B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP5325023B2 (en) Apparatus and method for drying hydrous solid fuel
JP5361401B2 (en) Sludge drying apparatus and sludge drying method
CN102353237A (en) High-moisture-content lignite predrying method and system integrated with thermal power plant
JP2011214562A (en) Coal gasification combined power generation system
CN104500158B (en) A kind of low concentration coal-bed gas or gas electricity system
CZ86895A3 (en) Process and apparatus for facilitating supply of fuel into a pressure space
CN104895631A (en) Air-steam combined circulating device and air turbine circulating device
JP2012215316A (en) Fluidized bed drying device, fluid bed drying facility and wet raw material drying method
JP5473732B2 (en) Low grade coal drying system
KR101200228B1 (en) Composite-type coal gasification power plant facility
JP5893969B2 (en) Sludge drying system
JP2011214808A (en) Drying device, drying facility and drying method
CN102859304A (en) Method for operating a steam turbine power plant as well as device for creating steam from lignite
CN105179031A (en) Grading predrying lignite power generation system and method of integrated absorption heat pump
JP6129663B2 (en) Fluidized bed drying system
JP5511702B2 (en) Hydrous solid fuel drying equipment
CN107489468A (en) A kind of low-concentration gas power generation system based on intermittent combustion
JP2011214805A (en) Fluidized-bed dryer and fluidized-bed drying facility
JP6057362B1 (en) Supercritical water gasification system
JP5461283B2 (en) Fluidized bed drying equipment
US9295938B2 (en) Dehumidification apparatus and a method of regenerating desiccant material of a dehumidifier
JP2020056541A (en) Waste treatment facility
JP2014070847A (en) Power generating facility
JP5473734B2 (en) Low grade coal drying system
JP2011214810A (en) Low-grade coal drying system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170412

R150 Certificate of patent or registration of utility model

Ref document number: 6129663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150