JP2015012167A - Common mode noise filter - Google Patents

Common mode noise filter Download PDF

Info

Publication number
JP2015012167A
JP2015012167A JP2013136982A JP2013136982A JP2015012167A JP 2015012167 A JP2015012167 A JP 2015012167A JP 2013136982 A JP2013136982 A JP 2013136982A JP 2013136982 A JP2013136982 A JP 2013136982A JP 2015012167 A JP2015012167 A JP 2015012167A
Authority
JP
Japan
Prior art keywords
conductor
common mode
insulating layer
noise filter
mode noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013136982A
Other languages
Japanese (ja)
Other versions
JP5802240B2 (en
Inventor
謙一郎 野木
Kenichiro Nogi
謙一郎 野木
大造 横山
Daizo Yokoyama
大造 横山
彰 福島
Akira Fukushima
彰 福島
美貴 深津
Yoshitaka Fukatsu
美貴 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2013136982A priority Critical patent/JP5802240B2/en
Publication of JP2015012167A publication Critical patent/JP2015012167A/en
Application granted granted Critical
Publication of JP5802240B2 publication Critical patent/JP5802240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a common mode noise filter in which the difference of inductance values of two coils is small, and the common mode impedance is large.SOLUTION: A common mode noise filter includes first through sixth insulation layers 11-16, and first through fourth conductors 21-24. The first and second conductors 21, 22 constitute a reverse direction coil, while the third and fourth conductors 23, 24 constitute a forward direction coil. The first and sixth insulation layers 11, 16 is composed of a magnetic material, and the second through fifth insulation layers 12-15 are composed of a non-magnetic material.

Description

本発明は、例えば差動伝送回路に用いられる積層型のコモンモードノイズフィルタに関する。   The present invention relates to a laminated common mode noise filter used in, for example, a differential transmission circuit.

携帯型電子機器や薄型の電子機器のニーズの拡大に伴い、これらの電子機器の差動伝送回路等に用いるコモンモードノイズフィルタも小型及び薄型が求められている。小型及び薄型のコモンモードノイズフィルタとして特許文献1には、コモンモードノイズフィルタを形成する2つのコイルを非磁性体層の中に配置し、その引出電極を前記非磁性体層と磁性体層との間に配置した構造が記載されている。   With the expansion of needs for portable electronic devices and thin electronic devices, common mode noise filters used for differential transmission circuits of these electronic devices are also required to be small and thin. As a small and thin common mode noise filter, Patent Document 1 discloses that two coils forming a common mode noise filter are arranged in a nonmagnetic material layer, and an extraction electrode is formed of the nonmagnetic material layer, the magnetic material layer, and the like. A structure arranged between the two is described.

特開2005−340611号公報Japanese Patent Laying-Open No. 2005-340611

特許文献1に記載された構造においては、コモンモードインピーダンスを大きくするため、2つの引出電極を磁性体層に接して、磁性体層とコイル電極の距離が近づく構造となっている。しかし、それぞれの引出電極のうち、1つはコイル電極の巻き方向に対して順方向に接続され、他方は逆方向に接続されている。そのため順方向に接続されたコイルのインダクタンス値は逆方向に接続されたコイルのインダクタンス値より大きくなってしまい、2つのコイルの伝送特性に違いが生じる。伝送特性の違いが大きくなるとスキューずれ等のトラブルにつながる可能性もでてくる。本発明は2つのコイルのインダクタンス値の違いが小さく、コモンモードインピーダンスの大きなコモンモードノイズフィルタを得ることを目的とする。   In the structure described in Patent Document 1, in order to increase the common mode impedance, the two extraction electrodes are in contact with the magnetic layer and the distance between the magnetic layer and the coil electrode is reduced. However, one of the lead electrodes is connected in the forward direction to the winding direction of the coil electrode, and the other is connected in the reverse direction. Therefore, the inductance value of the coils connected in the forward direction becomes larger than the inductance value of the coils connected in the reverse direction, and a difference occurs in the transmission characteristics of the two coils. If the difference in transmission characteristics increases, it may lead to problems such as skew deviation. An object of the present invention is to obtain a common mode noise filter having a small difference in inductance value between two coils and a large common mode impedance.

本発明者らが鋭意検討した結果、以下の特徴を有する本発明を完成した。
(1)第1の絶縁層と、前記第1の絶縁層の上面に設けられた第1の導体と、前記第1の導体の上面に設けられた第2の絶縁層と、前記第2の絶縁層の上面に設けられかつ前記第1の導体に接続されてこの第1の導体とともに第1のコイルを構成する渦巻状の第2の導体と、前記第2の導体の上面に設けられた第3の絶縁層と、前記第3の絶縁層の上面に設けられた渦巻状の第3の導体と、前記第3の導体の上面に設けられた第4の絶縁層と、前記第4の絶縁層の上面に設けられかつ前記第3の導体に接続されてこの第3の導体とともに第2のコイルを構成する第4の導体と、前記第4の導体の上面に設けられた第5の絶縁層と、前記第5の絶縁層の上面に設けられた第6の絶縁層と、前記第1〜第4の導体の各々の一端部にそれぞれ接続された第1〜第4の端子とを備え、前記第1の導体は渦巻状の第2の導体の巻方向に対して、少なくとも一部は逆方向に向かうように接続されていて、前記第4の導体は渦巻状の第3の導体の巻方向に対して、少なくとも一部は順方向に向かうように接続されていて、前記第1及び第6の絶縁層は磁性体からなり、前記第2〜第5の絶縁層は非磁性体からなり、前記第1〜第6の絶縁層は樹脂を含有しない、コモンモードノイズフィルタ。
(2)前記第1の導体が前記第2の導体と接続する部分へ向かう方向と、前記接続する部分から第2の導体が延びる方向と、のなす角度が120°以上であり180°より小さい(1)のコモンモードノイズフィルタ。
(3)前記第4の導体が前記第3の導体と接続する部分へ向かう方向と、前記接続する部分から第3の導体が延びる方向と、のなす角度が0°より大きく60°以下である(1)又は(2)のコモンモードノイズフィルタ。
(4)前記第1及び第6の絶縁層がNi−Zn−Cuフェライトからなり、前記第3〜第5の絶縁層がZn−Cuフェライトからなる(1)〜(3)のいずれか1項に記載のコモンモードノイズフィルタ。
(5)前記第1及び第6の絶縁層がNi−Zn−Cuフェライトからなり、前記第3〜第5の絶縁層が誘電体材料からなる(1)〜(3)のいずれか1項に記載のコモンモードノイズフィルタ。
As a result of intensive studies by the present inventors, the present invention having the following characteristics has been completed.
(1) a first insulating layer, a first conductor provided on an upper surface of the first insulating layer, a second insulating layer provided on an upper surface of the first conductor, and the second A spiral second conductor provided on the upper surface of the insulating layer and connected to the first conductor to form the first coil together with the first conductor, and provided on the upper surface of the second conductor A third insulating layer; a spiral third conductor provided on the top surface of the third insulating layer; a fourth insulating layer provided on the top surface of the third conductor; A fourth conductor provided on the upper surface of the insulating layer and connected to the third conductor to form a second coil together with the third conductor; and a fifth conductor provided on the upper surface of the fourth conductor. An insulating layer, a sixth insulating layer provided on the upper surface of the fifth insulating layer, and one end of each of the first to fourth conductors are connected to each other. And the first conductor is connected so that at least a part thereof is directed in the opposite direction with respect to the winding direction of the spiral second conductor. The at least one conductor is connected to the winding direction of the spiral third conductor so that at least a part thereof is directed in the forward direction, the first and sixth insulating layers are made of a magnetic material, and the second The common mode noise filter, wherein the fifth insulating layer is made of a nonmagnetic material, and the first to sixth insulating layers do not contain a resin.
(2) The angle formed between the direction in which the first conductor is directed to the portion connected to the second conductor and the direction in which the second conductor extends from the connected portion is 120 ° or more and smaller than 180 ° (1) Common mode noise filter.
(3) The angle formed between the direction in which the fourth conductor is directed to the portion connected to the third conductor and the direction in which the third conductor extends from the connected portion is greater than 0 ° and not more than 60 °. The common mode noise filter according to (1) or (2).
(4) Any one of (1) to (3), wherein the first and sixth insulating layers are made of Ni—Zn—Cu ferrite, and the third to fifth insulating layers are made of Zn—Cu ferrite. The common mode noise filter described in 1.
(5) In any one of (1) to (3), the first and sixth insulating layers are made of Ni—Zn—Cu ferrite, and the third to fifth insulating layers are made of a dielectric material. Common mode noise filter as described.

本発明によれば、引出電極と磁性体層が接した構造のコモンモードノイズフィルタにおいて、コイル電極の巻き方向に対してそれぞれが順方向及び逆方向に接続される引出電極のうち、順方向に接続される引出電極とそれに接している磁性体層との間に非磁性体層を挿入することになる。よって、引出し電極が順方向に接続されているコイルのインダクタンス値が下がり、引出電極が逆方向に接続されたコイルのインダクタンス値に近づき、2つのコイルのインダクタンス値の差異を小さくすることができる。また、引出電極とコイル電極との距離が拡がるのは、2つのコイルのうち片方だけなので、コモンモードインピーダンスもあまり下がらないという効果がある。   According to the present invention, in the common mode noise filter having a structure in which the extraction electrode and the magnetic layer are in contact, each of the extraction electrodes connected in the forward direction and the reverse direction with respect to the winding direction of the coil electrode in the forward direction. A nonmagnetic layer is inserted between the lead electrode to be connected and the magnetic layer in contact therewith. Therefore, the inductance value of the coil to which the extraction electrode is connected in the forward direction decreases, approaches the inductance value of the coil to which the extraction electrode is connected in the reverse direction, and the difference between the inductance values of the two coils can be reduced. Further, since the distance between the extraction electrode and the coil electrode is increased only in one of the two coils, there is an effect that the common mode impedance does not decrease so much.

本発明の実施形態の構成要素図である。It is a component diagram of an embodiment of the present invention. 第1の導体と第2の渦状導体及び、第3の渦状導体と第4の導体の接続図である。It is a connection diagram of the 1st conductor and the 2nd spiral conductor, and the 3rd spiral conductor and the 4th conductor. 本発明の実施形態の外観図である。It is an external view of an embodiment of the present invention. 比較例の構成要素図であるIt is a component diagram of a comparative example 比較例の構成要素図であるIt is a component diagram of a comparative example

以下、図面を適宜参照しながら本発明を詳述する。但し、本発明は図示された態様に限定されるわけでなく、また、図面においては発明の特徴的な部分を強調して表現することがあるので、図面各部において縮尺の正確性は必ずしも担保されていない。   Hereinafter, the present invention will be described in detail with appropriate reference to the drawings. However, the present invention is not limited to the illustrated embodiment, and in the drawings, the characteristic portions of the invention may be emphasized and expressed, so that the accuracy of the scale is not necessarily guaranteed in each part of the drawings. Not.

図1は本発明の実施形態の構成要素図である。本発明によれば、積層コモンモードノイズフィルタの内部の積層構造は以下のとおりである。まず、導体が形成される最下層の絶縁層を第1の絶縁層11であると定義する。本発明において「上下」の概念は積層構造の説明の便宜のためのものであって、製造時における工程の順序を限定するものではなく、使用時における方向性や配置を限定するものでもない。第1の絶縁層11の上面に第1の導体21が設けられる。第1の導体21の上面に第2の絶縁層12が設けられる。第2の絶縁層12の上面に第2の導体22設けられる。第2の導体22は渦巻状を呈し、かつ、第1の導体21に接続されている。第1および第2の導体21、22が第1のコイルを構成し、ここでは、第1の導体21が引出電極の役割を担っている。第2の導体22の上面に第3の絶縁層13が設けられる。第3の絶縁層13の上面に第3の導体23設けられる。第3の導体23の上面に第4の絶縁層14が設けられる。第4の絶縁層14の上面に第4の導体24が設けられる。第3の導体23は渦巻状を呈し、かつ、第4の導体24に接続されている。第3および第4の導体23、24が第2のコイルを構成し、ここでは、第4の導体24が引出電極の役割を担っている。第1のコイルと第2のコイルとは電気的に別個独立のものである。第4の導体24の上面に第5の絶縁層15が設けられる。第5の絶縁層15の上面に第6の絶縁層16が設けられる。第1〜第4の導体21〜24の各々の一端部にそれぞれ第1〜第4の端子31〜34が接続される。   FIG. 1 is a component diagram of an embodiment of the present invention. According to the present invention, the multilayer structure inside the multilayer common mode noise filter is as follows. First, the lowermost insulating layer on which the conductor is formed is defined as the first insulating layer 11. In the present invention, the concept of “upper and lower” is for the convenience of explanation of the laminated structure, and does not limit the order of the steps at the time of manufacture, nor does it limit the directionality or arrangement at the time of use. A first conductor 21 is provided on the upper surface of the first insulating layer 11. The second insulating layer 12 is provided on the upper surface of the first conductor 21. A second conductor 22 is provided on the upper surface of the second insulating layer 12. The second conductor 22 has a spiral shape and is connected to the first conductor 21. The first and second conductors 21 and 22 constitute a first coil. Here, the first conductor 21 serves as an extraction electrode. A third insulating layer 13 is provided on the upper surface of the second conductor 22. A third conductor 23 is provided on the upper surface of the third insulating layer 13. A fourth insulating layer 14 is provided on the upper surface of the third conductor 23. A fourth conductor 24 is provided on the upper surface of the fourth insulating layer 14. The third conductor 23 has a spiral shape and is connected to the fourth conductor 24. The 3rd and 4th conductors 23 and 24 comprise the 2nd coil, and the 4th conductor 24 has played the role of the extraction electrode here. The first coil and the second coil are electrically separate and independent. A fifth insulating layer 15 is provided on the upper surface of the fourth conductor 24. A sixth insulating layer 16 is provided on the upper surface of the fifth insulating layer 15. First to fourth terminals 31 to 34 are connected to one end portions of the first to fourth conductors 21 to 24, respectively.

図2は第1の導体21と第2の渦状導体22の接続図(図2(A1))、及び、第3の渦状導体23と第4の導体24の接続図(図2(B1))である。図2(A1)に示されるように、第1の導体21は第2の渦巻状の導体22の巻方向に対して、一部が逆方向に向かうように接続されている。より具体的には以下のとおりである。第2の導体22が呈する渦巻の回転が符号R2で示される矢印によって示される。第1の導体21と第2の導体22が接続する部分から第2の導体22が延びる方向は符号D2で示される矢印で表現される。前記接続する部分に第1の導体21が向かってくる方向は符号D1で示される矢印で表現される。ここで、第1の導体21が一直線の形状であるか否かにかかわらず、第2の導体22が形作る渦巻の外から上記の接続する部分へと向かう方向を直線近似してその方向を符号D1の矢印で表現するものとする。   2 is a connection diagram of the first conductor 21 and the second spiral conductor 22 (FIG. 2 (A1)), and a connection diagram of the third spiral conductor 23 and the fourth conductor 24 (FIG. 2 (B1)). It is. As shown in FIG. 2 (A1), the first conductor 21 is connected so that a part thereof is directed in the opposite direction with respect to the winding direction of the second spiral conductor 22. More specifically, it is as follows. The rotation of the spiral exhibited by the second conductor 22 is indicated by the arrow indicated by the symbol R2. A direction in which the second conductor 22 extends from a portion where the first conductor 21 and the second conductor 22 are connected is represented by an arrow indicated by a symbol D2. The direction in which the first conductor 21 is directed toward the connecting portion is represented by an arrow indicated by a symbol D1. Here, regardless of whether or not the first conductor 21 has a straight line shape, the direction from the outside of the spiral formed by the second conductor 22 to the connecting portion is linearly approximated and the direction is denoted by It is expressed by the arrow D1.

図2(A2)は符号D1とD2で示される矢印を抽出したものである。図2(A2)に示されるように、符号D1とD2で示される矢印のなす角度φ1は90〜180°であり、このことから、「第1の導体は渦巻状の第2の導体の巻方向に対して、少なくとも一部は逆方向に向かうように接続されている」と評価することができる。インダクタンス特性の調整幅を大きくできるという観点からは、上述の符号D1とD2で示される矢印のなす角度φ1は180°に近い方がよく、好ましくは90°より大きく、180°より小さく、より好ましくは120°以上であり、180°より小さい。   FIG. 2 (A2) is obtained by extracting the arrows indicated by the symbols D1 and D2. As shown in FIG. 2 (A2), the angle φ1 formed by the arrows indicated by the reference signs D1 and D2 is 90 to 180 °. From this, “the first conductor is the winding of the spiral second conductor. It can be evaluated that at least a part is connected in the opposite direction with respect to the direction. From the viewpoint that the adjustment range of the inductance characteristic can be increased, the angle φ1 formed by the arrows indicated by the above-described symbols D1 and D2 should be close to 180 °, preferably larger than 90 °, smaller than 180 °, and more preferably. Is 120 ° or more and smaller than 180 °.

図2(B1)に示されるように、第4の導体24は第3の渦巻状の導体23の巻方向に対して、一部が順方向に向かうように接続されている。より具体的には以下のとおりである。第3の導体23が呈する渦巻の回転が符号R3で示される矢印によって示される。第4の導体24と第3の導体23が接続する部分から第3の導体23が延びる方向は符号D3で示される矢印で表現される。前記接続する部分に第4の導体24が向かってくる方向は符号D4で示される矢印で表現される。ここで、第4の導体24が一直線の形状であるか否かにかかわらず、第3の導体23が形作る渦巻の外から上記の接続する部分へと向かう方向を直線近似してその方向を符号D4の矢印で表現するものとする。   As shown in FIG. 2 (B1), the fourth conductor 24 is connected to the winding direction of the third spiral conductor 23 so that a part thereof is directed in the forward direction. More specifically, it is as follows. The rotation of the spiral exhibited by the third conductor 23 is indicated by the arrow indicated by the symbol R3. A direction in which the third conductor 23 extends from a portion where the fourth conductor 24 and the third conductor 23 are connected is represented by an arrow indicated by a symbol D3. The direction in which the fourth conductor 24 is directed toward the connecting portion is represented by an arrow indicated by a symbol D4. Here, regardless of whether or not the fourth conductor 24 is in a straight line shape, the direction from the outside of the spiral formed by the third conductor 23 to the connecting portion is linearly approximated and the direction is denoted It is expressed by an arrow D4.

図2(B2)は符号D3とD4で示される矢印を抽出したものである。図2(B2)に示されるように、符号D3とD4で示される矢印のなす角度φ2は0〜90°であり、このことから、「第4の導体は渦巻状の第3の導体の巻方向に対して、少なくとも一部は順方向に向かうように接続されている」と評価することができる。インダクタンス特性の調整幅を大きくできるという観点からは、上述の符号D3とD4で示される矢印のなす角度φ2は0°に近い方がよく、好ましくは0°より大きく、90°より小さく、より好ましくは0°より大きく、60°以下である。   FIG. 2 (B2) is obtained by extracting arrows indicated by symbols D3 and D4. As shown in FIG. 2 (B2), the angle φ2 formed by the arrows indicated by reference numerals D3 and D4 is 0 to 90 °. From this, “the fourth conductor is a winding of the spiral third conductor. It can be evaluated that at least a part is connected so as to be directed in the forward direction with respect to the direction. From the viewpoint that the adjustment range of the inductance characteristic can be increased, the angle φ2 formed by the arrows indicated by the above-described symbols D3 and D4 is preferably close to 0 °, preferably more than 0 °, less than 90 °, and more preferably Is greater than 0 ° and less than or equal to 60 °.

第1〜第4の導体21〜24の材質・製法等は従来技術を適宜援用することができ、例えば、その材質としてAgなどが例示される。導体21〜24の製法としてはペーストを用いた印刷などが非限定的に例示され、第1及び第2の導体21、22の接続、ならびに、第3及び第4の導体23、24の接続についてはスルーホール技術などを適宜援用することができる。スルーホールの作成については、例えば、金型による打ち抜きやレーザー加工による穿孔などの手法が非限定的に挙げられる。   Conventional materials can be used as appropriate for the materials and manufacturing methods of the first to fourth conductors 21 to 24, and examples thereof include Ag. Non-limiting examples of the method of manufacturing the conductors 21 to 24 include printing using a paste, and connection of the first and second conductors 21 and 22 and connection of the third and fourth conductors 23 and 24. Can appropriately use through-hole technology. With respect to the creation of the through hole, for example, a technique such as punching with a mold or drilling by laser processing is not limited.

絶縁層については、以下のとおりである。
第1の絶縁層11及び第6の絶縁層16は磁性体からなり、第2〜第5の絶縁層12〜15は非磁性体からなる。ここで、磁性体とは強磁性体のことであり、非磁性体は強磁性体以外のものである。第1〜第6の絶縁層11〜16はいずれも樹脂を含有しない。図1において、磁性体からなる絶縁層は白抜きにて描写され、非磁性体からなる絶縁層は黒色で描写されている。
The insulating layer is as follows.
The first insulating layer 11 and the sixth insulating layer 16 are made of a magnetic material, and the second to fifth insulating layers 12 to 15 are made of a nonmagnetic material. Here, the magnetic material is a ferromagnetic material, and the non-magnetic material is other than a ferromagnetic material. None of the first to sixth insulating layers 11 to 16 contains a resin. In FIG. 1, the insulating layer made of a magnetic material is drawn in white, and the insulating layer made of a non-magnetic material is drawn in black.

磁性体としては、例えば、Ni−Zn−Cuフェライト、などが非限定的に例示される。非磁性体としては、例えば、Znフェライトなどが非限定的に例示さる。また、低温焼結の非磁性体としてはZn−Cuフェライトが好適である。また、非磁性体はホウケイ酸ガラス又はホウケイ酸ガラスと結晶質シリカとの混合物などの誘電体材料からなるものでもよい。   Examples of the magnetic material include, but are not limited to, Ni—Zn—Cu ferrite. Examples of the non-magnetic material include, but are not limited to, Zn ferrite. In addition, Zn—Cu ferrite is suitable as the low-magnetic sintered nonmagnetic material. The nonmagnetic material may be made of a dielectric material such as borosilicate glass or a mixture of borosilicate glass and crystalline silica.

第1の絶縁層11および第6の絶縁層16で挟まれる領域における構成は上述のとおりであるが、積層コモンモードノイズフィルタにおけるその他の構成は特に限定はない。例えば、第1の絶縁層11の下面にダミーの絶縁層17A〜17Cを設けたり、第6の絶縁層16の上面にダミーの絶縁層18A〜18Bを設けたりしてもよく、その場合に、これらダミーの絶縁層は磁性体であってもよいし非磁性体であってもよい。   The configuration in the region sandwiched between the first insulating layer 11 and the sixth insulating layer 16 is as described above, but the other configurations in the laminated common mode noise filter are not particularly limited. For example, dummy insulating layers 17A to 17C may be provided on the lower surface of the first insulating layer 11, or dummy insulating layers 18A to 18B may be provided on the upper surface of the sixth insulating layer 16, in which case These dummy insulating layers may be magnetic or non-magnetic.

図3は本発明の実施形態の外観図である。本発明によれば、積層コモンモードノイズフィルタ1の外形は特に限定は無く、図示されたような直方体状のものが例示される。上述した積層構造からなる積層体チップ10と該積層体チップ10の側面に形成された外部電極30とを有していてもよい。外部電極30はめっき処理が施されていてもよい。上述した端子31〜34が外部電極30と適宜接続される。   FIG. 3 is an external view of an embodiment of the present invention. According to the present invention, the outer shape of the laminated common mode noise filter 1 is not particularly limited, and a rectangular parallelepiped shape as illustrated is exemplified. You may have the laminated body chip | tip 10 which consists of a laminated structure mentioned above, and the external electrode 30 formed in the side surface of this laminated body chip | tip 10. FIG. The external electrode 30 may be plated. The terminals 31 to 34 described above are appropriately connected to the external electrode 30.

積層コモンモードノイズフィルタの製法については特に限定無く、従来技術を適宜援用することができる。典型例として、各絶縁層の前駆体となる磁性体シートおよび非磁性体シートを得て、当該シートに導体ペースト等を印刷し、適宜スルーホールを設けてコイルが形成されるようにして、これらを圧着して、樹脂を除去して(脱バインダー)、焼成する方法が挙げられる。こういった製法の具体例は以下の実施例において詳述する。   There is no particular limitation on the manufacturing method of the laminated common mode noise filter, and the conventional technique can be used as appropriate. As a typical example, a magnetic sheet and a non-magnetic sheet that are precursors of each insulating layer are obtained, a conductor paste or the like is printed on the sheet, and a coil is formed by appropriately providing a through hole. And the method of removing the resin (debinding) and baking. Specific examples of these production methods will be described in detail in the following examples.

以下、実施例により本発明をより具体的に説明する。ただし、本発明はこれらの実施例に記載された態様に限定されるわけではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiments described in these examples.

(実施例1)
まず、磁性体シートを得るために、FeO、CuO、ZnO、NiOを主材料とする仮焼粉砕後のNi−Zn−Cu系フェライト微粉末にブチラール樹脂と溶剤を加えてスラリーを作成した。このスラリーを一定の厚みになるようにドクターブレードで塗布し、乾燥し、所定サイズに切断して磁性体シートをつくった。次に、非磁性体シートを得るためにFeO、CuO、ZnOを主材料とする仮焼粉砕後のZn−Cu系フェライト微粉末にブチラール樹脂と溶剤を加えてスラリーを作成した。このスラリーを一定の厚みになるようにドクターブレードで塗布し、乾燥し、所定サイズに切断して非磁性体シートをつくった。この非磁性体シートには所定の位置にスルーホールを形成した。次に、非磁性体シートにスクリーン版を用いてAgペーストを印刷し、乾燥して、コイル導体パターンを得た。次に、磁性体シートと非磁性体シート、およびコイル導体が印刷された非磁性体シートを、図1に示すように、印刷されたコイル導体がスルーホールで導通してつながるように積層し、プレス圧着をおこなった。このとき、ダミーの絶縁層17A〜17C、18A〜18Bの前駆体として磁性体シートを用いた。これを所定のサイズに切断したあと500℃、1hrで脱バインダー処理に供し、大気炉中890℃、2hrで焼成して積層体チップを形成した。得られた積層体チップの側面に積層体内部の2つのコイルのそれぞれの両端部と接続するようにAgペーストを印刷法によって塗布し、約600℃で1時間の大気焼成をして端子電極を形成した。この端子電極にニッケル電解バレルめっきを施したあと、ハンダ電解バレルめっきをおこなって外部電極を形成した。このようにして実施例1の積層コモンモードノイズフィルタを得た。
Example 1
First, in order to obtain a magnetic material sheet, a butyral resin and a solvent were added to Ni—Zn—Cu ferrite fine powder after calcining and pulverization mainly containing FeO 2 , CuO, ZnO, and NiO to prepare slurry. This slurry was applied with a doctor blade so as to have a constant thickness, dried, and cut into a predetermined size to produce a magnetic sheet. Next, in order to obtain a non-magnetic sheet, a butyral resin and a solvent were added to a Zn-Cu ferrite fine powder after calcining and pulverization using FeO 2 , CuO, and ZnO as main materials to prepare a slurry. The slurry was applied with a doctor blade so as to have a constant thickness, dried, and cut into a predetermined size to produce a non-magnetic sheet. Through holes were formed at predetermined positions in the nonmagnetic sheet. Next, an Ag paste was printed on the nonmagnetic sheet using a screen plate and dried to obtain a coil conductor pattern. Next, as shown in FIG. 1, the magnetic sheet, the non-magnetic sheet, and the non-magnetic sheet on which the coil conductor is printed are stacked so that the printed coil conductor is connected through the through-hole, Press bonding was performed. At this time, magnetic sheets were used as precursors for the dummy insulating layers 17A to 17C and 18A to 18B. After cutting this to a predetermined size, it was subjected to binder removal treatment at 500 ° C. for 1 hr, and baked in an atmospheric furnace at 890 ° C. for 2 hr to form a laminate chip. An Ag paste is applied to the side surface of the obtained laminate chip by a printing method so as to connect to both ends of each of the two coils inside the laminate, and the terminal electrode is baked in air at about 600 ° C. for 1 hour. Formed. The terminal electrode was subjected to nickel electrolytic barrel plating and then subjected to solder electrolytic barrel plating to form an external electrode. In this way, a laminated common mode noise filter of Example 1 was obtained.

実施例1で得た積層コモンモードノイズフィルタは以下のとおりである。
・外形寸法:長さ1.25mm×幅1.0mm×高さ0.5mm
・磁性体層:Ni−Zn−Cu系フェライト
・非磁性体層:Zn−Cu系フェライト
・導体パターン:幅20μmのAgパターン
・第1及び第6の絶縁層、ダミーの絶縁層:磁性体層(層厚365μm)
・第2〜第5の絶縁層:非磁性体層(層厚105μm)
・焼成温度:890℃
・第1及び第2の導体のなす角(図2におけるφ1):120°
・第3及び第4の導体のなす角(図2におけるφ2):60°
The laminated common mode noise filter obtained in Example 1 is as follows.
External dimensions: length 1.25mm x width 1.0mm x height 0.5mm
Magnetic layer: Ni-Zn-Cu based ferrite Nonmagnetic layer: Zn-Cu based ferrite Conductor pattern: Ag pattern with a width of 20 μm First and sixth insulating layers, dummy insulating layer: magnetic layer (Layer thickness 365 μm)
Second to fifth insulating layers: nonmagnetic layer (layer thickness 105 μm)
・ Baking temperature: 890 ° C
The angle formed by the first and second conductors (φ1 in FIG. 2): 120 °
The angle formed by the third and fourth conductors (φ2 in FIG. 2): 60 °

(比較例1)
第5の絶縁層を非磁性体ではなく磁性体で構成したことのほかは実施例1と同様にして積層コモンモードノイズフィルタを得た。図4は比較例1の積層コモンモードノイズフィルタの積層構造を示す。
(Comparative Example 1)
A laminated common mode noise filter was obtained in the same manner as in Example 1 except that the fifth insulating layer was made of a magnetic material instead of a nonmagnetic material. FIG. 4 shows a laminated structure of the laminated common mode noise filter of Comparative Example 1.

比較例1で得た積層コモンモードノイズフィルタは以下のとおりである。
・外形寸法:長さ1.25mm×幅1.0mm×高さ0.5mm
・磁性体層:Ni−Zn−Cu系フェライト
・非磁性体層:Zn−Cu系フェライト
・導体パターン:幅20μmのAgパターン
・第1、第5及び第6の絶縁層、ダミーの絶縁層:磁性体層(層厚370μm)
・第2〜第4の絶縁層:非磁性体層(層厚100μm)
・焼成温度:890℃
・第1及び第2の導体のなす角(図2におけるφ1):120°
・第3及び第4の導体のなす角(図2におけるφ2):60°
The laminated common mode noise filter obtained in Comparative Example 1 is as follows.
External dimensions: length 1.25mm x width 1.0mm x height 0.5mm
Magnetic layer: Ni—Zn—Cu based ferrite Nonmagnetic layer: Zn—Cu based ferrite Conductor pattern: Ag pattern with a width of 20 μm First, fifth and sixth insulating layers, dummy insulating layer: Magnetic layer (layer thickness 370 μm)
Second to fourth insulating layers: nonmagnetic layer (layer thickness 100 μm)
・ Baking temperature: 890 ° C
The angle formed by the first and second conductors (φ1 in FIG. 2): 120 °
The angle formed by the third and fourth conductors (φ2 in FIG. 2): 60 °

(比較例2)
第1の絶縁層を磁性体ではなく非磁性体で構成したことのほかは実施例1と同様にして積層コモンモードノイズフィルタを得た。図5は比較例2の積層コモンモードノイズフィルタの積層構造を示す。
(Comparative Example 2)
A laminated common mode noise filter was obtained in the same manner as in Example 1 except that the first insulating layer was made of nonmagnetic material instead of magnetic material. FIG. 5 shows a laminated structure of the laminated common mode noise filter of Comparative Example 2.

比較例2で得た積層コモンモードノイズフィルタは以下のとおりである。
・外形寸法:長さ1.25mm×幅1.0mm×高さ0.5mm
・磁性体層:Ni−Zn−Cu系フェライト
・非磁性体層:Zn−Cu系フェライト
・導体パターン:幅20μmのAgパターン
・第6の絶縁層、ダミーの絶縁層:磁性体層(層厚360μm)
・第1〜第5の絶縁層:非磁性体層(層厚110μm)
・焼成温度:890℃
・第1及び第2の導体のなす角(図2におけるφ1):120°
・第3及び第4の導体のなす角(図2におけるφ2):60°
The laminated common mode noise filter obtained in Comparative Example 2 is as follows.
External dimensions: length 1.25mm x width 1.0mm x height 0.5mm
Magnetic layer: Ni—Zn—Cu based ferrite Nonmagnetic layer: Zn—Cu based ferrite Conductor pattern: Ag pattern with a width of 20 μm Sixth insulating layer, dummy insulating layer: magnetic layer (layer thickness) 360μm)
First to fifth insulating layers: nonmagnetic layer (layer thickness 110 μm)
・ Baking temperature: 890 ° C
The angle formed by the first and second conductors (φ1 in FIG. 2): 120 °
The angle formed by the third and fourth conductors (φ2 in FIG. 2): 60 °

(実施例2)
実施例1と同様に積層コモンモードノイズフィルタの作成を行った。非磁性体として、誘電体材料を用いた。誘電体シートを得るために誘電体として、ホウケイ酸ガラスの微粉末と結晶質シリカの粉末を添加し、ブチラール樹脂と溶剤を加えてスラリーを作成した。このスラリーを一定の厚みになるようにドクターブレードで塗布し、乾燥し、所定サイズに切断して非磁性体シートをつくった。これ以外については、実施例1と同様に行い、焼成についても大気炉中890℃、2hrと同じように焼成して積層体チップを形成し、また外部電極についても実施例1と同様に形成することで、実施例2の積層コモンモードノイズフィルタを得た。実施例1と同様、図1が実施例2の積層コモンモードノイズフィルタの積層構造を示す。
(Example 2)
A laminated common mode noise filter was prepared in the same manner as in Example 1. A dielectric material was used as the nonmagnetic material. In order to obtain a dielectric sheet, fine powder of borosilicate glass and crystalline silica powder were added as a dielectric, and a butyral resin and a solvent were added to prepare a slurry. The slurry was applied with a doctor blade so as to have a constant thickness, dried, and cut into a predetermined size to produce a non-magnetic sheet. Except this, it was performed in the same manner as in Example 1, and the firing was also performed in the atmospheric furnace at 890 ° C. for 2 hours to form a laminate chip, and the external electrodes were also formed in the same manner as in Example 1. Thus, a laminated common mode noise filter of Example 2 was obtained. As in the first embodiment, FIG. 1 shows a laminated structure of the laminated common mode noise filter of the second embodiment.

実施例2で得た積層コモンモードノイズフィルタは以下のとおりである。
・外形寸法:長さ1.25mm×幅1.0mm×高さ0.5mm
・磁性体層:Ni−Zn−Cu系フェライト
・非磁性体層:ホウケイ酸ガラスと結晶質シリカとの混合物
・導体パターン:幅20μmのAgパターン
・第1及び第6の絶縁層、ダミーの絶縁層:磁性体層(層厚365μm)
・第2〜第5の絶縁層:非磁性体層(層厚105μm)
・焼成温度:890℃
・第1及び第2の導体のなす角(図2におけるφ1):120°
・第3及び第4の導体のなす角(図2におけるφ2):60°
The laminated common mode noise filter obtained in Example 2 is as follows.
External dimensions: length 1.25mm x width 1.0mm x height 0.5mm
-Magnetic layer: Ni-Zn-Cu ferrite-Nonmagnetic layer: Mixture of borosilicate glass and crystalline silica-Conductor pattern: Ag pattern with a width of 20 [mu] m-First and sixth insulating layers, dummy insulation Layer: Magnetic layer (layer thickness 365 μm)
Second to fifth insulating layers: nonmagnetic layer (layer thickness 105 μm)
・ Baking temperature: 890 ° C
The angle formed by the first and second conductors (φ1 in FIG. 2): 120 °
The angle formed by the third and fourth conductors (φ2 in FIG. 2): 60 °

(比較例3)
第5の絶縁層を非磁性体ではなく磁性体で構成したことのほかは実施例2と同様にして積層コモンモードノイズフィルタを得た。比較例1と同様、図4が比較例3の積層コモンモードノイズフィルタの積層構造を示す。
(Comparative Example 3)
A laminated common mode noise filter was obtained in the same manner as in Example 2 except that the fifth insulating layer was made of a magnetic material instead of a nonmagnetic material. As in Comparative Example 1, FIG. 4 shows the laminated structure of the laminated common mode noise filter of Comparative Example 3.

比較例3で得た積層コモンモードノイズフィルタは以下のとおりである。
・外形寸法:長さ1.25mm×幅1.0mm×高さ0.5mm
・磁性体層:Ni−Zn−Cu系フェライト
・非磁性体層:ホウケイ酸ガラスと結晶質シリカとの混合物
・導体パターン:幅20μmのAgパターン
・第1、第5及び第6の絶縁層、ダミーの絶縁層:磁性体層(層厚370μm)
・第2〜第4の絶縁層:非磁性体層(層厚100μm)
・焼成温度:890℃
・第1及び第2の導体のなす角(図2におけるφ1):120°
・第3及び第4の導体のなす角(図2におけるφ2):60°
The laminated common mode noise filter obtained in Comparative Example 3 is as follows.
External dimensions: length 1.25mm x width 1.0mm x height 0.5mm
Magnetic layer: Ni-Zn-Cu ferrite Nonmagnetic layer: a mixture of borosilicate glass and crystalline silica Conductor pattern: Ag pattern with a width of 20 μm First, fifth and sixth insulating layers, Dummy insulating layer: magnetic layer (layer thickness 370 μm)
Second to fourth insulating layers: nonmagnetic layer (layer thickness 100 μm)
・ Baking temperature: 890 ° C
The angle formed by the first and second conductors (φ1 in FIG. 2): 120 °
The angle formed by the third and fourth conductors (φ2 in FIG. 2): 60 °

(比較例4)
第1の絶縁層を磁性体ではなく非磁性体で構成したことのほかは実施例2と同様にして積層コモンモードノイズフィルタを得た。比較例2と同様、図5が比較例4の積層コモンモードノイズフィルタの積層構造を示す。
(Comparative Example 4)
A laminated common mode noise filter was obtained in the same manner as in Example 2 except that the first insulating layer was made of nonmagnetic material instead of magnetic material. As in Comparative Example 2, FIG. 5 shows the laminated structure of the laminated common mode noise filter of Comparative Example 4.

比較例4で得た積層コモンモードノイズフィルタは以下のとおりである。
・外形寸法:長さ1.25mm×幅1.0mm×高さ0.5mm
・磁性体層:Ni−Zn−Cu系フェライト
・非磁性体層:ホウケイ酸ガラスと結晶質シリカとの混合物
・導体パターン:幅20μmのAgパターン
・第6の絶縁層、ダミーの絶縁層:磁性体層(層厚360μm)
・第1〜第5の絶縁層:非磁性体層(層厚110μm)
・焼成温度:890℃
・第1及び第2の導体のなす角(図2におけるφ1):120°
・第3及び第4の導体のなす角(図2におけるφ2):60°
The laminated common mode noise filter obtained in Comparative Example 4 is as follows.
External dimensions: length 1.25mm x width 1.0mm x height 0.5mm
-Magnetic layer: Ni-Zn-Cu ferrite-Nonmagnetic layer: Mixture of borosilicate glass and crystalline silica-Conductor pattern: Ag pattern with a width of 20 [mu] m-Sixth insulating layer, dummy insulating layer: magnetic Body layer (layer thickness 360μm)
First to fifth insulating layers: nonmagnetic layer (layer thickness 110 μm)
・ Baking temperature: 890 ° C
The angle formed by the first and second conductors (φ1 in FIG. 2): 120 °
The angle formed by the third and fourth conductors (φ2 in FIG. 2): 60 °

(評価)
上記で得られた実施例1、比較例1、2の積層コモンモードノイズフィルタについて、アジレント社製の4291Aを用いて、各フィルタが有する2つのコイルの1MHzのインダクタンス値と100MHzのコモンモードインピーダンス値を測定した。
(Evaluation)
About the laminated common mode noise filter of Example 1 and Comparative Examples 1 and 2 obtained above, 4291A manufactured by Agilent, Inc., 1 MHz inductance value and 100 MHz common mode impedance value of the two coils of each filter Was measured.

各フィルタが有する2つのコイルの1MHzにおけるインダクタンス値の測定結果は以下のとおりである。
実施例1 順方向コイル(146nH)、逆方向コイル(142nH)、差(3nH)
比較例1 順方向コイル(152nH)、逆方向コイル(143nH)、差(9nH)
比較例2 順方向コイル(144nH)、逆方向コイル(135nH)、差(8nH)
実施例2 順方向コイル(89nH)、逆方向コイル(87nH)、差(2nH)
比較例3 順方向コイル(94nH)、逆方向コイル(89nH)、差(5nH)
比較例4 順方向コイル(87nH)、逆方向コイル(82nH)、差(5nH)
The measurement results of the inductance value at 1 MHz of the two coils included in each filter are as follows.
Example 1 Forward coil (146 nH), reverse coil (142 nH), difference (3 nH)
Comparative Example 1 Forward coil (152 nH), reverse coil (143 nH), difference (9 nH)
Comparative Example 2 Forward coil (144 nH), reverse coil (135 nH), difference (8 nH)
Example 2 Forward coil (89 nH), reverse coil (87 nH), difference (2 nH)
Comparative Example 3 Forward coil (94 nH), reverse coil (89 nH), difference (5 nH)
Comparative Example 4 Forward coil (87 nH), reverse coil (82 nH), difference (5 nH)

ここで、「順方向コイル」は第3及び第4の導体により構成される第2のコイルであり、「逆方向コイル」は第1及び第2の導体により構成される第1のコイルである。   Here, the “forward coil” is a second coil constituted by the third and fourth conductors, and the “reverse coil” is a first coil constituted by the first and second conductors. .

各コモンモードノイズフィルタの100MHzにおけるコモンモードインピーダンス値測定結果は以下のとおりである。
実施例1 82Ω
比較例1 85Ω
比較例2 78Ω
実施例2 51Ω
比較例3 53Ω
比較例4 48Ω
The measurement result of the common mode impedance value at 100 MHz of each common mode noise filter is as follows.
Example 1 82Ω
Comparative Example 1 85Ω
Comparative Example 2 78Ω
Example 2 51Ω
Comparative Example 3 53Ω
Comparative Example 4 48Ω

比較例1、3では第1の導体121、第4の導体124が両方とも磁性体層に接しているため、コモンモードコイルを形成する渦巻状の第2の導体122及び第3の導体123の巻方向に対して、順方向に接続される第4の導体124と第3の導体123で形成される順方向コイルのインダクタンス値のほうが、逆方向コイルのインダクタンス値よりも大きくなった。また、比較例2、4では第1の導体221、第4の導体224が両方とも非磁性体層の中にあるため、コモンモードコイルを形成する渦巻状の第2の導体222及び第3の導体223の巻方向に対して、順方向に接続される第4の導体224と第3の導体223で形成される順方向コイルのインダクタンス値のほうが、逆方向コイルのインダクタンス値よりも大きくなった。さらに、渦巻状の第2の導体222及び第3の導体223が双方とも磁性体層から離れた結果、コモンモードインピーダンス値も大きく下がった。これに対して、実施例1、2では、コモンモードコイルを形成する渦巻状の第2の導体22及び第3の導体23の巻方向に対して、順方向に接続される第4の導体24が非磁性体層に、逆方向に接続される第1の導体21が磁性体層にそれぞれ接しているため、第4の導体24と第3の導体23で形成される順方向コイルのインダクタンス値と、第1の導体21と第2の導体22で形成される逆方向コイルのインダクタンス値との差が小さくなった。また、コモンモードコイルを形成する渦巻状の第2及び第3の導体22、23と磁性体層までの距離は、比較例2、4の場合のように大きく離れないため、コモンモードインピーダンス値の減少も小さくなった。結果的に、実施例1、2では比較例と比較して、コモンモードコイルを形成するそれぞれのコイルのインダクタンス値の差が小さくなり、またコモンモードインピーダンスの減少も少ない良好なコモンモードノイズフィルタが得られた。   In Comparative Examples 1 and 3, since both the first conductor 121 and the fourth conductor 124 are in contact with the magnetic layer, the spiral second conductor 122 and the third conductor 123 of the common mode coil are formed. With respect to the winding direction, the inductance value of the forward coil formed by the fourth conductor 124 and the third conductor 123 connected in the forward direction is larger than the inductance value of the reverse coil. In Comparative Examples 2 and 4, since the first conductor 221 and the fourth conductor 224 are both in the nonmagnetic layer, the spiral second conductor 222 and the third conductor forming the common mode coil are used. With respect to the winding direction of the conductor 223, the inductance value of the forward coil formed by the fourth conductor 224 and the third conductor 223 connected in the forward direction is larger than the inductance value of the reverse coil. . Further, as a result of both the spiral second conductor 222 and the third conductor 223 being separated from the magnetic layer, the common mode impedance value is greatly reduced. On the other hand, in the first and second embodiments, the fourth conductor 24 connected in the forward direction with respect to the winding direction of the spiral second conductor 22 and the third conductor 23 forming the common mode coil. Is in contact with the non-magnetic layer and the first conductor 21 connected in the opposite direction is in contact with the magnetic layer, respectively, so that the inductance value of the forward coil formed by the fourth conductor 24 and the third conductor 23 The difference between the inductance value of the reverse coil formed by the first conductor 21 and the second conductor 22 is reduced. In addition, since the distance between the spiral second and third conductors 22 and 23 forming the common mode coil and the magnetic layer is not so large as in the comparative examples 2 and 4, the common mode impedance value The decrease was also reduced. As a result, in Examples 1 and 2, compared to the comparative example, a good common mode noise filter in which the difference in inductance value of each coil forming the common mode coil is small and the decrease in common mode impedance is small. Obtained.

1:コモンモードノイズフィルタ
11〜16、111〜116、211〜216:絶縁層
21〜24、121〜124、221〜224:導体
31〜34、131〜134、231〜234:端子
1: Common mode noise filter 11-16, 111-116, 211-216: Insulating layer 21-24, 121-124, 221-224: Conductor 31-34, 131-134, 231-234: Terminal

Claims (5)

第1の絶縁層と、
前記第1の絶縁層の上面に設けられた第1の導体と、
前記第1の導体の上面に設けられた第2の絶縁層と、
前記第2の絶縁層の上面に設けられかつ前記第1の導体に接続されてこの第1の導体とともに第1のコイルを構成する渦巻状の第2の導体と、
前記第2の導体の上面に設けられた第3の絶縁層と、
前記第3の絶縁層の上面に設けられた渦巻状の第3の導体と、
前記第3の導体の上面に設けられた第4の絶縁層と、
前記第4の絶縁層の上面に設けられかつ前記第3の導体に接続されてこの第3の導体とともに第2のコイルを構成する第4の導体と、
前記第4の導体の上面に設けられた第5の絶縁層と、
前記第5の絶縁層の上面に設けられた第6の絶縁層と、
前記第1〜第4の導体の各々の一端部にそれぞれ接続された第1〜第4の端子とを備え、
前記第1の導体は渦巻状の第2の導体の巻方向に対して、少なくとも一部は逆方向に向かうように接続されていて、
前記第4の導体は渦巻状の第3の導体の巻方向に対して、少なくとも一部は順方向に向かうように接続されていて、
前記第1及び第6の絶縁層は磁性体からなり、前記第2〜第5の絶縁層は非磁性体からなり、
前記第1〜第6の絶縁層は樹脂を含有しない、
コモンモードノイズフィルタ。
A first insulating layer;
A first conductor provided on an upper surface of the first insulating layer;
A second insulating layer provided on the upper surface of the first conductor;
A spiral second conductor provided on an upper surface of the second insulating layer and connected to the first conductor to form a first coil together with the first conductor;
A third insulating layer provided on the upper surface of the second conductor;
A spiral third conductor provided on the upper surface of the third insulating layer;
A fourth insulating layer provided on the top surface of the third conductor;
A fourth conductor provided on the upper surface of the fourth insulating layer and connected to the third conductor to form a second coil together with the third conductor;
A fifth insulating layer provided on an upper surface of the fourth conductor;
A sixth insulating layer provided on an upper surface of the fifth insulating layer;
Comprising first to fourth terminals respectively connected to one end of each of the first to fourth conductors;
The first conductor is connected so that at least a part thereof is directed in the opposite direction with respect to the winding direction of the spiral second conductor,
The fourth conductor is connected so that at least a part thereof is directed in the forward direction with respect to the winding direction of the spiral third conductor,
The first and sixth insulating layers are made of a magnetic material, and the second to fifth insulating layers are made of a non-magnetic material,
The first to sixth insulating layers do not contain a resin;
Common mode noise filter.
前記第1の導体が前記第2の導体と接続する部分へ向かう方向と、前記接続する部分から第2の導体が延びる方向と、のなす角度が120°以上であり180°より小さい請求項1記載のコモンモードノイズフィルタ。   The angle formed by the direction in which the first conductor is directed to the portion connected to the second conductor and the direction in which the second conductor extends from the connected portion is 120 ° or more and smaller than 180 °. Common mode noise filter as described. 前記第4の導体が前記第3の導体と接続する部分へ向かう方向と、前記接続する部分から第3の導体が延びる方向と、のなす角度が0°より大きく60°以下である請求項1又は2記載のコモンモードノイズフィルタ。   The angle formed by a direction in which the fourth conductor is directed to a portion connected to the third conductor and a direction in which the third conductor extends from the connected portion is greater than 0 ° and not more than 60 °. Or the common mode noise filter of 2. 前記第1及び第6の絶縁層がNi−Zn−Cuフェライトからなり、前記第3〜第5の絶縁層がZn−Cuフェライトからなる請求項1〜3のいずれか1項に記載のコモンモードノイズフィルタ。   The common mode according to claim 1, wherein the first and sixth insulating layers are made of Ni—Zn—Cu ferrite, and the third to fifth insulating layers are made of Zn—Cu ferrite. Noise filter. 前記第1及び第6の絶縁層がNi−Zn−Cuフェライトからなり、前記第3〜第5の絶縁層が誘電体材料からなる請求項1〜3のいずれか1項に記載のコモンモードノイズフィルタ。   The common mode noise according to any one of claims 1 to 3, wherein the first and sixth insulating layers are made of Ni-Zn-Cu ferrite, and the third to fifth insulating layers are made of a dielectric material. filter.
JP2013136982A 2013-06-28 2013-06-28 Common mode noise filter Active JP5802240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136982A JP5802240B2 (en) 2013-06-28 2013-06-28 Common mode noise filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136982A JP5802240B2 (en) 2013-06-28 2013-06-28 Common mode noise filter

Publications (2)

Publication Number Publication Date
JP2015012167A true JP2015012167A (en) 2015-01-19
JP5802240B2 JP5802240B2 (en) 2015-10-28

Family

ID=52305074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136982A Active JP5802240B2 (en) 2013-06-28 2013-06-28 Common mode noise filter

Country Status (1)

Country Link
JP (1) JP5802240B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096422B2 (en) 2016-06-17 2018-10-09 Taiyo Yuden Co., Ltd. Common mode choke coil
JP2019106413A (en) * 2017-12-11 2019-06-27 パナソニックIpマネジメント株式会社 Common mode noise filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340611A (en) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd Common mode noise filter
JP2011114627A (en) * 2009-11-27 2011-06-09 Panasonic Corp Common mode noise filter
WO2012039297A1 (en) * 2010-09-24 2012-03-29 太陽誘電株式会社 Common mode noise filter
JP2014090064A (en) * 2012-10-30 2014-05-15 Kaho Kagi Kofun Yugenkoshi Common mode filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340611A (en) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd Common mode noise filter
JP2011114627A (en) * 2009-11-27 2011-06-09 Panasonic Corp Common mode noise filter
WO2012039297A1 (en) * 2010-09-24 2012-03-29 太陽誘電株式会社 Common mode noise filter
JP2014090064A (en) * 2012-10-30 2014-05-15 Kaho Kagi Kofun Yugenkoshi Common mode filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096422B2 (en) 2016-06-17 2018-10-09 Taiyo Yuden Co., Ltd. Common mode choke coil
KR20180129715A (en) 2016-06-17 2018-12-05 다이요 유덴 가부시키가이샤 Common mode choke coil
US10210991B2 (en) 2016-06-17 2019-02-19 Taiyo Yuden Co., Ltd. Common mode choke coil
US10395820B2 (en) 2016-06-17 2019-08-27 Taiyo Yuden Co., Ltd. Common mode choke coil
JP2019106413A (en) * 2017-12-11 2019-06-27 パナソニックIpマネジメント株式会社 Common mode noise filter

Also Published As

Publication number Publication date
JP5802240B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP4736526B2 (en) Common mode noise filter
KR102302070B1 (en) Multilayer coil component
JP6677228B2 (en) Coil parts
JP2015026760A (en) Multilayer coil
US20150137929A1 (en) Multilayer inductor
JP7020455B2 (en) Laminated coil parts
JP5078340B2 (en) Coil built-in board
WO2015016079A1 (en) Multilayer chip coil
US11469033B2 (en) Multilayer coil component
US9007160B2 (en) Laminated inductor
JP5802240B2 (en) Common mode noise filter
US11538621B2 (en) Multilayer coil component
US9123465B2 (en) Electronic component
JP2005150137A (en) Common mode noise filter
JP6902005B2 (en) Coil structure and common mode filter with it
JP2007227611A (en) Common mode noise filter
JP2006147790A (en) Inductor component
JP6400983B2 (en) Common mode filter
JP2008227044A (en) Common-mode noise filter
JP2020194805A (en) Laminated coil component
JP2020145222A (en) Laminated coil component
KR101207663B1 (en) Method of manufacturing a common mode filter for HDMI
JP7003948B2 (en) Laminated coil parts
JP2022059620A (en) Stacked coil component
JP5790357B2 (en) Ferrite-plated powder, electronic component using the ferrite-plated powder, and method for manufacturing electronic component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150828

R150 Certificate of patent or registration of utility model

Ref document number: 5802240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250