JP2015010694A - Fluid proportional valve - Google Patents

Fluid proportional valve Download PDF

Info

Publication number
JP2015010694A
JP2015010694A JP2013138471A JP2013138471A JP2015010694A JP 2015010694 A JP2015010694 A JP 2015010694A JP 2013138471 A JP2013138471 A JP 2013138471A JP 2013138471 A JP2013138471 A JP 2013138471A JP 2015010694 A JP2015010694 A JP 2015010694A
Authority
JP
Japan
Prior art keywords
valve
end side
coil spring
valve body
valve shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013138471A
Other languages
Japanese (ja)
Other versions
JP5891205B2 (en
Inventor
悠介 滝
Yusuke Taki
悠介 滝
充 宇於崎
Mitsuru Uosaki
充 宇於崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2013138471A priority Critical patent/JP5891205B2/en
Publication of JP2015010694A publication Critical patent/JP2015010694A/en
Application granted granted Critical
Publication of JP5891205B2 publication Critical patent/JP5891205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lift Valve (AREA)
  • Safety Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid proportional valve capable of stabilizing a flow rate of fluid at the time of low flow rate by restricting a swing of a valve shaft of a valving element.SOLUTION: An elastic body 30 for biasing a valving element 50 is installed at the side opposite to a diaphragm 40 in respect to the valving element 50 in order to push the valving element 50 supported at the diaphragm 40 through a valve shaft 52 against a valve seat 38. An elastic body 60 having a part far from the valving element 50 rather than a part near the valving element 50 exhibits a low rigidity toward a direction orthogonal to the valve shaft 52. As one end side of the elastic body 60 near the valving element 50 is displaced along with a swinging of the valve shaft 52, the one end side is not deformed, but the another end is easily deformed. A slight displacement at the one end side of the elastic body 60 is transmitted to the another end side spaced apart from the one end side in respect to a fulcrum point of swing of the valve shaft 52, thereby the another end side is widely deformed and a motion of the another end side returned by its resilience is transmitted to enable the one end side to be precisely returned to a position before its displacement and a slight swing of the valve shaft 52 can be restricted with a high precision.

Description

本発明は、流体の流量を制御する流体比例弁に関する。   The present invention relates to a fluid proportional valve that controls the flow rate of a fluid.

給湯器などのガス機器では、バーナーに供給するガスの流量を制御するためにガス比例弁が用いられている。ガス比例弁としては、ガス入口室とガス出口室とを連通する弁孔が設けられた弁座と、ガス出口室側から弁座に当接することで弁孔を塞ぐ弁体とを備えて、ガス入口室側に弁孔と対向して設けられたダイヤフラムに弁軸を介して弁体が支持される構造が知られている(例えば、特許文献1)。このガス比例弁は、電磁コイルに通電すると、電流値に応じて電磁コイルに引き込まれる可動鉄心がダイヤフラム側から弁軸の端部を押圧することで弁体が弁座から離れて開弁する。一方、電磁コイルへの通電を停止すると、可動鉄心が電磁コイルに引き込まれなくなり、ガス出口室内に設置されたコイルバネの付勢力によって弁体が弁座に押し付けられて閉弁する。   In gas equipment such as a water heater, a gas proportional valve is used to control the flow rate of gas supplied to the burner. The gas proportional valve includes a valve seat provided with a valve hole communicating with the gas inlet chamber and the gas outlet chamber, and a valve body that closes the valve hole by contacting the valve seat from the gas outlet chamber side, A structure is known in which a valve element is supported via a valve shaft on a diaphragm provided on the gas inlet chamber side so as to face the valve hole (for example, Patent Document 1). In this gas proportional valve, when the electromagnetic coil is energized, the movable iron core that is drawn into the electromagnetic coil according to the current value presses the end of the valve shaft from the diaphragm side, so that the valve element is opened away from the valve seat. On the other hand, when the energization to the electromagnetic coil is stopped, the movable iron core is not drawn into the electromagnetic coil, and the valve body is pressed against the valve seat by the biasing force of the coil spring installed in the gas outlet chamber to close the valve.

実開昭57−35572号公報Japanese Utility Model Publication No. 57-35572

しかし、特許文献1に開示されているガス比例弁には、小ガス流量時のガス流量が安定しないという問題があった。これは、ガス流量が小さい場合には、開弁時の僅かな弁軸のぶれによって弁座と弁体との隙間(弁孔の開口面積)が大きく変動することによる。   However, the gas proportional valve disclosed in Patent Document 1 has a problem that the gas flow rate at a small gas flow rate is not stable. This is because, when the gas flow rate is small, the gap between the valve seat and the valve body (opening area of the valve hole) varies greatly due to slight fluctuation of the valve shaft when the valve is opened.

この発明は従来の技術における上述した課題に対応してなされたものであり、弁体の弁軸のぶれを抑制して、小流量時の流体の流量を安定させることが可能な流体比例弁の提供を目的とする。   The present invention has been made in response to the above-described problems in the prior art, and is a fluid proportional valve capable of stabilizing the flow rate of a fluid at a small flow rate by suppressing the shake of the valve shaft of the valve body. For the purpose of provision.

上述した課題を解決するために本発明の流体比例弁は次の構成を採用した。すなわち、
流体が通過する弁孔が設けられた弁座と、該弁座に弾性体で付勢されることによって前記弁孔を塞ぐとともに、該弾性体で付勢される側とは反対側に弁軸が突設された弁体と、前記弁軸の前記弁体とは反対側の端部で該弁体を支持するダイヤフラムと、前記弁軸の前記ダイヤフラム側の端部を前記弾性体の付勢力に抗して駆動することにより、前記弁座に押し付けられた前記弁体を前記弁軸の軸方向に移動させる駆動部とを備え、前記弁体の移動量に応じて前記弁孔を通過する前記流体の流量を制御する流体比例弁において、
前記弾性体は、前記弁体に近い側よりも該弁体から遠い側の方が、前記弁軸に対して直交する方向への剛性が低くなっている
ことを特徴とする。
In order to solve the above-described problems, the fluid proportional valve of the present invention employs the following configuration. That is,
A valve seat provided with a valve hole through which a fluid passes, and the valve seat is closed by being urged by an elastic body to the valve seat, and the valve shaft is opposite to the side urged by the elastic body Projecting valve body, a diaphragm supporting the valve body at an end of the valve shaft opposite to the valve body, and an end of the valve shaft on the diaphragm side biasing force of the elastic body A drive unit that moves the valve body pressed against the valve seat in the axial direction of the valve shaft by driving against the valve seat, and passes through the valve hole according to the amount of movement of the valve body In a fluid proportional valve for controlling the flow rate of the fluid,
The elastic body is characterized in that the rigidity in the direction orthogonal to the valve shaft is lower on the side farther from the valve body than on the side closer to the valve body.

こうした流体比例弁における弁体の弁軸のぶれは、弁体が弁座から離れた状態(開弁状態)で、ダイヤフラムに支持される端部を支点として弁軸が径方向(軸方向と直交する方向)にゆれ動くことで生じる。本発明の流体比例弁では、弁体に近い弾性体の一端側が弁軸のぶれに従って変位すると、一端側よりも径方向の剛性の低い他端側が容易に変形する。この弾性体の他端側は、弁軸のぶれの支点に対して一端側よりも離れているので、他端側に伝わる変位量(ぶれ幅)は、一端側での変位量よりも大きくなる。このため、本発明の弾性体では、一端側の変位量が僅かであっても、他端側が大きく変形し、その他端側が復元力で元に戻る動きが一端側に伝わることによって、一端側を変位前の位置に精度良く戻すことができる。これにより、剛性が均一な弾性体で全体が少しずつ変形する場合に比べて、弁体の位置(弾性体の一端側)における弁軸の僅かなぶれを高い精度で抑制することができる。その結果、弁体と弁座との間隔(弁孔の開口面積)を維持して流体の流量を安定させることが可能となる。   In such a fluid proportional valve, the valve stem of the valve body shakes when the valve body is away from the valve seat (opened state), and the valve shaft is in the radial direction (perpendicular to the axial direction) with the end supported by the diaphragm as a fulcrum. Caused by swaying in the direction of movement). In the fluid proportional valve of the present invention, when the one end side of the elastic body close to the valve body is displaced according to the shake of the valve shaft, the other end side having a lower radial rigidity than the one end side is easily deformed. Since the other end side of the elastic body is further away from the one end side than the fulcrum of the valve shaft shake, the displacement amount (blur width) transmitted to the other end side is larger than the displacement amount on the one end side. . For this reason, in the elastic body of the present invention, even if the displacement amount on one end side is small, the other end side is greatly deformed, and the movement of the other end side returning to the original state by the restoring force is transmitted to the one end side. It is possible to accurately return to the position before the displacement. Thereby, compared with the case where the whole is deformed little by little with the elastic body having uniform rigidity, slight fluctuation of the valve shaft at the position of the valve body (one end side of the elastic body) can be suppressed with high accuracy. As a result, the flow rate of the fluid can be stabilized while maintaining the distance between the valve body and the valve seat (opening area of the valve hole).

上述した本発明の流体比例弁では、弾性体として、弁体に近い側よりも弁体から遠い側のコイル径が大きくなっているコイルバネを用いることとしてもよい。   In the fluid proportional valve of the present invention described above, a coil spring having a larger coil diameter on the side farther from the valve body than on the side closer to the valve body may be used as the elastic body.

このようなコイルバネは、コイル径の小さい小径側よりもコイル径が大きい大径側の方が径方向の剛性が低いことから、弁体に近い一端側が弁軸のぶれに従って変位すると、一端側(小径側)は変形せずに他端側(大径側)が容易に変形する。そして、コイルバネの一端側での僅かな変位が、弁軸のぶれの支点に対して一端側よりも離れている他端側に伝わることにより、他端側は大きく変形し、その他端側が復元力で戻る動きが一端側に伝わるので、一端側を変位前の位置に精度良く戻すことができる。そのため、弁体の位置(コイルバネの一端側)における弁軸の僅かなぶれを高い精度で抑制することができる。   Since such a coil spring has a lower radial rigidity on the large diameter side where the coil diameter is larger than that on the small diameter side where the coil diameter is small, when one end side close to the valve body is displaced according to the fluctuation of the valve shaft, The other end side (large diameter side) is easily deformed without deformation on the small diameter side. Then, a slight displacement on one end side of the coil spring is transmitted to the other end side that is farther from the one end side with respect to the fulcrum of the valve shaft, so that the other end side is greatly deformed and the other end side is a restoring force. Since the movement of returning to the one end side is transmitted to the one end side, the one end side can be accurately returned to the position before the displacement. Therefore, slight blurring of the valve shaft at the position of the valve body (one end side of the coil spring) can be suppressed with high accuracy.

また、コイルバネでは、軸方向に圧縮された状態で、径方向の力が一端側に加わると、巻線が径方向にずれることにより、いわゆる胴曲がりが起こる。そして、胴曲がりを起こした状態では、圧縮力の一部が、巻線のずれた方向にかかるので、径方向の復元力を発生させ難い。こうした胴曲がりの点で、一端側よりも他端側のコイル径が大きい円錐形状のコイルバネでは、小径側のコイル径と同じコイル径に巻かれた円筒形状のコイルバネに比べて、小径側に径方向の力を受けて胴曲がりが起こるまでの巻線のずれ幅が大きく、胴曲がりが起こり難い。そして、胴曲がりを起こしていない円錐形状のコイルバネは、弁軸の径方向のぶれに対する復元力を発生させるので、弁軸のぶれを抑制することができる。   Further, in the coil spring, when a radial force is applied to one end side in a state where the coil spring is compressed in the axial direction, the winding is displaced in the radial direction, so-called bending occurs. In a state where the body is bent, a part of the compressive force is applied in the direction in which the winding is displaced, so that it is difficult to generate a restoring force in the radial direction. In terms of such torsion, a conical coil spring having a coil diameter on the other end side larger than that on one end side is smaller in diameter than the cylindrical coil spring wound around the same coil diameter as the coil diameter on the smaller diameter side. The width of the winding deviation until the torsion occurs due to the force of the direction is large, and the torsion hardly occurs. Further, the conical coil spring which does not cause the bending of the body generates a restoring force against the shake of the valve shaft in the radial direction, so that the shake of the valve shaft can be suppressed.

こうした本発明の流体比例弁では、弾性体として、弁体に近い側よりも弁体から遠い側の巻線の断面積が小さくなっているコイルバネを用いることとしてもよい。   In such a fluid proportional valve of the present invention, a coil spring in which the cross-sectional area of the winding on the side farther from the valve body is smaller than the side closer to the valve body may be used as the elastic body.

このようなコイルバネでは、巻線の断面積が大きい太線側よりも断面積が小さい細線側の方が径方向の剛性が低いことから、弁体に近い一端側が弁軸のぶれに従って変位すると、一端側(太線側)は変形せずに他端側(細線側)が容易に変形する。そして、コイルバネの一端側での僅かな変位が、弁軸のぶれの支点に対して一端側よりも離れている他端側に伝わることにより、他端側は大きく変形し、その他端側が復元力で戻る動きが一端側に伝わるので、一端側を変位前の位置に精度良く戻すことができる。そのため、弁体の位置(コイルバネの一端側)における弁軸の僅かなぶれを高い精度で抑制することができる。   In such a coil spring, since the rigidity in the radial direction is lower on the thin wire side where the cross-sectional area is smaller than the thick wire side where the cross-sectional area of the winding is large, if one end side close to the valve body is displaced according to the shake of the valve shaft, The other side (thin line side) is easily deformed without deforming the side (thick line side). Then, a slight displacement on one end side of the coil spring is transmitted to the other end side that is farther from the one end side with respect to the fulcrum of the valve shaft, so that the other end side is greatly deformed and the other end side is a restoring force. Since the movement of returning to the one end side is transmitted to the one end side, the one end side can be accurately returned to the position before the displacement. Therefore, slight blurring of the valve shaft at the position of the valve body (one end side of the coil spring) can be suppressed with high accuracy.

また、こうした本発明の流体比例弁では、弾性体として、弁体に近い側よりも弁体から遠い側の単位長さあたりの巻き数が多くなっているコイルバネを用いることとしてもよい。   In such a fluid proportional valve of the present invention, a coil spring having a larger number of turns per unit length on the side farther from the valve body than on the side closer to the valve body may be used as the elastic body.

このようなコイルバネでは、巻き数が少ない疎巻側よりも巻き数が多い密巻側の方が径方向の剛性が低いことから、弁体に近い一端側が弁軸のぶれに従って変位すると、一端側(疎巻側)は変形せずに他端側(密巻側)が容易に変形する。そして、コイルバネの一端側での僅かな変位が、弁軸のぶれの支点に対して一端側よりも離れている他端側に伝わることにより、他端側は大きく変形し、その他端側が復元力で戻る動きが一端側に伝わるので、一端側を変位前の位置に精度良く戻すことができる。そのため、弁体の位置(コイルバネの一端側)における弁軸の僅かなぶれを高い精度で抑制することができる。   In such a coil spring, since the rigidity in the radial direction is lower on the densely wound side having a larger number of turns than the lessly wound side having a smaller number of turns, when one end side close to the valve body is displaced according to the shake of the valve shaft, The (sparsely wound side) is not deformed, and the other end side (closely wound side) is easily deformed. Then, a slight displacement on one end side of the coil spring is transmitted to the other end side that is farther from the one end side with respect to the fulcrum of the valve shaft, so that the other end side is greatly deformed and the other end side is a restoring force. Since the movement of returning to the one end side is transmitted to the one end side, the one end side can be accurately returned to the position before the displacement. Therefore, slight blurring of the valve shaft at the position of the valve body (one end side of the coil spring) can be suppressed with high accuracy.

本実施例のガス比例弁10の内部構造を示した断面図である。It is sectional drawing which showed the internal structure of the gas proportional valve 10 of a present Example. 本実施例の円錐形状のコイルバネ60を、一般的な円筒形状のコイルバネ90と比較した説明図である。It is explanatory drawing which compared the conical coil spring 60 of the present Example with the general cylindrical coil spring 90. FIG. 弁軸52のぶれによって本実施例の円錐形状のコイルバネ60が変形する様子を、一般的な円筒形状のコイルバネ90と比較して示した説明図である。It is explanatory drawing which showed a mode that the conical coil spring 60 of a present Example deform | transforms by the shaking of the valve shaft 52 compared with the general cylindrical coil spring 90. FIG. 第1変形例のガス出口室34内に設置される付勢バネ100の構造を示した断面図である。It is sectional drawing which showed the structure of the urging | biasing spring 100 installed in the gas outlet chamber 34 of a 1st modification. 第2変形例のガス出口室34内に設置される付勢バネ110の形状を示した断面図である。It is sectional drawing which showed the shape of the urging | biasing spring 110 installed in the gas outlet chamber 34 of a 2nd modification. 第3変形例のガス出口室34内に設置される付勢バネ120の形状を示した断面図である。It is sectional drawing which showed the shape of the urging | biasing spring 120 installed in the gas outlet chamber 34 of a 3rd modification.

図1は、本実施例のガス比例弁10の内部構造を示した断面図である。このガス比例弁10は、給湯器などのガス機器のバーナー(図示省略)に供給するガスの流量を制御するために使用される。図示されるようにガス比例弁10は、円筒形状に形成された上ケース22と下ケース24とを重ね合せて本体ケース20が形成されている。上ケース22の周面には、ガスが流入するガス入口28が設けられており、下ケース24の周面には、ガスが流出するガス出口32が設けられている。尚、本実施例のガス比例弁10は、本発明の「流体比例弁」に相当している。   FIG. 1 is a cross-sectional view showing the internal structure of the gas proportional valve 10 of this embodiment. The gas proportional valve 10 is used to control the flow rate of gas supplied to a burner (not shown) of a gas device such as a water heater. As shown in the figure, the gas proportional valve 10 has a main body case 20 formed by superposing an upper case 22 and a lower case 24 formed in a cylindrical shape. A gas inlet 28 through which gas flows is provided on the peripheral surface of the upper case 22, and a gas outlet 32 through which gas flows out is provided at the peripheral surface of the lower case 24. The gas proportional valve 10 of this embodiment corresponds to the “fluid proportional valve” of the present invention.

本体ケース20内には、ガス入口28と繋がるガス入口室30や、ガス出口32と繋がるガス出口室34や、ガス入口室30とガス出口室34とを連通する円形の弁孔36が形成された弁座38が設けられている。ガス入口室30は、弁孔36が開口する側とは反対側(図中の上部)が円形のダイヤフラム40で覆われている。ダイヤフラム40の外縁は、上ケース22の上端の内周に形成された浅い窪みに嵌め込まれて、中央に開口部を有する蓋板26と上ケース22との間に挟持される。   A gas inlet chamber 30 connected to the gas inlet 28, a gas outlet chamber 34 connected to the gas outlet 32, and a circular valve hole 36 communicating the gas inlet chamber 30 and the gas outlet chamber 34 are formed in the main body case 20. A valve seat 38 is provided. The gas inlet chamber 30 is covered with a circular diaphragm 40 on the side opposite to the side where the valve hole 36 opens (upper part in the drawing). The outer edge of the diaphragm 40 is fitted into a shallow recess formed in the inner periphery of the upper end of the upper case 22 and is sandwiched between the cover plate 26 having an opening at the center and the upper case 22.

また、本体ケース20内には、ガス出口室34側から弁座38に当接することで弁孔36を塞ぐ弁体50が収容されている。弁体50は、ガス入口室30側よりもガス出口室34側の断面積が広がったテーパー形状に形成されており、円柱形状の弁軸52を介してダイヤフラム40に支持されている。ダイヤフラム40に接する弁軸52の上端面からは小径部54が突設されており、ダイヤフラム40の中央に貫設された孔に小径部54を挿通した状態で円環形状の留め具56が小径部54に嵌め込まれてダイヤフラム40を挟持している。また、小径部54の上端側は、蓋板26の開口部に突き通されている。   In addition, a valve body 50 that closes the valve hole 36 by contacting the valve seat 38 from the gas outlet chamber 34 side is accommodated in the main body case 20. The valve body 50 is formed in a tapered shape in which the cross-sectional area on the gas outlet chamber 34 side is wider than the gas inlet chamber 30 side, and is supported by the diaphragm 40 via a cylindrical valve shaft 52. A small-diameter portion 54 protrudes from the upper end surface of the valve shaft 52 in contact with the diaphragm 40, and an annular fastener 56 has a small diameter in a state where the small-diameter portion 54 is inserted into a hole penetrating through the center of the diaphragm 40. The diaphragm 40 is sandwiched by being fitted into the portion 54. Further, the upper end side of the small diameter portion 54 is pierced through the opening of the lid plate 26.

ガス出口室34内には、弁体50を弁座38に押し付ける方向(図中の上方)に付勢する付勢バネ60が設置されている。本実施例の付勢バネ60には、円錐形状のコイルバネを用いており、弁体50に固定される一端側よりも、ガス出口室34の底面に固定される他端側のコイル径が大きくなっている。   In the gas outlet chamber 34, an urging spring 60 that urges the valve body 50 in a direction (upward in the figure) to press the valve body 50 against the valve seat 38 is installed. The biasing spring 60 of this embodiment uses a conical coil spring, and the coil diameter on the other end side fixed to the bottom surface of the gas outlet chamber 34 is larger than the one end side fixed to the valve body 50. It has become.

ガス入口室30の上方には、弁体50を駆動するためのアクチュエーター70が蓋板26の上面に設置されている。アクチュエーター70は、電線を巻回して円筒形状に形成された電磁コイル72と、電磁コイル72の中心軸内に摺動可能な状態で挿入された可動鉄心74とを備えており、可動鉄心74の下端は小径部54の上端と接している。また、アクチュエーター70の上部を覆う上面板78と可動鉄心74との間には押圧バネ76が設けられており、可動鉄心74を小径部54に向けて付勢している。尚、押圧バネ76には、円筒形状のコイルバネを用いている。また、本実施例のアクチュエーター70は、本発明の「駆動部」に相当している。   Above the gas inlet chamber 30, an actuator 70 for driving the valve body 50 is installed on the upper surface of the lid plate 26. The actuator 70 includes an electromagnetic coil 72 formed in a cylindrical shape by winding an electric wire, and a movable iron core 74 that is slidably inserted into the central axis of the electromagnetic coil 72. The lower end is in contact with the upper end of the small diameter portion 54. A pressing spring 76 is provided between the upper surface plate 78 covering the upper portion of the actuator 70 and the movable iron core 74, and urges the movable iron core 74 toward the small diameter portion 54. The pressing spring 76 is a cylindrical coil spring. Further, the actuator 70 of the present embodiment corresponds to a “drive unit” of the present invention.

このような構造のガス比例弁10は、次のように動作する。先ず図1に示されるように、電磁コイル72に通電されていないときには、付勢バネ60の付勢力によって弁体50が弁座38に押し付けられており、弁体50が弁孔36を塞いでガス比例弁10が閉弁状態となっている。尚、付勢バネ60の付勢力は、押圧バネ76の付勢力に抗して可動鉄心74、弁軸52、および弁体50を押し上げるように設定されている。また、本実施例の付勢バネ60は、本発明の「弾性体」に相当している。   The gas proportional valve 10 having such a structure operates as follows. First, as shown in FIG. 1, when the electromagnetic coil 72 is not energized, the valve body 50 is pressed against the valve seat 38 by the biasing force of the biasing spring 60, and the valve body 50 blocks the valve hole 36. The gas proportional valve 10 is closed. The urging force of the urging spring 60 is set so as to push up the movable iron core 74, the valve shaft 52, and the valve body 50 against the urging force of the pressing spring 76. The urging spring 60 of this embodiment corresponds to the “elastic body” of the present invention.

そして、閉弁状態のガス比例弁10の電磁コイル72に通電すると、電流値に応じて発生する磁力によって可動鉄心74が電磁コイル72に引き込まれて、小径部54を介して弁軸52を押し下げる。その結果、弁体50が弁座38から離れてガス比例弁10が開弁状態となる。テーパー形状に形成された弁体50が電流値に応じて下方に移動すると、それに従って弁体50と弁座38との隙間(弁孔36の開口面積)が大きくなるので、ガス流量が増加する。   When the electromagnetic coil 72 of the gas proportional valve 10 in the closed state is energized, the movable iron core 74 is drawn into the electromagnetic coil 72 by the magnetic force generated according to the current value, and the valve shaft 52 is pushed down through the small diameter portion 54. . As a result, the valve body 50 is separated from the valve seat 38 and the gas proportional valve 10 is opened. When the valve body 50 formed in a tapered shape moves downward according to the current value, the gap between the valve body 50 and the valve seat 38 (opening area of the valve hole 36) increases accordingly, and the gas flow rate increases. .

また、弁軸52を介してダイヤフラム40に支持される弁体50は、ガス入口室30のガス圧の変化に応じて変位することにより、ガス出口室34のガス圧の変化を抑制することができる。例えば、ガス入口室30のガス圧が上昇すると、ダイヤフラム40が上方に向かって膨らみ、それに伴って弁体50が引き上げられて弁孔36の開口面積が小さくなる。その結果、ガス流量が抑えられて、ガス出口室34のガス圧は、電磁コイル72に通電される電流値に応じた所定圧力に維持される。これとは逆に、ガス入口室30のガス圧が低下すると、ダイヤフラム40が下がるのに伴って弁体50が押し下げられるので、ガス流量が増加してガス出口室34のガス圧は維持される。   Further, the valve body 50 supported by the diaphragm 40 via the valve shaft 52 is displaced according to the change in the gas pressure in the gas inlet chamber 30, thereby suppressing the change in the gas pressure in the gas outlet chamber 34. it can. For example, when the gas pressure in the gas inlet chamber 30 rises, the diaphragm 40 swells upward, and accordingly, the valve body 50 is pulled up to reduce the opening area of the valve hole 36. As a result, the gas flow rate is suppressed, and the gas pressure in the gas outlet chamber 34 is maintained at a predetermined pressure corresponding to the current value supplied to the electromagnetic coil 72. On the contrary, when the gas pressure in the gas inlet chamber 30 is lowered, the valve body 50 is pushed down as the diaphragm 40 is lowered, so that the gas flow rate is increased and the gas pressure in the gas outlet chamber 34 is maintained. .

一方、電磁コイル72への通電を停止して、可動鉄心74を電磁コイル72に引き込む磁力が消失すると、付勢バネ60の付勢力によって弁体50が押し上げられて弁孔36を塞ぎ、ガス比例弁10が閉弁状態に戻る。   On the other hand, when the energization to the electromagnetic coil 72 is stopped and the magnetic force that pulls the movable iron core 74 into the electromagnetic coil 72 disappears, the valve body 50 is pushed up by the urging force of the urging spring 60 to close the valve hole 36, and the gas proportional The valve 10 returns to the closed state.

以上のように動作するガス比例弁10では、開弁状態で外部から衝撃や振動などを受けて弁軸52がぶれる(径方向にゆれ動く)と、弁体50と弁座38との隙間(弁孔36の開口面積)が変動する。特にガス流量を小さく(弁孔36の開口面積を小さく)設定すると、弁軸52の僅かなぶれによる開口面積の変化率が大きいことから、ガス流量が安定しない。また、弁体50が弁座38に衝突することで騒音が発生する。そこで、本実施例のガス比例弁10では、弁軸52のぶれを抑制するために、付勢バネ60として円錐形状のコイルバネを採用している。   In the gas proportional valve 10 operating as described above, when the valve shaft 52 is shaken (swaying in the radial direction) in response to an impact or vibration from the outside in the opened state, the gap between the valve body 50 and the valve seat 38 ( The opening area of the valve hole 36 varies. In particular, when the gas flow rate is set to be small (the opening area of the valve hole 36 is set small), the rate of change of the opening area due to slight shaking of the valve shaft 52 is large, so that the gas flow rate is not stable. Further, noise is generated when the valve body 50 collides with the valve seat 38. Therefore, in the gas proportional valve 10 of the present embodiment, a conical coil spring is adopted as the biasing spring 60 in order to suppress the shake of the valve shaft 52.

図2は、本実施例の円錐形状のコイルバネ60を、一般的な円筒形状のコイルバネ90と比較した説明図である。尚、図中の白抜きの矢印は、コイルバネ(60,90)に加わる力の方向を表している。先ず、図2(a)に示した円筒形状の均一なコイルバネ90では、軸方向に圧縮された状態で、径方向(図示した例では右方向)の力が上端側に加わると、図中に破線で示すように巻線が径方向にずれることで、いわゆる胴曲がりが起こる。そして、胴曲がりを起こした状態では、圧縮力の一部が、巻線のずれた方向(図中の右方向)にかかるので、弁軸52の径方向のぶれに対する復元力を発生させ難い。   FIG. 2 is an explanatory diagram comparing the conical coil spring 60 of the present embodiment with a general cylindrical coil spring 90. In addition, the white arrow in a figure represents the direction of the force added to a coil spring (60,90). First, in the cylindrical uniform coil spring 90 shown in FIG. 2A, when a force in the radial direction (right direction in the illustrated example) is applied to the upper end side in a state compressed in the axial direction, As shown by the broken line, the winding is displaced in the radial direction, so-called bending occurs. In a state where the body is bent, a part of the compressive force is applied in a direction in which the winding is displaced (right direction in the drawing), and thus it is difficult to generate a restoring force against the radial shake of the valve shaft 52.

一方、図2(b)に示した円錐形状のコイルバネ60では、小径側(上端側)のコイル径が図2(a)の円筒形状のコイルバネ90のコイル径と同じであるとすると、図中に破線で示すような胴曲がりが起こるまでの巻線の径方向へのずれ幅が、円筒形状のコイルバネ90に比べて大きく、胴曲がりが起こり難い。そして、胴曲がりを起こしていない円錐形状のコイルバネ60は、弁軸52の径方向のぶれに対する復元力を発生させるので、弁軸52のぶれを抑制することができる。   On the other hand, in the conical coil spring 60 shown in FIG. 2B, assuming that the coil diameter on the small diameter side (upper end side) is the same as the coil diameter of the cylindrical coil spring 90 in FIG. The winding displacement in the radial direction until the torsion as shown by the broken line in FIG. 3 is larger than that of the cylindrical coil spring 90, and the torsion hardly occurs. Further, the conical coil spring 60 which does not cause the bending of the body generates a restoring force against the shake of the valve shaft 52 in the radial direction, so that the shake of the valve shaft 52 can be suppressed.

また、図3は、弁軸52のぶれによって本実施例の円錐形状のコイルバネ60が変形する様子を、一般的な円筒形状のコイルバネ90と比較して示した説明図である。図3では、弁軸52の中心線を含む平面で弁軸52およびコイルバネ(60,90)を切断した断面図が示されている。弁軸52のぶれは、ダイヤフラム40に支持される小径部54を支点として弁軸52が径方向(軸方向に直交する方向)にゆれ動くことで生じる。図3(a)に示した円筒形状の均一なコイルバネ90では、弁体50に固定された上端が弁軸52のぶれに従って変位すると、コイルバネ90の全体が均一に変形する。こうしたコイルバネ90では、上端側の変位量が僅かであると、コイルバネ90の各所の変形量も小さいことから、その復元力によって上端側の僅かな変位を戻す動作に精度を出すのは困難である。従って、円筒形状の均一なコイルバネ90では、弁軸52の僅かなぶれを抑制するのは困難である。   FIG. 3 is an explanatory view showing a state in which the conical coil spring 60 of the present embodiment is deformed by the shake of the valve shaft 52 in comparison with a general cylindrical coil spring 90. FIG. 3 shows a cross-sectional view of the valve shaft 52 and the coil springs (60, 90) cut along a plane including the center line of the valve shaft 52. The shake of the valve shaft 52 is caused by the valve shaft 52 swaying in the radial direction (direction orthogonal to the axial direction) with the small diameter portion 54 supported by the diaphragm 40 as a fulcrum. In the cylindrical uniform coil spring 90 shown in FIG. 3A, when the upper end fixed to the valve body 50 is displaced in accordance with the shake of the valve shaft 52, the entire coil spring 90 is uniformly deformed. In such a coil spring 90, if the amount of displacement on the upper end side is small, the amount of deformation of each part of the coil spring 90 is also small, so it is difficult to obtain accuracy in the operation of returning the slight displacement on the upper end side by the restoring force. . Therefore, it is difficult to suppress slight shaking of the valve shaft 52 with the cylindrical coil spring 90 having a uniform shape.

これに対して、図3(b)に示した円錐形状のコイルバネ60では、径方向の力を受けて一周分の巻線がしなる際にコイル径の小さい巻線に比べてコイル径の大きい巻線の方が、しなりが小さくてよいことから、小径側よりも大径側の方が径方向の剛性が低い。このため、弁体50に固定されたコイルバネ60の上端が弁軸52のぶれに従って変位すると、上端側(小径側)よりも下端側(大径側)が容易に変形する。また、このコイルバネ60の下端側は、弁軸52のぶれの支点に対して上端側よりも離れている(遠い)ので、下端側に伝わる変位量(ぶれ幅)は、上端側での変位量よりも大きくなる。このような円錐形状のコイルバネ60では、上端側の変位量が僅かであっても、下端側が大きく変形し、その下端側が復元力で元に戻る動きが上端側に伝わることによって、上端側を変位前の位置に精度良く戻すことができる。これにより、図3(a)の円筒形状のコイルバネ90に比べて、弁体50の位置(コイルバネ60の上端)における弁軸52の僅かなぶれを高い精度で抑制することができる。その結果、小ガス流量に設定する場合でもガス流量を安定させると共に、弁座38への弁体50の衝突による騒音の発生を抑制することが可能となる。   On the other hand, in the conical coil spring 60 shown in FIG. 3B, the coil diameter is larger than that of the small coil diameter when the winding for one round is received by receiving the radial force. Since the winding may be smaller in bending, the radial rigidity is lower on the large diameter side than on the small diameter side. For this reason, when the upper end of the coil spring 60 fixed to the valve body 50 is displaced according to the movement of the valve shaft 52, the lower end side (large diameter side) is easily deformed rather than the upper end side (small diameter side). Further, since the lower end side of the coil spring 60 is farther from the upper end side than the upper end side with respect to the fulcrum of movement of the valve shaft 52, the displacement amount (blur width) transmitted to the lower end side is the displacement amount on the upper end side. Bigger than. In such a conical coil spring 60, even if the amount of displacement on the upper end side is slight, the lower end side is greatly deformed, and the movement of the lower end side returning to the original state by the restoring force is transmitted to the upper end side, thereby displacing the upper end side. It is possible to return to the previous position with high accuracy. Thereby, compared with the cylindrical coil spring 90 of FIG. 3A, slight blurring of the valve shaft 52 at the position of the valve body 50 (the upper end of the coil spring 60) can be suppressed with high accuracy. As a result, even when the small gas flow rate is set, the gas flow rate can be stabilized and the generation of noise due to the collision of the valve body 50 with the valve seat 38 can be suppressed.

上述した本実施例のガス比例弁10には、次のような変形例も存在する。以下では、上述した実施例とは異なる部分を中心に変形例について説明する。   The following modification is also present in the gas proportional valve 10 of the present embodiment described above. In the following, a modified example will be described focusing on parts different from the above-described embodiment.

図4は、第1変形例のガス出口室34内に設置される付勢バネ100の構造を示した断面図である。図示されるように第1変形例の付勢バネ100は、コイル径の異なる2つの円筒形状のコイルバネ102,104と、円環形状の座金106とを備えており、コイル径の小さい小コイルバネ102が座金106の上面に取り付けられ、コイル径の大きい大コイルバネ104が座金106の下面に取り付けられている。この付勢バネ100は、小コイルバネ102側が弁体50に固定され、大コイルバネ104側がガス出口室34の底面に固定される。尚、第1変形例の付勢バネ100は、本発明の「弾性体」に相当している。   FIG. 4 is a cross-sectional view showing the structure of the biasing spring 100 installed in the gas outlet chamber 34 of the first modification. As shown in the figure, the urging spring 100 of the first modification includes two cylindrical coil springs 102 and 104 having different coil diameters and an annular washer 106, and a small coil spring 102 having a small coil diameter. Is attached to the upper surface of the washer 106, and a large coil spring 104 having a large coil diameter is attached to the lower surface of the washer 106. The biasing spring 100 has a small coil spring 102 side fixed to the valve body 50 and a large coil spring 104 side fixed to the bottom surface of the gas outlet chamber 34. The biasing spring 100 of the first modification corresponds to the “elastic body” of the present invention.

このような第1変形例の付勢バネ100では、前述した円錐形状のコイルバネ60と同様に、コイル径の小さい小コイルバネ102よりもコイル径の大きい大コイルバネ104の方が径方向の剛性が低いことから、弁体50に固定された小コイルバネ102の上端が弁軸52のぶれに従って変位すると、小コイルバネ102よりも大コイルバネ104が容易に変形する。そして、小コイルバネ102の上端側での僅かな変位が、弁軸52のぶれの支点に対して小コイルバネ102よりも離れている大コイルバネ104に伝わることにより、大コイルバネ104は大きく変形し、その大コイルバネ104が復元力で元に戻る動きが小コイルバネ102に伝わるので、小コイルバネ102の上端を変位前の位置に精度良く戻すことができる。そのため、弁体50の位置(小コイルバネ102の上端)における弁軸52の僅かなぶれを高い精度で抑制することができる。   In the urging spring 100 according to the first modified example, the large coil spring 104 having a large coil diameter is less rigid in the radial direction than the small coil spring 102 having a small coil diameter, like the conical coil spring 60 described above. Therefore, when the upper end of the small coil spring 102 fixed to the valve body 50 is displaced according to the movement of the valve shaft 52, the large coil spring 104 is more easily deformed than the small coil spring 102. Then, a slight displacement on the upper end side of the small coil spring 102 is transmitted to the large coil spring 104 which is farther than the small coil spring 102 with respect to the fulcrum of the valve shaft 52, so that the large coil spring 104 is greatly deformed. Since the movement of the large coil spring 104 returning to the original state by the restoring force is transmitted to the small coil spring 102, the upper end of the small coil spring 102 can be accurately returned to the position before the displacement. Therefore, slight shake of the valve shaft 52 at the position of the valve body 50 (the upper end of the small coil spring 102) can be suppressed with high accuracy.

図5は、第2変形例のガス出口室34内に設置される付勢バネ110の形状を示した断面図である。図示されるように第2変形例の付勢バネ110は、円筒形状のコイルバネであるが、下端側に研削部112が設けられている。この研削部112では、巻線の外周側が研削され、巻線の断面形状が半円形となっている。第2変形例の付勢バネ110は、研削部112が設けられていない上端側が弁体50に固定され、研削部112が設けられた下端側がガス出口室34の底面に固定される。尚、第2変形例の付勢バネ110は、本発明の「弾性体」に相当している。   FIG. 5 is a sectional view showing the shape of the biasing spring 110 installed in the gas outlet chamber 34 of the second modification. As shown in the drawing, the urging spring 110 of the second modified example is a cylindrical coil spring, but a grinding portion 112 is provided on the lower end side. In this grinding part 112, the outer peripheral side of the winding is ground, and the cross-sectional shape of the winding is semicircular. The urging spring 110 of the second modification is fixed to the valve body 50 at the upper end side where the grinding portion 112 is not provided, and is fixed to the bottom surface of the gas outlet chamber 34 at the lower end side where the grinding portion 112 is provided. The biasing spring 110 of the second modification corresponds to the “elastic body” of the present invention.

このような第2変形例の付勢バネ110では、下端側の研削部112の巻線の断面積が上端側の巻線の約半分であることから、上端側よりも下端側の方が径方向の剛性が低くなっている。従って、弁体50に固定された付勢バネ110の上端が弁軸52のぶれに従って変位すると、上端側は変形せずに下端側が容易に変形する。そして、付勢バネ110の上端側での僅かな変位が、弁軸52のぶれの支点に対して上端側よりも離れている下端側に伝わることにより、下端側は大きく変形し、その下端側が復元力で元に戻る動きが上端側に伝わるので、上端側を変位前の位置に精度良く戻すことができる。そのため、弁体50の位置(付勢バネ110の上端)における弁軸52の僅かなぶれを高い精度で抑制することができる。   In the urging spring 110 of the second modified example, since the cross-sectional area of the winding of the grinding portion 112 on the lower end side is about half of the winding on the upper end side, the diameter on the lower end side is larger than that on the upper end side. Directional rigidity is low. Therefore, when the upper end of the urging spring 110 fixed to the valve body 50 is displaced according to the shake of the valve shaft 52, the upper end side is not deformed and the lower end side is easily deformed. Then, a slight displacement on the upper end side of the biasing spring 110 is transmitted to the lower end side farther from the upper end side with respect to the fulcrum of the valve shaft 52, so that the lower end side is greatly deformed, and the lower end side is Since the movement of returning to the original state by the restoring force is transmitted to the upper end side, the upper end side can be accurately returned to the position before the displacement. Therefore, slight shaking of the valve shaft 52 at the position of the valve body 50 (the upper end of the biasing spring 110) can be suppressed with high accuracy.

尚、第2変形例の付勢バネ110では、下端側に研削部112を設けていたが、下端側の巻線の断面積が上端側よりも小さくなっていればよく、研削部112は必須ではない。例えば、一端側よりも他端側の巻線の太さが細くなっている線材を円筒形状に巻いてコイルバネを形成してもよい。この場合は、コイルバネの太線側を弁体50に固定し、細線側をガス出口室34の底面に固定すればよい。   In the biasing spring 110 of the second modification, the grinding part 112 is provided on the lower end side. However, it is sufficient that the cross-sectional area of the winding on the lower end side is smaller than that on the upper end side, and the grinding part 112 is essential. is not. For example, a coil spring may be formed by winding a wire whose thickness on the other end side is thinner than one end side in a cylindrical shape. In this case, the thick wire side of the coil spring may be fixed to the valve body 50 and the thin wire side may be fixed to the bottom surface of the gas outlet chamber 34.

図6は、第3変形例のガス出口室34内に設置される付勢バネ120の形状を示した断面図である。図示されるように第3変形例の付勢バネ120は、円筒形状のコイルバネであるが、単位長さあたりの巻き数(巻線のピッチ)が上端側と下端側とで異なっている。そして、巻き数の少ない上端側の疎巻部122が弁体50に固定され、巻き数の多い下端側の密巻部124がガス出口室34の底面に固定される。尚、第3変形例の付勢バネ120は、本発明の「弾性体」に相当している。   FIG. 6 is a cross-sectional view showing the shape of the biasing spring 120 installed in the gas outlet chamber 34 of the third modification. As illustrated, the biasing spring 120 of the third modification is a cylindrical coil spring, but the number of turns per unit length (winding pitch) is different between the upper end side and the lower end side. The loosely wound portion 122 on the upper end side with a small number of turns is fixed to the valve body 50, and the densely wound portion 124 on the lower end side with a large number of turns is fixed to the bottom surface of the gas outlet chamber 34. The urging spring 120 of the third modification corresponds to the “elastic body” of the present invention.

このような第3変形例の付勢バネ120では、径方向の力を受けて巻線がしなる際に疎巻部122に比べて密巻部124の方が巻線の1周分あたりのしなりが小さくてよいことから、疎巻部122よりも密巻部124の方が径方向の剛性が低い。従って、弁体50に固定された付勢バネ120の上端が弁軸52のぶれに従って変位すると、上端側は変形せずに下端側が容易に変形する。そして、付勢バネ120の上端側での僅かな変位が、弁軸52のぶれの支点に対して上端側よりも離れている下端側に伝わることにより、下端側は大きく変形し、その下端側が復元力で元に戻る動きが上端側に伝わるので、上端側を変位前の位置に精度良く戻すことができる。そのため、弁体50の位置(付勢バネ120の上端)における弁軸52の僅かなぶれを高い精度で抑制することができる。   In the urging spring 120 according to the third modified example, the densely wound portion 124 is closer to the circumference of the winding than the loosely wound portion 122 when the winding is formed by receiving a radial force. Since the bending may be small, the densely wound portion 124 is less rigid in the radial direction than the loosely wound portion 122. Therefore, when the upper end of the urging spring 120 fixed to the valve body 50 is displaced according to the shake of the valve shaft 52, the upper end side is not deformed and the lower end side is easily deformed. Then, a slight displacement on the upper end side of the urging spring 120 is transmitted to the lower end side farther from the upper end side with respect to the fulcrum of the valve shaft 52, so that the lower end side is greatly deformed, and the lower end side is Since the movement of returning to the original state by the restoring force is transmitted to the upper end side, the upper end side can be accurately returned to the position before the displacement. Therefore, slight shake of the valve shaft 52 at the position of the valve body 50 (the upper end of the biasing spring 120) can be suppressed with high accuracy.

以上、本実施例および変形例のガス比例弁10について説明したが、本発明は上記の実施例および変形例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。   Although the gas proportional valve 10 of the present embodiment and the modification has been described above, the present invention is not limited to the above embodiment and the modification, and can be implemented in various modes without departing from the gist thereof. Is possible.

例えば、前述した実施例および変形例の付勢バネ(60,100,110,120)では、コイルバネの一端側よりも他端側の剛性を低くする要因として、コイル径、巻線の断面積、単位長さあたりの巻き数のうち何れか1つを、一端側と他端側とで異ならせていたが、1つに限られず、複数の要因を一端側と他端側とで異ならせてもよい。   For example, in the bias springs (60, 100, 110, 120) of the above-described embodiments and modifications, the coil diameter, the cross-sectional area of the winding, Any one of the number of windings per unit length was different on one end side and the other end side, but it is not limited to one, and multiple factors are made different on one end side and the other end side. Also good.

また、前述した実施例および変形例のガス比例弁10では、弁体50を付勢するのに種々のコイルバネ(60,100,110,120)を用いていたが、コイルバネに限られるものではなく、一端側よりも他端側の方が径方向の剛性が低い弾性体であればよい。例えば、ゴム材料を用いて円柱形状に形成された弾性ゴム体であってもよく、この場合は、弾性ゴム体の一端側と他端側とでゴム材料の硬度を異ならせればよい。   Further, in the gas proportional valve 10 of the above-described embodiments and modifications, various coil springs (60, 100, 110, 120) are used to bias the valve body 50. However, the present invention is not limited to the coil spring. The elastic body may be any elastic body having lower radial rigidity on the other end side than on the one end side. For example, an elastic rubber body formed into a cylindrical shape using a rubber material may be used, and in this case, the hardness of the rubber material may be different between one end side and the other end side of the elastic rubber body.

10…ガス比例弁、 20…本体ケース、 22…上ケース、
24…下ケース、 26…蓋板、 28…ガス入口、
30…ガス入口室、 32…ガス出口、 34…ガス出口室、
36…弁孔、 38…弁座、 40…ダイヤフラム、
50…弁体、 52…弁軸、 54…小径部、
56…留め具、 60…付勢バネ、 70…アクチュエーター、
72…電磁コイル、 74…可動鉄心、 76…押圧バネ、
78…上面板、 90…コイルバネ、 100…付勢バネ、
102…小コイルバネ、 104…大コイルバネ、 106…座金、
110…付勢バネ、 112…研削部、 120…付勢バネ、
122…疎巻部、 124…密巻部。
10 ... Gas proportional valve, 20 ... Main body case, 22 ... Upper case,
24 ... lower case, 26 ... lid plate, 28 ... gas inlet,
30 ... Gas inlet chamber, 32 ... Gas outlet, 34 ... Gas outlet chamber,
36 ... Valve hole, 38 ... Valve seat, 40 ... Diaphragm,
50 ... Valve body, 52 ... Valve stem, 54 ... Small diameter part,
56 ... Fastener, 60 ... Biasing spring, 70 ... Actuator,
72 ... Electromagnetic coil, 74 ... Movable iron core, 76 ... Pressing spring,
78 ... Top plate, 90 ... Coil spring, 100 ... Biasing spring,
102 ... A small coil spring, 104 ... A large coil spring, 106 ... A washer,
110: Biasing spring, 112 ... Grinding part, 120 ... Biasing spring,
122 ... sparsely wound portion, 124 ... densely wound portion.

Claims (4)

流体が通過する弁孔が設けられた弁座と、該弁座に弾性体で付勢されることによって前記弁孔を塞ぐとともに、該弾性体で付勢される側とは反対側に弁軸が突設された弁体と、前記弁軸の前記弁体とは反対側の端部で該弁体を支持するダイヤフラムと、前記弁軸の前記ダイヤフラム側の端部を前記弾性体の付勢力に抗して駆動することにより、前記弁座に押し付けられた前記弁体を前記弁軸の軸方向に移動させる駆動部とを備え、前記弁体の移動量に応じて前記弁孔を通過する前記流体の流量を制御する流体比例弁において、
前記弾性体は、前記弁体に近い側よりも該弁体から遠い側の方が、前記弁軸に対して直交する方向への剛性が低くなっている
ことを特徴とする流体比例弁。
A valve seat provided with a valve hole through which a fluid passes, and the valve seat is closed by being urged by an elastic body to the valve seat, and the valve shaft is opposite to the side urged by the elastic body Projecting valve body, a diaphragm supporting the valve body at an end of the valve shaft opposite to the valve body, and an end of the valve shaft on the diaphragm side biasing force of the elastic body A drive unit that moves the valve body pressed against the valve seat in the axial direction of the valve shaft by driving against the valve seat, and passes through the valve hole according to the amount of movement of the valve body In a fluid proportional valve for controlling the flow rate of the fluid,
The fluid proportional valve, wherein the elastic body has a lower rigidity in a direction perpendicular to the valve shaft on a side farther from the valve body than on a side closer to the valve body.
請求項1に記載の流体比例弁において、
前記弾性体は、前記弁体に近い側よりも該弁体から遠い側のコイル径が大きくなっているコイルバネである
ことを特徴とする流体比例弁。
The fluid proportional valve according to claim 1,
The fluid proportional valve, wherein the elastic body is a coil spring having a coil diameter on a side farther from the valve body than on a side closer to the valve body.
請求項1または請求項2に記載の流体比例弁において、
前記弾性体は、前記弁体に近い側よりも該弁体から遠い側の巻線の断面積が小さくなっているコイルバネである
ことを特徴とする流体比例弁。
The fluid proportional valve according to claim 1 or 2,
The fluid proportional valve, wherein the elastic body is a coil spring in which a cross-sectional area of a winding farther from the valve body is smaller than a side closer to the valve body.
請求項1ないし請求項3の何れか一項に記載の流体比例弁において、
前記弾性体は、前記弁体に近い側よりも該弁体から遠い側の単位長さあたりの巻き数が多くなっているコイルバネである
ことを特徴とする流体比例弁。
In the fluid proportional valve according to any one of claims 1 to 3,
The fluid proportional valve, wherein the elastic body is a coil spring having a larger number of turns per unit length on a side farther from the valve body than on a side closer to the valve body.
JP2013138471A 2013-07-01 2013-07-01 Fluid proportional valve Active JP5891205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138471A JP5891205B2 (en) 2013-07-01 2013-07-01 Fluid proportional valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138471A JP5891205B2 (en) 2013-07-01 2013-07-01 Fluid proportional valve

Publications (2)

Publication Number Publication Date
JP2015010694A true JP2015010694A (en) 2015-01-19
JP5891205B2 JP5891205B2 (en) 2016-03-22

Family

ID=52304027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138471A Active JP5891205B2 (en) 2013-07-01 2013-07-01 Fluid proportional valve

Country Status (1)

Country Link
JP (1) JP5891205B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980430A (en) * 2018-07-18 2018-12-11 苏州福特曼机器人系统有限公司 Overcurrent stop valve
CN112032382A (en) * 2020-09-10 2020-12-04 南安市丽迪家居用品有限公司 Constant pressure water-saving valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214083A (en) * 1982-06-07 1983-12-13 Matsushita Electric Ind Co Ltd Proportional pressure control valve
JPS61119669U (en) * 1985-01-11 1986-07-28
JPH09144918A (en) * 1995-11-20 1997-06-03 Matsushita Electric Ind Co Ltd Valve
JPH11173454A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Adjusting valve
JP2001254892A (en) * 2000-03-13 2001-09-21 Nippon Grease Nipple Kk Grease nipple
JP2002318037A (en) * 2001-04-18 2002-10-31 Tgk Co Ltd Expansion valve unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58214083A (en) * 1982-06-07 1983-12-13 Matsushita Electric Ind Co Ltd Proportional pressure control valve
JPS61119669U (en) * 1985-01-11 1986-07-28
JPH09144918A (en) * 1995-11-20 1997-06-03 Matsushita Electric Ind Co Ltd Valve
JPH11173454A (en) * 1997-12-11 1999-06-29 Hitachi Ltd Adjusting valve
JP2001254892A (en) * 2000-03-13 2001-09-21 Nippon Grease Nipple Kk Grease nipple
JP2002318037A (en) * 2001-04-18 2002-10-31 Tgk Co Ltd Expansion valve unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108980430A (en) * 2018-07-18 2018-12-11 苏州福特曼机器人系统有限公司 Overcurrent stop valve
CN112032382A (en) * 2020-09-10 2020-12-04 南安市丽迪家居用品有限公司 Constant pressure water-saving valve

Also Published As

Publication number Publication date
JP5891205B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US7748683B1 (en) Electrically controlled proportional valve
JP2005249191A (en) Proportional solenoid control valve
US20140002217A1 (en) Solenoid device and driver assistance device
KR20180109711A (en) Solenoid valve, and method for manufacturing the solenoid valve
CN102446613A (en) Solenoid device and driver assistance device
WO2015125404A1 (en) Valve device
JP5891205B2 (en) Fluid proportional valve
JP2009228689A (en) Electric valve
US9856992B2 (en) Solenoid valve
JP5814870B2 (en) Electromagnetic fuel injection valve
JP2005517132A (en) Pressure regulator used for fuel supply device of internal combustion engine
JP2012172717A (en) Valve device
JP5325193B2 (en) Gas governor
JP2005090233A (en) Fuel injection valve
JP2009108842A (en) Fuel injection valve
JP5644757B2 (en) Pressure control device
JP2005308159A (en) Flow characteristic control mechanism of proportional solenoid valve and flow characteristic control method using the same
JP6533804B2 (en) solenoid valve
JP5675854B2 (en) solenoid valve
JP2018179120A (en) Solenoid valve
JP3982358B2 (en) Solenoid valve device
JP2018059647A (en) Gas fuel supply device
JP6223297B2 (en) solenoid valve
JP5679299B2 (en) solenoid valve
JP6163337B2 (en) Solenoid actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5891205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250