JP2015010589A - Abnormality diagnostic device for exhaust emission control device - Google Patents

Abnormality diagnostic device for exhaust emission control device Download PDF

Info

Publication number
JP2015010589A
JP2015010589A JP2013138948A JP2013138948A JP2015010589A JP 2015010589 A JP2015010589 A JP 2015010589A JP 2013138948 A JP2013138948 A JP 2013138948A JP 2013138948 A JP2013138948 A JP 2013138948A JP 2015010589 A JP2015010589 A JP 2015010589A
Authority
JP
Japan
Prior art keywords
characteristic
value
purification
exhaust
performance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013138948A
Other languages
Japanese (ja)
Other versions
JP6020372B2 (en
Inventor
有史 松本
Yuji Matsumoto
有史 松本
徹 木所
Toru Kidokoro
徹 木所
大河 萩本
Taiga Hagimoto
大河 萩本
一哉 高岡
Kazuya Takaoka
一哉 高岡
大和 西嶋
Yamato Nishijima
大和 西嶋
憲治 古井
Kenji Furui
憲治 古井
雄貴 照井
Yuki Terui
雄貴 照井
昭文 魚住
Akifumi Uozumi
昭文 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013138948A priority Critical patent/JP6020372B2/en
Publication of JP2015010589A publication Critical patent/JP2015010589A/en
Application granted granted Critical
Publication of JP6020372B2 publication Critical patent/JP6020372B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality diagnostic device for an exhaust emission control device, in which the drop in diagnostic accuracy is suppressed.SOLUTION: In an abnormality diagnostic device for an exhaust emission control device for diagnosing an abnormality of an exhaust emission control device containing an SCR catalyst, a threshold value and a correction coefficient are set on the basis of an intermediate characteristic between a purification characteristic at the time when the exhaust emission control device is normal and a purification characteristic at the time when the exhaust emission control device is abnormal, and the NOpurification rate calculated by using the NOoutflow as a parameter is corrected by said correction coefficient. The abnormality diagnostic device of the exhaust emission control device compares the NOx purification rate after correction and said threshold value thereby diagnosing abnormality of the exhaust emission control device.

Description

本発明は、内燃機関の排気通路に配置される排気浄化装置の異常を診断する技術に関する。   The present invention relates to a technique for diagnosing abnormality of an exhaust purification device disposed in an exhaust passage of an internal combustion engine.

選択還元型触媒を含む排気浄化装置の異常を診断する方法として、NO浄化率(排気浄化装置へ流入したNOの量に対して排気浄化装置により浄化されたNOの量の割合)と閾値とを比較する方法が知られている。このような方法において、排気浄化装置の温度別に閾値を定めておき、NO浄化率が求められたときの温度に対応した閾値を用いる方法も提案されている。さらに、排気浄化装置の温度別の運転時間に基づいて補正係数を求め、NO浄化率が演算されたときの温度に対応した補正係数を用いて閾値を補正する方法も提案されている(たとえば、特許文献1を参照)。 As a method of diagnosing an abnormality in the exhaust purification device including the selective catalytic reduction catalyst, the NO X purification rate (the ratio of the amount of NO X purified by the exhaust purification device to the amount of NO X flowing into the exhaust purification device) and A method for comparing the threshold value is known. In such a method, is determined in advance a threshold for each temperature of the exhaust purification device has been proposed a method using a threshold value corresponding to the temperature at which the NO X purification rate was determined. Furthermore, a correction coefficient is obtained based on the temperature-based operation time of the exhaust purification device, NO X purification rate has been proposed a method of correcting the threshold value using a correction coefficient corresponding to the temperature at which is calculated (e.g. , See Patent Document 1).

特開2006−037770号公報JP 2006-037770 A 特開平10−311213号公報JP-A-10-311213 米国特許第8245567号明細書US Pat. No. 8,245,567

ところで、NO浄化率は、正常時と異常時とにおいて相違する特性を示す場合がある。そのため、正常時又は異常時の何れか一方の特性に則って閾値が設定されると、診断精度の低下を招く可能性がある。 However, NO X purification rate may exhibit properties that differ in the normal state and abnormal. For this reason, if the threshold value is set in accordance with either the normal or abnormal characteristics, there is a possibility that the diagnostic accuracy may be lowered.

本発明は、上記したような実状に鑑みてなされたものであり、その目的は、排気浄化装置の異常診断装置において、診断精度の低下を抑制することにある。   The present invention has been made in view of the above situation, and an object thereof is to suppress a decrease in diagnostic accuracy in an abnormality diagnosis device for an exhaust purification device.

本発明は、上記した課題を解決するために、以下のような手段を採用した。すなわち、本発明は、内燃機関の排気通路に配置された排気浄化装置と、
前記排気浄化装置から流出する排気に含まれる特定成分の量を測定する測定手段と、
前記測定手段の測定値を使用して、前記排気浄化装置の浄化性能に相関する数値である性能値を演算する演算手段と、
前記演算手段により算出された性能値と閾値を比較して前記排気浄化装置の異常を診断する診断手段と、
を備えた排気浄化装置の異常診断装置において、
前記性能値と該性能値に影響する環境パラメータとの相関関係を示すデータである浄化特性を記憶する手段であって、前記排気浄化装置が正常であるときの浄化特性である正常時特性と前記排気浄化装置が異常であるときの浄化特性である異常時特性との中間の浄化特性である中間特性を記憶する第一記憶手段と、
前記中間特性における特定の環境パラメータの値に対応した性能値を規定値として記憶する第二記憶手段と、
前記中間特性における性能値が前記規定値に等しい一定値となるように前記中間特性を補正するための補正係数である第一補正係数を取得する第一取得手段と、
前記正常時特性及び前記異常時特性を前記第一補正係数により補正して得られる二つの浄化特性に基づいて、前記閾値を設定する設定手段と、
前記測定手段が前記特定成分の量を測定した際の前記環境パラメータの値を取得する第二取得手段と、
前記第二取得手段により取得された環境パラメータの値に対応した性能値を前記中間特性から導出し、導出された性能値に対する前記規定値の比を第二補正係数として取得する第三取得手段と、
を更に備え、
前記診断手段は、前記演算手段により算出された性能値と前記第二補正係数とを乗算することにより前記性能値を補正し、補正後の性能値と前記設定手段により設定された閾値とを比較することにより前記排気浄化装置の異常を診断するようにした。
The present invention employs the following means in order to solve the above-described problems. That is, the present invention provides an exhaust purification device disposed in an exhaust passage of an internal combustion engine,
Measuring means for measuring the amount of a specific component contained in the exhaust gas flowing out from the exhaust purification device;
Calculation means for calculating a performance value that is a numerical value correlated with the purification performance of the exhaust purification device using the measurement value of the measurement means;
Diagnosing means for diagnosing an abnormality of the exhaust purification device by comparing the performance value calculated by the calculating means with a threshold value;
In the exhaust gas purification apparatus abnormality diagnosis device comprising
Means for storing a purification characteristic which is data indicating a correlation between the performance value and an environmental parameter affecting the performance value, the normal characteristic being a purification characteristic when the exhaust purification device is normal; First storage means for storing an intermediate characteristic that is an intermediate purification characteristic with an abnormal characteristic that is a purification characteristic when the exhaust purification device is abnormal;
Second storage means for storing a performance value corresponding to a value of a specific environmental parameter in the intermediate characteristic as a specified value;
First acquisition means for acquiring a first correction coefficient that is a correction coefficient for correcting the intermediate characteristic such that a performance value in the intermediate characteristic becomes a constant value equal to the specified value;
Setting means for setting the threshold based on two purification characteristics obtained by correcting the normal characteristics and the abnormal characteristics with the first correction coefficient;
Second acquisition means for acquiring the value of the environmental parameter when the measurement means measures the amount of the specific component;
Third acquisition means for deriving a performance value corresponding to the value of the environmental parameter acquired by the second acquisition means from the intermediate characteristic, and acquiring a ratio of the specified value to the derived performance value as a second correction coefficient; ,
Further comprising
The diagnosis unit corrects the performance value by multiplying the performance value calculated by the calculation unit and the second correction coefficient, and compares the corrected performance value with a threshold set by the setting unit. By doing so, the abnormality of the exhaust emission control device is diagnosed.

このように構成された排気浄化装置の異常診断装置によれば、排気浄化装置の正常時特性と異常時特性との中間特性に基づいて閾値が設定されることになる。そのため、排気浄化装置の正常時特性又は異常時特性の何れか一方の浄化特性に基づいて閾値が設定される場合に比べ、異常診断の精度を高めることができる。特に、正常時特性と異常時特性が異なる傾向を示す場合の異常診断精度を高めることができる。   According to the abnormality diagnosis device for the exhaust gas purification apparatus configured as described above, the threshold value is set based on an intermediate characteristic between the normal time characteristic and the abnormal time characteristic of the exhaust purification device. Therefore, the accuracy of abnormality diagnosis can be improved as compared with the case where the threshold value is set based on either the normal characteristic or the abnormal characteristic of the exhaust purification device. In particular, it is possible to improve the abnormality diagnosis accuracy when the normal characteristic and the abnormal characteristic tend to be different.

また、演算手段により算出された性能値が中間特性と規定値との比である第二補正係数によって補正され、補正後の性能値と閾値を比較して排気浄化装置の異常診断が行われることにより、環境パラメータの影響による診断精度の低下を抑制することもできる。   Further, the performance value calculated by the calculation means is corrected by a second correction coefficient that is a ratio between the intermediate characteristic and the specified value, and the abnormality value of the exhaust gas purification apparatus is diagnosed by comparing the corrected performance value with a threshold value. Accordingly, it is possible to suppress a decrease in diagnostic accuracy due to the influence of environmental parameters.

ところで、測定手段の測定値には誤差が含まれる場合がある。よって、中間特性や閾値を定める際に使用される正常時特性と異常時特性は、測定手段の測定誤差を加味した浄化特性であってもよい。たとえば、正常時特性は、測定手段の測定誤差の範囲内で性能値が取り得る最小値と環境パラメータとの相関関係を示すデータであってもよい。一方、異常時特性は、測定手段の測定誤差の範囲内で性能値が取り得る最大値と環境パラメータとの相関関係を示すデータであってもよい。このように正常時特性及び異常時特性が定められると、測定手段の測定値に誤差が含まれている場合であっても、正確な異常診断を行うことが可能になる。   By the way, an error may be included in the measured value of the measuring means. Therefore, the normal characteristic and the abnormal characteristic used when determining the intermediate characteristic and the threshold value may be a purification characteristic that takes into account the measurement error of the measuring means. For example, the normal characteristic may be data indicating the correlation between the minimum value that can be taken by the performance value within the range of the measurement error of the measuring means and the environmental parameter. On the other hand, the abnormal characteristic may be data indicating the correlation between the maximum value that can be taken by the performance value within the range of the measurement error of the measuring means and the environmental parameter. When the normal characteristic and the abnormal characteristic are determined in this way, it is possible to perform an accurate abnormality diagnosis even when an error is included in the measurement value of the measuring means.

本発明の排気浄化装置の異常診断装置は、選択還元型触媒を含む排気浄化装置の異常を診断する場合に好適である。その場合の測定手段としては、排気に含まれるNOの量を測定するNOセンサを用いることができる。また、演算手段が演算する性能値としては、NO浄化率(選択還元型触媒へ流入するNOの量に対して選択還元型触媒により浄化されたNOの量の比)や、NO浄化量(選択還元型触媒により浄化されたNOの量)を用いることができる。選択還元型触媒のNO浄化性能に影響する環境パラメータとしては、選択還元型触媒の温度、選択還元型触媒へ流入する排気のNO比率(排気中のNOにおいてNOが占める割合)、選択還元型触媒へ流入するNOの量等を用いることができる。特に、選択還元型触媒の温度は選択還元型触媒のNO浄化性能に与える影響が大きいため、少なくとも選択還元型触媒の温度が環境パラメータとして用いられることが好ましい。 The abnormality diagnosis device for an exhaust gas purification apparatus according to the present invention is suitable for diagnosing an abnormality in an exhaust gas purification apparatus that includes a selective catalytic reduction catalyst. As a measurement means in that case, a NO X sensor that measures the amount of NO X contained in the exhaust gas can be used. Further, the performance value calculated by the calculating means includes a NO X purification rate (a ratio of the amount of NO X purified by the selective reduction catalyst to the amount of NO X flowing into the selective reduction catalyst), NO X A purification amount (amount of NO x purified by the selective reduction catalyst) can be used. (Proportion of NO 2 in the NO X in the exhaust gas) as the environmental parameters that affect the NO X purification performance of the selective reduction catalyst, the temperature of the selective reduction catalyst, NO 2 ratio of the exhaust gas flowing into the selective reduction catalyst, The amount of NO X flowing into the selective reduction catalyst can be used. In particular, since the temperature of the selective reduction catalyst has a large influence to the NO X purification performance of the selective reduction catalyst, it is preferable that a temperature of at least the selective reduction catalyst is used as the environmental parameter.

本発明によれば、内燃機関の排気通路に配置された排気浄化装置の異常を診断する排気浄化装置の異常診断装置において、診断精度の低下を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the abnormality diagnostic apparatus of the exhaust gas purification apparatus which diagnoses abnormality of the exhaust gas purification apparatus arrange | positioned in the exhaust passage of an internal combustion engine, the fall of diagnostic accuracy can be suppressed.

本発明を適用する内燃機関とその排気系の概略構成を示す図である。It is a figure which shows schematic structure of the internal combustion engine to which this invention is applied, and its exhaust system. 正常時特性と異常時特性との中間特性、及び規定値の設定方法を示す図である。It is a figure which shows the intermediate characteristic of the characteristic at the time of normal time, and the characteristic at the time of abnormality, and the setting method of a regulation value. 第一補正係数を用いて中間特性を補正する方法を示す図である。It is a figure which shows the method of correct | amending an intermediate characteristic using a 1st correction coefficient. 第一補正係数を用いて正常時特性と異常時特性を補正する方法、及び閾値の設定方法を示す図である。It is a figure which shows the method of correct | amending the characteristic at the time of a normal time and the characteristic at the time of abnormality using a 1st correction coefficient, and the setting method of a threshold value. NOセンサの測定誤差を加味して正常時特性と異常時特性の中間特性を設定する例を示す図である。In consideration of the measurement error of the NO X sensor is a diagram showing an example of setting the intermediate characteristic of the normal-state characteristic and abnormal characteristics. 図5に示す正常時特性及び異常時特性を第一補正係数により補正した例を示す図である。FIG. 6 is a diagram illustrating an example in which normal characteristics and abnormal characteristics shown in FIG. 5 are corrected by a first correction coefficient. 異常診断処理が実施される際にECUによって実行される処理ルーチンを示すフローチャートである。It is a flowchart which shows the process routine performed by ECU when abnormality diagnosis processing is implemented. 添加弁又はポンプに異常が発生した場合の異常時特性を示す図である。It is a figure which shows the characteristic at the time of abnormality when abnormality generate | occur | produces in an addition valve or a pump. SCR触媒のNO浄化性能が劣化した場合の異常時特性を示す図である。NO X purification performance of the SCR catalyst is a diagram showing an abnormal characteristics when deteriorated. 環境パラメータとしてNO比率を用いた場合における中間特性の設定方法を示す図である。It is a diagram showing a setting method of the intermediate characteristic in the case of using the NO 2 ratio as an environment parameter. 図10に示す正常時特性及び異常時特性を第一補正係数により補正した例を示す図である。It is a figure which shows the example which correct | amended the normal time characteristic and the abnormal time characteristic shown in FIG. 10 with the 1st correction coefficient.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

図1は、本発明を適用する内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、圧縮着火式の内燃機関(ディーゼルエンジン)又は希薄燃焼(リーンバーン運転)可能な火花点火式の内燃機関(ガソリンエンジン)である。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied and its exhaust system. An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) or a spark ignition type internal combustion engine (gasoline engine) capable of lean combustion (lean burn operation).

内燃機関1には、排気通路2が接続されている。排気通路2は、内燃機関1の気筒内から排出される既燃ガス(排気)を流通させるための通路である。排気通路2の途中には、第一触媒ケーシング3と第二触媒ケーシング4が上流側から直列に配置されている。   An exhaust passage 2 is connected to the internal combustion engine 1. The exhaust passage 2 is a passage for circulating burned gas (exhaust gas) discharged from the cylinder of the internal combustion engine 1. In the middle of the exhaust passage 2, a first catalyst casing 3 and a second catalyst casing 4 are arranged in series from the upstream side.

第一触媒ケーシング3は、たとえば、筒状のケーシング内に酸化触媒とパティキュレートフィルタを内装している。その際、酸化触媒は、パティキュレートフィルタの上流に配置される触媒担体に担持されてもよく、或いはパティキュレートフィルタに担持されてもよい。   The first catalyst casing 3 includes, for example, an oxidation catalyst and a particulate filter inside a cylindrical casing. In that case, the oxidation catalyst may be carried on a catalyst carrier disposed upstream of the particulate filter, or may be carried on the particulate filter.

第二触媒ケーシング4は、筒状のケーシング内に、選択還元型触媒(SCR(Selective Catalytic Reduction)触媒)が担持された触媒担体を収容する。前記触媒担体は、た
とえば、コーディライトやFe−Cr−Al系の耐熱鋼等から形成されるハニカム形状の横断面を有するモノリスタイプの基材に、アルミナ系又はゼオライト系の活性成分(担体)をコーティングしたものである。なお、第二触媒ケーシング4におけるSCR触媒の下流には、酸化触媒が担持された触媒担体が配置されてもよい。その場合の酸化触媒は、後述する添加弁5からSCR触媒へ供給される添加剤のうち、SCR触媒をすり抜けた添加剤を酸化する触媒である。
The second catalyst casing 4 accommodates a catalyst carrier on which a selective reduction catalyst (SCR (Selective Catalytic Reduction) catalyst) is supported in a cylindrical casing. The catalyst carrier is composed of, for example, an alumina-based or zeolite-based active component (support) on a monolith type substrate having a honeycomb-shaped cross section formed of cordierite, Fe-Cr-Al heat-resistant steel, or the like. It is a coated one. Note that a catalyst carrier on which an oxidation catalyst is supported may be disposed downstream of the SCR catalyst in the second catalyst casing 4. In this case, the oxidation catalyst is a catalyst that oxidizes an additive that has passed through the SCR catalyst among the additives supplied to the SCR catalyst from the addition valve 5 described later.

第一触媒ケーシング3と第二触媒ケーシング4との間の排気通路2には、アンモニア(NH)又はNHの前駆体である添加剤を排気中へ添加(噴射)するための添加弁5が配置されている。添加弁5は、ニードルの移動により開閉される噴孔を有する弁装置である。添加弁5は、ポンプ50を介して添加剤タンク51に接続されている。ポンプ50は、添加剤タンク51に貯留されている添加剤を吸引するとともに、吸引された添加剤を添加弁5へ圧送する。添加弁5は、ポンプ50から圧送されてくる添加剤を排気通路2内へ噴射する。なお、添加弁5の開閉タイミングやポンプ50の吐出圧力は、電子制御ユニット(ECU)9によって電気的に制御されるようになっている。 An addition valve 5 for adding (injecting) ammonia (NH 3 ) or an additive that is a precursor of NH 3 into the exhaust passage 2 between the first catalyst casing 3 and the second catalyst casing 4. Is arranged. The addition valve 5 is a valve device having a nozzle hole that is opened and closed by the movement of the needle. The addition valve 5 is connected to an additive tank 51 via a pump 50. The pump 50 sucks the additive stored in the additive tank 51 and pumps the sucked additive to the addition valve 5. The addition valve 5 injects the additive pumped from the pump 50 into the exhaust passage 2. The opening / closing timing of the addition valve 5 and the discharge pressure of the pump 50 are electrically controlled by an electronic control unit (ECU) 9.

ここで、添加剤タンク51に貯留される添加剤としては、NHガス、又は尿素やカルバミン酸アンモニウム等の水溶液である。本実施例では、当該添加剤として尿素水溶液を用いるものとする。 Here, the additive stored in the additive tank 51 is NH 3 gas or an aqueous solution such as urea or ammonium carbamate. In this embodiment, an aqueous urea solution is used as the additive.

添加弁5から尿素水溶液が噴射されると、該尿素水溶液が排気とともに第二触媒ケーシング4へ流入する。その際、尿素水溶液が排気の熱を受けて熱分解され、又はSCR触媒により加水分解される。尿素水溶液が熱分解又は加水分解されると、NHが生成される。このようにして生成されたNHは、SCR触媒に吸着又は吸蔵される。SCR触媒に吸着又は吸蔵されたNHは、排気中に含まれる窒素酸化物(NO)と反応して窒素(N)や水(HO)を生成する。つまり、NHは、NOの還元剤として機能する。 When the urea aqueous solution is injected from the addition valve 5, the urea aqueous solution flows into the second catalyst casing 4 together with the exhaust gas. At that time, the urea aqueous solution is thermally decomposed by the heat of the exhaust or is hydrolyzed by the SCR catalyst. When the urea aqueous solution is thermally decomposed or hydrolyzed, NH 3 is generated. The NH 3 thus generated is adsorbed or occluded by the SCR catalyst. NH 3 adsorbed or occluded by the SCR catalyst reacts with nitrogen oxide (NO x ) contained in the exhaust gas to generate nitrogen (N 2 ) or water (H 2 O). That is, NH 3 functions as a NO X reducing agent.

ここで、第二触媒ケーシング4、添加弁5、ポンプ50、及び添加剤タンク51から構成されるSCRシステムは、本発明に係わる排気浄化装置に相当する。   Here, the SCR system including the second catalyst casing 4, the addition valve 5, the pump 50, and the additive tank 51 corresponds to the exhaust purification apparatus according to the present invention.

このように構成された内燃機関1には、ECU9が併設されている。ECU9は、CPU、ROM、RAM、バックアップRAM等を備えた電子制御ユニットである。ECU9には、第一NOセンサ6、第二NOセンサ7、排気温度センサ8、クランクポジションセンサ10、アクセルポジションセンサ11、及びエアフローメータ12等の各種センサが電気的に接続されている。 The internal combustion engine 1 configured as described above is provided with an ECU 9. The ECU 9 is an electronic control unit that includes a CPU, ROM, RAM, backup RAM, and the like. Various sensors such as a first NO X sensor 6, a second NO X sensor 7, an exhaust temperature sensor 8, a crank position sensor 10, an accelerator position sensor 11, and an air flow meter 12 are electrically connected to the ECU 9.

第一NOセンサ6は、第一触媒ケーシング3と第二触媒ケーシング4の間の排気通路2に配置され、第二触媒ケーシング4へ流入する排気に含まれるNOの量(以下、「NO流入量」と称する)に相関する電気信号を出力する。第二NOセンサ7は、第二触媒ケーシング4より下流の排気通路2に配置され、第二触媒ケーシング4から流出するNOの量(以下、「NO流出量」と称する)に相関する電気信号を出力する。排気温度センサ8は、第二触媒ケーシング4より下流の排気通路2に配置され、第二触媒ケーシング4から流出する排気の温度と相関する電気信号を出力する。クランクポジションセンサ10は、内燃機関1の出力軸(クランクシャフト)の回転位置に相関する電気信号を出力する。アクセルポジションセンサ11は、アクセルペダルの操作量(アクセル開度)に相関する電気信号を出力する。エアフローメータ12は、内燃機関1に吸入される空気の量(質量)に相関する電気信号を出力する。 The first NO X sensor 6 is disposed in the exhaust passage 2 between the first catalyst casing 3 and the second catalyst casing 4, and the amount of NO X contained in the exhaust gas flowing into the second catalyst casing 4 (hereinafter referred to as “NO NO”). The electric signal correlated with the “ X inflow amount” is output. Second NO X sensor 7 is arranged from the second catalyst casing 4 in the exhaust passage 2 downstream, the amount of the NO X flowing out from the second catalyst casing 4 (hereinafter, referred to as "NO X outflow") correlates with Outputs electrical signals. The exhaust temperature sensor 8 is disposed in the exhaust passage 2 downstream from the second catalyst casing 4 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the second catalyst casing 4. The crank position sensor 10 outputs an electrical signal correlated with the rotational position of the output shaft (crankshaft) of the internal combustion engine 1. The accelerator position sensor 11 outputs an electrical signal that correlates with the operation amount of the accelerator pedal (accelerator opening). The air flow meter 12 outputs an electrical signal correlated with the amount (mass) of air taken into the internal combustion engine 1.

ECU9に、内燃機関1に取り付けられた各種機器(たとえば、燃料噴射弁等)、添加弁5、及びポンプ50等と電気的に接続されている。ECU9は、前記した各種センサの出力信号に基づいて、内燃機関1の各種機器、添加弁5、及びポンプ50等を電気的に制御する。たとえば、ECU9は、内燃機関1の燃料噴射制御や添加弁5から間欠的に添加剤を噴射させる添加制御等の既知の制御に加え、SCRシステムの異常を診断する処理(異常診断処理)を実行する。   The ECU 9 is electrically connected to various devices (for example, a fuel injection valve) attached to the internal combustion engine 1, the addition valve 5, the pump 50, and the like. The ECU 9 electrically controls various devices of the internal combustion engine 1, the addition valve 5, the pump 50, and the like based on the output signals of the various sensors described above. For example, the ECU 9 executes processing for diagnosing an abnormality of the SCR system (abnormality diagnosis processing) in addition to known control such as fuel injection control of the internal combustion engine 1 and addition control for intermittently injecting the additive from the addition valve 5. To do.

以下、本実施例における異常診断処理の実行方法について述べる。
まず、ECU9のROMには、SCRシステムが正常であるときの浄化特性(正常時浄化特性)とSCRシステムが異常であるときの浄化特性(異常時浄化特性)との中間の浄化特性(中間特性)が予め記憶されている。
Hereinafter, an execution method of the abnormality diagnosis process in the present embodiment will be described.
First, the ROM of the ECU 9 stores a purification characteristic (intermediate characteristic) between a purification characteristic when the SCR system is normal (normal purification characteristic) and a purification characteristic when the SCR system is abnormal (abnormal purification characteristic). ) Is stored in advance.

ここでいう浄化特性は、SCR触媒の浄化性能に相関する数値(性能値)と、SCR触媒の浄化性能に影響を与える環境パラメータと、の相関関係を示すデータ(マップ、或いは関数式等)である。性能値は、SCR触媒のNO浄化率(SCR触媒へ流入するNOの量に対してSCR触媒により浄化されたNOの量の比率)や、SCR触媒のNO浄化量(SCR触媒により浄化されたNOの量)等である。 The purification characteristics here are data (map or functional expression) indicating the correlation between a numerical value (performance value) correlated with the purification performance of the SCR catalyst and an environmental parameter that affects the purification performance of the SCR catalyst. is there. Performance value, NO X purification rate of the SCR catalyst and (ratio of the amount of the NO X which has been purified by the SCR catalyst with respect to the amount of the NO X flowing into the SCR catalyst), the NO X purification amount (SCR catalyst of the SCR catalyst Amount of purified NO x ).

環境パラメータは、SCR触媒の床温、SCR触媒へ流入する排気の流量、SCR触媒へ流入するNOの量、SCR触媒へ流入する排気のNO比率(排気に含まれるNOの量に対して排気に含まれるNOの量の比率)等である。本実施例では、性能値としてNO浄化率を用いる例について説明する。また、上記した環境パラメータのうち、NO浄化率に最も影響し易い環境パラメータはSCR触媒の床温である。よって、環境パラメータとしては、SCR触媒の床温が用いられるものとする。 The environmental parameters include the bed temperature of the SCR catalyst, the flow rate of the exhaust gas flowing into the SCR catalyst, the amount of NO X flowing into the SCR catalyst, the NO 2 ratio of the exhaust gas flowing into the SCR catalyst (with respect to the amount of NO X contained in the exhaust gas). The ratio of the amount of NO 2 contained in the exhaust gas). In this embodiment, an example of using the NO X purification rate as the performance value. Also, of the environmental parameters described above, likely environmental parameters most affected in the NO X purification rate is the bed temperature of the SCR catalyst. Therefore, the bed temperature of the SCR catalyst is used as the environmental parameter.

図2は、中間特性の一例を示す図である。図2中の縦軸はSCR触媒のNO浄化率Enoxを示し、図2中の横軸はSCR触媒の床温を示す。また、図2中の実線は中間特性を示し、一点鎖線は正常時特性を示し、点線は異常時特性を示す。中間特性は、図2に示すように、各床温におけるNO浄化率が正常時特性のNO浄化率より小さく且つ異常時特性のNO浄化率より大きくなるように定められる。このような中間特性を記憶するROMは、本発明に係わる第一記憶手段に相当する。 FIG. 2 is a diagram illustrating an example of intermediate characteristics. The vertical axis in Figure 2 shows the NO X purification rate Enox of the SCR catalyst, the horizontal axis in FIG. 2 shows a bed temperature of the SCR catalyst. Also, the solid line in FIG. 2 indicates the intermediate characteristic, the alternate long and short dash line indicates the normal characteristic, and the dotted line indicates the abnormal characteristic. Intermediate characteristic, as shown in FIG. 2, is determined as NO X purification rate at each bed temperature is greater than the NO X purification rate of small and abnormal properties than NO X purification rate of the normal state characteristic. The ROM for storing such intermediate characteristics corresponds to the first storage means according to the present invention.

ECU9のROMは、前記中間特性において特定の床温に対応したNO浄化率を規定値として記憶する。図2に示す例では、床温が特定温度T1であるときのNO浄化率Enox1が規定値として記憶される。特定温度T1は、任意に定められる温度であり、SCR触媒の床温が取り得る温度であれば如何様な温度であってもよい。このような規定値Enox1を記憶するROMは、本発明に係わる第二記憶手段に相当する。 ECU9 of ROM stores NO X purification rate corresponding to a particular bed temperature in the intermediate characteristic as defaults. In the example shown in FIG. 2, NO X purification rate Enox1 when the bed temperature is a specific temperature T1 is stored as a specified value. The specific temperature T1 is an arbitrarily determined temperature and may be any temperature as long as the bed temperature of the SCR catalyst can be taken. The ROM that stores the specified value Enox1 corresponds to the second storage unit according to the present invention.

ECU9のROMには、異常診断処理に用いられる閾値が予め記憶されている。ここで、閾値の設定方法について説明する。なお、閾値の設定は、内燃機関1を搭載した車両の出荷前に行われるものとする。   A threshold value used for abnormality diagnosis processing is stored in advance in the ROM of the ECU 9. Here, a threshold value setting method will be described. It is assumed that the threshold is set before shipment of the vehicle on which the internal combustion engine 1 is mounted.

まず、前記中間特性のNO浄化率が前記規定値Enox1に等しい一定値となるように中間特性を補正するための補正係数(第一補正係数)が求められる(第一取得手段)。第一補正係数は、中間特性の各床温に対応するNO浄化率Enoxが規定値Enox1と等しくなるように、各床温のNO浄化率Enoxを補正するための係数であり、床温を引数とする関数式により求めることができる。たとえば、図3に示すように、床温がT2であるときのNO浄化率Enox2は規定値Enox1より小さいため、床温がT2であるときの第一補正係数は“1”より大きい値になる。また、床温がT3であるときのNO浄化率Enox3は規定値Enox1より大きいため、床温がT3であるときの第一補正係数は“1”より小さい値になる。なお、床温が特定温度T1であるときの第一補正係数は“1”になる。 First, a correction coefficient (first correction coefficient) for correcting the intermediate characteristic is obtained so that the NO X purification rate of the intermediate characteristic becomes a constant value equal to the specified value Enox1 (first acquisition means). The first correction coefficient, as NO X purification rate Enox for each bed temperature of the intermediate characteristic is equal to the specified value Enox1, a coefficient for correcting the NO X purification rate Enox each bed temperature, bed temperature Can be obtained by a function expression using as an argument. For example, as shown in FIG. 3, for NO X purification rate Enox2 when bed temperature is T2 is smaller than the prescribed value Enox1, first correction coefficient when bed temperature is T2 "1" to a value greater than Become. Further, NO X purification rate Enox3 when bed temperature is T3 because greater than the specified value Enox1, first correction coefficient when bed temperature is T3 becomes "1" smaller value. The first correction coefficient when the bed temperature is the specific temperature T1 is “1”.

上記した手順により第一補正係数が求められると、該第1補正係数を用いて正常時特性と異常時特性を補正する。図3に示した例では、第一補正係数は、床温がT1より低いときは“1”より大きな値になり、床温がT1より高いときは“1”より小さい値になる。よって、図4に示すように、床温がT1より低い範囲においては、正常時特性のNO浄化率及び異常時特性のNO浄化率が増加補正される。一方、床温がT1より高い範囲においては、正常時特性のNO浄化率及び異常時特性のNO浄化率が減少補正される。ただし、異常時特性のNO浄化率は正常時特性のNO浄化率に比して絶対値が小さいため、異常時特性の補正量は正常時特性の補正量より小さくなる。図4中の実線で示すように正常時特性及び異常時特性が補正されると、補正後正常時特性及び補正後異常時特性に基づいて閾値が設定される(設定手段)。たとえば、補正後正常時特性におけるNO浄化率と補正後異常時特性におけるNO浄化率との差が最も小さくなる床温を特定し、その床温における補正後正常時特性のNO浄化率と補正後異常時特性のNO浄化率との中間値(図4中の一点鎖線)が閾値として設定されてもよい。 When the first correction coefficient is obtained by the above procedure, the normal characteristic and the abnormal characteristic are corrected using the first correction coefficient. In the example shown in FIG. 3, the first correction coefficient is a value larger than “1” when the bed temperature is lower than T1, and is a value smaller than “1” when the bed temperature is higher than T1. Therefore, as shown in FIG. 4, the bed temperature is in the range below T1, NO X purification rate and NO X purification rate of abnormal properties of the normal-state characteristic is increased corrected. On the other hand, bed temperature in the range higher than T1, NO X purification rate and NO X purification rate of abnormal properties of the normal-state characteristic is reduced corrected. However, since the NO X purification rate of the abnormal characteristic has a smaller absolute value than the NO X purification rate of the normal characteristic, the correction amount of the abnormal characteristic is smaller than the correction amount of the normal characteristic. When the normal characteristic and the abnormal characteristic are corrected as indicated by the solid line in FIG. 4, a threshold value is set based on the corrected normal characteristic and the corrected abnormal characteristic (setting means). For example, to identify the differences is smallest bed temperature of the NO X purification rate of the corrected abnormal characteristics and NO X purification rate of the corrected normal time characteristic, NO X purification rate of the normal-time characteristic after the correction of the bed temperature an intermediate value between the NO X purification rate of the corrected abnormal characteristics (dashed line in FIG. 4) may be set as the threshold value.

ところで、第一NOセンサ6や第二NOセンサ7の測定値には誤差が含まれる場合がある。そこで、図5に示すように、正常時特性は、第一NOセンサ6及び第二NOセンサ7の測定値に含まれる誤差の範囲内で最小のNO浄化率を用いて定められることが望ましい(図5中の「最小の正常時特性」)。一方、異常時特性は、第一NOセンサ6及び第二NOセンサ7の測定値に含まれる誤差の範囲内で最大のNO浄化率を用いて定められることが望ましい(図5中の「最大の異常時特性」)。このように正常時特性及び異常時特性が定められると、正常時特性のNO浄化率と異常時特性のNO浄化率が等しくなる床温(図5中のT0)が存在する場合がある。そのような場合の中間特性は、床温がT0であるときのNO浄化率が正常時特性のNO浄化率(異常時特性のNO浄化率)と等しくなるように定められるものとする。 By the way, an error may be included in the measured values of the first NO X sensor 6 and the second NO X sensor 7. Therefore, as shown in FIG. 5, the normal characteristics are determined using the minimum NO X purification rate within the range of errors included in the measured values of the first NO X sensor 6 and the second NO X sensor 7. Is desirable (“minimum normal characteristic” in FIG. 5). On the other hand, the abnormal characteristics are preferably determined using the maximum NO X purification rate within the range of errors included in the measured values of the first NO X sensor 6 and the second NO X sensor 7 (in FIG. 5). "Maximum abnormal characteristics"). With such normal time characteristics and abnormal characteristics defined, there is a case where NO X purification rate equals the bed temperature of the NO X purification rate and abnormal characteristics of the normal time characteristic (T0 in FIG. 5) is present . Intermediate characteristic of such cases, it is assumed that the bed temperature is defined as NO X purification rate when a T0 becomes equal to the NO X purification rate of the normal-time characteristic (NO X purification rate of abnormal properties) .

図5に示したような正常時特性及び異常時特性が第一補正係数により補正されると、補正後の正常時特性のNO浄化率と補正後の異常時特性のNO浄化率は、図6に示すように、床温がT0であるときに規定値Enox1と等しくなる。よって、閾値は、規定値Enox1と等しい値に設定されればよい。 When normal operation characteristics and abnormal characteristics as shown in FIG. 5 is corrected by the first correction coefficient, NO X purification rate of abnormal characteristics after correction and NO X purification rate of normal time characteristics after correction, As shown in FIG. 6, when the bed temperature is T0, it becomes equal to the specified value Enox1. Therefore, the threshold value may be set to a value equal to the specified value Enox1.

次に、前記した閾値を用いた異常診断処理の実行方法について図7に沿って説明する。図7は、SCRシステムの異常診断処理が実施される際に、ECU9が実行する処理ルーチンを示すフローチャートである。図7に示す処理ルーチンは、ECU9のROMに予め記憶されており、内燃機関1の運転中にECU9(CPU)によって周期的に実行される。   Next, a method for executing the abnormality diagnosis process using the threshold value will be described with reference to FIG. FIG. 7 is a flowchart showing a processing routine executed by the ECU 9 when the abnormality diagnosis process of the SCR system is performed. The processing routine shown in FIG. 7 is stored in advance in the ROM of the ECU 9 and is periodically executed by the ECU 9 (CPU) during the operation of the internal combustion engine 1.

図7の処理ルーチンでは、ECU9は、S101の処理において、異常診断処理の実行条件が成立しているか否かを判別する。異常診断処理の実行条件としては、内燃機関1が暖機完了状態にある、SCR触媒が活性状態にある、第一NOセンサ6及び第二NOセンサ7が活性状態にある、等の条件を例示することができる。S101の処理において否定判定された場合は、ECU9は、本処理ルーチンの実行を一旦終了する。一方、S101の処理において肯定判定された場合は、ECU9は、S102の処理へ進む。 In the processing routine of FIG. 7, the ECU 9 determines whether or not an execution condition for the abnormality diagnosis processing is satisfied in the processing of S101. The execution conditions of the abnormality diagnosis process are conditions such that the internal combustion engine 1 is in a warm-up completion state, the SCR catalyst is in an active state, and the first NO X sensor 6 and the second NO X sensor 7 are in an active state. Can be illustrated. If a negative determination is made in the process of S101, the ECU 9 once ends the execution of this process routine. On the other hand, when an affirmative determination is made in the process of S101, the ECU 9 proceeds to the process of S102.

S102の処理では、ECU9は、選択還元型触媒のNO浄化率が安定しているか否かを判別する。具体的には、ECU9は、内燃機関1が加速運転状態や減速運転状態等の過渡運転状態にない場合は、選択還元型触媒のNO浄化率が安定していると判定する。S102の処理において否定判定された場合は、ECU9は、本処理ルーチンの実行を一旦終了する。一方、S102の処理において肯定判定された場合は、ECU9は、S103の処理へ進む。 In the process of S102, the ECU 9 determines whether NO X purification rate of the selective reduction catalyst is stable. Specifically, ECU 9 determines that the internal combustion engine 1 is not in a transient operating condition, such as an acceleration operating state or decelerating state, NO X purification rate of the selective reduction catalyst is stable. If a negative determination is made in the processing of S102, the ECU 9 once ends the execution of this processing routine. On the other hand, when an affirmative determination is made in the process of S102, the ECU 9 proceeds to the process of S103.

S103の処理では、ECU9は、第一NOセンサ6の測定値(NO流入量)Anoxin、第二NOセンサ7の測定値(NO流出量)Anoxout、及び排気温度センサ8の測定値(排気温度)Texを読み込む。 In the process of S103, the ECU 9 is the measured value of the first NO X sensor 6 (NO X inflow) Anoxin, measurement of the second NO X sensor 7 (NO X outflow) Anoxout, and measurements of the exhaust gas temperature sensor 8 (Exhaust temperature) Tex is read.

S104の処理では、ECU9は、前記S103の処理で読み込まれたNO流入量AnoxinとNO流出量Anoxoutを用いてNO浄化率Enoxを演算する。具体的には、ECU9は、下記の式(1)にNO流入量AnoxinとNO流出量Anoxoutを代入することにより、NO浄化率Enoxを演算する。
Enox=1−(Anoxout/Anoxin)・・・(1)
なお、ECU9がS104の処理を実行することにより、本発明に係わる演算手段が実現される。
In the process of S104, the ECU 9 calculates the NO X purification rate Enox using the NO X inflow amount Anoxin and the NO X outflow amount Anoxout read in the process of S103. Specifically, the ECU 9 calculates the NO X purification rate Enox by substituting the NO X inflow amount Anoxin and the NO X outflow amount Anoxout into the following equation (1).
Enox = 1− (Anoxout / Anoxin) (1)
It should be noted that the calculation means according to the present invention is realized by the ECU 9 executing the process of S104.

S105の処理では、ECU9は、第二補正係数C2を演算する。詳細には、ECU9は、まずROMに記憶されている中間特性においてSCR触媒の床温に対応するNO
化率を導出する。ここでいうSCR触媒の床温は、NO流入量Anoxin及びNO流出量Anoxoutが測定された時点におけるSCR触媒の床温である。なお、SCR触媒の床温は排気温度センサ8の測定値と相関する。よって、ECU9は、前記S103の処理で読み込まれた排気温度Texに対応するNO浄化率を導出する。その場合、ECU9が前記S103の処理を実行することにより、本発明に係わる第二取得手段が実現されることになる。次に、ECU9は、ROMから規定値Enox1を読み出し、中間特性から導出されたNO浄化率に対する規定値Enox1の比(第二補正係数C2)を演算する。なお、ECU9がS105の処理を実行することにより、本発明に係わる第三取得手段が実現される。
In the process of S105, the ECU 9 calculates the second correction coefficient C2. Specifically, ECU 9 is first to derive the NO X purification rate corresponding to the bed temperature of the SCR catalyst in the intermediate characteristics stored in the ROM. Here, the bed temperature of the SCR catalyst is the bed temperature of the SCR catalyst when the NO X inflow amount Anoxin and the NO X outflow amount Anoxout are measured. Note that the bed temperature of the SCR catalyst correlates with the measured value of the exhaust temperature sensor 8. Therefore, ECU 9 derives NO X purification rate corresponding to the exhaust temperature Tex read in the process of the S103. In this case, the ECU 9 executes the process of S103, thereby realizing the second acquisition unit according to the present invention. Then, ECU 9 reads the specified value Enox1 from ROM, and calculates a ratio of the prescribed value Enox1 for NO X purification rate derived from the intermediate characteristic (second correction factor C2). The ECU 9 executes the process of S105, thereby realizing the third acquisition unit according to the present invention.

S106の処理では、ECU9は、前記S104の処理で算出されたNO浄化率Enoxと前記S105で算出された第二補正係数C2とを乗算することにより、NO浄化率を補正する。 In the process of S106, the ECU 9, by multiplying the second correction factor C2 calculated in NO X purification rate Enox and the S105 calculated in the processing of the S104, it corrects the NO X purification rate.

S107の処理では、ECU9は、ROMに記憶されている閾値を読み出し、前記S106の処理で補正されたNO浄化率Enoxが閾値以上であるか否かを判別する。S107の処理において肯定判定された場合は、ECU9は、S108の処理へ進み、SCRシステムが正常であると診断する。一方、S107の処理において否定判定された場合は、ECU9は、S109の処理へ進み、SCRシステムが異常であると診断する。 In the process of S107, the ECU 9 reads the threshold value stored in ROM, NO X purification rate Enox corrected in the processing of the S106 it is determined whether a threshold value or more. If an affirmative determination is made in step S107, the ECU 9 proceeds to step S108 and diagnoses that the SCR system is normal. On the other hand, when a negative determination is made in the process of S107, the ECU 9 proceeds to the process of S109 and diagnoses that the SCR system is abnormal.

なお、ECU9がS106乃至S109の処理を実行することにより、本発明に係わる診断手段が実現される。   It should be noted that the diagnosis means according to the present invention is realized by the ECU 9 executing the processes of S106 to S109.

以上述べた方法によって異常診断処理が実行されると、正常時特性と異常時特性の中間特性に基づいて閾値が設定されるため、正常時特性又は異常時特性の何れか一方に基づいて閾値が設定される場合に比べ異常診断の精度を高めることができる。特に、正常時特性と異常時特性が異なる傾向を示す場合における異常診断の精度を高めることができる。また、NO浄化率Enoxを第二補正係数によって補正し、補正後のNO浄化率Enoxと閾値を比較して異常診断を行うことにより、環境パラメータ(たとえば、SCR触媒の床温)の影響による診断精度の低下を抑制することもできる。さらに、第一NOセンサ6及び第二NOセンサ7の測定誤差を加味して中間特性や閾値を定めることにより、第一NOセンサ6及び第二NOセンサ7の測定誤差による診断精度の低下を抑制することも可能となる。 When the abnormality diagnosis process is executed by the method described above, the threshold is set based on an intermediate characteristic between the normal characteristic and the abnormal characteristic, and therefore the threshold is set based on either the normal characteristic or the abnormal characteristic. The accuracy of abnormality diagnosis can be increased compared to the case where it is set. In particular, it is possible to increase the accuracy of abnormality diagnosis when the normal characteristics and abnormal characteristics tend to be different. Further, the NO X purification rate Enox corrected by the second correction coefficient, by performing abnormality diagnosis by comparing the NO X purification rate Enox a threshold after correction, the influence of environmental parameters (e.g., the bed temperature of the SCR catalyst) It is also possible to suppress a decrease in diagnostic accuracy due to the above. Further, by determining the intermediate characteristic or the threshold in consideration of the measurement error of the first NO X sensor 6 and the second NO X sensor 7, the diagnostic accuracy of the measurement error of the first NO X sensor 6 and the second NO X sensor 7 It is also possible to suppress a decrease in the above.

なお、本実施例の排気浄化装置の異常診断装置によれば、中間特性を任意に設定することにより診断精度を調整することもできる。たとえば、異常時特性より正常時特性に近い浄化特性が中間特性に定められた場合は、異常の診断精度を高めることができる。一方、正常時特性より異常時特性に近い浄化特性が中間特性に定められた場合は、正常の診断精度を高めることができる。また、SCR触媒の床温に応じて中間特性の設定方法を変えることにより、温度域に応じた診断精度を得ることもできる。   In addition, according to the abnormality diagnosis device for the exhaust gas purification device of the present embodiment, the diagnostic accuracy can be adjusted by arbitrarily setting the intermediate characteristic. For example, when the purification characteristic closer to the normal characteristic than the abnormal characteristic is determined as the intermediate characteristic, the abnormality diagnosis accuracy can be increased. On the other hand, when the purification characteristic closer to the abnormal characteristic than the normal characteristic is determined as the intermediate characteristic, the normal diagnosis accuracy can be increased. Further, by changing the setting method of the intermediate characteristic according to the bed temperature of the SCR catalyst, it is possible to obtain diagnostic accuracy corresponding to the temperature range.

ここで、第二触媒ケーシング4におけるSCR触媒の下流に酸化触媒が配置される構成においては、異常の種類によって異常時特性が異なる傾向を示す場合がある。たとえば、添加弁5やポンプ50等の異常によって添加弁5から供給される添加剤の量が目標量より少なくなる場合は、図8に示すように、異常時特性が正常時特性に近似した傾向を示す。これに対し、SCR触媒のNO浄化能力が低下した場合は、図9に示すように、異常時特性のNO浄化率が床温の低い領域において大きくなる。これは、SCR触媒のNO浄化性能が劣化している状態において、SCR触媒及び酸化触媒の温度が低いときに、SCR触媒をすり抜けたNHとNOが酸化触媒によって反応させられることに因ると考えられる。このように各床温に対応したNO浄化率が異常の種類によって異なる値を取
り得る場合は、各床温に対応した複数のNO浄化率のうち最も大きいNO浄化率を使用して異常時特性を設定すればよい。
Here, in the configuration in which the oxidation catalyst is disposed downstream of the SCR catalyst in the second catalyst casing 4, the abnormal characteristics may tend to vary depending on the type of abnormality. For example, when the amount of additive supplied from the addition valve 5 is smaller than the target amount due to an abnormality in the addition valve 5 or the pump 50, the abnormal characteristic tends to approximate the normal characteristic as shown in FIG. Indicates. In contrast, when the NO X purifying ability of the SCR catalyst is decreased, as shown in FIG. 9, NO X purification rate of abnormal properties increases at low region of the bed temperature. This, in the state where the NO X purification performance of the SCR catalyst has deteriorated, attributable to when the temperature of the SCR catalyst and the oxidation catalyst is low, the NH 3 and NO X having passed through the SCR catalyst is reacted with the oxidation catalyst It is thought. Thus, when the NO X purification rate corresponding to each bed temperature may take different values depending on the type of abnormality, using the highest NO X purification rate of the plurality of the NO X purification rate corresponding to each bed temperature What is necessary is just to set the characteristic at the time of abnormality.

本実施例では、SCR触媒のNO浄化率に影響する環境パラメータとして、SCR触媒の床温を用いる例について説明したが、SCR触媒へ流入する排気のNO比率、SCR触媒へ流入するNO量(NO流入量)、或いはSCR触媒へ流入する排気の流量を用いてもよい。たとえば、環境パラメータとしてNO比率を用いる場合は、図10に示すように、中間特性を定めてもよい。なお、図10中の縦軸はSCR触媒のNO浄化率Enoxを示し、図10中の横軸はNO比率を示す。また、図10中の実線は中間特性を示し、一点鎖線は正常時特性を示し、点線は異常時特性を示す。中間特性は、図10に示すように、各NO比率におけるNO浄化率が正常時特性のNO浄化率より小さく且つ異常時特性のNO浄化率より大きくなるように定められればよい。その場合、特定のNO比率(図10中のRno2)に対応したNO浄化率(図10中のEnox1)が規定値に定められればよい。そして、中間特性のNO浄化率が規定値Enox1に等しい一定値となるように中間特性を補正するための第一補正係数を求め、その第一補正係数を用いて正常時特性と異常時特性を補正し(図11を参照)、補正後の正常時特性と異常時特性に基づいて閾値を設定すればよい。また、環境パラメータは一つに限られず、二つ以上の環境パラメータが組み合わされてもよい。その場合、環境パラメータの影響による診断精度の低下をより確実に抑制することが可能となる。 In this embodiment, as the environmental parameters affecting the NO X purification rate of the SCR catalyst, an example has been described using a bed temperature of the SCR catalyst, NO 2 ratio of the exhaust gas flowing into the SCR catalyst, NO flows into the SCR catalyst X The amount (NO X inflow amount) or the flow rate of the exhaust gas flowing into the SCR catalyst may be used. For example, when the NO 2 ratio is used as the environmental parameter, intermediate characteristics may be determined as shown in FIG. The vertical axis in Figure 10 indicates the NO X purification rate Enox of the SCR catalyst, the horizontal axis in Figure 10 shows the NO 2 ratio. Further, the solid line in FIG. 10 indicates the intermediate characteristic, the alternate long and short dash line indicates the normal characteristic, and the dotted line indicates the abnormal characteristic. Intermediate characteristic, as shown in FIG. 10, only to be determined as NO X purification rate at each NO 2 ratio is greater than the NO X purification rate of small and abnormal properties than NO X purification rate of the normal state characteristic. In that case, the NO X purification rate (Enox1 in FIG. 10) corresponding to a specific NO 2 ratio (Rno2 in FIG. 10) may be set to the specified value. Then, a first correction coefficient for correcting the intermediate characteristic as NO X purification rate of the intermediate characteristic is a constant value equal to the specified value Enox1, normal state characteristics and abnormal characteristics by using the first correction coefficient (See FIG. 11), and the threshold value may be set based on the corrected normal characteristics and abnormal characteristics. Also, the environmental parameter is not limited to one, and two or more environmental parameters may be combined. In that case, it is possible to more reliably suppress a decrease in diagnostic accuracy due to the influence of environmental parameters.

1 内燃機関
2 排気通路
3 第一触媒ケーシング
4 第二触媒ケーシング
5 添加弁
6 第一NOセンサ
7 第二NOセンサ
8 排気温度センサ
9 ECU
50 ポンプ
51 添加剤タンク
1 Internal combustion engine 2 Exhaust passage 3 First catalyst casing 4 Second catalyst casing 5 Addition valve 6 First NO X sensor 7 Second NO X sensor 8 Exhaust temperature sensor 9 ECU
50 Pump 51 Additive tank

Claims (4)

内燃機関の排気通路に配置された排気浄化装置と、
前記排気浄化装置から流出する排気に含まれる特定成分の量を測定する測定手段と、
前記測定手段の測定値を使用して、前記排気浄化装置の浄化性能に相関する数値である性能値を演算する演算手段と、
前記演算手段により算出された性能値と閾値を比較して前記排気浄化装置の異常を診断する診断手段と、
を備えた排気浄化装置の異常診断装置において、
前記性能値と該性能値に影響する環境パラメータとの相関関係を示すデータである浄化特性を記憶する手段であって、前記排気浄化装置が正常であるときの浄化特性である正常時特性と前記排気浄化装置が異常であるときの浄化特性である異常時特性との中間の浄化特性である中間特性を記憶する第一記憶手段と、
前記中間特性における特定の環境パラメータの値に対応した性能値を規定値として記憶する第二記憶手段と、
前記中間特性における性能値が前記規定値に等しい一定値となるように前記中間特性を補正するための補正係数である第一補正係数を取得する第一取得手段と、
前記正常時特性及び前記異常時特性を前記第一補正係数により補正して得られる二つの浄化特性に基づいて、前記閾値を設定する設定手段と、
前記測定手段が前記特定成分の量を測定した際の前記環境パラメータの値を取得する第二取得手段と、
前記第二取得手段により取得された環境パラメータの値に対応した性能値を前記中間特性から導出し、導出された性能値に対する前記規定値の比を第二補正係数として取得する第三取得手段と、
を更に備え、
前記診断手段は、前記演算手段により算出された性能値と前記第二補正係数とを乗算することにより前記性能値を補正し、補正後の性能値と前記設定手段により設定された閾値とを比較することにより前記排気浄化装置の異常を診断することを特徴とする排気浄化装置の異常診断装置。
An exhaust purification device disposed in an exhaust passage of the internal combustion engine;
Measuring means for measuring the amount of a specific component contained in the exhaust gas flowing out from the exhaust purification device;
Calculation means for calculating a performance value that is a numerical value correlated with the purification performance of the exhaust purification device using the measurement value of the measurement means;
Diagnosing means for diagnosing an abnormality of the exhaust purification device by comparing the performance value calculated by the calculating means with a threshold value;
In the exhaust gas purification apparatus abnormality diagnosis device comprising
Means for storing a purification characteristic which is data indicating a correlation between the performance value and an environmental parameter affecting the performance value, the normal characteristic being a purification characteristic when the exhaust purification device is normal; First storage means for storing an intermediate characteristic that is an intermediate purification characteristic with an abnormal characteristic that is a purification characteristic when the exhaust purification device is abnormal;
Second storage means for storing a performance value corresponding to a value of a specific environmental parameter in the intermediate characteristic as a specified value;
First acquisition means for acquiring a first correction coefficient that is a correction coefficient for correcting the intermediate characteristic such that a performance value in the intermediate characteristic becomes a constant value equal to the specified value;
Setting means for setting the threshold based on two purification characteristics obtained by correcting the normal characteristics and the abnormal characteristics with the first correction coefficient;
Second acquisition means for acquiring the value of the environmental parameter when the measurement means measures the amount of the specific component;
Third acquisition means for deriving a performance value corresponding to the value of the environmental parameter acquired by the second acquisition means from the intermediate characteristic, and acquiring a ratio of the specified value to the derived performance value as a second correction coefficient; ,
Further comprising
The diagnosis unit corrects the performance value by multiplying the performance value calculated by the calculation unit and the second correction coefficient, and compares the corrected performance value with a threshold set by the setting unit. An abnormality diagnosis device for an exhaust gas purification device, characterized by diagnosing an abnormality in the exhaust gas purification device.
請求項1において、前記正常時特性は、前記測定手段の測定誤差の範囲内で前記性能値が取り得る最小値と前記環境パラメータとの相関関係を示すデータであり、
前記異常時特性は、前記測定手段の測定誤差の範囲内で前記性能値が取り得る最大値と前記環境パラメータとの相関関係を示すデータであることを特徴とする排気浄化装置の異常診断装置。
In claim 1, the normal characteristic is data indicating a correlation between the environmental parameter and a minimum value that can be taken by the performance value within a measurement error range of the measuring means,
The abnormality diagnosis device for an exhaust gas purification apparatus, wherein the abnormal characteristic is data indicating a correlation between a maximum value that the performance value can take within a measurement error range of the measurement means and the environmental parameter.
請求項1又は2において、前記排気浄化装置は、選択還元型触媒を含み、
前記測定手段は、排気に含まれるNOの量を測定するNOセンサであり、
前記演算手段は、前記性能値としてNO浄化率を演算することを特徴とする排気浄化装置の異常診断装置。
In Claim 1 or 2, the exhaust emission control device includes a selective reduction catalyst,
The measuring means is a NO X sensor that measures the amount of NO X contained in the exhaust,
It said calculating means, the abnormality diagnosis device for an exhaust purification apparatus, characterized by calculating the NO X purification rate as the performance value.
請求項3において、前記環境パラメータは、選択還元型触媒の温度であることを特徴とする排気浄化装置の異常診断装置。   4. The exhaust gas diagnosis apparatus abnormality diagnosis device according to claim 3, wherein the environmental parameter is a temperature of the selective catalytic reduction catalyst.
JP2013138948A 2013-07-02 2013-07-02 Exhaust gas purification device abnormality diagnosis device Expired - Fee Related JP6020372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013138948A JP6020372B2 (en) 2013-07-02 2013-07-02 Exhaust gas purification device abnormality diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013138948A JP6020372B2 (en) 2013-07-02 2013-07-02 Exhaust gas purification device abnormality diagnosis device

Publications (2)

Publication Number Publication Date
JP2015010589A true JP2015010589A (en) 2015-01-19
JP6020372B2 JP6020372B2 (en) 2016-11-02

Family

ID=52303949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013138948A Expired - Fee Related JP6020372B2 (en) 2013-07-02 2013-07-02 Exhaust gas purification device abnormality diagnosis device

Country Status (1)

Country Link
JP (1) JP6020372B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223247A1 (en) 2015-11-27 2017-06-01 Toyota Jidosha Kabushiki Kaisha FAULT DIAGNOSIS DEVICE FOR EXHAUST GAS CLEANING SYSTEM
JP2017115805A (en) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 Failure diagnosis device for exhaust emission control system
KR20190134943A (en) * 2018-05-24 2019-12-05 현대자동차주식회사 CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202879B2 (en) * 2017-03-23 2019-02-12 GM Global Technology Operations LLC Reduced order selective catalytic reduction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311213A (en) * 1997-05-12 1998-11-24 Toyota Motor Corp Catalyst deterioration deciding device for internal combustion engine
JPH11117726A (en) * 1997-10-14 1999-04-27 Toyota Motor Corp Catalyst degradation diagnostic device for internal combustion engine
JP2006037770A (en) * 2004-07-23 2006-02-09 Hino Motors Ltd Abnormality detection method of exhaust emission control device
JP2010255490A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Catalyst abnormality diagnostic device
JP2011220142A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Catalyst deterioration determination device for internal combustion engine
US8245567B2 (en) * 2008-08-19 2012-08-21 GM Global Technology Operations LLC On board diagnostic monitor of NOx conversion efficiency for aftertreatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311213A (en) * 1997-05-12 1998-11-24 Toyota Motor Corp Catalyst deterioration deciding device for internal combustion engine
JPH11117726A (en) * 1997-10-14 1999-04-27 Toyota Motor Corp Catalyst degradation diagnostic device for internal combustion engine
JP2006037770A (en) * 2004-07-23 2006-02-09 Hino Motors Ltd Abnormality detection method of exhaust emission control device
US8245567B2 (en) * 2008-08-19 2012-08-21 GM Global Technology Operations LLC On board diagnostic monitor of NOx conversion efficiency for aftertreatment device
JP2010255490A (en) * 2009-04-23 2010-11-11 Toyota Motor Corp Catalyst abnormality diagnostic device
JP2011220142A (en) * 2010-04-06 2011-11-04 Toyota Motor Corp Catalyst deterioration determination device for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016223247A1 (en) 2015-11-27 2017-06-01 Toyota Jidosha Kabushiki Kaisha FAULT DIAGNOSIS DEVICE FOR EXHAUST GAS CLEANING SYSTEM
CN106907223A (en) * 2015-11-27 2017-06-30 丰田自动车株式会社 The trouble-shooter of emission control system
US10119448B2 (en) 2015-11-27 2018-11-06 Toyota Jidosha Kabushiki Kaisha Fault diagnosis apparatus for exhaust gas purification system
CN106907223B (en) * 2015-11-27 2019-05-03 丰田自动车株式会社 The trouble-shooter of emission control system
JP2017115805A (en) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 Failure diagnosis device for exhaust emission control system
KR20190134943A (en) * 2018-05-24 2019-12-05 현대자동차주식회사 CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF
KR102518593B1 (en) 2018-05-24 2023-04-05 현대자동차 주식회사 CORRECTION METHOD OF NOx PURIFYING EFFICIENCY OF SDPF

Also Published As

Publication number Publication date
JP6020372B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5907286B2 (en) Failure diagnosis device for exhaust purification system
JP4665923B2 (en) Catalyst deterioration judgment device
AU2014271674B2 (en) Error diagnostic device for exhaust purification device
JP6032358B2 (en) Exhaust gas purification device abnormality diagnosis device
JP6087866B2 (en) Exhaust gas purification device abnormality diagnosis device
JP5880705B2 (en) Exhaust gas purification device deterioration detection system
JP2017025863A (en) ABNORMALITY DIAGNOSIS DEVICE OF NOx OCCLUSION REDUCTION TYPE CATALYST
AU2014271738B2 (en) Abnormality diagnosis apparatus of exhaust gas purification apparatus
EP2940280B1 (en) Fuel-cetane-number estimation method and apparatus
JP6020372B2 (en) Exhaust gas purification device abnormality diagnosis device
JP2015197086A (en) Deterioration determination device of selectively reducing catalyst
JP2013170570A (en) Abnormality detection system for exhaust emission control device
JP5892047B2 (en) SCR system degradation diagnosis device
JP2015014213A (en) Deterioration detection device for selective reduction type catalyst
US20190024564A1 (en) Abnormality diagnosis system for exhaust gas purification apparatus
JP7159584B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106922B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP2018071490A (en) Deterioration diagnosis device of selective reduction catalyst
JP2013221487A (en) Exhaust emission control system of internal combustion engine
JP2016118140A (en) Deterioration diagnosis system of exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R151 Written notification of patent or utility model registration

Ref document number: 6020372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees