JP2015010200A - Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same - Google Patents

Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same Download PDF

Info

Publication number
JP2015010200A
JP2015010200A JP2013137747A JP2013137747A JP2015010200A JP 2015010200 A JP2015010200 A JP 2015010200A JP 2013137747 A JP2013137747 A JP 2013137747A JP 2013137747 A JP2013137747 A JP 2013137747A JP 2015010200 A JP2015010200 A JP 2015010200A
Authority
JP
Japan
Prior art keywords
heat conductive
thermally conductive
resin
parts
easily deformable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013137747A
Other languages
Japanese (ja)
Other versions
JP6107479B2 (en
JP2015010200A5 (en
Inventor
大気 坂本
Hiroki Sakamoto
大気 坂本
睦 中里
Mutsumi Nakazato
睦 中里
香織 坂口
Kaori Sakaguchi
香織 坂口
大将 岸
Hiromasa Kishi
大将 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2013137747A priority Critical patent/JP6107479B2/en
Publication of JP2015010200A publication Critical patent/JP2015010200A/en
Publication of JP2015010200A5 publication Critical patent/JP2015010200A5/ja
Application granted granted Critical
Publication of JP6107479B2 publication Critical patent/JP6107479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermally conductive member having high thermal conductivity and excellent film-formability and substrate followability, and a thermally conductive resin composition for producing an adhesive sheet excellent in heat resistance.SOLUTION: An easily deformable aggregate (D) contains 100 pts.wt of thermally conductive particles (A) having an average primary particle size of 0.1-10 μm, and 0.1-30 pts.wt of an organic binder (B) having a reactive functional group; and has an average particle size of 2-100 μm, and an average compressive force required for a compression deformation rate of 10% of 5 mN or less.

Description

本発明は、電子機器の熱を逃がすための熱伝導性部材の形成に好適に使用できる熱伝導性変形性凝集体、熱伝導性樹脂組成物、熱伝導部材、及びその製造方法に関する。   The present invention relates to a thermally conductive deformable aggregate, a thermally conductive resin composition, a thermally conductive member, and a method for producing the same, which can be suitably used for forming a thermally conductive member for releasing heat of an electronic device.

近年、エレクトロニクス分野の発展が目覚しく、特に電子機器の小型化、軽量化、高密度化、高出力化が進み、これらの性能に対する要求がますます高度なものとなっている。電子回路の小型化、高密度化のために高絶縁性や信頼性が求められるほか、特に、電子機器の高出力化に伴う発熱による電子機器の劣化防止のための放熱性向上が強く求められている。
エレクトロニクス分野では絶縁材として高分子材料が好適に用いられており、放熱性を向上させるため、高分子材料の熱伝導性の向上が望まれるようになった。しかし、高分子材料の熱伝導性向上には限界があったため、熱伝導性粒子を高分子材料に混合し、放熱性を向上させる方法が開発された。また、近年は、熱伝導性部材として、それらをシート状に成形した熱伝導性を有する接着シートや、粘着シートとしての利用も検討されている。
In recent years, the development of the electronics field has been remarkable, and in particular, electronic devices have become smaller, lighter, higher density, and higher in output, and demands for these performances have become increasingly sophisticated. High insulation and reliability are required to reduce the size and density of electronic circuits, and in particular, there is a strong need to improve heat dissipation to prevent deterioration of electronic devices due to heat generated by higher output of electronic devices. ing.
In the electronics field, a polymer material is suitably used as an insulating material, and in order to improve heat dissipation, it has been desired to improve the thermal conductivity of the polymer material. However, since there is a limit to improving the thermal conductivity of the polymer material, a method has been developed to improve heat dissipation by mixing thermally conductive particles with the polymer material. In recent years, the use as a heat conductive adhesive sheet obtained by molding them into a sheet shape or a pressure sensitive adhesive sheet has been studied.

例えば、特許文献1には、層状珪酸塩が均一分散されたナノコンポジットポリアミド樹脂と、熱伝導性無機フィラーとを含有する成形用樹脂が開示されている。熱伝導性無機フィラーとしては、酸化アルミニウム、酸化マグネシウム、シリカ、酸化亜鉛、窒化ホウ素、炭化珪素、窒化珪素などが開示されている。
従来よりも少ない使用量で成形体に熱伝導性を付与できるよう、熱伝導性無機フィラーには、熱伝導性の向上が求められている。
For example, Patent Document 1 discloses a molding resin containing a nanocomposite polyamide resin in which a layered silicate is uniformly dispersed and a thermally conductive inorganic filler. As the thermally conductive inorganic filler, aluminum oxide, magnesium oxide, silica, zinc oxide, boron nitride, silicon carbide, silicon nitride and the like are disclosed.
Thermally conductive inorganic fillers are required to have improved thermal conductivity so that the molded body can be imparted with thermal conductivity with a smaller amount than in the past.

特許文献2には、平均粒子径が10μm以下の高熱伝導性粒子を、造粒、焼結することにより、熱伝導性を向上させた平均粒子径が3〜85μmの球状の複合粒子を得、前記複合粒子の利用が提案されている。
具体的には、酸化アルミニウムや窒化アルミニウムや結晶性シリカ等の熱伝導性粒子を、シランカップリング剤や熱硬化性樹脂でコーティング処理した後、低くても800℃、通常は1000〜2800℃の熱伝導性粒子の融点近い温度で焼結し、球状の複合粒子を得る方法が提案されている([0009]、[0021]〜「0022」、[0028]〜[0032]参照)。
特許文献2によれば、複合粒子の凝集力を高めるために焼結すると開示する。しかし、造粒後、熱伝導性粒子の融点近い温度で焼結する結果、造粒の際使用したバインダーは消失してしまい、焼結後の複合粒子の凝集力は決して高くなく、むしろ焼結後の複合粒子は脆くて造粒状態を維持できず、崩壊し易い。
あるいは、融点以上の温度で十分焼結すれば、熱伝導性粒子同士が融着一体化するので、凝集力の高いものを得ることはできる。しかし、融着一体化の結果、巨大な硬い粒子となってしまう。
Patent Document 2 obtains spherical composite particles having an average particle diameter of 3 to 85 μm and improved thermal conductivity by granulating and sintering high thermal conductivity particles having an average particle diameter of 10 μm or less. The use of the composite particles has been proposed.
Specifically, after thermally conductive particles such as aluminum oxide, aluminum nitride, and crystalline silica are coated with a silane coupling agent or a thermosetting resin, at least 800 ° C., usually 1000 to 2800 ° C. A method of obtaining spherical composite particles by sintering at a temperature close to the melting point of the heat conductive particles has been proposed (see [0009], [0021] to “0022”, [0028] to [0032]).
According to Patent Document 2, it is disclosed that sintering is performed in order to increase the cohesive force of the composite particles. However, as a result of sintering at a temperature close to the melting point of the thermally conductive particles after granulation, the binder used during granulation disappears, and the cohesive force of the composite particles after sintering is never high, rather it is sintered. The later composite particles are brittle, cannot maintain a granulated state, and are easily disintegrated.
Alternatively, if the sintering is sufficiently performed at a temperature equal to or higher than the melting point, the heat conductive particles are fused and integrated, so that a high cohesive force can be obtained. However, as a result of the fusion integration, huge hard particles are formed.

特許文献3には、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム等の無機質粉末と熱硬化性樹脂組成物とを含み、粉末、造粒粉末、顆粒状態に加工されてなる粉体組成物の利用が提案されている。しかし、この方法で用いている無機質粉末はサイズが大きいほか、熱硬化性樹脂組成物を使用しているため、凝集体内で樹脂が硬化するため、得られるのは強固な結合をもった硬い粉体組成物である。   Patent Document 3 includes a powder composition comprising an inorganic powder such as aluminum oxide, magnesium oxide, boron nitride, and aluminum nitride and a thermosetting resin composition, and processed into a powder, a granulated powder, and a granular state. Use is proposed. However, since the inorganic powder used in this method is large in size and uses a thermosetting resin composition, the resin hardens in the aggregate, so that a hard powder with strong bonds can be obtained. It is a body composition.

特許文献4には、酸化アルミニウム粒子粉末の表面を表面改質剤で被覆した後、前記表面改質剤被覆粒子表面に炭素粉末を付着させた複合粒子粉末を、窒素雰囲気下で1350〜1750℃にて加熱焼成する窒化アルミニウムの製造方法が開示されている(特許請求の範囲、[0034]、[0042]、[0046]〜[0049]」参照)。   Patent Document 4 discloses a composite particle powder obtained by coating the surface of an aluminum oxide particle powder with a surface modifier and then attaching a carbon powder to the surface modifier-coated particle surface in a nitrogen atmosphere at 1350 to 1750 ° C. Discloses a method for producing aluminum nitride that is heated and calcined at (see claims, [0034], [0042], [0046] to [0049]).

特許文献5には、平均粒子径が10〜500μmかつ気孔率が0.3%以上の球状窒化アルミニウム焼結粉が開示されている。具体的には一次粒子径が0.1〜0.8μmの粉末を全量の10重量%以上含む窒化アルミニウム粉末と、酸化リチウムや酸化カルシウム等の焼結助剤とを含むスラリーを噴霧乾燥し、さらに1400〜1800℃で焼成する、前記球状窒化アルミニウム焼結粉の製造方法が記載されている(請求項1、4、[0035]参照)。
特許文献4、5の場合も、特許文献2の場合と同様に、非常に高温で焼結する上、焼結助剤等と窒化アルミニウムとが強固に結合するため、得られるのは、凝集体としては硬い窒化アルミニウムか、あるいは焼結して一体化された巨大で硬い窒化アルミニウム粒子である。
Patent Document 5 discloses a spherical aluminum nitride sintered powder having an average particle size of 10 to 500 μm and a porosity of 0.3% or more. Specifically, a slurry containing an aluminum nitride powder containing 10% by weight or more of a powder having a primary particle size of 0.1 to 0.8 μm and a sintering aid such as lithium oxide or calcium oxide is spray-dried, Furthermore, the manufacturing method of the said spherical aluminum nitride sintered powder baked at 1400-1800 degreeC is described (refer Claim 1, 4, [0035]).
In the case of Patent Documents 4 and 5, as in the case of Patent Document 2, since sintering is performed at a very high temperature and the sintering aid or the like and aluminum nitride are strongly bonded to each other, an aggregate is obtained. For example, hard aluminum nitride, or huge and hard aluminum nitride particles integrated by sintering.

特許文献6には、鱗片状窒化ホウ素の一次粒子を等方的に凝集させた二次凝集粒子の利用が開示されている。
具体的には、鱗片状窒化ホウ素を1800℃前後にて仮焼きした後、粉砕してなる一次粒子から形成される顆粒を2000℃で焼成し、気孔率が50%以下、平均気孔径が0.05〜3μmの二次凝集体を得る方法が開示されている([0014]、[0026]、「0027]参照)。
Patent Document 6 discloses the use of secondary agglomerated particles obtained by isotropically agglomerating primary particles of scaly boron nitride.
Specifically, after calcining scaly boron nitride at around 1800 ° C., granules formed from pulverized primary particles are fired at 2000 ° C., the porosity is 50% or less, and the average pore diameter is 0. A method for obtaining a secondary aggregate of 0.05 to 3 μm has been disclosed (see [0014], [0026] and “0027]).

特許文献7には、不規則形状の非球状窒化ホウ素粒子を凝集させた球状窒化ホウ素凝集体の利用が開示されている。   Patent Document 7 discloses the use of a spherical boron nitride aggregate obtained by aggregating irregularly shaped non-spherical boron nitride particles.

特許文献8には、窒化珪素質焼結体の利用が開示され、特許文献9には焼結処理してなる球状酸化亜鉛粒子粉末の利用が開示されている。   Patent Document 8 discloses the use of a silicon nitride sintered body, and Patent Document 9 discloses the use of a spherical zinc oxide particle powder obtained by sintering.

一方、熱伝導性粒子を使用した熱伝導性部材としては、例えば、特許文献10や11には無機粒子を使用した熱伝導性接着シートが開示されている。これら熱伝導性部材の熱伝導性を高めるためには、粒子の充填率を上げることが効果的であるが、粒子量の増加に伴い、高分子材料成分が減少するため、成膜性、基材追従性の低下が起こってしまう。また、特に接着シート用途においては、充填率を高めることにより接着成分が減少し、接着性が失われてしまうといった課題があった。 On the other hand, as a heat conductive member using heat conductive particles, for example, Patent Documents 10 and 11 disclose heat conductive adhesive sheets using inorganic particles. In order to increase the thermal conductivity of these thermally conductive members, it is effective to increase the packing rate of the particles. However, as the amount of particles increases, the polymer material component decreases. Decrease in material followability occurs. Moreover, especially in the adhesive sheet use, there existed a subject that an adhesive component will reduce by raising a filling rate, and adhesiveness will be lost.

そこで、特許文献12や13のように、粒子の充填率が低い状態で粒子の接触(熱伝パス)を形成させるため、熱伝導性部材に磁場や電場をかけて粒子の配向制御する方法が報告されている。しかし、これらの手法は、工業化を考えたときに実用的なものではない。 Therefore, as in Patent Documents 12 and 13, there is a method for controlling the orientation of particles by applying a magnetic field or an electric field to a thermally conductive member in order to form contact (heat transfer path) of particles with a low particle filling rate. It has been reported. However, these methods are not practical when considering industrialization.

また、特許文献14では、二次粒子を塗膜中に近接して配置させた三次集合体を形成し、低充填量で、高熱伝導性を発現する試みも報告されている。この報告でも、造粒のための結着剤にはシランカップリング剤が使用されており、該二次粒子を150℃、4時間以上乾燥させ、カップリング反応させることで、造粒体としての操作性を向上させている反面、粒子の柔軟性は失われている。そのため、熱伝導性、接着強度とも不十分である。 Further, Patent Document 14 reports an attempt to form a tertiary aggregate in which secondary particles are arranged close to each other in a coating film and to exhibit high thermal conductivity with a low filling amount. In this report as well, a silane coupling agent is used as a binder for granulation, and the secondary particles are dried at 150 ° C. for 4 hours or more and subjected to a coupling reaction, thereby producing a granulated product. While improving operability, the flexibility of the particles is lost. Therefore, both thermal conductivity and adhesive strength are insufficient.

このように、従来の熱伝導性粒子やその二次粒子(凝集体)を用いた熱伝導性樹脂組成物や熱伝導性シートでは、高い熱伝導性を有し、かつ優れた成膜性、基材追従性および接着性を達成することは困難であった。 Thus, the heat conductive resin composition and the heat conductive sheet using the conventional heat conductive particles and the secondary particles (aggregates) thereof have high heat conductivity and excellent film formability, It has been difficult to achieve substrate followability and adhesion.

特開2006−342192号公報JP 2006-342192 A 特開平9−59425号公報JP-A-9-59425 特開2000−239542号公報JP 2000-239542 A 特開2006−256940号公報JP 2006-256940 A 特開2006−206393号公報JP 2006-206393 A 特開2010−157563号公報JP 2010-157563 A 特表2008−510878号公報Japanese translation of PCT publication No. 2008-510878 特開2007−039306号公報Japanese Patent Laid-Open No. 2007-039306 特開2009−249226号公報JP 2009-249226 A 特開平6−162855号公報JP-A-6-162855 特開2004−217861号公報JP 2004-217861 A 特開2006−335957号公報JP 2006-335957 A 特開2007−332224号公報JP 2007-332224 A 特開2010−84072号公報JP 2010-84072 A

本発明の目的は、高い熱伝導性を有し、優れた成膜性および基材追従性を有する熱伝導性易変形性凝集体や熱伝導性部材および、さらに耐熱性に優れる接着シートを作製するための、熱伝導性樹脂組成物を提供することである。   The object of the present invention is to produce a thermally conductive easily deformable aggregate or a thermally conductive member having high thermal conductivity, excellent film formability and substrate followability, and an adhesive sheet having excellent heat resistance. Therefore, it is providing the heat conductive resin composition.

本発明は、平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と、
反応性官能基を有する有機結着剤(B)0.1〜30重量部とを含み、
平均粒子径が2〜100μmであり、圧縮変形率10%に要する平均圧縮力が5mN以下であることを特徴とする易変形性凝集体(D)に関する。
The present invention comprises 100 parts by weight of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm,
Including 0.1 to 30 parts by weight of an organic binder (B) having a reactive functional group,
The present invention relates to an easily deformable aggregate (D) characterized by having an average particle diameter of 2 to 100 μm and an average compressive force required for a compression deformation rate of 10% of 5 mN or less.

また、本発明は、熱伝導性粒子(A)が、酸化アルミニウム及び窒化アルミニウムからなる群より選ばれる少なくとも1種を含有することを特徴とする前記易変形性凝集体(D)に関する。 The present invention also relates to the easily deformable aggregate (D), wherein the thermally conductive particles (A) contain at least one selected from the group consisting of aluminum oxide and aluminum nitride.

また、本発明は、前記易変形性凝集体(D)20〜90体積%と、バインダー樹脂(E)10〜80体積%と、バインダー樹脂(E)を溶解する溶剤(F)とを含有する、熱伝導性樹脂組成物(G)に関する。 Moreover, this invention contains the said easily deformable aggregate (D) 20-90 volume%, binder resin (E) 10-80 volume%, and the solvent (F) which melt | dissolves binder resin (E). And relates to a thermally conductive resin composition (G).

また、本発明は、易変形性凝集体(D)を構成する反応性官能基を有する有機結着剤(B)が溶剤(F)に溶解しない、前記熱伝導性樹脂組成物(G)に関する。 Moreover, this invention relates to the said heat conductive resin composition (G) in which the organic binder (B) which has the reactive functional group which comprises an easily deformable aggregate (D) does not melt | dissolve in a solvent (F). .

また、本発明は、易変形性凝集体(D)を構成する反応性官能基を有する有機結着剤(B)が水溶性樹脂であり、バインダー樹脂(E)が非水溶性樹脂である、前記熱伝導性樹脂組成物(G)に関する。 In the present invention, the organic binder (B) having a reactive functional group constituting the easily deformable aggregate (D) is a water-soluble resin, and the binder resin (E) is a water-insoluble resin. It is related with the said heat conductive resin composition (G).

また、本発明は、前記熱伝導性樹脂組成物(G)から溶剤(F)が除去されてなる熱伝導層を含む、熱伝導性部材(H)に関する。 Moreover, this invention relates to the heat conductive member (H) containing the heat conductive layer by which a solvent (F) is removed from the said heat conductive resin composition (G).

また、本発明は、前記熱伝導性部材(H)を加圧および加熱してなる、熱伝導性部材(I)に関する。 Moreover, this invention relates to the heat conductive member (I) formed by pressurizing and heating the said heat conductive member (H).

また、本発明は、前記熱伝導性部材(H)、または前記熱伝導性部材(I)を含み、
少なくとも一方の面に剥離フィルムを有する熱伝導性接着シートに関する。
Moreover, this invention contains the said heat conductive member (H) or the said heat conductive member (I),
The present invention relates to a thermally conductive adhesive sheet having a release film on at least one surface.

また、本発明は、前記易変形性凝集体(D)の製造方法であって、
平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100質量部と反応性官能基を有する有機結着剤(B)0.1〜30質量部と反応性官能基を有する有機結着剤(B)を溶解する溶剤(C)とを含有するスラリーを得る工程と、
前記スラリーから溶剤(C)を除去する工程とを有する、易変形性凝集体(D)の製造方法に関する。
Further, the present invention is a method for producing the easily deformable aggregate (D),
100 parts by mass of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm, 0.1 to 30 parts by mass of an organic binder (B) having a reactive functional group, and a reactive functional group A step of obtaining a slurry containing a solvent (C) for dissolving the organic binder (B) having,
And a step of removing the solvent (C) from the slurry.

また、本発明は、基材上に前記熱伝導性樹脂組成物(G)を塗布して塗膜を形成する工程と、
前記塗膜から溶剤(F)を除去して、熱伝導層を形成する工程と、
前記熱伝導層を加圧する工程とを有する、熱伝導性部材(I)の製造方法に関する。
Further, the present invention includes a step of applying the thermal conductive resin composition (G) on a substrate to form a coating film,
Removing the solvent (F) from the coating film to form a heat conductive layer;
It is related with the manufacturing method of heat conductive member (I) which has the process of pressurizing the said heat conductive layer.

本発明の易変形性凝集体は、より少ない使用量で従来と同程度の熱伝導性を熱伝導部材に付与したり、あるいは従来と同程度の使用量でより高い熱伝導性を熱伝導部材に付与するための、熱伝導性易変形性凝集体を提供できる。
また、本発明の熱伝導性部材は、熱伝導性の高い易変形性凝集体を使用しているため、高い熱伝導性、優れた成膜性、基材追従性を有する熱伝導性部材および、さらに耐熱性に優れる接着シートを作製するための、熱伝導性樹脂組成物を提供できる。
The easily deformable aggregate of the present invention imparts the same thermal conductivity to the heat conductive member with a smaller amount of use, or a higher heat conductivity with the same amount of the conventional heat conductive member. The heat conductive easily deformable aggregate for providing to can be provided.
In addition, since the thermally conductive member of the present invention uses an easily deformable aggregate having high thermal conductivity, the thermally conductive member having high thermal conductivity, excellent film formability, and substrate followability, and Furthermore, it is possible to provide a heat conductive resin composition for producing an adhesive sheet having excellent heat resistance.

平均一次粒子径が1μmの熱伝導性粒子(A)、平均一次粒子径が10μmの熱伝導性粒子(A)、および、平均一次粒子径が1μmの熱伝導性粒子(A)を反応性官能基を有する有機結着剤(B)で凝集させた平均粒子径10μmの易変形性凝集体(D)の、圧縮変形率と圧縮力との関係を示す図である。Thermally conductive particles (A) having an average primary particle size of 1 μm, thermal conductive particles (A) having an average primary particle size of 10 μm, and thermal conductive particles (A) having an average primary particle size of 1 μm It is a figure which shows the relationship between a compressive deformation rate and compressive force of the easily deformable aggregate (D) with an average particle diameter of 10 micrometers aggregated with the organic binder (B) which has a group. 平均一次粒子径が1μmの熱伝導性粒子(A)のSEM写真。The SEM photograph of the heat conductive particle (A) whose average primary particle diameter is 1 micrometer. 平均一次粒子径が1μmの熱伝導性粒子(A)を反応性官能基を有する有機結着剤(B)で凝集させた平均粒子径10μmの易変形性凝集体(D)を含有する熱硬化性シートの平面のSEM写真。Thermosetting containing an easily deformable aggregate (D) having an average particle diameter of 10 μm obtained by aggregating thermally conductive particles (A) having an average primary particle diameter of 1 μm with an organic binder (B) having a reactive functional group SEM photograph of the plane of the adhesive sheet. 図3aの熱硬化性シートを加圧下に熱硬化した硬化物の平面のSEM写真。The SEM photograph of the plane of the hardened | cured material which heat-cured the thermosetting sheet of FIG. 3a under pressure. 図3aの熱硬化性シートを加圧下に熱硬化した硬化物の断面のSEM写真。The SEM photograph of the cross section of the hardened | cured material which heat-cured the thermosetting sheet of FIG. 3a under pressure. 平均一次粒子径10μmの熱伝導性粒子(A)のSEM写真。The SEM photograph of the heat conductive particle (A) with an average primary particle diameter of 10 micrometers.

本発明の易変形性凝集体(D)は、平均一次粒子径が0.1〜10umの球状の熱伝導性粒子(A)100重量部と、反応性官能基を有する有機結着剤(B)0.1〜30重量部とを含み、平均粒子径が2〜100um、圧縮変形率10%に要する平均圧縮力が5mN以下である。   The easily deformable aggregate (D) of the present invention comprises an organic binder (B) having 100 parts by weight of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm and a reactive functional group. ) 0.1 to 30 parts by weight, the average particle size is 2 to 100 μm, and the average compressive force required for a compression deformation rate of 10% is 5 mN or less.

本発明における「易変形性」とは、圧縮変形率10%に要する平均圧縮力が5mN以下であることをいう。圧縮変形率10%に要する平均圧縮力とは、圧縮試験により測定した、粒子を10%変形させるための荷重の平均値のことであり、例えば、微小圧縮試験機(株式会社島津製作所製、MCT−210)で測定することができる。
具体的には、測定対象のごく少量の試料を顕微鏡にて拡大し、任意の一粒を選択し、該測定対象粒子を加圧圧子の下部に移動させ、前記加圧圧子に負荷を加え、前記測定対象粒子を圧縮変形させる。前記試験機は、前記測定対象粒子の圧縮変位を計測するための検出器を、前記加圧圧子の上部に備えている。前記検出器にて、前記測定対象粒子の圧縮変位を計測し、変形率を求める。そして、前記測定対象粒子を10%圧縮変形するために要する圧縮力(以下、「10%圧縮変形力」とも略す)を求める。任意の他の測定対象粒子について、同様にして「10%圧縮変形力」を求め、10個の測定対象粒子についての「10%圧縮変形力」の平均値を「圧縮変形率10%に要する平均圧縮力」とする。
なお、本発明の易変形性凝集体(D)は、後述するように小さな熱伝導性粒子(A)が複数集合した状態のものであるが、圧縮変形率の測定においては凝集体を一粒の単位とする。
The “easy deformability” in the present invention means that an average compressive force required for a compression deformation rate of 10% is 5 mN or less. The average compressive force required for a compressive deformation rate of 10% is an average value of a load for deforming particles by 10% measured by a compression test. For example, a micro compression tester (manufactured by Shimadzu Corporation, MCT -210).
Specifically, a very small amount of sample to be measured is magnified with a microscope, an arbitrary one is selected, the particles to be measured are moved to the lower part of the pressure indenter, a load is applied to the pressure indenter, The measurement target particles are compressed and deformed. The tester includes a detector for measuring a compression displacement of the measurement target particle on an upper portion of the pressurizing indenter. The detector measures the compression displacement of the particles to be measured, and obtains the deformation rate. Then, the compression force required for 10% compression deformation of the particles to be measured (hereinafter also abbreviated as “10% compression deformation force”) is obtained. Similarly, “10% compressive deformation force” is obtained for any other particles to be measured, and the average value of “10% compressive deformation force” for 10 particles to be measured is “average required for 10% compression deformation rate”. Compressive force ".
The easily deformable aggregate (D) of the present invention is a state in which a plurality of small heat conductive particles (A) are aggregated as will be described later. The unit of

図1は、図2および図4に示すような凝集させていない熱伝導性粒子(A)と、図2に示すような熱伝導性粒子(A)を凝集させた易変形性凝集体(D)、についての圧縮変形率と圧縮力との関係を示す図である。易変形性凝集体(D)の大きさは、図4に示す熱伝導性粒子(A)の大きさと同程度である。
図1に示す通り、凝集させていない熱伝導性粒子(A)は、ごく僅かに変形させるために大きな力を要する。一方、図2と同じ大きさの熱伝導性粒子(A)を図4の熱伝導性粒子(A)と同程度の大きさに凝集させた場合、図1に示す通り、はるかに小さな力で変形させることができる。
即ち、本発明の凝集体(D)は、「易変形性」凝集体である。
図3aは、本発明の凝集体(D)を含む熱伝導性前駆部材の一種である熱硬化性シートの平面のSEM写真であり、図3bは、熱伝導性前駆部材を加圧下に熱硬化した硬化物の平面のSEM写真であり、図3cは硬化物の断面のSEM写真である。図3a、b、cからも、本発明の凝集体(D)が「易変形性」凝集体であることが確認できる。
なお、本発明の凝集体(D)が「易変形性」であるが故に、熱伝導性に優れる理由については、後述する。
FIG. 1 shows a non-aggregated thermally conductive particle (A) as shown in FIGS. 2 and 4 and an easily deformable aggregate (D) in which the thermally conductive particles (A) as shown in FIG. 2 are aggregated. It is a figure which shows the relationship between the compression deformation rate and compressive force about). The size of the easily deformable aggregate (D) is approximately the same as the size of the thermally conductive particles (A) shown in FIG.
As shown in FIG. 1, the heat conductive particles (A) that are not aggregated require a large force to be deformed only slightly. On the other hand, when the thermally conductive particles (A) having the same size as that of FIG. 2 are aggregated to the same size as the thermally conductive particles (A) of FIG. 4, as shown in FIG. Can be deformed.
That is, the aggregate (D) of the present invention is an “easily deformable” aggregate.
FIG. 3a is a SEM photograph of a plane of a thermosetting sheet which is a kind of a heat conductive precursor member containing the aggregate (D) of the present invention, and FIG. 3b is a heat cure of the heat conductive precursor member under pressure. Fig. 3c is a SEM photograph of a cross section of the cured product. 3a, b, and c also confirm that the aggregate (D) of the present invention is an “easy deformable” aggregate.
The reason why the aggregate (D) of the present invention is excellent in thermal conductivity because it is “easy to deform” will be described later.

<熱伝導性粒子(A)>
熱伝導性粒子(A)は熱伝導性を有するものであれば特に限定されず、例えば、
酸化アルミニウム、酸化カルシウム、酸化マグネシウム等の金属酸化物、
窒化アルミニウム、窒化ホウ素等の金属窒化物、
水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、
炭酸カルシウム、炭酸マグネシウム等の炭酸金属塩、
ケイ酸カルシウム等のケイ酸金属塩、
水和金属化合物、
結晶性シリカ、非結晶性シリカ、炭化ケイ素またはこれらの複合物、
金、銀等の金属、
カーボンブラック等の炭素化合物等が挙げられる。
これらは、1種を単独で用いても良く、2種以上を併用することもできる。
<Thermal conductive particles (A)>
Thermally conductive particles (A) are not particularly limited as long as they have thermal conductivity. For example,
Metal oxides such as aluminum oxide, calcium oxide, magnesium oxide,
Metal nitrides such as aluminum nitride and boron nitride,
Metal hydroxides such as aluminum hydroxide and magnesium hydroxide,
Metal carbonates such as calcium carbonate and magnesium carbonate,
Silicate metal salts such as calcium silicate,
Hydrated metal compounds,
Crystalline silica, amorphous silica, silicon carbide or a composite thereof,
Metals such as gold and silver,
Examples thereof include carbon compounds such as carbon black.
These may be used alone or in combination of two or more.

電子回路用途で用いる場合は絶縁性を有していることが好ましく、金属酸化物、金属窒化物が好適に用いられ、なかでも熱伝導率の観点から、酸化アルミニウム、窒化アルミニウム、窒化ホウ素がより好適に用いられる。
得られる易変形性凝集体(D)を電子材料用途等に用いる場合には、熱伝導性粒子(A)としては、加水分解されにくい酸化アルミニウムがより好ましい。
また、耐加水分解性を向上するための処理を予め施した窒化アルミニウム等の金属窒化物を用い、易変形性凝集体(D)を得れば、得られた易変形性凝集体(D)は、電子材料用途等に用いることもできる。
When used in electronic circuit applications, it is preferable to have insulating properties, and metal oxides and metal nitrides are preferably used. Of these, aluminum oxide, aluminum nitride, and boron nitride are more preferable from the viewpoint of thermal conductivity. Preferably used.
When the easily deformable aggregate (D) to be obtained is used for an electronic material application or the like, the thermally conductive particles (A) are more preferably aluminum oxide that is not easily hydrolyzed.
Moreover, if metal nitrides, such as aluminum nitride which performed the process for improving hydrolysis resistance previously, are used and an easily deformable aggregate (D) is obtained, the easily deformable aggregate (D) obtained will be obtained. Can also be used for electronic materials.

熱伝導性粒子(A)は、得られる易変形性凝集体(D)の空隙の少なさ、変形しやすさの点で球状であることが好ましい。
球状粒子を用いると、空隙の少ない密な易変形性凝集体(D)を得ることができる。易変形性凝集体(D)内の空隙は、熱伝導性を悪化させるので、空隙の生成をできるだけ防止することは、熱伝導性向上の点で重要である。
また、熱伝導性粒子(A)が球状であると、凝集体内の熱伝導性粒子(A)同士の粒子間の摩擦係数が小さい。その結果、凝集体に力が加えられた際、凝集体内の熱伝導性粒子(A)の位置関係が容易に変化し、凝集体が崩壊することなく変形し易い。
熱伝導性粒子の組成と平均一次粒子径が同条件の粒子を比較した場合、球状粒子を用いる場合に比較して、板状あるいは針状等の非球状粒子を用いた場合、相対的に空隙が多く、凝集体内の構成粒子同士の摩擦が相対的に大きく、相対的に変形しにくい凝集体となる傾向がある。
The thermally conductive particles (A) are preferably spherical in view of the small number of voids and ease of deformation in the resulting easily deformable aggregate (D).
When spherical particles are used, a dense easily deformable aggregate (D) with few voids can be obtained. Since the voids in the easily deformable aggregate (D) deteriorate the thermal conductivity, it is important in terms of improving the thermal conductivity to prevent the voids from being generated as much as possible.
Moreover, when the heat conductive particles (A) are spherical, the coefficient of friction between the particles of the heat conductive particles (A) in the aggregate is small. As a result, when a force is applied to the aggregate, the positional relationship of the heat conductive particles (A) in the aggregate easily changes, and the aggregate is easily deformed without collapsing.
When comparing the composition of the thermally conductive particles and the particles having the same average primary particle size, when using non-spherical particles such as plate-like or needle-like particles, compared to using spherical particles, relatively voids In many cases, the friction between the constituent particles in the aggregate is relatively large and the aggregate tends to be relatively difficult to deform.

なお、本発明において球状であるとは、例えば、「円形度」であらわすことができ、この円形度とは、粒子をSEM等で撮影した写真から任意の数の粒子を選び、粒子の面積をS、周囲長をLとしたとき、(円形度)=4πS/Lとして表すことができる。円形度を測定するには、各種画像処理ソフト、または画像処理ソフトを搭載した装置を使用することができるが、本発明では、東亜医用電子株式会社製フロー式粒子像分析装置FPIA−1000を用いて粒子の平均円形度を測定した際の平均円形度が0.9〜1のものをいう。好ましくは、平均円形度が0.96〜1である。 In the present invention, the term “spherical” refers to, for example, “circularity”. The circularity is an arbitrary number of particles selected from a photograph of the particles taken with an SEM or the like, and represents the area of the particles. When S and the perimeter are L, it can be expressed as (circularity) = 4πS / L 2 . In order to measure the circularity, various image processing software or an apparatus equipped with image processing software can be used. In the present invention, flow type particle image analyzer FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd. is used. The average circularity when the average circularity of the particles is measured is 0.9 to 1. Preferably, the average circularity is 0.96-1.

易変形性凝集体(D)を得るために用いられる熱伝導性粒子(A)は、平均一次粒子径が0.1〜10μmであり、0.3〜10μmであることが望ましい。一種類の大きさの熱伝導性粒子(A)を用いる場合には、平均一次粒子径が0.3〜5μmのものを用いることが好ましい。大きさの異なる複数の種類の熱伝導性粒子(A)を用いることもでき、その場合には、比較的小さなものと比較的大きなものを組み合わせて用いることが、凝集体内の空隙率を減らすという点で好ましい。
平均一次粒子径が小さ過ぎると、凝集体内における一次粒子同士の接点が多くなり、接触抵抗が大きくなるため熱伝導性が低下する傾向にある。一方、平均一次粒子径が大き過ぎると凝集体を作成しようとしても崩壊し易く、凝集体自体が形成されにくい。
なお、本発明における熱伝導性粒子(A)の平均一次粒子径は、粒度分布計(例えば、Malvern Instruments社製、マスターサイザー2000)で測定したときの値である。
また、本発明の易変形性凝集体(D)が崩壊しにくいことは、例えば、ガラスサンプル管に易変形性凝集体(D)を空隙率70%となるように入れ、振とう機にて2時間振とうしても、振とう後の平均粒子径が振とう前の平均粒子径の80%以上であることからも支持される。
The heat conductive particles (A) used for obtaining the easily deformable aggregate (D) have an average primary particle diameter of 0.1 to 10 μm, and preferably 0.3 to 10 μm. When using one type of thermally conductive particles (A), it is preferable to use particles having an average primary particle size of 0.3 to 5 μm. A plurality of types of thermally conductive particles (A) having different sizes can also be used, and in that case, using a combination of relatively small and relatively large particles reduces the porosity in the aggregate. This is preferable.
If the average primary particle size is too small, the number of contacts between the primary particles in the aggregate increases, and the contact resistance increases, so the thermal conductivity tends to decrease. On the other hand, if the average primary particle size is too large, it tends to collapse even if an aggregate is prepared, and the aggregate itself is difficult to be formed.
In addition, the average primary particle diameter of the heat conductive particles (A) in the present invention is a value when measured with a particle size distribution meter (for example, Mastersizer 2000, manufactured by Malvern Instruments).
In addition, the easily deformable aggregate (D) of the present invention is less likely to collapse. For example, the easily deformable aggregate (D) is placed in a glass sample tube so as to have a porosity of 70%, and is shaken. Even if it shakes for 2 hours, it is supported also because the average particle diameter after shaking is 80% or more of the average particle diameter before shaking.

<反応性官能基を有する有機結着剤(B)>
本発明における反応性官能基を有する有機結着剤(B)は、熱伝導性粒子(A)同士を結着させる「つなぎ」の役割を果たす。また、有機結着剤(B)中の反応性官能基と、後記バインダー樹脂(E)中の官能基とが反応することにより、後記熱伝導性部材(H)、(I)の熱伝導層内の架橋構造が発達し、耐熱性の向上につながる。
ここでいう反応性とは、本発明の凝集体(D)を含む熱伝導性部材(H)、(I)が加熱されることによって後記バインダー樹脂(E)の官能基と架橋構造を形成することを示す。従って、加熱工程は、熱伝導性部材(H)、(I)が加圧されて凝集体(D)が変形すると同時に、あるいは変形した後に行われることが好ましい。例えば25℃で反応性を示すような、圧縮変形される前に反応性を示す官能基を有すると、易変形性凝集体(D)の変形性が損なわれるため好ましくない。
<Organic binder (B) having a reactive functional group>
The organic binder (B) having a reactive functional group in the present invention plays a role of “tethering” for binding the heat conductive particles (A) to each other. In addition, a reactive functional group in the organic binder (B) reacts with a functional group in the binder resin (E) described later, whereby a thermal conductive layer of the thermal conductive members (H) and (I) described later. The internal cross-linking structure develops, leading to improved heat resistance.
The reactivity referred to here forms a cross-linked structure with a functional group of the binder resin (E) described later by heating the thermally conductive members (H) and (I) containing the aggregate (D) of the present invention. It shows that. Therefore, it is preferable that the heating step is performed simultaneously with or after the heat conductive members (H) and (I) are pressurized and the aggregate (D) is deformed. For example, it is not preferable to have a functional group that exhibits reactivity before being subjected to compression deformation, such as reactivity at 25 ° C., because the deformability of the easily deformable aggregate (D) is impaired.

反応性官能基を有する有機結着剤(B)としては、バインダー樹脂(E)中の官能基と反応性を示す官能基を有していれば特に制限されない。また、「つなぎ」の役割を果たせる範囲において分子量は問わない。   The organic binder (B) having a reactive functional group is not particularly limited as long as it has a functional group reactive with the functional group in the binder resin (E). Further, the molecular weight is not limited as long as it can play the role of “tethering”.

反応性官能基としては例えば、エポキシ基、カルボキシル基、アセトアセチル基、アミノ基、イソシアネート基、水酸基、およびチオール基等などが挙げられる。官能基は、1種または2種以上有を併用して用いることができる。
反応性官能基を有する有機結着剤(B)は、反応性官能基を有する単量体を用いて合成された樹脂でもよいし、反応性官能基を有さない樹脂の一部を変性し、反応性を有する官能基を付加させたものでもよい。
Examples of the reactive functional group include an epoxy group, a carboxyl group, an acetoacetyl group, an amino group, an isocyanate group, a hydroxyl group, and a thiol group. The functional group can be used alone or in combination of two or more.
The organic binder (B) having a reactive functional group may be a resin synthesized using a monomer having a reactive functional group, or a part of a resin having no reactive functional group may be modified. Further, a functional group having reactivity may be added.

反応性官能基を有する有機結着剤(B)としては例えば、
ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルニトロセルロース、ポリビニルアルコール、エチレン/ビニルアルコール樹脂、スチレン/無水マレイン酸樹脂、塩化ビニル/酢酸ビニル/マレイン酸樹脂、マレイン酸樹脂、メラミン樹脂、ポリアリルアミン、ポリアクリル酸、エポキシ樹脂、及びこれら樹脂にさらに反応性官能基を導入したものが挙げられる。
また、ポリエーテル樹脂、ポリウレタン樹脂、(不飽和)ポリエステル樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、(メタ)アクリル樹脂、スチレン/(メタ)アクリル樹脂、ポリスチレン樹脂、ニトロセルロース、ベンジルセルロース、セルロース(トリ)アセテート、カゼイン、シェラック、ゼラチン、ギルソナイト、ロジン、ロジンエステル、ポリビニルピロリドン、ポリアクリルアミド、メチルセルロース、エチルセルロース、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン樹脂、ポリ酢酸ビニル樹脂、エチレン/酢酸ビニル樹脂、塩化ビニル/酢酸ビニル樹脂、フッ素樹脂、シリコン樹脂、フェノキシ樹脂、フェノール樹脂、尿素樹脂、ベンゾグアナミン樹脂、ケトン樹脂、石油樹脂、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、及び塩素化ポリウレタン樹脂に、反応性官能基を導入したものが挙げられる。
As the organic binder (B) having a reactive functional group, for example,
Hydroxyethylcellulose, hydroxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, carboxymethylethylcellulose, carboxymethylnitrocellulose, polyvinyl alcohol, ethylene / vinyl alcohol resin, styrene / maleic anhydride resin, vinyl chloride / vinyl acetate / male Examples thereof include acid resins, maleic resins, melamine resins, polyallylamine, polyacrylic acid, epoxy resins, and those obtained by further introducing reactive functional groups.
Polyether resins, polyurethane resins, (unsaturated) polyester resins, alkyd resins, butyral resins, acetal resins, polyamide resins, (meth) acrylic resins, styrene / (meth) acrylic resins, polystyrene resins, nitrocellulose, benzylcellulose , Cellulose (tri) acetate, casein, shellac, gelatin, gilsonite, rosin, rosin ester, polyvinylpyrrolidone, polyacrylamide, methylcellulose, ethylcellulose, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinylidene fluoride resin, polyacetic acid Vinyl resin, ethylene / vinyl acetate resin, vinyl chloride / vinyl acetate resin, fluorine resin, silicon resin, phenoxy resin, phenol resin, urea resin, benzoguana Down resin, ketone resin, petroleum resin, chlorinated polyolefin resin, a modified chlorinated polyolefin resin, and chlorinated polyurethane resins include those obtained by introducing a reactive functional group.

反応性官能基を有する有機結着剤(B)は、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸、エポキシ樹脂、及びこれら樹脂にさらに反応性官能基を導入したものが好ましい。
また、反応性官能基を有する有機結着剤(B)は、1種類を単独で用いても、2種類以上を混合して用いても良い。
The organic binder (B) having a reactive functional group is preferably carboxymethylcellulose, polyvinyl alcohol, polyacrylic acid, an epoxy resin, and those obtained by further introducing a reactive functional group into these resins.
Moreover, the organic binder (B) which has a reactive functional group may be used individually by 1 type, or may be used in mixture of 2 or more types.

バインダー樹脂(E)中の官能基がエポキシ基であった場合、有機結着剤(B)の官能基としては、例えば、エポキシ基、カルボキシル基、アセトアセチル基、アミノ基、水酸基、チオール基などの官能基が挙げられるが、これに制限されない。 When the functional group in the binder resin (E) is an epoxy group, examples of the functional group of the organic binder (B) include an epoxy group, a carboxyl group, an acetoacetyl group, an amino group, a hydroxyl group, and a thiol group. However, the functional group is not limited thereto.

バインダー樹脂(E)中の官能基がカルボキシル基であった場合、有機結着剤(B)の官能基としては、例えば、エポキシ基、アセトアセチル基、アミノ基、イソシアネート基、水酸基、チオール基などの官能基が挙げられるが、これに制限されない。 When the functional group in the binder resin (E) is a carboxyl group, examples of the functional group of the organic binder (B) include an epoxy group, an acetoacetyl group, an amino group, an isocyanate group, a hydroxyl group, and a thiol group. However, the functional group is not limited thereto.

バインダー樹脂(E)中の官能基がアセトアセチル基であった場合、有機結着剤(B)の官能基としては、例えば、エポキシ基、カルボキシル基、アミノ基、イソシアネート基、水酸基、チオール基などの官能基が挙げられるが、これに制限されない。 When the functional group in the binder resin (E) is an acetoacetyl group, examples of the functional group of the organic binder (B) include an epoxy group, a carboxyl group, an amino group, an isocyanate group, a hydroxyl group, and a thiol group. However, the functional group is not limited thereto.

バインダー樹脂(E)中の官能基がアミノ基であった場合、有機結着剤(B)の官能基としては、例えば、エポキシ基、カルボキシル基、アセトアセチル基、イソシアネート基などの官能基が挙げられるが、これに制限されない。 When the functional group in the binder resin (E) is an amino group, examples of the functional group of the organic binder (B) include functional groups such as an epoxy group, a carboxyl group, an acetoacetyl group, and an isocyanate group. However, it is not limited to this.

バインダー樹脂(E)中の官能基がイソシアネート基であった場合、有機結着剤(B)の官能基としては、例えば、カルボキシル基、アセトアセチル基、アミノ基、水酸基、チオール基などの官能基が挙げられるが、これに制限されない。 When the functional group in the binder resin (E) is an isocyanate group, examples of the functional group of the organic binder (B) include a functional group such as a carboxyl group, an acetoacetyl group, an amino group, a hydroxyl group, and a thiol group. However, it is not limited to this.

バインダー樹脂(E)中の官能基が水酸基であった場合、有機結着剤(B)の官能基としては、例えば、エポキシ基、カルボキシル基、アセトアセチル基、イソシアネート基などの官能基が挙げられるが、これに制限されない。 When the functional group in the binder resin (E) is a hydroxyl group, examples of the functional group of the organic binder (B) include a functional group such as an epoxy group, a carboxyl group, an acetoacetyl group, and an isocyanate group. However, it is not limited to this.

バインダー樹脂(E)中の官能基がチオール基であった場合、有機結着剤(B)の官能基としては、例えば、エポキシ基、カルボキシル基、アセトアセチル基、イソシアネート基などの官能基が挙げられるが、これに制限されない。 When the functional group in the binder resin (E) is a thiol group, examples of the functional group of the organic binder (B) include functional groups such as an epoxy group, a carboxyl group, an acetoacetyl group, and an isocyanate group. However, it is not limited to this.

耐熱性の観点から、有機結着剤(B)の反応性官能基はエポキシ基、アセトアセチル基、アミノ基、水酸基、またはカルボキシル基であり、バインダー樹脂(E)中の官能基はエポキシ基、カルボキシル基、水酸基、またはアセトアセチル基であることが好ましい。 From the viewpoint of heat resistance, the reactive functional group of the organic binder (B) is an epoxy group, an acetoacetyl group, an amino group, a hydroxyl group, or a carboxyl group, and the functional group in the binder resin (E) is an epoxy group, A carboxyl group, a hydroxyl group, or an acetoacetyl group is preferable.

また、反応性官能基を有する有機結着剤(B)は、溶剤(F)に不溶であることが好ましい。ここでいう不溶とは、反応性官能基を有する有機結着剤(B)1gを、溶剤(F)100gに入れ、25℃で24時間撹拌したときに、目視で沈殿が確認されることをいう。
反応性官能基を有する有機結着剤(B)は、熱伝導性粒子同士の結着させる「つなぎ」の役割を果たしているため、溶剤(F)に不溶であると、熱伝導性樹脂組成物中で易変形性凝集体(D)がその凝集状態を保持することができるためである。
Moreover, it is preferable that the organic binder (B) which has a reactive functional group is insoluble in a solvent (F). The term “insoluble” as used herein means that when 1 g of an organic binder (B) having a reactive functional group is placed in 100 g of a solvent (F) and stirred at 25 ° C. for 24 hours, precipitation is visually confirmed. Say.
Since the organic binder (B) having a reactive functional group plays a role of “tethering” for binding the thermally conductive particles, the thermally conductive resin composition is insoluble in the solvent (F). This is because the easily deformable aggregate (D) can maintain the aggregated state.

また、反応性官能基を有する有機結着剤(B)は水溶性樹脂であることが好ましい。後述の熱伝導性部材(I)が接着シートである場合は、好適に使用できる。ここでいう水溶性とは、樹脂1gを水100gに入れ、25℃で24時間撹拌したときに、目視で沈殿が確認されないことをいう。
水溶性樹脂は、特に限定されないが、例えばポリビニルアルコール、カルボキシメチルセルロース、ポリアリルアミン、及びこれら樹脂にさらに反応性官能基を導入したもの等が挙げられる。
The organic binder (B) having a reactive functional group is preferably a water-soluble resin. When the heat conductive member (I) described later is an adhesive sheet, it can be suitably used. The term “water-soluble” as used herein means that precipitation is not visually confirmed when 1 g of resin is added to 100 g of water and stirred at 25 ° C. for 24 hours.
The water-soluble resin is not particularly limited, and examples thereof include polyvinyl alcohol, carboxymethyl cellulose, polyallylamine, and those obtained by further introducing a reactive functional group into these resins.

本発明の易変形性凝集体(D)は、上記熱伝導性粒子(A)100重量部に対し、上記反応性官能基を有する有機結着剤(B)を0.1〜30重量部含有するものであり、1〜10重量部含有することが好ましい。0.1重量部より少ないと、熱伝導性粒子(A)を十分に結着することができず形態を維持するために十分な強度が得られないため好ましくない。また、30重量部より多い場合は、熱伝導性粒子(A)同士を結着させる効果は大きくなるが、熱伝導性粒子(A)同士間に必要以上に結着剤が入り込み、熱伝導性を阻害する恐れがあるため好ましくない。   The easily deformable aggregate (D) of the present invention contains 0.1 to 30 parts by weight of the organic binder (B) having the reactive functional group with respect to 100 parts by weight of the heat conductive particles (A). It is preferable to contain 1-10 weight part. If the amount is less than 0.1 part by weight, the heat conductive particles (A) cannot be sufficiently bound, and a sufficient strength for maintaining the form cannot be obtained. When the amount is more than 30 parts by weight, the effect of binding the thermally conductive particles (A) is increased, but the binder enters between the thermally conductive particles (A) more than necessary, and the thermal conductivity. It is not preferable because there is a possibility of hindering.

本発明の易変形性凝集体(D)の平均粒子径は2〜100μmが好ましく、より好ましくは5〜50μmである。平均粒子径が2μmより小さい場合、凝集体(D)を構成する熱伝導性粒子(A)の数が少なくなり、凝集体としての効果が低く、変形性にも劣るため好ましくない。平均粒子径が100μmを超えると、単位体積あたりの易変形性凝集体(D)の重量が大きくなり、分散体として用いた場合に沈降したり、形成する高熱伝導性部材の膜厚に自由度がなくなる等の問題が生じるため好ましくない。
なお、本発明における易変形性凝集体(D)の平均粒子径は、粒度分布計(例えば、Malvern Instruments社製、マスターサイザー2000)で測定したときの値である。
2-100 micrometers is preferable and, as for the average particle diameter of the easily deformable aggregate (D) of this invention, More preferably, it is 5-50 micrometers. When the average particle diameter is smaller than 2 μm, the number of the heat conductive particles (A) constituting the aggregate (D) is decreased, the effect as the aggregate is low, and the deformability is inferior. When the average particle diameter exceeds 100 μm, the weight of the easily deformable aggregate (D) per unit volume increases, and the degree of freedom in the film thickness of the highly thermally conductive member that settles or forms when used as a dispersion. This is not preferable because problems such as disappearance occur.
In addition, the average particle diameter of the easily deformable aggregate (D) in the present invention is a value when measured with a particle size distribution meter (for example, Mastersizer 2000 manufactured by Malvern Instruments).

また、易変形性凝集体(D)の比表面積は、特に制限されないが、10m/g以下で
あることが好ましく、5m/g以上であることがさらに好ましい。10m/gより大きい場合、バインダー樹脂(E)が粒子表面や凝集体内部に吸着し、成膜性の低下・接着力の低下する傾向にあるため、好ましくない。
The specific surface area of the easily deformable aggregate (D) is not particularly limited, but is preferably 10 m 2 / g or less, and more preferably 5 m 2 / g or more. When it is larger than 10 m 2 / g, the binder resin (E) is adsorbed on the particle surface or inside the agglomerates, and tends to decrease film formability and adhesive strength, which is not preferable.

上記比表面積は、BET比表面積計(例えば、日本ベル社製、BELSORP−mini)で測定したときの値である。 The specific surface area is a value measured by a BET specific surface area meter (for example, BELSORP-mini manufactured by Nippon Bell Co., Ltd.).

<製造方法>
本発明の易変形性凝集体(D)は、例えば、平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と反応性官能基を有する有機結着剤(B)0.1〜30重量部と前記反応性官能基を有する有機結着剤(B)を溶解する溶剤(C)とを含有するスラリーを得、次いで、前記スラリーから前記溶剤(C)を除去することによって、得ることができる。
あるいは、熱伝導性粒子(A)100重量部と反応性官能基を有する有機結着剤(B)0.1〜30重量部とを混合することにより得たり、熱伝導性粒子(A)100重量部に、反応性官能基を有する有機結着剤(B)0.1〜30重量部と前記反応性官能基を有する有機結着剤(B)を溶解する溶剤(C)とを含有する有機結着剤溶液を吹き付けた後、もしくは吹き付けつつ、溶剤(C)を除去することによって、得たりすることもできる。
組成が均一な易変形性凝集体(D)を得るためには、熱伝導性粒子(A)と反応性官能基を有する有機結着剤(B)とを溶剤(C)中で予め混合してスラリーとする工程を経、その後溶剤(C)を除去することが好ましい。
<Manufacturing method>
The easily deformable aggregate (D) of the present invention includes, for example, an organic binder having 100 parts by weight of spherical thermally conductive particles (A) having an average primary particle size of 0.1 to 10 μm and a reactive functional group ( B) A slurry containing 0.1 to 30 parts by weight and a solvent (C) that dissolves the organic binder (B) having the reactive functional group is obtained, and then the solvent (C) is obtained from the slurry. It can be obtained by removing.
Alternatively, it is obtained by mixing 100 parts by weight of the heat conductive particles (A) and 0.1 to 30 parts by weight of the organic binder (B) having a reactive functional group, or the heat conductive particles (A) 100. The organic binder (B) having a reactive functional group (0.1 to 30 parts by weight) and a solvent (C) for dissolving the organic binder (B) having the reactive functional group are contained in parts by weight. It can also be obtained by removing the solvent (C) after or while spraying the organic binder solution.
In order to obtain an easily deformable aggregate (D) having a uniform composition, the heat conductive particles (A) and the organic binder (B) having a reactive functional group are mixed in advance in the solvent (C). It is preferable to go through a step of making a slurry and then remove the solvent (C).

溶剤(C)は、熱伝導性粒子(A)を分散し、かつ反応性官能基を有する有機結着剤(B)を溶解するものである。
上記溶剤(C)は、反応性官能基を有する有機結着剤(B)を溶解することができれば特に制限はなく、反応性官能基を有する有機結着剤(B)の種類により適宜選択することができる。溶剤(C)としては、例えば、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、芳香族系溶剤、アルコール系溶剤、エーテル系溶剤、水等を使用することができ、2種類以上を混合して使用することもできる。
The solvent (C) is for dissolving the thermally conductive particles (A) and dissolving the organic binder (B) having a reactive functional group.
The solvent (C) is not particularly limited as long as it can dissolve the organic binder (B) having a reactive functional group, and is appropriately selected depending on the type of the organic binder (B) having a reactive functional group. be able to. As the solvent (C), for example, ester solvents, ketone solvents, glycol ether solvents, aliphatic solvents, aromatic solvents, alcohol solvents, ether solvents, water and the like can be used. A mixture of more than one can also be used.

上記溶剤(C)は、除去し易さの点から、沸点は低いほうが好ましく、例えば、水、エタノール、メタノール、酢酸エチル等、沸点が110℃以下であると好ましい。
また、上記溶剤(C)の使用量は、除去し易さの点からは少ない方が好ましいが、反応性官能基を有する有機結着剤(B)の溶解性や乾燥用の装置に合わせて適宜変更することができる。
The solvent (C) preferably has a lower boiling point from the viewpoint of easy removal, and preferably has a boiling point of 110 ° C. or lower, such as water, ethanol, methanol, ethyl acetate, or the like.
Further, the amount of the solvent (C) used is preferably small in terms of ease of removal, but it is adjusted according to the solubility of the organic binder (B) having a reactive functional group and the drying apparatus. It can be changed as appropriate.

前記スラリーから溶剤(C)を除去する方法は特に制限はなく、市販の装置を用いて易変形性凝集体(D)を製造することができる。例えば、噴霧乾燥、攪拌乾燥、静置乾燥等の方法の中から選択することができる。中でも、比較的丸くて、粒子径の揃った易変形性凝集体(D)を生産性良く得られるという点から、噴霧乾燥を好適に用いることができる。
具体的には、前記スラリーを霧状に噴霧しながら、溶剤(C)を揮発・除去すればよい。噴霧条件や揮発条件を適宜選択することができる。
The method for removing the solvent (C) from the slurry is not particularly limited, and the easily deformable aggregate (D) can be produced using a commercially available apparatus. For example, it can be selected from methods such as spray drying, stirring drying, and stationary drying. Among them, spray drying can be suitably used from the viewpoint that a relatively round and easily deformable aggregate (D) having a uniform particle diameter can be obtained with high productivity.
Specifically, the solvent (C) may be volatilized and removed while spraying the slurry in the form of a mist. Spray conditions and volatilization conditions can be selected as appropriate.

<熱伝導性樹脂組成物(G)、熱伝導性部材(H)、(I)>
熱伝導性樹脂組成物(G)は、易変形性凝集体(D)とバインダー樹脂(E)と溶剤(F)とを含むことが好ましく、易変形性凝集体(D)20〜90体積%と、バインダー樹脂(E)10〜80体積%と、バインダー樹脂(E)を溶解する溶剤(F)とを含有することがより好ましい。
<Thermal conductive resin composition (G), thermal conductive member (H), (I)>
The heat conductive resin composition (G) preferably contains an easily deformable aggregate (D), a binder resin (E), and a solvent (F), and the easily deformable aggregate (D) is 20 to 90% by volume. More preferably, the binder resin (E) is contained in an amount of 10 to 80% by volume and the solvent (F) for dissolving the binder resin (E).

基材上に熱伝導性樹脂組成物(G)を塗布して塗膜を形成し、この塗膜から溶剤(F)を除去して、熱伝導層を形成することで、熱伝導性部材(H)を得ることができる。
さらに、熱伝導性部材(H)に圧力を加え、含まれている易変形性凝集体(D)を変形させることによって、熱伝導性部材(H)の熱伝導性を向上させた熱伝導性部材(高熱伝導性部材)(I)を得ることができる。
さらに、易変形性凝集体(D)を変形させると同時に、あるいは変形させた後に、熱伝導性部材(H)に熱を加え、有機結着剤(B)とバインダー樹脂(E)とが架橋することによって、前記熱伝導性部材(H)の耐熱性を向上させることができる。
A thermally conductive resin composition (G) is applied onto a substrate to form a coating film, and the solvent (F) is removed from the coating film to form a thermally conductive layer. H) can be obtained.
Furthermore, the heat conductivity which improved the heat conductivity of the heat conductive member (H) by applying a pressure to the heat conductive member (H), and deforming the easily deformable aggregate (D) contained. A member (high thermal conductivity member) (I) can be obtained.
Further, at the same time as or after the deformable aggregate (D) is deformed, heat is applied to the heat conductive member (H) to crosslink the organic binder (B) and the binder resin (E). By doing, the heat resistance of the said heat conductive member (H) can be improved.

例えば、熱伝導性樹脂組成物(G)を用いて熱伝導性部材(H)として熱伝導性シートを得、放熱対象の物品と放熱部材との間に熱伝導性シートを挟み圧力と熱を加えることによって、熱伝導性部材(I)として熱伝導性と耐熱性が向上された熱伝導性シートを得ることができる。この熱伝導性シートは、放熱対象の物品の熱を効率良く放熱部材に伝えることができる。
熱伝導性部材(H)として、接着性あるいは粘着性を有する熱伝導性シートを得ることができる。この場合、加圧時に放熱対象の物品と放熱部材とを貼り合わせることができる。
For example, a heat conductive sheet is obtained as the heat conductive member (H) using the heat conductive resin composition (G), and the pressure and heat are applied by sandwiching the heat conductive sheet between the article to be radiated and the heat radiating member. By adding, a heat conductive sheet with improved heat conductivity and heat resistance can be obtained as the heat conductive member (I). This heat conductive sheet can efficiently transmit the heat of the object to be radiated to the heat radiating member.
As the heat conductive member (H), a heat conductive sheet having adhesiveness or tackiness can be obtained. In this case, the article to be radiated and the radiating member can be bonded together at the time of pressurization.

熱伝導性樹脂組成物(G)に圧力と熱を加え、含まれている易変形性凝集体(D)を変形させることによって、シート状等の熱伝導性部材(I)を直接得ることもできる。 By applying pressure and heat to the thermally conductive resin composition (G) and deforming the easily deformable aggregate (D) contained therein, the sheet-like thermally conductive member (I) can be obtained directly. it can.

放熱対象の物品としては、
集積回路、ICチップ、ハイブリッドパッケージ、マルチモジュール、パワートランジスタ、およびLED(発光ダイオード)用基板等の種々の電子部品;
建材、車両、航空機、および船舶等に用いられ、熱を帯び易く、性能劣化を防ぐためにその熱を外部に逃がす必要がある物品等が挙げられる。
As an article for heat dissipation,
Various electronic components such as integrated circuits, IC chips, hybrid packages, multi-modules, power transistors and LED (light emitting diode) substrates;
Examples include articles that are used in building materials, vehicles, aircraft, ships, and the like, are easily heated, and need to release the heat to the outside in order to prevent performance deterioration.

高熱伝導性を実現するためには、熱を伝えたい方向により多くの熱伝導経路を形成することが重要である。
本発明の易変形性凝集体(D)は、熱伝導性粒子(A)が凝集しているので、粒子間の距離が近く、熱伝導経路が予め形成されているので、効率良く熱伝導させることができる。
しかも、本発明の易変形性凝集体(D)は「易変形性」であることによって、高熱伝導性を実現できる。即ち、易変形性凝集体(D)に力が加わった際に易変形性凝集体(D)は崩壊することなく、易変形性凝集体(D)内の熱伝導性粒子(A)同士の密着性が向上することにより、予め形成された熱伝導経路を増強できる。あわせて、易変形性凝集体(D)を構成する熱伝導性粒子(A)の位置が容易に変化できることによって、放熱対象の物品と放熱部材との間で、易変形性凝集体(D)が界面の形状に追従し、放熱対象の物品や放熱部材と熱伝導性粒子(A)との接触面積が増え、熱流入面積や熱伝播経路を飛躍的に増大させることができる。
In order to achieve high thermal conductivity, it is important to form more heat conduction paths in the direction in which heat is to be transmitted.
In the easily deformable aggregate (D) of the present invention, since the heat conductive particles (A) are aggregated, the distance between the particles is close and the heat conduction path is formed in advance, so that the heat conduction is efficiently performed. be able to.
In addition, since the easily deformable aggregate (D) of the present invention is “easy to deform”, high thermal conductivity can be realized. That is, when a force is applied to the easily deformable aggregate (D), the easily deformable aggregate (D) does not collapse, and the heat conductive particles (A) in the easily deformable aggregate (D) are not separated. By improving the adhesion, a previously formed heat conduction path can be enhanced. In addition, since the position of the thermally conductive particles (A) constituting the easily deformable aggregate (D) can be easily changed, the easily deformable aggregate (D) is formed between the heat radiation target article and the heat dissipation member. Follows the shape of the interface, the contact area between the heat radiation target article or heat radiating member and the heat conductive particles (A) increases, and the heat inflow area and the heat propagation path can be dramatically increased.

図面に基づいてさらに詳細に説明する。
図3aは、図2に示す平均一次粒子径が1μmの熱伝導性粒子(A)を反応性官能基を有する有機結着剤(B)を用いて凝集させた平均粒子径10μmの易変形性凝集体(D)を含有する熱硬化性シートのSEM表面写真の一例である。図3bおよび図3cは、図3aの熱硬化性シートを加圧下に熱硬化した硬化物のSEM平面写真およびSEM断面写真である。
熱硬化性シートに圧力を加えることによって、易変形性凝集体(D)内の熱伝導性粒子(A)同士がより密着すると共に、熱伝導性粒子(A)が硬化物の表面に多く存在し、界面の形状に追従していることが確認できる。
これに対し、図4に示されるような、凝集させていない熱伝導性粒子(A)であって、その大きさが図3aに示す易変形性凝集体(D)と同程度のものは易変形性を有さないため、熱硬化性シートの加圧の前後で上記のような変化はほとんど確認できない。
このように本発明の易変形性凝集体(D)は「易変形性」であるが故に、熱伝導性に優れる。つまり、本発明の易変形性凝集体(D)は、より少ない使用量で従来と同程度の熱伝導性を熱伝導性部材に付与したり、あるいは従来と同程度の使用量でより高い熱伝導性を熱伝導性部材に付与したりできる。
Further details will be described with reference to the drawings.
FIG. 3a is an easily deformable material having an average particle diameter of 10 μm obtained by aggregating the heat conductive particles (A) having an average primary particle diameter of 1 μm shown in FIG. 2 with an organic binder (B) having a reactive functional group. It is an example of the SEM surface photograph of the thermosetting sheet containing an aggregate (D). 3b and 3c are a SEM plane photograph and a SEM sectional photograph of a cured product obtained by thermosetting the thermosetting sheet of FIG. 3a under pressure.
By applying pressure to the thermosetting sheet, the thermally conductive particles (A) in the easily deformable aggregate (D) are more closely adhered to each other, and more thermally conductive particles (A) are present on the surface of the cured product. It can be confirmed that the shape of the interface is followed.
On the other hand, non-aggregated thermally conductive particles (A) as shown in FIG. 4 having the same size as the easily deformable aggregate (D) shown in FIG. Since it does not have deformability, the above change can hardly be confirmed before and after pressurization of the thermosetting sheet.
Thus, since the easily deformable aggregate (D) of the present invention is “easy to deform”, it has excellent thermal conductivity. That is, the easily deformable aggregate (D) of the present invention imparts the same thermal conductivity to the heat conductive member with a smaller amount of use, or higher heat with the same amount of the conventional one. Conductivity can be imparted to the thermally conductive member.

熱伝導率(W/m・K)は、試料中を熱が伝導する速度を表す熱拡散率(mm/s)に測定試料の比熱容量(J/(g・K))と密度(g/cm)を乗じた下記式で求められる。
熱伝導率(W/m・K)=熱拡散率(mm/s)×比熱容量(J/(g・K))×密度(g/cm)
The thermal conductivity (W / m · K) is the thermal diffusivity (mm 2 / s) representing the rate at which heat is conducted through the sample, and the specific heat capacity (J / (g · K)) and density (g / cm 3 ) and obtained by the following formula.
Thermal conductivity (W / m · K) = thermal diffusivity (mm 2 / s) × specific heat capacity (J / (g · K)) × density (g / cm 3 )

熱拡散率の測定は、測定サンプルの形状等に応じて、例えば、周期加熱法、ホットディスク法、温度波分析法、またはフラッシュ法等を選択することができる。本明細書に記載のデータでは、キセノンフラッシュアナライザーLFA447 NanoFlash(NETZSCH社製)を用いたフラッシュ法で熱拡散率を測定した。 For the measurement of the thermal diffusivity, for example, a periodic heating method, a hot disk method, a temperature wave analysis method, a flash method, or the like can be selected according to the shape of the measurement sample. In the data described herein, the thermal diffusivity was measured by a flash method using a Xenon flash analyzer LFA447 NanoFlash (manufactured by NETZSCH).

<バインダー樹脂(E)>
熱伝導性樹脂組成物を得る際に用いられるバインダー樹脂(E)は、熱伝導性部材を形成でき、有機結着剤(B)と反応する官能基を有するものであれば特に限定されないが、例えば、
ポリウレタン樹脂、ポリエステル樹脂、ポリエステルウレタン樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、アクリル樹脂、スチレン−アクリル樹脂、スチレン樹脂、ニトロセルロース、ベンジルセルロース、セルロース(トリ)アセテート、カゼイン、シェラック、ギルソナイト、ゼラチン、スチレン−無水マレイン酸樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン樹脂、ポリ酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル/酢酸ビニル共重合体樹脂、塩化ビニル/酢酸ビニル/マレイン酸共重合体樹脂、フッ素樹脂、シリコン樹脂、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、マレイン酸樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ケトン樹脂、石油樹脂、ロジン、ロジンエステル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルニトロセルロース、エチレン/ビニルアルコール樹脂、ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂および塩素化ポリウレタン樹脂からなる郡より用途に応じて選ばれる1種または2種以上を適宜使用することができる。
中でも柔軟性の観点からウレタン系樹脂、電子部品として用いる際の、絶縁性、耐熱性等の観点からエポキシ系樹脂が好適に用いられる。
熱伝導性樹脂組成物(G)や熱伝導性部材(H)に含まれるバインダー樹脂(E)は、バインダー樹脂(E)自体硬化するか、もしくは適当な硬化剤との反応により硬化するものを用いることができる。
<Binder resin (E)>
The binder resin (E) used when obtaining the heat conductive resin composition is not particularly limited as long as it can form a heat conductive member and has a functional group that reacts with the organic binder (B). For example,
Polyurethane resin, polyester resin, polyester urethane resin, alkyd resin, butyral resin, acetal resin, polyamide resin, acrylic resin, styrene-acrylic resin, styrene resin, nitrocellulose, benzylcellulose, cellulose (tri) acetate, casein, shellac, gilsonite , Gelatin, styrene-maleic anhydride resin, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinylidene fluoride resin, polyvinyl acetate resin, ethylene vinyl acetate resin, vinyl chloride / vinyl acetate copolymer resin, vinyl chloride / Vinyl acetate / maleic acid copolymer resin, fluorine resin, silicone resin, epoxy resin, phenoxy resin, phenol resin, maleic acid resin, urea resin, melamine resin, benzoguanami Resin, ketone resin, petroleum resin, rosin, rosin ester, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, ethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, carboxymethylethylcellulose, carboxymethyl One or more selected from the group consisting of nitrocellulose, ethylene / vinyl alcohol resin, polyolefin resin, chlorinated polyolefin resin, modified chlorinated polyolefin resin, and chlorinated polyurethane resin can be used as appropriate. .
Among these, epoxy resins are preferably used from the viewpoints of insulation and heat resistance when used as urethane resins and electronic parts from the viewpoint of flexibility.
The binder resin (E) contained in the thermally conductive resin composition (G) or the thermally conductive member (H) is a binder resin (E) that cures itself or reacts with an appropriate curing agent. Can be used.

バインダー樹脂(E)が有する官能基としては、例えば、エポキシ基、カルボキシル基、アセトアセチル基、エステル基、アミノ基、イソシアネート基、水酸基、チオール基などが挙げられる。官能基は、1種または2種以上有を併用して用いることができる。 Examples of the functional group that the binder resin (E) has include an epoxy group, a carboxyl group, an acetoacetyl group, an ester group, an amino group, an isocyanate group, a hydroxyl group, and a thiol group. The functional group can be used alone or in combination of two or more.

バインダー樹脂(E)は非水溶性樹脂であることが好ましい。ここでいう非水溶性とは、樹脂1gを水100gに入れ、25℃で24時間撹拌したときに、目視で沈殿が確認されることをいい、具体的には、前記反応性官能基を有する有機結着剤(B)における水溶性樹脂以外のものが挙げられる。
バインダー樹脂(E)は非水溶性樹脂であると、後述の熱伝導性部材(I)に接着性を付与する場合に好ましい。
The binder resin (E) is preferably a water-insoluble resin. The term “water-insoluble” as used herein means that precipitation is visually confirmed when 1 g of resin is put into 100 g of water and stirred at 25 ° C. for 24 hours. Specifically, the resin has the reactive functional group. Examples other than the water-soluble resin in the organic binder (B) are mentioned.
The binder resin (E) is preferably a water-insoluble resin when imparting adhesiveness to the heat conductive member (I) described later.

<溶剤(F)>
溶剤(F)は、熱伝導性樹脂組成物(G)中に易変形性凝集体(D)及びバインダー樹脂(E)を均一に分散させるために用いられる。
<Solvent (F)>
The solvent (F) is used for uniformly dispersing the easily deformable aggregate (D) and the binder resin (E) in the thermally conductive resin composition (G).

用いられる溶剤(F)は、バインダー樹脂(E)を溶解し得るものであって、易変形性凝集体(D)を構成する反応性官能基を有する有機結着剤(B)を溶解しないものを適宜選択することが重要である。熱伝導性樹脂組成物(G)を得る際、反応性官能基を有する有機結着剤(B)を溶解してしまう溶剤(F)を用いると、易変形性凝集体(D)の凝集状態を保持できなくなる。
例えば、反応性官能基を有する有機結着剤(B)としてポリビニルアルコール、ポリアリルアミン、カルボキシメチルセルロース等の水溶性樹脂を選択した場合には、熱伝導性樹脂組成物(G)を得る際の溶剤(F)として、トルエンやキシレン等の非水性溶剤を選択すれば良い。
反応性官能基を有する有機結着剤(B)としてフェノキシ樹脂や石油樹脂等の非水溶性樹脂を選択した場合には、熱伝導性樹脂組成物(G)を得る際の溶剤(F)として、水やアルコール等の水性溶剤を選択すれば良い。
なお、ここでいう「不溶」とは、反応性官能基を有する有機結着剤(B)1gを、溶剤(F)100gに入れ、25℃で24時間攪拌し、目視で沈殿が確認されることとする。
The solvent (F) used can dissolve the binder resin (E) and does not dissolve the organic binder (B) having a reactive functional group constituting the easily deformable aggregate (D). It is important to select as appropriate. When the heat conductive resin composition (G) is obtained, if a solvent (F) that dissolves the organic binder (B) having a reactive functional group is used, the aggregation state of the easily deformable aggregate (D) Can not be held.
For example, when a water-soluble resin such as polyvinyl alcohol, polyallylamine, or carboxymethylcellulose is selected as the organic binder (B) having a reactive functional group, the solvent for obtaining the heat conductive resin composition (G) As (F), a non-aqueous solvent such as toluene or xylene may be selected.
When a water-insoluble resin such as phenoxy resin or petroleum resin is selected as the organic binder (B) having a reactive functional group, the solvent (F) for obtaining the heat conductive resin composition (G) An aqueous solvent such as water or alcohol may be selected.
Here, “insoluble” means that 1 g of the organic binder (B) having a reactive functional group is put in 100 g of the solvent (F), stirred at 25 ° C. for 24 hours, and precipitation is confirmed visually. I will do it.

熱伝導性樹脂組成物(G)中の易変形性凝集体(D)の含有量は、目標とする熱伝導性、用途に応じて適宜選択することができるが、高熱伝導性を得るためには、熱伝導性樹脂組成物(G)の固形分を基準として、20〜90体積%であることが好ましい。さらに好ましくは30〜80体積%の範囲であることが好ましい。
20体積%未満の含有量だと、易変形性凝集体(D)の添加効果が薄く十分な熱伝導性が得られない。一方、90体積%を越えると相対的にバインダー樹脂(E)の含有量が少なくなり、形成される熱伝導性部材(H)や熱伝導性部材(I)が脆くなったり、熱伝導性部材(I)内に空隙が出来るおそれがあり、熱伝導性部材(I)を使用している間に熱伝導性が徐々に低下する可能性がある。ここでいう体積%とは、熱伝導性樹脂組成物(G)中の固形分に対する熱伝導性粒子(A)、反応性官能基を有する有機結着剤(B)、バインダー樹脂(E)の重量比と比重をもとに計算した理論値を示す。
The content of the easily deformable aggregate (D) in the thermally conductive resin composition (G) can be appropriately selected according to the target thermal conductivity and application, but in order to obtain high thermal conductivity. Is preferably 20 to 90% by volume based on the solid content of the thermally conductive resin composition (G). More preferably, it is in the range of 30 to 80% by volume.
If the content is less than 20% by volume, the effect of adding the easily deformable aggregate (D) is thin and sufficient thermal conductivity cannot be obtained. On the other hand, when it exceeds 90% by volume, the content of the binder resin (E) is relatively reduced, and the formed heat conductive member (H) and the heat conductive member (I) become brittle, or the heat conductive member. There is a possibility that voids may be formed in (I), and there is a possibility that the thermal conductivity gradually decreases while using the thermal conductive member (I). The volume% here means the heat conductive particles (A) with respect to the solid content in the heat conductive resin composition (G), the organic binder (B) having a reactive functional group, and the binder resin (E). The theoretical values calculated based on the weight ratio and specific gravity are shown.

易変形性凝集体(D)は、1種を単独で用いることも、平均粒子径の異なるものや、構成する熱伝導性粒子(A)の種類や平均一次粒子径の異なるものや、構成する反応性官能基を有する有機結着剤(B)の種類や量の異なるものを、複数併用しても良い。   The easily deformable aggregate (D) may be used alone, or may have a different average particle size, a different type of heat conductive particles (A) or a different average primary particle size, or may be configured. A plurality of organic binders (B) having different types and amounts of reactive functional groups may be used in combination.

また、熱伝導性樹脂組成物(G)は、さらに凝集していない熱伝導性粒子も併用することができる。凝集していない熱伝導性粒子も併用することにより、易変形性凝集体(D)間の隙間を埋めたり、易変形性凝集体(D)が変形する際、隙間が生じた場合、熱伝導性粒子(A)間の隙間を埋めたりし、更なる熱伝導性の向上効果が期待できる。
併用し得る熱伝導性粒子としては、例えば熱伝導性粒子(A)として例示したものが挙げられる。
Moreover, the heat conductive resin composition (G) can also use together the heat conductive particle which has not aggregated. By also using thermally conductive particles that are not agglomerated, the gap between the easily deformable aggregates (D) is filled, or when the easily deformable aggregates (D) are deformed, heat conduction is caused. The gap between the conductive particles (A) can be filled, and further improvement in thermal conductivity can be expected.
Examples of the thermally conductive particles that can be used in combination include those exemplified as the thermally conductive particles (A).

また、熱伝導性樹脂組成物(G)は、さらに必要に応じて、難燃剤等、その他充填剤を添加しても良い。
難燃剤としては、特に限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
Moreover, you may add other fillers, such as a flame retardant, to a heat conductive resin composition (G) further as needed.
Although it does not specifically limit as a flame retardant, For example, aluminum hydroxide, magnesium hydroxide, etc. are mentioned.

熱伝導性樹脂組成物(G)には、必要に応じて各種添加剤を加えることができる。各種添加剤としては、例えば、基材密着性を高めるためのカップリング剤、吸湿時の絶縁信頼性を高めるためのイオン捕捉剤、レベリング剤、耐熱性を高めるための硬化剤等が挙げられる。これらは1種を用いてもよいし、複数種を併用することもできる。
有機結着剤は、バインダー樹脂だけでなく、硬化剤とも反応させると耐熱性が向上するため好ましい。
Various additives can be added to the heat conductive resin composition (G) as necessary. Examples of the various additives include a coupling agent for improving the adhesion to the substrate, an ion scavenger for increasing the insulation reliability at the time of moisture absorption, a leveling agent, and a curing agent for enhancing the heat resistance. These may use 1 type and can also use multiple types together.
The organic binder is preferably reacted with not only the binder resin but also the curing agent because the heat resistance is improved.

<製造方法>
熱伝導性樹脂組成物(G)は、易変形性凝集体(D)と、バインダー樹脂(E)と、溶剤(F)とを撹拌混合することで製造することが好ましい。撹拌混合には一般的な撹拌方法を用いることができ、例えば、スキャンデックス、ペイントコンディショナー、サンドミル、らいかい機、メディアレス分散機、三本ロール、ビーズミル等が挙げられ、これらを組み合わせて行うことができる。
<Manufacturing method>
The heat conductive resin composition (G) is preferably produced by stirring and mixing the easily deformable aggregate (D), the binder resin (E), and the solvent (F). Common stirring methods can be used for stirring and mixing, for example, scandex, paint conditioner, sand mill, rake machine, medialess disperser, three rolls, bead mill, etc. Can do.

撹拌混合後は、熱伝導性樹脂組成物(G)から気泡を除去するために、脱泡工程を経ることが好ましい。脱泡の方法については特に限定されず、一般的な手法を用いて行うことができるが、例えば、真空脱泡、超音波脱泡等が挙げられる。   After stirring and mixing, it is preferable to go through a defoaming step in order to remove bubbles from the heat conductive resin composition (G). The method of defoaming is not particularly limited and can be performed using a general method, and examples thereof include vacuum defoaming and ultrasonic defoaming.

本発明の熱伝導性部材(H)の製造方法は、
基材上に熱伝導性樹脂組成物(G)を塗布して塗膜を形成する工程と、
上記塗膜から溶剤(F)を除去して、熱伝導層を形成する工程とを有する。
The manufacturing method of the heat conductive member (H) of the present invention is:
Applying a thermally conductive resin composition (G) on a substrate to form a coating film;
Removing the solvent (F) from the coating film to form a heat conductive layer.

本発明の熱伝導性部材(I)の製造方法は、
熱伝導性部材(H)を用意する工程と、
上記熱伝導層を加圧する工程とを有する。
The method for producing the heat conductive member (I) of the present invention comprises:
Preparing a thermally conductive member (H);
And pressurizing the heat conductive layer.

熱伝導性部材(H)、(I)として、熱伝導性シート等を製造できる。熱伝導性シートは熱伝導性フィルムと称されることもある。 As the heat conductive members (H) and (I), a heat conductive sheet or the like can be manufactured. A heat conductive sheet may be called a heat conductive film.

基材としては例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、およびポリイミドフィルム等のプラスチックフィルム;
および、
上記プラスチックフィルムに離型処理したフィルム(以下、剥離フィルムという);
アルミニウム、銅、ステンレス、およびベリリウム銅等の金属体または金属箔等が挙げられる。
Examples of the substrate include plastic films such as polyester film, polyethylene film, polypropylene film, and polyimide film;
and,
A film obtained by releasing the plastic film (hereinafter referred to as a release film);
Examples thereof include metal bodies or metal foils such as aluminum, copper, stainless steel, and beryllium copper.

基材への熱伝導性樹脂組成物(G)の塗布方法としては例えば、ナイフコート、ダイコート、リップコート、ロールコート、カーテンコート、バーコート、グラビアコート、フレキソコート、ディップコート、スプレーコート、スクリーンコート、およびスピンコート等が挙げられる。 Examples of the method for applying the thermally conductive resin composition (G) to the substrate include knife coating, die coating, lip coating, roll coating, curtain coating, bar coating, gravure coating, flexographic coating, dip coating, spray coating, and screen. Examples thereof include a coat and a spin coat.

熱伝導層の厚さは、用途に応じて適宜決定しうる。
熱源とヒートシンク等との間に配置され、熱を逃がすために用いられる熱伝導性シート等の用途では、熱伝導性および種々の物性の観点より、熱伝導層の厚さは通常10〜200μm、好ましくは30〜150μmとするのが良い。また、熱源からの熱がこもらないようにしたいパッケージ等の筐体等の用途では、強度等を鑑みて、熱伝導層の厚さは200μm以上、場合によっては1mm程度の厚さとすることもできる。
The thickness of the heat conductive layer can be appropriately determined according to the application.
In applications such as a heat conductive sheet, which is disposed between a heat source and a heat sink and used to release heat, the thickness of the heat conductive layer is usually 10 to 200 μm from the viewpoint of heat conductivity and various physical properties, The thickness is preferably 30 to 150 μm. In addition, in applications such as a housing such as a package in which heat from a heat source is not trapped, the thickness of the heat conductive layer can be set to 200 μm or more, and in some cases, about 1 mm in view of strength and the like. .

任意の基材上の熱伝導層を形成して熱伝導性部材(H)を製造した後、他の任意の基材を重ね、加熱下で加圧プレスし、熱伝導性部材(I)を得ることができる。
上記2つの基材のうち少なくとも一方を剥離フィルムとすることができる。この場合、剥離フィルムを剥がすことができる。
2つの基材を剥離フィルムとした場合、2枚の剥離フィルムを剥がして、熱伝導層を単離し、これを熱伝導性部材(I)とすることができる。
After the heat conductive layer (H) is manufactured by forming a heat conductive layer on an arbitrary base material, another arbitrary base material is stacked, and press-pressed under heating, and the heat conductive member (I) is Can be obtained.
At least one of the two substrates can be a release film. In this case, the release film can be peeled off.
When two base materials are used as release films, the two release films are peeled off to isolate the heat conductive layer, which can be used as the heat conductive member (I).

加圧プレス処理方法は特に限定されず、公知のプレス処理機を使用することができる。
加圧プレス時の温度は適宜選択することが出来るが、熱硬化性接着シートとして使用するのであれば、バインダー樹脂(E)の熱硬化が起こる温度以上で加熱することが望ましい。
必要に応じて、減圧下にて加圧プレスすることができる。
加圧プレス時の圧力は、易変形性凝集体(D)が変形できる圧力を加えることができれば適宜選択することができるが、1MPa以上であることが好ましい。
The pressure press processing method is not particularly limited, and a known press processing machine can be used.
Although the temperature at the time of pressurization can be selected suitably, if it uses as a thermosetting adhesive sheet, it is desirable to heat above the temperature which the thermosetting of binder resin (E) occurs.
If necessary, it can be pressed under reduced pressure.
The pressure at the time of pressing can be appropriately selected as long as a pressure capable of deforming the easily deformable aggregate (D) can be applied, but is preferably 1 MPa or more.

溶剤(F)を含有しない熱伝導性樹脂組成物(G)を加圧下に直接成形することによって、高熱伝導の成形物を得ることもできる。 By directly molding the heat conductive resin composition (G) containing no solvent (F) under pressure, a highly heat-conductive molded product can be obtained.

以下、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例において、「部」および「%」は特に明記しない限り、それぞれ「重量部」、「重量%」を表し、「vol%」は「体積%」を表し、Mwは重量平均分子量を表す。
なお、平均一次粒子径、円形度、平均粒子径、圧縮変形率10%に要する平均圧縮力、崩壊しにくさ等については以下のようにして求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, a following example does not restrict | limit the right range of this invention at all. In Examples, “parts” and “%” respectively represent “parts by weight” and “% by weight” unless otherwise specified, “vol%” represents “volume%”, and Mw represents a weight average molecular weight. Represent.
The average primary particle size, circularity, average particle size, average compressive force required for a compression deformation rate of 10%, resistance to collapse, and the like were determined as follows.

<平均一次粒子径>
Malvern Instruments社製粒度分布計マスターサイザー2000を用いて測定した。測定条件は乾式ユニットを用いて空気圧2.5バール、また、フィード速度はサンプルにより最適化を行った。
<Average primary particle size>
It measured using the particle size distribution meter master sizer 2000 by Malvern Instruments. The measurement conditions were a dry unit and an air pressure of 2.5 bar, and the feed rate was optimized by the sample.

<円形度>
東亜医用電子株式会社製フロー式粒子像分析装置FPIA−1000を用いて粒子の平均円形度を測定した。具体的にはトルエン10mlに測定したい粒子約5mgを分散させて分散液を調製し、超音波(20kHz、50W)を分散液に5分間照射し、分散液濃度を5,000〜2万個/μlとして、前記装置により測定を行い、円相当径粒子群の円形度を測定し、平均円形度を求めた。
<Circularity>
The average circularity of the particles was measured using a flow type particle image analyzer FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd. Specifically, about 5 mg of particles to be measured are dispersed in 10 ml of toluene to prepare a dispersion, and the dispersion is irradiated with ultrasonic waves (20 kHz, 50 W) for 5 minutes. The dispersion concentration is 5,000 to 20,000 / The measurement was performed with the above apparatus as μl, and the circularity of the circle-equivalent diameter particle group was measured to obtain the average circularity.

<平均粒子径>
Malvern Instruments社製粒度分布計マスターサイザー2000を用いて測定した。測定条件は乾式ユニットを用いて空気圧2.5バール、また、フィード速度はサンプルにより最適化を行った。
<Average particle size>
It measured using the particle size distribution meter master sizer 2000 by Malvern Instruments. The measurement conditions were a dry unit and an air pressure of 2.5 bar, and the feed rate was optimized by the sample.

<圧縮変形率10%に要する平均圧縮力>
圧縮変形率10%に要する平均圧縮力は、微小圧縮試験機(株式会社島津製作所製、MCT−210)圧縮試験により粒子を10%変形させるための荷重を測定領域内で無作為に選んだ10個の粒子について測定し、その平均値とした。
<Average compression force required for 10% compression deformation>
The average compressive force required for a compressive deformation rate of 10% was a random compression tester (manufactured by Shimadzu Corporation, MCT-210), and a load for deforming particles by 10% was randomly selected within the measurement region. It measured about the particle | grains and made it the average value.

<崩壊しにくさ:振とう試験後の平均粒子径の維持率>
ガラスサンプル管に易変形性凝集体(D)を空隙率70%となるように入れ、振とう機にて2時間振とうしたのちに粒子径分布を測定し、処理後の粒子径が処理前の平均粒子径の80%以上であることを指標とし確認した。
<Difficult to collapse: maintenance ratio of average particle diameter after shaking test>
The easily deformable aggregate (D) is put in a glass sample tube so as to have a porosity of 70%, shaken with a shaker for 2 hours, and then the particle size distribution is measured. It was confirmed using 80% or more of the average particle diameter as an index.

<樹脂合成例1>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、テレフタル酸とアジピン酸と3−メチル−1,5−ペンタンジオールから得られるポリエステルポリオール(株式会社クラレ製「クラレポリオールP−1011」、Mn=1006)401.9重量部、ジメチロールブタン酸12.7重量部、イソホロンジイソシアネート151.0重量部、トルエン40.0重量部を仕込み、窒素雰囲気下90℃、3時間反応させ、これにトルエン300.0重量部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。
次に、イソホロンジアミン27.8重量部、ジ−n−ブチルアミン3.2重量部、2−プロパノール342.0重量部、トルエン396.0重量部を混合したものに、得られたイソシアネート基を有するウレタンプレポリマー溶液815.1重量部を添加し、70℃、3時間反応させ、トルエン144.0重量部、2−プロパノール72.0重量部で希釈し、Mw=54,000、酸価=8mgKOH/gのポリウレタンポリウレア樹脂の溶液E−1を得た。
<Resin synthesis example 1>
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dripping device, and a nitrogen introduction tube, a polyester polyol obtained from terephthalic acid, adipic acid and 3-methyl-1,5-pentanediol (Kuraray Co., Ltd. Polyol P-1011 ", Mn = 1006) 401.9 parts by weight, 12.7 parts by weight of dimethylolbutanoic acid, 151.0 parts by weight of isophorone diisocyanate, 40.0 parts by weight of toluene were charged at 90 ° C under a nitrogen atmosphere. It was made to react for time, and 300.0 weight part of toluene was added to this, and the urethane prepolymer solution which has an isocyanate group was obtained.
Next, 27.8 parts by weight of isophorone diamine, 3.2 parts by weight of di-n-butylamine, 342.0 parts by weight of 2-propanol, and 396.0 parts by weight of toluene have the obtained isocyanate group. Add 815.1 parts by weight of urethane prepolymer solution, react at 70 ° C. for 3 hours, dilute with 144.0 parts by weight of toluene and 72.0 parts by weight of 2-propanol, Mw = 54,000, acid value = 8 mgKOH / G polyurethane polyurea resin solution E-1 was obtained.

<樹脂合成例2>
攪拌機、温度計、還流冷却器、滴下装置、導入管、窒素導入管を備えた4口フラスコに、ポリカーボネートジオール(クラレポリオール C−2090:株式会社クラレ製)292.1重量部、テトラヒドロ無水フタル酸(リカシッドTH:新日本理化株式会社製)44.9重量部、溶剤としてトルエン350.0重量部を仕込み、窒素気流下、攪拌しながら60℃まで昇温し、均一に溶解させた。続いてこのフラスコを110℃に昇温し、3時間反応させた。その後、40℃に冷却後、ビスフェノールA型エポキシ樹脂(YD−8125:東都化成株式会社製)62.9重量部、触媒としてトリフェニルホスフィン4.0重量部を添加して110℃に昇温し、8時間反応させた。室温まで冷却後、トルエンで固形分が35%になるように調整し、Mw=25000のカルボキシル基含有変性エステル樹脂E−2溶液を得た。
<Resin synthesis example 2>
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping device, introduction tube, and nitrogen introduction tube, 292.1 parts by weight of polycarbonate diol (Kuraray polyol C-2090: manufactured by Kuraray Co., Ltd.), tetrahydrophthalic anhydride (Licacid TH: manufactured by Shin Nippon Rika Co., Ltd.) 44.9 parts by weight and 350.0 parts by weight of toluene as a solvent were charged, and the mixture was heated to 60 ° C. with stirring in a nitrogen stream, and dissolved uniformly. Subsequently, the flask was heated to 110 ° C. and reacted for 3 hours. Then, after cooling to 40 ° C., 62.9 parts by weight of bisphenol A type epoxy resin (YD-8125: manufactured by Tohto Kasei Co., Ltd.) and 4.0 parts by weight of triphenylphosphine as a catalyst were added, and the temperature was raised to 110 ° C. , Reacted for 8 hours. After cooling to room temperature, the solid content was adjusted to 35% with toluene to obtain a carboxyl group-containing modified ester resin E-2 solution having Mw = 25000.

<樹脂合成例3>
攪拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに、ブチルアクリレート98.5重量部、アクリル酸1.5重量部、酢酸エチル150.0重量部を仕込み、窒素置換下で70℃まで加熱し、アゾビスイソブチロニトリル0.15重量部を添加し重合を開始した。重合開始後3時間後から1時間おきに5時間後までそれぞれアゾビスイソブチロニトリル0.15重量部を添加し更に2時間重合を行った。その後、酢酸エチル150.0重量部を追加して重合を終了させ、固形分25%、Mw=84000のアクリル樹脂E−3を得た。
<Resin synthesis example 3>
A four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel was charged with 98.5 parts by weight of butyl acrylate, 1.5 parts by weight of acrylic acid, and 150.0 parts by weight of ethyl acetate. The mixture was heated to 70 ° C. under substitution, and 0.15 parts by weight of azobisisobutyronitrile was added to initiate polymerization. 0.13 parts by weight of azobisisobutyronitrile was added for another 2 hours from 3 hours after the start of polymerization until 5 hours after every other hour. Thereafter, 150.0 parts by weight of ethyl acetate was added to terminate the polymerization, and an acrylic resin E-3 having a solid content of 25% and Mw = 84000 was obtained.

<易変形性凝集体(D)の実施例>
(実施例1)
酸化アルミニウム粒子(株式会社アドマテックス製「AO−502」、平均一次粒子径:約1μm、平均円形度:0.99):100質量部、カルボキシメチルセルロース(ダイセルファインケム株式会社製「CMCダイセル1240」)の4質量%水溶液:125質量部(固形分:5質量部)、およびイオン交換水:25質量部を、ディスパーで1000rpm、1時間、攪拌してスラリーを得た。
このスラリーをミニスプレードライヤー(日本ビュッヒ社製「B−290」)にて、125℃雰囲気下で、噴霧乾燥し、平均粒子径約10μm、圧縮変形率10%に要する平均圧縮力:約3.2mN、振とう試験後の平均粒子径の維持率:98%の易変形性凝集体(D−1)を得た。
<Example of easily deformable aggregate (D)>
Example 1
Aluminum oxide particles (“AO-502” manufactured by Admatechs Co., Ltd., average primary particle size: about 1 μm, average circularity: 0.99): 100 parts by mass, carboxymethyl cellulose (“CMC Daicel 1240” manufactured by Daicel Finechem Co., Ltd.) 4 mass% aqueous solution: 125 mass parts (solid content: 5 mass parts) and ion-exchange water: 25 mass parts were stirred with a disper at 1000 rpm for 1 hour to obtain a slurry.
This slurry is spray-dried in a mini-spray dryer (“B-290” manufactured by Nihon Büch Co., Ltd.) in an atmosphere of 125 ° C., and an average compression force required for an average particle diameter of about 10 μm and a compression deformation rate of 10%: about 3. An easily deformable aggregate (D-1) having a maintenance rate of 2 mN and an average particle diameter after the shaking test of 98% was obtained.

(実施例2)
酸化アルミニウム粒子(昭和電工株式会社製「CB−P02」、平均一次粒子径:約2μm、平均円形度:0.98):100質量部、アセトアセチル基を有する変性ビニルアルコール(日本合成化学工業株式会社製「ゴーセファイマーZ−100」)の4質量%水溶液:50質量部(固形分:2質量部)、およびイオン交換水:100質量部を用いた以外は実施例1と同様にして、平均粒子径約15μm、圧縮変形率10%に要する平均圧縮力:約0.3mN、振とう試験後の平均粒子径の維持率:93%の易変形性凝集体(D−2)を得た。
(Example 2)
Aluminum oxide particles (“CB-P02” manufactured by Showa Denko KK, average primary particle size: about 2 μm, average circularity: 0.98): 100 parts by mass, modified vinyl alcohol having an acetoacetyl group (Nippon Synthetic Chemical Industry Co., Ltd.) A 4% by weight aqueous solution of the company “Goseifamer Z-100”): 50 parts by mass (solid content: 2 parts by mass) and ion-exchanged water: 100 parts by mass An easily deformable aggregate (D-2) having an average particle size of about 15 μm, an average compression force required for a compression deformation rate of 10%: about 0.3 mN, and an average particle size maintenance rate after shaking test of 93% was obtained. .

(実施例3)
酸化アルミニウム粒子(株式会社アドマテックス製「AO−509」、平均一次粒子径:約10μm、平均円形度:0.99):100部、アセトアセチル基を有する変性ビニルアルコール(日本合成化学工業株式会社製「ゴーセファイマーZ−100」)の4質量%水溶液:12.5質量部(固形分:0.5質量部)、およびイオン交換水:137.5質量部を用いた以外は実施例1と同様にして、平均粒子径約40μm、圧縮変形率10%に要する平均圧縮力:約1mN、振とう試験後の平均粒子径の維持率:92%の易変形性凝集体(D−3)を得た。
Example 3
Aluminum oxide particles (“AO-509” manufactured by Admatechs Co., Ltd., average primary particle size: about 10 μm, average circularity: 0.99): 100 parts, modified vinyl alcohol having an acetoacetyl group (Nippon Synthetic Chemical Industry Co., Ltd.) Example 1 except that 42.5% aqueous solution: 12.5 parts by mass (solid content: 0.5 parts by mass) and ion-exchanged water: 137.5 parts by mass were used. In the same manner as above, an easily deformable aggregate (D-3) having an average particle diameter of about 40 μm, an average compression force required for a compression deformation ratio of 10%: about 1 mN, and an average particle diameter maintenance ratio after a shaking test of 92% Got.

(実施例4)
窒化アルミニウム(株式会社トクヤマ製「Hグレード」、平均一次粒子径:約1μm、平均円形度:0.97):100質量部、アセトアセチル基を有する変性ポリビニルアルコール(日本合成化学工業株式会社製「ゴーセファイマーZ−100」)の4質量%水溶液:50質量部(固形分:2質量部)、およびイオン交換水:100質量部を用いた以外は実施例1と同様にして、平均粒子径約15μm、圧縮変形率10%に要する平均圧縮力:約0.7mN、振とう試験後の平均粒子径の維持率:92%の易変形性凝集体(D−4)を得た。
Example 4
Aluminum nitride (“H grade” manufactured by Tokuyama Corporation, average primary particle size: about 1 μm, average circularity: 0.97): 100 parts by mass, modified polyvinyl alcohol having an acetoacetyl group (manufactured by Nippon Synthetic Chemical Industry Co., Ltd. “ Average particle size in the same manner as in Example 1 except that 4% by weight aqueous solution of Goosephemer Z-100 "): 50 parts by mass (solid content: 2 parts by mass) and ion-exchanged water: 100 parts by mass were used. An easily deformable aggregate (D-4) having an average compression force of about 15 μm, an average compression force required for a compression deformation rate of 10%: about 0.7 mN, and an average particle diameter maintenance rate after a shaking test of 92% was obtained.

(実施例5)
酸化アルミニウム粒子(昭和電工株式会社製「CB−P05」、平均一次粒子径:約5μm、平均円形度:0.99):100質量部、Mw=25000のポリアクリル酸の40質量%水溶液:12.5質量部(固形分:10質量部)、およびイオン交換水:137.5質量部を用いた以外は実施例1と同様にして、平均粒子径約30μm、圧縮変形率10%に要する平均圧縮力:約2mN、振とう試験後の平均粒子径の維持率:95%の易変形性凝集体(D−5)を得た。
(Example 5)
Aluminum oxide particles (“CB-P05” manufactured by Showa Denko KK, average primary particle size: about 5 μm, average circularity: 0.99): 100 parts by mass, 40% by mass aqueous solution of polyacrylic acid with Mw = 25000: 12 0.5 parts by mass (solid content: 10 parts by mass) and ion-exchanged water: an average required for an average particle size of about 30 μm and a compression deformation rate of 10% in the same manner as in Example 1 except that 137.5 parts by mass were used. An easily deformable aggregate (D-5) having a compressive force of about 2 mN and an average particle size retention rate after shaking test of 95% was obtained.

(実施例6)
実施例1でのカルボキシメチルセルロースの4質量%水溶液の代わりに、エポキシ樹脂組成物(ジャパンエポキシレジン製、「エピコート1010」2質量部、およびトルエン:148質量部を用い噴霧乾燥温度を125℃から140℃に変更した以外は、実施例1と同様にして、平均粒子径約20μm、圧縮変形率10%に要する平均圧縮力:約0.4mN、振とう試験後の平均粒子径の維持率:93%の易変形性凝集体(D−6)を得た。
(Example 6)
Instead of the 4% by mass aqueous solution of carboxymethylcellulose in Example 1, an epoxy resin composition (manufactured by Japan Epoxy Resin, “Epicoat 1010”, 2 parts by mass, and toluene: 148 parts by mass was used, and the spray drying temperature was 125 ° C. to 140 ° C. Except for changing to ° C., in the same manner as in Example 1, the average particle size is about 20 μm, the average compression force required for the compression deformation rate is 10%: about 0.4 mN, the maintenance rate of the average particle size after the shaking test: 93 % Easily deformable aggregate (D-6) was obtained.

(実施例7)
実施例1と同様のスラリーを得た後、ハイスピードミキサ(株式会社アーステクニカ製「LFS−2」)にて、撹拌下乾燥し、水分を除去し、平均粒子径約100μm、圧縮変形率10%に要する平均圧縮力:約3mN、振とう試験後の平均粒子径の維持率:90%の易変形性凝集体(D−7)を得た。
(Example 7)
After obtaining the same slurry as in Example 1, it was dried with stirring in a high speed mixer ("LFS-2" manufactured by Earth Technica Co., Ltd.) to remove moisture, and the average particle size was about 100 µm, and the compression deformation rate was 10 Average compressive force required for%: about 3 mN, an easily deformable aggregate (D-7) having an average particle diameter retention rate after shaking test of 90% was obtained.

(比較例1)
「CB−P02」の代わりに、酸化アルミニウム粒子(昭和電工株式会社製「CB−A20S」、平均一次粒子径:約20μm、平均円形度:0.98、圧縮変形率10%に要する平均圧縮力:約220mN)を用い、実施例1と同様にして酸化アルミニウム粒子に対し、上記カルボキシメチルセルロースの4質量%水溶液を用い、易変形性凝集体を得ようとしたが、崩壊し易く、凝集体の態を成さない生成物(D’−1)を得た。
(Comparative Example 1)
Instead of “CB-P02”, aluminum oxide particles (“CB-A20S” manufactured by Showa Denko KK, average primary particle size: about 20 μm, average circularity: 0.98, average compressive force required for compression deformation rate of 10% : About 220 mN), an attempt was made to obtain an easily deformable aggregate using the 4% by mass aqueous solution of the above carboxymethylcellulose with respect to the aluminum oxide particles in the same manner as in Example 1. The product (D'-1) which does not constitute a state was obtained.

(比較例2)
カルボキシメチルセルロースを使用せず、イオン交換水を150質量部とした以外は実施例1と同様にして、易変形性凝集体を得ようとしたが、崩壊し易く、凝集体の態を成さない生成物(D’−2)を得た。
(Comparative Example 2)
An attempt was made to obtain an easily deformable aggregate in the same manner as in Example 1 except that carboxymethylcellulose was not used and the ion-exchanged water was changed to 150 parts by mass, but it was easily disintegrated and did not form an aggregate. The product (D′-2) was obtained.

(比較例3)
上記カルボキシメチルセルロースの4質量%水溶液を1250質量部(固形分:50質量部)とし、イオン交換水を50質量部とした以外は実施例1と同様にして、平均粒子径約20μm、圧縮変形率10%に要する平均圧縮力:約0.8mN、振とう試験後の平均粒子径の維持率:12%の易変形性凝集体(D’−3)を得た。
(Comparative Example 3)
The average particle diameter was about 20 μm, and the compressive deformation rate was the same as in Example 1 except that the 4% by mass aqueous solution of carboxymethylcellulose was 1250 parts by mass (solid content: 50 parts by mass) and the ion-exchanged water was 50 parts by mass. An easily deformable aggregate (D′-3) having an average compressive force required for 10% of about 0.8 mN and an average particle diameter maintenance rate after a shaking test of 12% was obtained.

(比較例4)
カルボキシメチルセルロースの4質量%水溶液を使用せず、シランカップリング剤(信越化学社製「KBM−04」、テトラメトキシシラン(10質量%溶液):20質量部(固形分:2質量部)を用い、イオン交換水を130質量部とした以外は実施例1と同様にして、スラリーを得、このスラリーを125℃雰囲気下、噴霧乾燥・硬化し、平均粒子径約15μm、圧縮変形率10%に要する平均圧縮力:約42mN、振とう試験後の平均粒子径の維持率:75%の易変形性凝集体(D’−4)を得た。
(Comparative Example 4)
A silane coupling agent ("KBM-04" manufactured by Shin-Etsu Chemical Co., Ltd.), tetramethoxysilane (10 mass% solution): 20 mass parts (solid content: 2 mass parts) is used without using a 4 mass% aqueous solution of carboxymethylcellulose. A slurry was obtained in the same manner as in Example 1 except that the ion-exchanged water was changed to 130 parts by mass. An easily deformable aggregate (D′-4) having an average compressive force required: about 42 mN and an average particle diameter maintenance rate after the shaking test of 75% was obtained.

(比較例5)
比較例4と同様のスラリーを得、このスラリーを、125℃雰囲気下で、噴霧乾燥後、酸化アルミニウムの融点以上の2100℃で焼結し、平均粒子径約15μm、圧縮変形率10%に要する平均圧縮力:約200mN、振とう試験後の平均粒子径の維持率:98%の易変形性凝集体(D’−5)を得た。
(Comparative Example 5)
A slurry similar to that of Comparative Example 4 was obtained. This slurry was spray-dried in an atmosphere of 125 ° C., and then sintered at 2100 ° C., which is equal to or higher than the melting point of aluminum oxide. An easily deformable aggregate (D′-5) having an average compressive force of about 200 mN and an average particle diameter retention rate after shaking test of 98% was obtained.

(比較例6)
酸化アルミニウム粒子(住友化学株式会社製、「AL−33」、平均一次粒子径:約12μm、平均円形度:0.9)100質量部、ポリウレタン樹脂(東洋紡績株式会社:バイロンUR−1400)の20質量%トルエン溶液:10質量部(固形分:2質量部)用い、イオン交換水の代わりにトルエンを140質量部用いた以外は実施例1と同様にして、易変形性凝集体を得ようとしたが、崩壊し易く、凝集体の態を成さない生成物(D’−6)を得た。
(Comparative Example 6)
Of 100 parts by mass of aluminum oxide particles (Sumitomo Chemical Co., Ltd., “AL-33”, average primary particle size: about 12 μm, average circularity: 0.9), polyurethane resin (Toyobo Co., Ltd .: Byron UR-1400) 20 mass% toluene solution: 10 mass parts (solid content: 2 mass parts) is used, and an easily deformable aggregate is obtained in the same manner as in Example 1 except that 140 mass parts of toluene is used instead of ion-exchanged water. However, a product (D′-6) that was easily disintegrated and did not form an aggregate was obtained.

実施例1〜7および比較例1〜6における主な製造条件と評価結果を表1に示す。
Table 1 shows main production conditions and evaluation results in Examples 1 to 7 and Comparative Examples 1 to 6.

表1に示すように、凝集体を生成するには、熱伝導性粒子(A)の平均一次粒子径が10μm以下であり、有機結着剤(B)を使用することが必要である。比較例1,2,6は凝集体を形成することができない。比較例3に示すように、有機結着剤(B)が多すぎると、振とう時に凝集体同士がさらに凝集してしまい、衝撃により変質してしまう。比較例4,5に示すように、シランカップリング剤を有機結着剤として使用し、易変形性凝集体(D)を変形させる前に加熱して硬化させたり、酸化アルミニウムの融点以上で焼結したりと、熱伝導性粒子(A)同士を強固に結着させると、易変形性に乏しくなる。   As shown in Table 1, in order to produce an aggregate, the average primary particle diameter of the heat conductive particles (A) is 10 μm or less, and it is necessary to use an organic binder (B). Comparative Examples 1, 2, and 6 cannot form an aggregate. As shown in Comparative Example 3, when the amount of the organic binder (B) is too large, the aggregates are further aggregated when shaken, and are deteriorated by impact. As shown in Comparative Examples 4 and 5, a silane coupling agent is used as an organic binder, and the easily deformable aggregate (D) is heated and cured before being deformed, or baked at a temperature higher than the melting point of aluminum oxide. For example, if the heat conductive particles (A) are firmly bonded to each other, the easily deformable property becomes poor.

<熱伝導性樹脂組成物(G)、及び熱伝導性部材(H)、(I)の実施例>
(実施例8)
実施例1で得られた易変形性凝集体(D−1)(平均粒子径10μm)37.1質量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂(E−1)の30%トルエン/2−プロパノール溶液31.5質量部と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製「エピコート1001)の50%MEK溶液3.15質量部とをディスパー撹拌し、2-プロパノール6.5質量部およびトルエン25.8質量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率50vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を、コンマコーターを用いて剥離処理シート(厚さ75μmの離型処理ポリエチレンテレフタレートフィルム)に塗工し、100℃で2分加熱乾燥し、熱伝導層の厚みが50μmの熱伝導性部材(H−1)を得た。熱伝導率は3(W/m・K)であった。この熱伝導性部材(H−1)を、150℃、2MPaで1時間プレスすることにより、熱伝導層の厚みが45μm、熱伝導率7(W/m・K)の熱伝導性部材(I−1)を得た。
別途、熱伝導性部材(H−1)から剥離処理シートを剥離して熱伝導層を単離し、これを40μm厚の銅箔と250μm厚のアルミ板との間に挟み、150℃、2MPaで1時間プレスした。得られたシートの耐熱性は良好であった。
<Examples of thermally conductive resin composition (G) and thermally conductive members (H) and (I)>
(Example 8)
37.1 parts by mass of easily deformable aggregate (D-1) (average particle size 10 μm) obtained in Example 1 and 30% toluene of the polyurethane polyurea resin (E-1) obtained in Resin Synthesis Example 1 Disperse stirring 31.5 parts by mass of 2-propanol solution and 3.15 parts by mass of 50% MEK solution of bisphenol A type epoxy resin (“Epicoat 1001” manufactured by Japan Epoxy Resin Co., Ltd.), 2-propanol 6.5 After adjusting the viscosity with parts by mass and 25.8 parts by mass of toluene, ultrasonic degassing was performed to obtain a thermally conductive resin composition having a content of easily deformable aggregates of 50 vol%.
The obtained thermally conductive resin composition was applied to a release-treated sheet (a release-treated polyethylene terephthalate film having a thickness of 75 μm) using a comma coater, dried by heating at 100 ° C. for 2 minutes, and the thickness of the thermally conductive layer Obtained the heat conductive member (H-1) of 50 micrometers. The thermal conductivity was 3 (W / m · K). By pressing this heat conductive member (H-1) at 150 ° C. and 2 MPa for 1 hour, the heat conductive member (I) having a heat conductive layer thickness of 45 μm and a heat conductivity of 7 (W / m · K). -1) was obtained.
Separately, the heat treatment layer (P-1) is separated from the heat conductive member (H-1) to isolate the heat conductive layer, which is sandwiched between a 40 μm thick copper foil and a 250 μm thick aluminum plate, at 150 ° C. and 2 MPa. Pressed for 1 hour. The obtained sheet had good heat resistance.

(実施例9)
実施例2で得られた易変形性凝集体(D−2)(平均粒子径15μm)37.1質量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂(E−1)の30%トルエン/2−プロパノール溶液31.5質量部と、硬化剤としてのエピコート1031S(ジャパンエポキシレジン株式会社製)の50%MEK溶液3.15質量部とをディスパー撹拌し、2-プロパノール6.5質量部およびトルエン25.8質量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率70vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を用い、実施例8と同様にして、熱伝導層の厚みが65μm、熱伝導率2.8(W/m・K)の熱伝導性部材(H−2)を得た。さらに同様にして、熱伝導層の厚みが60μm、熱伝導率5.5(W/m・K)、耐熱性良好の熱伝導性部材(I−2)を得た。
Example 9
37.1 parts by mass of the easily deformable aggregate (D-2) (average particle size 15 μm) obtained in Example 2 and 30% toluene of the polyurethane polyurea resin (E-1) obtained in Resin Synthesis Example 1 Disperse stirring of 31.5 parts by mass of 2-propanol solution and 3.15 parts by mass of 50% MEK solution of Epicoat 1031S (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 6.5 parts by mass of 2-propanol And after adjusting a viscosity with 25.8 mass parts of toluene, it ultrasonically defoamed and obtained the heat conductive resin composition of 70 vol% of content rate of an easily deformable aggregate.
Using the obtained heat conductive resin composition, in the same manner as in Example 8, a heat conductive member (H-2) having a heat conductive layer thickness of 65 μm and a heat conductivity of 2.8 (W / m · K). ) Further, similarly, a heat conductive member (I-2) having a heat conductive layer thickness of 60 μm, a heat conductivity of 5.5 (W / m · K), and good heat resistance was obtained.

(実施例10)
実施例3で得られた易変形性凝集体(D−3)(平均粒子径40μm)32.4質量部と、樹脂合成例2で得られたカルボキシル基含有変性エステル樹脂(E-2)の35%トルエン溶液36.0質量部と硬化剤としてのケミタイトPZ(株式会社日本触媒製)2.5質量部とを混合しをディスパー撹拌し、2-プロパノール9.3質量部およびトルエン37.0質量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率40vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を用い、実施例8と同様にして、熱伝導層の厚みが60μm、熱伝導率2.5(W/m・K)の熱伝導性部材(H−3)を得た。さらに同様にして、熱伝導層の厚みが55μm、熱伝導率3.5(W/m・K)、耐熱性良好の熱伝導性部材(I−3)を得た。
(Example 10)
Of the easily deformable aggregate (D-3) (average particle size 40 μm) obtained in Example 3, 32.4 parts by mass and the carboxyl group-containing modified ester resin (E-2) obtained in Resin Synthesis Example 2 36.0 parts by mass of a 35% toluene solution and 2.5 parts by mass of Chemite PZ (manufactured by Nippon Shokubai Co., Ltd.) as a curing agent were mixed and stirred with a disper, 9.3 parts by mass of 2-propanol and 37.0 parts of toluene. After adjusting the viscosity with parts by mass, ultrasonic degassing was performed to obtain a thermally conductive resin composition with a content of easily deformable aggregates of 40 vol%.
Using the obtained heat conductive resin composition, a heat conductive member (H-3) having a heat conductive layer thickness of 60 μm and a heat conductivity of 2.5 (W / m · K) was obtained in the same manner as in Example 8. ) Further, similarly, a heat conductive member (I-3) having a heat conductive layer thickness of 55 μm, a heat conductivity of 3.5 (W / m · K), and good heat resistance was obtained.

(実施例11)
実施例4で得られた易変形性凝集体(D−4)(平均粒子径15μm)36.0質量部と、樹脂合成例3で得られたアクリル樹脂(E−3)の25%酢酸エチル溶液50.4質量部と、熱硬化助剤としてのケミタイトPZ(株式会社日本触媒製)1質量部とを混合しディスパー撹拌し、メチルエチルケトン(MEK)29.0質量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率50vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を用い、実施例8と同様にして、熱伝導層の厚みが50μm、熱伝導率6(W/m・K)の熱伝導性部材(H−4)を得た。さらに同様にして、熱伝導層の厚みが44μm、熱伝導率10(W/m・K)、耐熱性良好の熱伝導性部材(I−4)を得た。
(Example 11)
36.0 parts by mass of the easily deformable aggregate (D-4) (average particle size 15 μm) obtained in Example 4 and 25% ethyl acetate of the acrylic resin (E-3) obtained in Resin Synthesis Example 3 After mixing 50.4 parts by mass of the solution and 1 part by mass of Chemite PZ (manufactured by Nippon Shokubai Co., Ltd.) as a thermosetting aid, stirring the dispersion, adjusting the viscosity with 29.0 parts by mass of methyl ethyl ketone (MEK), Ultrasonic defoaming was performed to obtain a thermally conductive resin composition having a content of easily deformable aggregates of 50 vol%.
Using the obtained heat conductive resin composition, a heat conductive member (H-4) having a heat conductive layer thickness of 50 μm and a heat conductivity of 6 (W / m · K) was obtained in the same manner as in Example 8. Obtained. Similarly, a heat conductive member (I-4) having a heat conductive layer thickness of 44 μm, a heat conductivity of 10 (W / m · K), and good heat resistance was obtained.

(実施例12)
実施例5で得られた易変形性凝集体(D−5)(平均粒子径30μm)22.8質量部と、エポキシ樹脂(YX−4000H、油化シェルエポキシ株式会社製)の25%トルエン溶液68.8質量部と、熱硬化助剤としてのケミタイトPZ(株式会社日本触媒製)1.72質量部とを混合しディスパー撹拌し、トルエン11.0質量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率25vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を用い、実施例8と同様にして、熱伝導層の厚みが50μm、熱伝導率2.3(W/m・K)の熱伝導性部材(H−5)を得た。さらに同様にして、熱伝導層の厚みが45μm、熱伝導率3(W/m・K)、耐熱性良好の熱伝導性部材(I−5)を得た。
(Example 12)
25% toluene solution of easily deformable aggregate (D-5) (average particle size 30 μm) 22.8 parts by mass obtained in Example 5 and epoxy resin (YX-4000H, manufactured by Yuka Shell Epoxy Co., Ltd.) 68.8 parts by mass and 1.72 parts by mass of Chemite PZ (manufactured by Nippon Shokubai Co., Ltd.) as a thermosetting aid are mixed and stirred with a disper, and after adjusting the viscosity with 11.0 parts by mass of toluene, ultrasonic waves By defoaming, a thermally conductive resin composition having a content of easily deformable aggregates of 25 vol% was obtained.
Using the obtained thermal conductive resin composition, in the same manner as in Example 8, the thermal conductive member (H-5) having a thermal conductive layer thickness of 50 μm and a thermal conductivity of 2.3 (W / m · K). ) Further, similarly, a heat conductive member (I-5) having a heat conductive layer thickness of 45 μm, a heat conductivity of 3 (W / m · K), and good heat resistance was obtained.

(実施例13)
実施例6で得られた易変形性凝集体(D−6)(平均粒子径20μm)38.3質量部と、水系エマルジョン樹脂(ポリゾールAX−590、昭和電工株式会社製、固形分49%)13.8質量部とを混合しディスパー撹拌し、水48.0質量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率60vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を用い、実施例8と同様にして、熱伝導層の厚みが50μm、熱伝導率2(W/m・K)の熱伝導性部材(H−6)を得た。さらに同様にして、熱伝導層の厚みが45μm、熱伝導率4.2、耐熱性良好の熱伝導性部材(I−6)を得た。
(Example 13)
38.3 parts by mass of easily deformable aggregate (D-6) (average particle size 20 μm) obtained in Example 6 and aqueous emulsion resin (Polysol AX-590, Showa Denko KK, solid content 49%) After mixing with 13.8 parts by mass and stirring with a disper, adjusting the viscosity with 48.0 parts by mass of water, ultrasonically defoaming to obtain a thermally conductive resin composition having a content of easily deformable aggregates of 60 vol%. Obtained.
Using the obtained heat conductive resin composition, in the same manner as in Example 8, a heat conductive member (H-6) having a heat conductive layer thickness of 50 μm and a heat conductivity of 2 (W / m · K) was obtained. Obtained. Further, similarly, a heat conductive member (I-6) having a heat conductive layer thickness of 45 μm, a heat conductivity of 4.2, and good heat resistance was obtained.

(実施例14)
実施例7で得られた易変形性凝集体(D−7)(平均粒子径100μm)61.6質量部とポリエステルウレタン樹脂バイロンUR6100(東洋紡績株式会社製)18.7質量部、硬化剤としてのエポキシ系硬化剤テトラッドX(三菱ガス化学株式会社製)0.08質量部とをディスパー撹拌し、トルエン20.0質量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率65vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を用い、実施例8と同様にして、熱伝導層の厚みが110μm、熱伝導率2.7(W/m・K)の熱伝導性部材(H−7)を得た。さらに同様にして、熱伝導層の厚みが100μm、熱伝導率5(W/m・K)、耐熱性良好の熱伝導性部材(I−7)を得た。
(Example 14)
The easily deformable aggregate (D-7) obtained in Example 7 (D-7) (average particle size 100 μm) 61.6 parts by mass, polyester urethane resin Byron UR6100 (manufactured by Toyobo Co., Ltd.) 18.7 parts by mass, as a curing agent Epoxy curing agent Tetrad X (manufactured by Mitsubishi Gas Chemical Co., Inc.) of 0.08 parts by mass with Disper stirring, and after adjusting the viscosity with 20.0 parts by mass of toluene, ultrasonically degassed and easily deformable aggregates A heat conductive resin composition having a content of 65 vol% was obtained.
Using the obtained heat conductive resin composition, in the same manner as in Example 8, the heat conductive member (H-7) having a heat conductive layer thickness of 110 μm and a heat conductivity of 2.7 (W / m · K). ) Similarly, a heat conductive member (I-7) having a heat conductive layer thickness of 100 μm, a heat conductivity of 5 (W / m · K), and good heat resistance was obtained.

(比較例7)
平均一次粒子径1μmの球状の酸化アルミニウム粉末(アドマテックス株式会社製、AO-502)36.0質量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂(E−1)の25%トルエン/2−プロパノール溶液36.0質量部と、硬化剤としてのビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン株式会社製)の50%MEK溶液3.6質量部とをディスパー撹拌し、2-プロパノール5.7質量部およびトルエン22.7質量部で粘度を調整した後、超音波脱泡して酸化アルミニウムの含有率50vol%の樹脂組成物を得た。
得られた樹脂組成物を用い、コンマコーターを用いて剥離処理シート(厚さ75μmの離型処理ポリエチレンテレフタレートフィルム)に塗工し、100℃で2分加熱乾燥し、熱伝導層の厚みが50μm、熱伝導率0.5(W/m・K)の熱伝導性部材(H’−1)を得た。さらに、この熱伝導性部材(H’−1)に剥離処理シートを重ね、150℃、2MPaで1時間プレスして、厚みが45μmの熱伝導性部材(I’−1)を得た。このシートの熱伝導率は0.8(W/m・K)と低いものであった。
別途、熱伝導性部材(H’−1)から剥離処理シートを剥離して熱伝導層を単離し、これを40μm厚の銅箔と250μm厚のアルミ板との間に挟み、150℃、2MPaで1時間プレスした。得られたサンプルは耐熱性の試験で剥がれが観察された。
(Comparative Example 7)
36.0 parts by mass of spherical aluminum oxide powder having an average primary particle diameter of 1 μm (manufactured by Admatechs Co., Ltd., AO-502) and 25% toluene / polyurethane polyurea resin (E-1) obtained in Resin Synthesis Example 1 Disperse agitation of 36.0 parts by mass of 2-propanol solution and 3.6 parts by mass of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent. After adjusting the viscosity with 0.7 parts by mass and 22.7 parts by mass of toluene, ultrasonic degassing was performed to obtain a resin composition with an aluminum oxide content of 50 vol%.
Using the obtained resin composition, a comma-coater was used to coat a release-treated sheet (a release-treated polyethylene terephthalate film having a thickness of 75 μm), followed by heating and drying at 100 ° C. for 2 minutes. The thickness of the heat conductive layer was 50 μm. A heat conductive member (H′-1) having a heat conductivity of 0.5 (W / m · K) was obtained. Further, a release treatment sheet was stacked on this heat conductive member (H′-1) and pressed at 150 ° C. and 2 MPa for 1 hour to obtain a heat conductive member (I′-1) having a thickness of 45 μm. The thermal conductivity of this sheet was as low as 0.8 (W / m · K).
Separately, the release treatment sheet is peeled from the heat conductive member (H′-1) to isolate the heat conductive layer, which is sandwiched between a 40 μm thick copper foil and a 250 μm thick aluminum plate, and 150 ° C., 2 MPa. And pressed for 1 hour. In the obtained sample, peeling was observed in a heat resistance test.

(比較例8)
平均一次粒子径20μmの球状の酸化アルミニウム粉末(昭和電工株式会社製、CB−A20S)36.0質量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂(E−1)の25%トルエン/2−プロパノール溶液36.0質量部と、硬化剤としてのビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン株式会社製)の50%MEK溶液3.6質量部とをディスパー撹拌し、2-プロパノール5.7質量部およびトルエン22.7質量部で粘度を調整した後、超音波脱泡して酸化アルミニウムの含有率50vol%の樹脂組成物を得た。
得られた樹脂組成物を用い、比較例7と同様にして、熱伝導層の厚みが50μm、熱伝導率0.4(W/m・K)の熱伝導性部材(H’−2)を得た。さらに同様にして、厚みが45μm、熱伝導率が0.7(W/m・K)、耐熱性の試験で若干の発泡が観察される熱伝導性部材(I’−2)を得た。
(Comparative Example 8)
36.0 parts by mass of spherical aluminum oxide powder (CB-A20S, manufactured by Showa Denko KK) having an average primary particle size of 20 μm and 25% toluene / polyurethane polyurea resin (E-1) obtained in Resin Synthesis Example 1 Disperse agitation of 36.0 parts by mass of 2-propanol solution and 3.6 parts by mass of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent. After adjusting the viscosity with 0.7 parts by mass and 22.7 parts by mass of toluene, ultrasonic degassing was performed to obtain a resin composition with an aluminum oxide content of 50 vol%.
Using the obtained resin composition, a heat conductive member (H′-2) having a heat conductive layer thickness of 50 μm and a heat conductivity of 0.4 (W / m · K) was obtained in the same manner as in Comparative Example 7. Obtained. Similarly, a heat conductive member (I′-2) having a thickness of 45 μm, a heat conductivity of 0.7 (W / m · K), and a slight foaming observed in a heat resistance test was obtained.

(比較例9)
比較例3で得られた凝集体(D’−3)(平均粒子径20μm)38.3質量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂(E−1)の25%トルエン/2−プロパノール溶液27.0質量部と、硬化剤としてのビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン株式会社製)の50%MEK溶液2.7質量部とをディスパー撹拌し、2-プロパノール7.0質量部およびトルエン28.0質量部で粘度を調整した後、超音波脱泡して凝集体の含有率60vol%の樹脂組成物を得た。
得られた樹脂組成物を用い、比較例7と同様にして、熱伝導層の厚みが60μm、熱伝導率0.3(W/m・K)の熱伝導性部材(H’−3)を得た。さらに同様にして、厚みが50μm、熱伝導率が0.4(W/m・K)、耐熱性良好の熱伝導性部材(I’−3)を得た。
(Comparative Example 9)
38.3 parts by mass of the aggregate (D′-3) (average particle size 20 μm) obtained in Comparative Example 3 and 25% toluene / 2 of the polyurethane polyurea resin (E-1) obtained in Resin Synthesis Example 1 Disperse stirring 27.0 parts by mass of a propanol solution and 2.7 parts by mass of a 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent. After adjusting the viscosity with 0 part by mass and 28.0 parts by mass of toluene, ultrasonic degassing was performed to obtain a resin composition having an aggregate content of 60 vol%.
Using the obtained resin composition, a heat conductive member (H′-3) having a heat conductive layer thickness of 60 μm and a heat conductivity of 0.3 (W / m · K) is obtained in the same manner as in Comparative Example 7. Obtained. Further, similarly, a heat conductive member (I′-3) having a thickness of 50 μm, a thermal conductivity of 0.4 (W / m · K), and good heat resistance was obtained.

(比較例10)
比較例4で得られた凝集体(D’−4)(平均粒子径15μm)38.3質量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂(E−1)の25%トルエン/2−プロパノール溶液27.0質量部と、硬化剤としてのビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン株式会社製)の50%MEK溶液2.7質量部とをディスパー撹拌し、2-プロパノール7.0質量部およびトルエン28.0質量部で粘度を調整した後、超音波脱泡して凝集体の含有率60vol%の樹脂組成物を得た。
得られた樹脂組成物を用い、比較例7と同様にして、熱伝導層の厚みが60μm、熱伝導率0.2(W/m・K)の熱伝導性部材(H’−4)を得た。さらに同様にして、厚みが50μm、熱伝導率が0.4(W/m・K)、耐熱性の試験で剥がれが観察される熱伝導性部材(I’−4)を得た。
このシートは粒子が破砕したことに起因するクラックが多く見られた。
(Comparative Example 10)
Aggregate (D′-4) (average particle diameter 15 μm) 38.3 parts by mass obtained in Comparative Example 4 and 25% toluene / 2 of the polyurethane polyurea resin (E-1) obtained in Resin Synthesis Example 1 Disperse stirring 27.0 parts by mass of a propanol solution and 2.7 parts by mass of a 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent. After adjusting the viscosity with 0 part by mass and 28.0 parts by mass of toluene, ultrasonic degassing was performed to obtain a resin composition having an aggregate content of 60 vol%.
Using the obtained resin composition, a heat conductive member (H′-4) having a heat conductive layer thickness of 60 μm and a heat conductivity of 0.2 (W / m · K) was obtained in the same manner as in Comparative Example 7. Obtained. Further, similarly, a heat conductive member (I′-4) having a thickness of 50 μm, a heat conductivity of 0.4 (W / m · K), and peeling observed in a heat resistance test was obtained.
In this sheet, many cracks due to the crushed particles were observed.

(比較例11)
比較例5で作製した(D’−5)38.3質量部と、樹脂合成例2で得られたカルボキシル基含有変性エステル樹脂(E−2)の35%トルエン溶液27.0質量部と、硬化剤としてのビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン株式会社製)の50%MEK溶液2.7質量部とをディスパー撹拌し、2-プロパノール7.0質量部およびトルエン28.0質量部で粘度を調整した後、超音波脱泡して非凝集体の含有率60vol%の樹脂組成物を得た。
得られた樹脂組成物を用い、比較例7と同様にして、熱伝導層の厚みが60μm、熱伝導率0.7(W/m・K)の熱伝導性部材(H’−5)を得た。さらに同様にして、厚みが50μm、熱伝導率が0.9(W/m・K)、耐熱性の試験で剥がれが観察される熱伝導性部材(I’−5)を得た。
このシートは粒子が破砕したことに起因するクラックが多く見られた。
(Comparative Example 11)
38.3 parts by mass of (D′-5) prepared in Comparative Example 5 and 27.0 parts by mass of a 35% toluene solution of the carboxyl group-containing modified ester resin (E-2) obtained in Resin Synthesis Example 2, Disperse stirring 2.7 parts by mass of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 7.0 parts by mass of 2-propanol and 28.0 parts by mass of toluene After adjusting the viscosity with, ultrasonic defoaming was performed to obtain a resin composition having a non-aggregate content of 60 vol%.
Using the obtained resin composition, in the same manner as in Comparative Example 7, a heat conductive member (H′-5) having a heat conductive layer thickness of 60 μm and a heat conductivity of 0.7 (W / m · K) was obtained. Obtained. Similarly, a heat conductive member (I′-5) having a thickness of 50 μm, a heat conductivity of 0.9 (W / m · K), and peeling observed in a heat resistance test was obtained.
In this sheet, many cracks due to the crushed particles were observed.

実施例8〜14および比較例7〜11における主な製造条件と評価結果を表2に示す。表中の溶剤(F)は、溶剤として追加したもののみを記載した。 Table 2 shows main production conditions and evaluation results in Examples 8 to 14 and Comparative Examples 7 to 11. Only the solvent (F) in the table was added as a solvent.

<熱伝導率の算出方法>
サンプル試料を15mm角に切り出し、サンプル表面を金蒸着しカーボンスプレーでカーボン被覆した後、キセノンフラッシュアナライザーLFA447 NanoFlash(NETZSCH社製)にて、試料環境25℃での熱拡散率を測定した。また、比熱容量はエスアイアイ・ナノテクノロジー株式会社製の高感度型示差走査熱量計DSC220Cを用いて測定した。さらに、密度は水中置換法を用いて算出した。
<Calculation method of thermal conductivity>
A sample sample was cut into a 15 mm square, and the sample surface was gold-deposited and carbon-coated with carbon spray, and then the thermal diffusivity in a sample environment at 25 ° C. was measured with a xenon flash analyzer LFA447 NanoFlash (manufactured by NETZSCH). The specific heat capacity was measured using a high-sensitivity differential scanning calorimeter DSC220C manufactured by SII Nano Technology. Furthermore, the density was calculated using an underwater substitution method.

<耐熱性の試験方法>
3層構成のサンプル(銅箔(40μm)/高熱伝導部材/アルミ板(250μm))を、260℃の溶融半田に、アルミ板面を接触させて3分間浮かべた。その後、サンプルの外観を目視で観察し、高熱伝導部材の発泡、浮き・剥がれの発生の状態を評価した。
発泡とは、高熱伝導部材と銅箔(40μm)との界面に気泡が発生している状態である。
浮き・剥がれとは、密着させた3層構成のサンプルがアルミ板、または銅箔から浮き上がり、剥がれてしまっている状態である。評価結果を表2に示す。
それぞれの評価基準は以下の通りである。
◎:外観変化なし。
○:小さな発泡がわずかに観察される。
△:発泡が観察される。
×:激しい発生や剥がれが観察される。
<Testing method for heat resistance>
A sample having a three-layer structure (copper foil (40 μm) / high thermal conductivity member / aluminum plate (250 μm)) was floated for 3 minutes by bringing the aluminum plate surface into contact with 260 ° C. molten solder. Thereafter, the external appearance of the sample was visually observed, and the state of occurrence of foaming, floating / peeling of the high thermal conductive member was evaluated.
Foaming is a state in which bubbles are generated at the interface between the high thermal conductive member and the copper foil (40 μm).
Floating / peeling refers to a state in which a three-layered sample that has been brought into close contact with the aluminum plate or copper foil has been lifted off. The evaluation results are shown in Table 2.
Each evaluation standard is as follows.
A: No change in appearance.
○: Small foaming is slightly observed.
Δ: Foaming is observed.
X: Vigorous generation and peeling are observed.

表2に示すように、本発明の熱伝導性樹脂組成物(G)は、熱伝導率に優れた熱伝導性部材(H)または、(I)を提供する。比較例7,8に示すように、熱伝導性樹脂組成物(G)中に、易変形性凝集体(D)を含まない樹脂組成物では、充分な熱伝導率を発現できない。比較例9に示すように、樹脂組成物作製中に、凝集体が崩れても樹脂分が多いために充分な熱伝導経路がなく、高い熱伝導率を発現できない。比較例10に示すように、圧縮変形される前に反応性を示す反応性官能基を有する有機結着剤(B)を用いると易変形性凝集体(D)の変形性が損なわれるため、充分な熱伝導性が得られないことがある。比較例11に示すように、酸化アルミニウムの融点以上で焼結させると、易変形性凝集体(D)の変形性が損なわれるため、充分な熱伝導性が得られない。また、比較例10,11に示すように、有機結着剤中の反応性官能基がバインダー樹脂(E)の官能基と架橋構造を形成する前に反応してしまうと、充分な耐熱性が得られない。   As shown in Table 2, the thermally conductive resin composition (G) of the present invention provides the thermally conductive member (H) or (I) excellent in thermal conductivity. As shown in Comparative Examples 7 and 8, a resin composition containing no easily deformable aggregate (D) in the thermally conductive resin composition (G) cannot exhibit sufficient thermal conductivity. As shown in Comparative Example 9, even when the aggregate is broken during resin composition production, the resin content is large, so there is no sufficient heat conduction path, and high heat conductivity cannot be expressed. As shown in Comparative Example 10, since the deformability of the easily deformable aggregate (D) is impaired when an organic binder (B) having a reactive functional group that exhibits reactivity before being compressed and deformed, Sufficient thermal conductivity may not be obtained. As shown in Comparative Example 11, when the sintering is performed at a temperature equal to or higher than the melting point of aluminum oxide, the deformability of the easily deformable aggregate (D) is impaired, so that sufficient thermal conductivity cannot be obtained. Moreover, as shown in Comparative Examples 10 and 11, if the reactive functional group in the organic binder reacts with the functional group of the binder resin (E) before forming a crosslinked structure, sufficient heat resistance is obtained. I can't get it.

Claims (10)

平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と、
反応性官能基を有する有機結着剤(B)0.1〜30重量部とを含み、
平均粒子径が2〜100μmであり、圧縮変形率10%に要する平均圧縮力が5mN以下であることを特徴とする易変形性凝集体(D)。
100 parts by weight of spherical thermally conductive particles (A) having an average primary particle size of 0.1 to 10 μm,
Including 0.1 to 30 parts by weight of an organic binder (B) having a reactive functional group,
An easily deformable aggregate (D) having an average particle diameter of 2 to 100 μm and an average compressive force required for a compression deformation rate of 10% of 5 mN or less.
熱伝導性粒子(A)が、酸化アルミニウム及び窒化アルミニウムからなる群より選ばれる少なくとも1種を含有することを特徴とする請求項1記載の易変形性凝集体(D)。   The easily deformable aggregate (D) according to claim 1, wherein the thermally conductive particles (A) contain at least one selected from the group consisting of aluminum oxide and aluminum nitride. 請求項1または2記載の易変形性凝集体(D)20〜90体積%と、バインダー樹脂(E)10〜80体積%と、バインダー樹脂(E)を溶解する溶剤(F)とを含有する、熱伝導性樹脂組成物(G)。   The easily deformable aggregate (D) according to claim 1 or 2, comprising 20 to 90% by volume, 10 to 80% by volume of the binder resin (E), and a solvent (F) for dissolving the binder resin (E). Thermally conductive resin composition (G). 易変形性凝集体(D)を構成する反応性官能基を有する有機結着剤(B)が溶剤(F)に溶解しない、請求項3記載の熱伝導性樹脂組成物(G)。 The thermally conductive resin composition (G) according to claim 3, wherein the organic binder (B) having a reactive functional group constituting the easily deformable aggregate (D) is not dissolved in the solvent (F). 易変形性凝集体(D)を構成する反応性官能基を有する有機結着剤(B)が水溶性樹脂であり、バインダー樹脂(E)が非水溶性樹脂である、請求項3または4記載の熱伝導性樹脂組成物(G)。 The organic binder (B) having a reactive functional group constituting the easily deformable aggregate (D) is a water-soluble resin, and the binder resin (E) is a water-insoluble resin. Thermally conductive resin composition (G). 請求項3〜5のいずれか記載の熱伝導性樹脂組成物(G)から溶剤(F)が除去されてなる熱伝導層を含む、熱伝導性部材(H)。 The heat conductive member (H) containing the heat conductive layer by which a solvent (F) is removed from the heat conductive resin composition (G) in any one of Claims 3-5. 請求項6記載の熱伝導性部材(H)を加圧および加熱してなる、熱伝導性部材(I)。   The heat conductive member (I) formed by pressurizing and heating the heat conductive member (H) according to claim 6. 請求項6記載の熱伝導性部材(H)、または請求項7記載の熱伝導性部材(I)を含み、
少なくとも一方の面に剥離フィルムを有する熱伝導性接着シート。
The heat conductive member (H) according to claim 6, or the heat conductive member (I) according to claim 7,
A thermally conductive adhesive sheet having a release film on at least one surface.
請求項1または2のいずれか1項に記載の易変形性凝集体(D)の製造方法であって、
平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100質量部と反応性官能基を有する有機結着剤(B)0.1〜30質量部と反応性官能基を有する有機結着剤(B)を溶解する溶剤(C)とを含有するスラリーを得る工程と、

前記スラリーから溶剤(C)を除去する工程とを有する、易変形性凝集体(D)の製造方法。
It is a manufacturing method of the easily deformable aggregate (D) of any one of Claim 1 or 2,
100 parts by mass of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm, 0.1 to 30 parts by mass of an organic binder (B) having a reactive functional group, and a reactive functional group A step of obtaining a slurry containing a solvent (C) for dissolving the organic binder (B) having,

A process for removing the solvent (C) from the slurry, and a method for producing the easily deformable aggregate (D).
基材上に請求項3〜5のいずれか記載の熱伝導性樹脂組成物(G)を塗布して塗膜を形成する工程と、
前記塗膜から溶剤(F)を除去して、熱伝導層を形成する工程と、
前記熱伝導層を加圧する工程とを有する、熱伝導性部材(I)の製造方法。
Applying the thermally conductive resin composition (G) according to any one of claims 3 to 5 on a substrate to form a coating film;
Removing the solvent (F) from the coating film to form a heat conductive layer;
A method for producing a thermally conductive member (I), comprising a step of pressurizing the thermally conductive layer.
JP2013137747A 2013-07-01 2013-07-01 Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same Expired - Fee Related JP6107479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013137747A JP6107479B2 (en) 2013-07-01 2013-07-01 Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013137747A JP6107479B2 (en) 2013-07-01 2013-07-01 Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same

Publications (3)

Publication Number Publication Date
JP2015010200A true JP2015010200A (en) 2015-01-19
JP2015010200A5 JP2015010200A5 (en) 2016-07-07
JP6107479B2 JP6107479B2 (en) 2017-04-05

Family

ID=52303642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013137747A Expired - Fee Related JP6107479B2 (en) 2013-07-01 2013-07-01 Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6107479B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035323A (en) * 2016-09-02 2018-03-08 富士ゼロックス株式会社 Filler, molding, member, fixing member, fixing device, process cartridge, and image formation device
KR20180040654A (en) 2015-09-16 2018-04-20 다이니치 세이카 고교 가부시키가이샤 Alumina-based thermally conductive oxides and method for manufacturing the same
WO2018139640A1 (en) * 2017-01-30 2018-08-02 積水化学工業株式会社 Resin material and laminate
WO2018159608A1 (en) 2017-03-02 2018-09-07 大日精化工業株式会社 Alumina-based thermally conductive oxide and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510878A (en) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ Thermally conductive composition and production method thereof
WO2012070289A1 (en) * 2010-11-26 2012-05-31 三菱電機株式会社 Thermal conductive sheet and power module
JP5263429B1 (en) * 2012-05-21 2013-08-14 東洋インキScホールディングス株式会社 Thermally conductive easily deformable aggregate and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510878A (en) * 2004-08-23 2008-04-10 ゼネラル・エレクトリック・カンパニイ Thermally conductive composition and production method thereof
WO2012070289A1 (en) * 2010-11-26 2012-05-31 三菱電機株式会社 Thermal conductive sheet and power module
JP5263429B1 (en) * 2012-05-21 2013-08-14 東洋インキScホールディングス株式会社 Thermally conductive easily deformable aggregate and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180040654A (en) 2015-09-16 2018-04-20 다이니치 세이카 고교 가부시키가이샤 Alumina-based thermally conductive oxides and method for manufacturing the same
US11459276B2 (en) 2015-09-16 2022-10-04 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Alumina-based heat conductive oxide and method for producing same
JP2018035323A (en) * 2016-09-02 2018-03-08 富士ゼロックス株式会社 Filler, molding, member, fixing member, fixing device, process cartridge, and image formation device
WO2018139640A1 (en) * 2017-01-30 2018-08-02 積水化学工業株式会社 Resin material and laminate
CN109415570A (en) * 2017-01-30 2019-03-01 积水化学工业株式会社 Resin material and laminated body
JPWO2018139640A1 (en) * 2017-01-30 2019-11-21 積水化学工業株式会社 Resin material and laminate
JP2022019757A (en) * 2017-01-30 2022-01-27 積水化学工業株式会社 Resin material and laminate
JP7036984B2 (en) 2017-01-30 2022-03-15 積水化学工業株式会社 Resin material and laminate
CN109415570B (en) * 2017-01-30 2022-05-03 积水化学工业株式会社 Resin material and laminate
US11827766B2 (en) 2017-01-30 2023-11-28 Sekisui Chemical Co., Ltd. Resin material and laminate
WO2018159608A1 (en) 2017-03-02 2018-09-07 大日精化工業株式会社 Alumina-based thermally conductive oxide and method for producing same
KR20190116530A (en) 2017-03-02 2019-10-14 다이니치 세이카 고교 가부시키가이샤 Alumina-based thermally conductive oxide and method for producing same

Also Published As

Publication number Publication date
JP6107479B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP6221490B2 (en) Easily deformable aggregate and method for producing the same, heat conductive resin composition, heat conductive member and method for producing the same, and heat conductive adhesive sheet
TWI738736B (en) Thermally-conductive insulating sheet and its manufacturing method, and intermediale laminate for manufacturing thermally-conductive insulating sheet
JP5263429B1 (en) Thermally conductive easily deformable aggregate and method for producing the same
JP5967002B2 (en) Easily deformable aggregate, heat conductive resin composition, heat conductive member, and heat conductive adhesive sheet
TWI592208B (en) Easily deformable aggregate and producing method thereof, thermal conductive resin composition, thermal conductive member and manufacturing method thereof, and thermal conductive adhesive sheet
JP6107479B2 (en) Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same
JP6866799B2 (en) Thermally conductive insulating sheet and composite member
TW202010707A (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipation material using same
JP6418348B1 (en) Composite material
JP6119950B2 (en) Hollow structure electronic components
JP6467689B2 (en) Hollow structure electronic components
JP6127765B2 (en) Thermally conductive easily deformable aggregate, thermally conductive resin composition, thermally conductive member, and thermally conductive adhesive sheet
JP2020105411A (en) Thermally conductive insulating adhesive sheet, and method for producing the sheet
JP6451451B2 (en) Manufacturing method of conductive sheet
JP6131427B2 (en) Thermally conductive resin composition, thermal conductive member and method for producing the same, and thermal conductive adhesive sheet
JP6693199B2 (en) Thermally conductive member and device
JP6011390B2 (en) Easily deformable aggregate, heat conductive resin composition, heat conductive member, and heat conductive adhesive sheet
WO2016121619A1 (en) Plate-shaped ferrite particles for pigment which exhibit metallic lustre
CN111095538B (en) Thermally conductive insulating sheet and composite member
JP7110977B2 (en) Thermally conductive insulating sheets and composite members
JP2001110964A (en) Heat dissipating spacer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R151 Written notification of patent or utility model registration

Ref document number: 6107479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees