JP6127765B2 - Thermally conductive easily deformable aggregate, thermally conductive resin composition, thermally conductive member, and thermally conductive adhesive sheet - Google Patents
Thermally conductive easily deformable aggregate, thermally conductive resin composition, thermally conductive member, and thermally conductive adhesive sheet Download PDFInfo
- Publication number
- JP6127765B2 JP6127765B2 JP2013129782A JP2013129782A JP6127765B2 JP 6127765 B2 JP6127765 B2 JP 6127765B2 JP 2013129782 A JP2013129782 A JP 2013129782A JP 2013129782 A JP2013129782 A JP 2013129782A JP 6127765 B2 JP6127765 B2 JP 6127765B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- weight
- resin
- thermally conductive
- heat conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011342 resin composition Substances 0.000 title claims description 71
- 239000000853 adhesive Substances 0.000 title claims description 8
- 230000001070 adhesive effect Effects 0.000 title claims description 8
- 239000002245 particle Substances 0.000 claims description 198
- 229920005989 resin Polymers 0.000 claims description 97
- 239000011347 resin Substances 0.000 claims description 97
- 239000011230 binding agent Substances 0.000 claims description 77
- 239000002904 solvent Substances 0.000 claims description 47
- 239000003575 carbonaceous material Substances 0.000 claims description 44
- 239000011164 primary particle Substances 0.000 claims description 43
- 238000007906 compression Methods 0.000 claims description 39
- 230000006835 compression Effects 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 18
- 239000002002 slurry Substances 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 13
- 238000000576 coating method Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 120
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 75
- 239000000243 solution Substances 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 31
- 229920000647 polyepoxide Polymers 0.000 description 26
- 239000010410 layer Substances 0.000 description 25
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 22
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 20
- 239000007787 solid Substances 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 18
- 238000001723 curing Methods 0.000 description 17
- 238000003756 stirring Methods 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- 229920001187 thermosetting polymer Polymers 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 239000000843 powder Substances 0.000 description 16
- 239000003822 epoxy resin Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000004372 Polyvinyl alcohol Substances 0.000 description 14
- 229920002451 polyvinyl alcohol Polymers 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 229920002396 Polyurea Polymers 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 12
- 239000000835 fiber Substances 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 12
- 229920002635 polyurethane Polymers 0.000 description 12
- 239000004814 polyurethane Substances 0.000 description 12
- 238000005245 sintering Methods 0.000 description 11
- -1 calcium silicate Chemical class 0.000 description 10
- 238000007872 degassing Methods 0.000 description 10
- 230000017525 heat dissipation Effects 0.000 description 10
- 229910052582 BN Inorganic materials 0.000 description 9
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000002041 carbon nanotube Substances 0.000 description 8
- 229910021393 carbon nanotube Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000011246 composite particle Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229920000178 Acrylic resin Polymers 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 4
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 229920005749 polyurethane resin Polymers 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 230000004931 aggregating effect Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 229910003475 inorganic filler Inorganic materials 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000013034 phenoxy resin Substances 0.000 description 3
- 229920006287 phenoxy resin Polymers 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000001694 spray drying Methods 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 2
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- 229920001800 Shellac Polymers 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 239000011354 acetal resin Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000005018 casein Substances 0.000 description 2
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 2
- 235000021240 caseins Nutrition 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 229910002026 crystalline silica Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920005990 polystyrene resin Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 2
- 239000004208 shellac Substances 0.000 description 2
- 235000013874 shellac Nutrition 0.000 description 2
- 229940113147 shellac Drugs 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- VCGRFBXVSFAGGA-UHFFFAOYSA-N (1,1-dioxo-1,4-thiazinan-4-yl)-[6-[[3-(4-fluorophenyl)-5-methyl-1,2-oxazol-4-yl]methoxy]pyridin-3-yl]methanone Chemical compound CC=1ON=C(C=2C=CC(F)=CC=2)C=1COC(N=C1)=CC=C1C(=O)N1CCS(=O)(=O)CC1 VCGRFBXVSFAGGA-UHFFFAOYSA-N 0.000 description 1
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- JVYDLYGCSIHCMR-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)butanoic acid Chemical compound CCC(CO)(CO)C(O)=O JVYDLYGCSIHCMR-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 239000003849 aromatic solvent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- PYRZPBDTPRQYKG-UHFFFAOYSA-N cyclopentene-1-carboxylic acid Chemical compound OC(=O)C1=CCCC1 PYRZPBDTPRQYKG-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- 229920005648 ethylene methacrylic acid copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- WOLATMHLPFJRGC-UHFFFAOYSA-N furan-2,5-dione;styrene Chemical compound O=C1OC(=O)C=C1.C=CC1=CC=CC=C1 WOLATMHLPFJRGC-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229920005792 styrene-acrylic resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、電子機器の熱を逃がすための熱伝導性部材の形成に好適に使用できる熱伝導性易変形性凝集体、熱伝導性樹脂組成物、および熱伝導部材に関する。 The present invention relates to a thermally conductive easily deformable aggregate, a thermally conductive resin composition, and a thermally conductive member that can be suitably used for forming a thermally conductive member for releasing heat from an electronic device.
近年、エレクトロニクス分野の発展が目覚しく、特に電子機器の小型化、軽量化、高密度化、高出力化が進み、これらの性能に対する要求がますます高度なものとなっている。電子回路の高密度化のために高絶縁性信頼性や小型化が求められるほか、特に、電子機器の高出力化に伴う発熱による電子機器の劣化防止のための放熱性向上が強く求められている。
エレクトロニクス分野では絶縁材として高分子材料が好適に用いられているため、放熱性を向上させるため、高分子材料の熱伝導性の向上が望まれるようになった。しかし、高分子材料の熱伝導性向上には限界があったため、熱伝導性粒子を高分子材料に混合し、放熱性を向上させる方法が開発された。
In recent years, the development of the electronics field has been remarkable, and in particular, electronic devices have become smaller, lighter, higher density, and higher in output, and demands for these performances have become increasingly sophisticated. In addition to high insulation reliability and downsizing to increase the density of electronic circuits, there is a strong demand for improved heat dissipation to prevent deterioration of electronic devices due to heat generated by higher output of electronic devices. Yes.
In the electronics field, a polymer material is suitably used as an insulating material. Therefore, in order to improve heat dissipation, it has been desired to improve the thermal conductivity of the polymer material. However, since there is a limit to improving the thermal conductivity of the polymer material, a method has been developed to improve heat dissipation by mixing thermally conductive particles with the polymer material.
例えば、特許文献1には、層状珪酸塩が均一分散されたナノコンポジットポリアミド樹脂と、熱伝導性無機フィラーとを含有する成形用樹脂が開示されている。熱伝導性無機フィラーとしては、アルミナ、酸化マグネシウム、シリカ、酸化亜鉛、窒化ホウ素、炭化珪素、窒化珪素などが開示されている。
従来よりも少ない使用量で成形体に熱伝導性を付与できるよう、熱伝導性無機フィラーには、熱伝導性の向上が求められている。
For example, Patent Document 1 discloses a molding resin containing a nanocomposite polyamide resin in which a layered silicate is uniformly dispersed and a thermally conductive inorganic filler. As the thermally conductive inorganic filler, alumina, magnesium oxide, silica, zinc oxide, boron nitride, silicon carbide, silicon nitride and the like are disclosed.
Thermally conductive inorganic fillers are required to have improved thermal conductivity so that the molded body can be imparted with thermal conductivity with a smaller amount than in the past.
特許文献2には、平均粒子径が10μm以下の高熱伝導性粒子を、造粒、焼結することにより、熱伝導性を向上させた平均粒子径が3〜85μmの球状の複合粒子を得、前記複合粒子の利用が提案されている。
具体的には、アルミナや窒化アルミニウムや結晶性シリカ等の熱伝導性粒子を、シランカップリング剤や熱硬化性樹脂でコーティング処理した後、低くても800℃、通常は1000〜2800℃の熱伝導性粒子の融点近い温度で焼結し、球状の複合粒子を得る方法が提案されている([0009]、[0021]〜「0022」、[0028]〜[0032]参照)。
特許文献2によれば、複合粒子の凝集力を高めるために焼結すると開示する。しかし、造粒後、熱伝導性粒子の融点近い温度で焼結する結果、造粒の際使用したバインダーは消失してしまい、焼結後の複合粒子の凝集力は決して高くなく、むしろ焼結後の複合粒子は脆くて造粒状態を維持できず、崩壊し易い。
あるいは、融点以上の温度で十分焼結すれば、熱伝導性粒子同士が融着一体化するので、凝集力の高いものを得ることはできる。しかし、融着一体化の結果、巨大な硬い粒子となってしまう。
Patent Document 2 obtains spherical composite particles having an average particle diameter of 3 to 85 μm and improved thermal conductivity by granulating and sintering high thermal conductivity particles having an average particle diameter of 10 μm or less. The use of the composite particles has been proposed.
Specifically, after thermally conductive particles such as alumina, aluminum nitride, and crystalline silica are coated with a silane coupling agent or a thermosetting resin, the heat is at least 800 ° C., usually 1000 to 2800 ° C. There has been proposed a method of obtaining spherical composite particles by sintering at a temperature close to the melting point of the conductive particles (see [0009], [0021] to “0022”, [0028] to [0032]).
According to Patent Document 2, it is disclosed that sintering is performed in order to increase the cohesive force of the composite particles. However, as a result of sintering at a temperature close to the melting point of the thermally conductive particles after granulation, the binder used during granulation disappears, and the cohesive force of the composite particles after sintering is never high, rather it is sintered. The later composite particles are brittle, cannot maintain a granulated state, and are easily disintegrated.
Alternatively, if the sintering is sufficiently performed at a temperature equal to or higher than the melting point, the heat conductive particles are fused and integrated, so that a high cohesive force can be obtained. However, as a result of the fusion integration, huge hard particles are formed.
特許文献3には、アルミナ、酸化マグネシウム、窒化ホウ素、窒化アルミニウム等の無機質粉末と熱硬化性樹脂組成物とを含み、粉末、造粒粉末、顆粒状態に加工されてなる粉体組成物の利用が提案されている。しかし、この方法で用いている無機質粉末はサイズが大きいほか、熱硬化性樹脂組成物を使用しているため、凝集体内で樹脂が硬化するため、得られるのは強固な結合をもった硬い粉体組成物である。 Patent Document 3 includes the use of a powder composition comprising inorganic powder such as alumina, magnesium oxide, boron nitride, and aluminum nitride and a thermosetting resin composition, and processed into a powder, a granulated powder, and a granular state. Has been proposed. However, since the inorganic powder used in this method is large in size and uses a thermosetting resin composition, the resin hardens in the aggregate, so that a hard powder with strong bonds can be obtained. It is a body composition.
特許文献4には、アルミナ粒子粉末の表面を表面改質剤で被覆した後、前記表面改質剤被覆粒子表面に炭素粉末を付着させた複合粒子粉末を、窒素雰囲気下で1350〜1750℃にて加熱焼成する窒化アルミニウムの製造方法が開示されている(特許請求の範囲、[0034]、[0042]、[0046]〜[0049]」参照)。 In Patent Document 4, a composite particle powder obtained by coating the surface of an alumina particle powder with a surface modifier and then attaching a carbon powder to the surface of the surface modifier-coated particle is set to 1350 to 1750 ° C. in a nitrogen atmosphere. A method for producing aluminum nitride that is heated and fired is disclosed (see claims, [0034], [0042], [0046] to [0049]).
特許文献5には、平均粒子径が10〜500μmかつ気孔率が0.3%以上の球状窒化アルミニウム焼結粉が開示されている。具体的には一次粒子径が0.1〜0.8μmの粉末を全量の10重量%以上含む窒化アルミニウム粉末と、酸化リチウムや酸化カルシウム等の焼結助剤とを含むスラリーを噴霧乾燥し、さらに1400〜1800℃で焼成する、前記球状窒化アルミニウム焼結粉の製造方法が記載されている(請求項1、4、[0035]参照)。
特許文献4、5の場合も、特許文献2の場合と同様に、非常に高温で焼結する上、焼結助剤等と窒化アルミニウムとが強固に結合するため、得られるのは、凝集体としては硬い窒化アルミニウムか、あるいは焼結して一体化された巨大で硬い窒化アルミニウム粒子である。
Patent Document 5 discloses a spherical aluminum nitride sintered powder having an average particle size of 10 to 500 μm and a porosity of 0.3% or more. Specifically, a slurry containing an aluminum nitride powder containing 10% by weight or more of a powder having a primary particle size of 0.1 to 0.8 μm and a sintering aid such as lithium oxide or calcium oxide is spray-dried, Furthermore, the manufacturing method of the said spherical aluminum nitride sintered powder baked at 1400-1800 degreeC is described (refer Claim 1, 4, [0035]).
In the case of Patent Documents 4 and 5, as in the case of Patent Document 2, since sintering is performed at a very high temperature and the sintering aid or the like and aluminum nitride are strongly bonded to each other, an aggregate is obtained. For example, hard aluminum nitride, or huge and hard aluminum nitride particles integrated by sintering.
特許文献6には、鱗片状窒化ホウ素の一次粒子を等方的に凝集させた二次凝集粒子の利用が開示されている。
具体的には、鱗片状窒化ホウ素を1800℃前後にて仮焼きした後、粉砕してなる一次粒子から形成される顆粒を2000℃で焼成し、気孔率が50%以下、平均気孔径が0.05〜3μmの二次凝集体を得る方法が開示されている([0014]、[0026]、「0027]参照)。
Patent Document 6 discloses the use of secondary agglomerated particles obtained by isotropically agglomerating primary particles of scaly boron nitride.
Specifically, after calcining scaly boron nitride at around 1800 ° C., granules formed from pulverized primary particles are fired at 2000 ° C., the porosity is 50% or less, and the average pore diameter is 0. A method for obtaining a secondary aggregate of 0.05 to 3 μm has been disclosed (see [0014], [0026] and “0027]).
特許文献7には、不規則形状の非球状窒化ホウ素粒子を凝集させた球状窒化ホウ素凝集体の利用が開示されている。 Patent Document 7 discloses the use of a spherical boron nitride aggregate obtained by aggregating irregularly shaped non-spherical boron nitride particles.
特許文献8には、窒化珪素質焼結体の利用が開示され、特許文献9には焼結処理してなる球状酸化亜鉛粒子粉末の利用が開示されている。 Patent Document 8 discloses the use of a silicon nitride sintered body, and Patent Document 9 discloses the use of a spherical zinc oxide particle powder obtained by sintering.
特許文献10には、窒化ホウ素粒子と炭素繊維を組み合わせた熱伝導性複合材料の利用が開示されている。 Patent Document 10 discloses the use of a thermally conductive composite material in which boron nitride particles and carbon fibers are combined.
しかし、放熱に対する要求が高まるにつれ、従来の熱伝導性粒子やその造粒体では、その要求に十分応えられなくなってきた。
そこで、より少ない使用量で従来と同程度の熱伝導性を付与できるか、あるいは従来と同程度の使用量でより高い熱伝導性を付与できる、熱伝導性付与材料が求められようになってきた。
However, as the demand for heat dissipation increases, conventional thermal conductive particles and granulated bodies thereof cannot sufficiently meet the demand.
Therefore, there has been a demand for a material for imparting thermal conductivity, which can provide the same level of thermal conductivity as before with a smaller amount of use, or can provide higher thermal conductivity with the amount of use as conventional. It was.
本発明の目的は、より少ない使用量で従来と同程度の熱伝導性を付与できるか、あるいは従来と同程度の使用量でより高い熱伝導性を付与できる、熱伝導性付与材料を提供することである。 An object of the present invention is to provide a thermal conductivity-imparting material that can impart the same level of thermal conductivity as before with a smaller amount of use, or that can impart higher thermal conductivity with the amount of level of conventional use. That is.
本発明は、球状の熱伝導性粒子と球状以外の炭素材料とを有機結着剤で凝集させた、圧力に対し変形し易いが、崩壊しにくい凝集体に関する。
即ち、本発明は、平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と、球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30重量部と、を含む、
平均粒子径が2〜100μm、圧縮変形率10%に要する平均圧縮力が5mN以下である、易変形性凝集体(D)に関する。
また、本発明は、球状以外の炭素材料(J)が、繊維状の炭素材料および板状の炭素材料の少なくとも一方である易変形性凝集体(D)に関する。
また、本発明は、易変形性凝集体(D)20〜90体積%とバインダー樹脂(E)10〜80体積%と前記バインダー樹脂(E)を溶解する溶剤(F)とを含有する熱伝導性樹脂組成物であって、
前記易変形性凝集体(D)が、平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と、球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30重量部とを含む、平均粒子径が2〜100μm、圧縮変形率10%に要する平均圧縮力が5mN以下である、熱伝導性樹脂組成物(G)に関する。
また、本発明は、有機結着剤(B)が、前記溶剤(F)に溶解しないことを特徴とする熱伝導性樹脂組成物(G)に関する。
また、本発明は、有機結着剤(B)が水溶性樹脂であり、バインダー樹脂(E)が非水溶性樹脂であることを特徴とする熱伝導性樹脂組成物(G)に関する。
また、本発明は、熱伝導性樹脂組成物(G)から溶剤(F)が除去されてなる熱伝導層を含む、熱伝導性部材(H)に関する。
また、本発明は、熱伝導性部材(H)を加圧してなる、熱伝導性部材(I)に関する。
また、本発明は、熱伝導性部材(H)、または熱伝導性部材(I)からなり、
少なくとも一方の面に剥離フィルムを有する熱伝導性接着シートに関する。
また、本発明は、易変形性凝集体(D)の製造方法であって、
平均一次粒子径が0.1〜10μmの熱伝導性粒子(A)100質量部と、球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30質量部と、有機結着剤(B)を溶解する溶剤(C)とを含有するスラリーを得る工程と、
前記スラリーから溶剤(C)を除去する工程とを有する、易変形性凝集体(D)の製造方法に関する。
また、本発明は、基材上に熱伝導性樹脂組成物(G)を塗布して塗膜を形成する工程と、
前記塗膜から溶剤(F)を除去して、熱伝導層を形成する工程と、
前記熱伝導層を加圧する工程とを有する、熱伝導性部材(I)の製造方法に関する。
The present invention relates to an aggregate obtained by agglomerating spherical heat conductive particles and a non-spherical carbon material with an organic binder, which is easily deformed with respect to pressure but hardly collapses.
That is, the present invention relates to 100 parts by weight of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm, a carbon material (J) other than a sphere, and an organic binder (B) 0. 1 to 30 parts by weight,
The present invention relates to an easily deformable aggregate (D) having an average particle diameter of 2 to 100 μm and an average compression force required for a compression deformation rate of 10% of 5 mN or less.
Moreover, this invention relates to the easily deformable aggregate (D) whose carbon material (J) other than a sphere is at least one of a fibrous carbon material and a plate-shaped carbon material.
The present invention also relates to a heat conduction comprising 20-90% by volume of the easily deformable aggregate (D), 10-80% by volume of the binder resin (E), and a solvent (F) that dissolves the binder resin (E). A functional resin composition comprising:
The easily deformable aggregate (D) is composed of 100 parts by weight of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm, a carbon material (J) other than a sphere, and an organic binder. (B) It is related with the heat conductive resin composition (G) which is 0.1-30 weight part and whose average particle diameter is 2-100 micrometers and whose average compressive force required for 10% of a compressive deformation rate is 5 mN or less.
Moreover, this invention relates to the heat conductive resin composition (G) characterized by the organic binder (B) not melt | dissolving in the said solvent (F).
The present invention also relates to a heat conductive resin composition (G), wherein the organic binder (B) is a water-soluble resin and the binder resin (E) is a water-insoluble resin.
Moreover, this invention relates to the heat conductive member (H) containing the heat conductive layer by which a solvent (F) is removed from a heat conductive resin composition (G).
Moreover, this invention relates to the heat conductive member (I) formed by pressurizing a heat conductive member (H).
Moreover, this invention consists of a heat conductive member (H) or a heat conductive member (I),
The present invention relates to a thermally conductive adhesive sheet having a release film on at least one surface.
The present invention also relates to a method for producing the easily deformable aggregate (D),
100 parts by mass of thermally conductive particles (A) having an average primary particle size of 0.1 to 10 μm, carbon material (J) other than spherical, 0.1 to 30 parts by mass of organic binder (B), and organic Obtaining a slurry containing a solvent (C) for dissolving the binder (B);
And a step of removing the solvent (C) from the slurry.
The present invention also includes a step of applying a heat conductive resin composition (G) on a substrate to form a coating film,
Removing the solvent (F) from the coating film to form a heat conductive layer;
It is related with the manufacturing method of heat conductive member (I) which has the process of pressurizing the said heat conductive layer.
本発明の易変形性凝集体は、より少ない使用量で従来と同程度の熱伝導性を熱伝導性部材に付与したり、あるいは従来と同程度の使用量でより高い熱伝導性を熱伝導性部材に付与したりできる。熱伝導性付与材料を提供できる。
また、本発明の熱伝導性樹脂組成物は、熱伝導性の高い易変形性凝集体を使用しているため、高い熱伝導性、優れた成膜性、基材追従性を有する熱伝導性部材および、さらに接着性に優れる接着シートを作製することができる。
The easily deformable agglomerates of the present invention impart the same thermal conductivity to the heat conductive member with a smaller amount of use, or provide a higher thermal conductivity with the same amount of the conventional heat conductivity. It can be applied to the sex member. A material for imparting thermal conductivity can be provided.
In addition, since the thermally conductive resin composition of the present invention uses easily deformable aggregates having high thermal conductivity, the thermal conductivity having high thermal conductivity, excellent film formability, and substrate followability. A member and an adhesive sheet excellent in adhesiveness can be produced.
本発明の易変形性凝集体(D)は、平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と、球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30重量部とを含み、平均粒子径が2〜100μm、圧縮変形率10%に要する平均圧縮力が5mN以下である。 The easily deformable aggregate (D) of the present invention comprises 100 parts by weight of spherical heat conductive particles (A) having an average primary particle diameter of 0.1 to 10 μm, a carbon material (J) other than a sphere, and an organic bond. It includes 0.1 to 30 parts by weight of the adhesive (B), has an average particle diameter of 2 to 100 μm, and an average compressive force required for a compression deformation rate of 10% is 5 mN or less.
本発明における「易変形性」とは、圧縮変形率10%に要する平均圧縮力が5mN以下であることをいう。圧縮変形率10%に要する平均圧縮力とは、圧縮試験により測定した、粒子を10%変形させるための荷重の平均値のことであり、例えば、微小圧縮試験機(株式会社島津製作所製、MCT−210)で測定することができる。
具体的には、測定対象のごく少量の試料を顕微鏡にて拡大し、任意の一粒を選択し、該測定対象粒子を加圧圧子の下部に移動させ、前記加圧圧子に負荷を加え、前記測定対象粒子を圧縮変形させる。前記試験機は、前記測定対象粒子の圧縮変位を計測するための検出器を、前記加圧圧子の上部に備えている。前記検出器にて、前記測定対象粒子の圧縮変位を計測し、変形率を求める。そして、前記測定対象粒子を10%圧縮変形するために要する圧縮力(以下、「10%圧縮変形力」とも略す)を求める。任意の他の測定対象粒子について、同様にして「10%圧縮変形力」を求め、10個の測定対象粒子についての「10%圧縮変形力」の平均値を「圧縮変形率10%に要する平均圧縮力」とする。
なお、本発明の易変形性凝集体(D)は、後述するように小さな熱伝導性粒子(A)が複数集合した状態のものであるが、圧縮変形率の測定においては凝集体を一粒の単位とする。
The “easy deformability” in the present invention means that an average compressive force required for a compression deformation rate of 10% is 5 mN or less. The average compressive force required for a compressive deformation rate of 10% is an average value of a load for deforming particles by 10% measured by a compression test. For example, a micro compression tester (manufactured by Shimadzu Corporation, MCT -210).
Specifically, a very small amount of sample to be measured is magnified with a microscope, an arbitrary one is selected, the particles to be measured are moved to the lower part of the pressure indenter, a load is applied to the pressure indenter, The measurement target particles are compressed and deformed. The tester includes a detector for measuring a compression displacement of the measurement target particle on an upper portion of the pressurizing indenter. The detector measures the compression displacement of the particles to be measured, and obtains the deformation rate. Then, the compression force required for 10% compression deformation of the particles to be measured (hereinafter also abbreviated as “10% compression deformation force”) is obtained. Similarly, “10% compressive deformation force” is obtained for any other particles to be measured, and the average value of “10% compressive deformation force” for 10 particles to be measured is “average required for 10% compression deformation rate”. Compressive force ".
The easily deformable aggregate (D) of the present invention is a state in which a plurality of small heat conductive particles (A) are aggregated as will be described later. The unit of
図1は、図2および図4に示すような凝集させていない熱伝導性粒子(A)と、図2に示すような熱伝導性粒子(A)を凝集させた易変形性凝集体(D)、についての圧縮変形率と圧縮力との関係を示す図である。易変形性凝集体(D)の大きさは、図4に示す熱伝導性粒子(A)の大きさと同程度である。
図1に示す通り、凝集させていない熱伝導性粒子(A)は、ごく僅かに変形させるために大きな力を要する。一方、図2と同じの大きさの熱伝導性粒子(A)を図4の熱伝導性粒子(A)と同程度の大きさに凝集させた場合、図1に示す通り、はるかに小さな力で変形させることができる。
即ち、本発明の凝集体(D)は、「易変形性」凝集体である。
図3aは、易変形性凝集体を含む熱伝導部材の一種である熱硬化性シートの平面のSEM写真であり、図3bは、熱伝導部材を加圧下に熱硬化した硬化物の平面のSEM写真であり、図3cは硬化物の断面のSEM写真である。図3a、b、cからも、「易変形性」凝集体であることが確認できる。
FIG. 1 shows a non-aggregated thermally conductive particle (A) as shown in FIGS. 2 and 4 and an easily deformable aggregate (D) in which the thermally conductive particles (A) as shown in FIG. 2 are aggregated. It is a figure which shows the relationship between the compression deformation rate and compressive force about). The size of the easily deformable aggregate (D) is approximately the same as the size of the thermally conductive particles (A) shown in FIG.
As shown in FIG. 1, the heat conductive particles (A) that are not aggregated require a large force to be deformed only slightly. On the other hand, when the thermally conductive particles (A) having the same size as in FIG. 2 are aggregated to the same size as the thermally conductive particles (A) in FIG. 4, a much smaller force is obtained as shown in FIG. Can be transformed.
That is, the aggregate (D) of the present invention is an “easily deformable” aggregate.
FIG. 3a is a plane SEM photograph of a thermosetting sheet which is a kind of heat conductive member containing easily deformable aggregates, and FIG. 3b is a plane SEM of a cured product obtained by thermosetting the heat conductive member under pressure. FIG. 3c is a SEM photograph of a cross section of the cured product. 3a, b, and c, it can be confirmed that they are “easy deformable” aggregates.
なお、本発明の凝集体(D)が「易変形性」であるが故に熱伝導性に優れる理由、および、球状以外の炭素材料を含むが故に熱伝導性に優れる理由については、後述する。 The reason why the aggregate (D) of the present invention is excellent in thermal conductivity because it is “easy to deform” and the reason why it is excellent in thermal conductivity because it contains a carbon material other than spherical will be described later.
<熱伝導性粒子(A)>
熱伝導性粒子(A)は熱伝導性を有するものであれば特に限定されず、例えば、
酸化アルミニウム、酸化カルシウム、酸化マグネシウム等の金属酸化物、
窒化アルミニウム、窒化ホウ素等の金属窒化物、
水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、
炭酸カルシウム、炭酸マグネシウム等の炭酸金属塩、
ケイ酸カルシウム等のケイ酸金属塩、
水和金属化合物、
結晶性シリカ、非結晶性シリカ、炭化ケイ素またはこれらの複合物、
金、銀等の金属、
カーボンブラック等の炭素材料等が挙げられる。
これらは、1種を単独で用いても良く、2種以上を併用することもできる。
<Thermal conductive particles (A)>
Thermally conductive particles (A) are not particularly limited as long as they have thermal conductivity. For example,
Metal oxides such as aluminum oxide, calcium oxide, magnesium oxide,
Metal nitrides such as aluminum nitride and boron nitride,
Metal hydroxides such as aluminum hydroxide and magnesium hydroxide,
Metal carbonates such as calcium carbonate and magnesium carbonate,
Silicate metal salts such as calcium silicate,
Hydrated metal compounds,
Crystalline silica, amorphous silica, silicon carbide or a composite thereof,
Metals such as gold and silver,
Examples thereof include carbon materials such as carbon black.
These may be used alone or in combination of two or more.
電子回路用途で用いる場合は絶縁性を有していることが好ましく、金属酸化物、金属窒化物が好適に用いられ、なかでも熱伝導率の観点から、酸化アルミニウム、窒化アルミニウム、窒化ホウ素がより好適に用いられる。
得られる易変形性凝集体(D)を電子材料用途等に用いる場合には、熱伝導性粒子(A)としては、加水分解されにくい酸化アルミニウムがより好ましい。
また、耐加水分解性を向上するための処理を予め施した窒化アルミニウム等の金属窒化物を用い、易変形性凝集体(D)を得れば、得られた易変形性凝集体(D)は、電子材料用途等に用いることもできる。
When used in electronic circuit applications, it is preferable to have insulating properties, and metal oxides and metal nitrides are preferably used. Of these, aluminum oxide, aluminum nitride, and boron nitride are more preferable from the viewpoint of thermal conductivity. Preferably used.
When the easily deformable aggregate (D) to be obtained is used for an electronic material application or the like, the thermally conductive particles (A) are more preferably aluminum oxide that is not easily hydrolyzed.
Moreover, if metal nitrides, such as aluminum nitride which performed the process for improving hydrolysis resistance previously, are used and an easily deformable aggregate (D) is obtained, the easily deformable aggregate (D) obtained will be obtained. Can also be used for electronic materials.
熱伝導性粒子(A)は、得られる易変形性凝集体(D)の空隙の少なさ、変形しやすさの点で球状であることが重要である。
つまり、球状粒子を用いると、空隙の少ない密な易変形性凝集体(D)を得ることができる。易変形性凝集体(D)内の空隙は、熱伝導性を悪化させるので、空隙の生成をできるだけ防止することは、熱伝導性向上の点で重要である。
また、熱伝導性粒子(A)が球状であると、凝集体内の熱伝導性粒子(A)同士の粒子間の摩擦係数が小さい。その結果、凝集体に力が加えられた際、凝集体内の熱伝導性粒子(A)の位置関係が容易に変化し、凝集体が崩壊することなく変形し易い。
一方、板状や針状の熱伝導性粒子を用いた場合、得られるのは、空隙の多い凝集体であって、凝集体内の構成粒子同士の摩擦が大きく、変形しにくい凝集体となる。
It is important that the thermally conductive particles (A) are spherical in terms of the small number of voids and ease of deformation of the easily deformable aggregate (D) to be obtained.
That is, when spherical particles are used, a dense easily deformable aggregate (D) with few voids can be obtained. Since the voids in the easily deformable aggregate (D) deteriorate the thermal conductivity, it is important in terms of improving the thermal conductivity to prevent the voids from being generated as much as possible.
Moreover, when the heat conductive particles (A) are spherical, the coefficient of friction between the particles of the heat conductive particles (A) in the aggregate is small. As a result, when a force is applied to the aggregate, the positional relationship of the heat conductive particles (A) in the aggregate easily changes, and the aggregate is easily deformed without collapsing.
On the other hand, when plate-like or needle-like thermally conductive particles are used, an agglomerate with many voids is obtained, and the agglomerate between the constituent particles in the agglomerate is large and hardly deforms.
なお、本発明において球状であるとは、例えば、「円形度」であらわすことができ、この円形度とは、粒子をSEM等で撮影した写真をから任意の数の粒子を選び、粒子の面積をS、周囲長をLとしたとき、(円形度)=4πS/L2として表すことができる。円形度を測定するには、各種画像処理ソフト、または画像処理ソフトを搭載した装置を使用することができるが、本発明では、東亜医用電子(株)製フロー式粒子像分析装置FPIA−1000を用いて粒子の平均円形度を測定した際の平均円形度が0.9〜1のものをいう。好ましくは、平均円形度が0.96〜1である。 In the present invention, the term “spherical” refers to, for example, “circularity”. This circularity is an arbitrary number of particles selected from a photograph of particles taken with an SEM or the like. Can be expressed as (circularity) = 4πS / L2, where S is the circumference and L is the perimeter. In order to measure the circularity, various image processing software or an apparatus equipped with image processing software can be used. In the present invention, flow type particle image analyzer FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd. is used. The average circularity is 0.9 to 1 when the average circularity of the particles is measured. Preferably, the average circularity is 0.96-1.
易変形性凝集体(D)を得るために用いられる熱伝導性粒子(A)は、平均一次粒子径が0.1〜10μmであり、0.3〜10μmであることが望ましい。一種類の大きさの熱伝導性粒子(A)を用いる場合には、平均一次粒子径が0.3〜5μmのものを用いることが好ましい。大きさの異なる複数の種類の熱伝導性粒子(A)を用いることもでき、その場合には、比較的小さなものと比較的大きなものを組み合わせて用いることが、凝集体内の空隙率を減らすという点で好ましい。
平均一次粒子径が小さ過ぎると、凝集体内における一次粒子同士の接点が多くなり、接触抵抗が大きくなるため熱伝導性が低下する傾向にある。一方、平均一次粒子径が大き過ぎると凝集体を作成しようとしても崩壊し易く、凝集体自体が形成されにくい。
なお、本発明における熱伝導性粒子(A)の平均一次粒子径は、粒度分布計(例えば、Malvern Instruments社製、マスターサイザー2000)で測定したときの値である。
また、本発明の易変形性凝集体(D)が崩壊しにくいことは、例えば、ガラスサンプル管に易変形性凝集体(D)を空隙率70%となるように入れ、振とう機にて2時間振とうしても、振とう後の平均粒子径が振とう前の平均粒子径の80%以上であることからも支持される。
The heat conductive particles (A) used for obtaining the easily deformable aggregate (D) have an average primary particle diameter of 0.1 to 10 μm, and preferably 0.3 to 10 μm. When using one type of thermally conductive particles (A), it is preferable to use particles having an average primary particle size of 0.3 to 5 μm. A plurality of types of thermally conductive particles (A) having different sizes can also be used, and in that case, using a combination of relatively small and relatively large particles reduces the porosity in the aggregate. This is preferable.
If the average primary particle size is too small, the number of contacts between the primary particles in the aggregate increases, and the contact resistance increases, so the thermal conductivity tends to decrease. On the other hand, if the average primary particle size is too large, it tends to collapse even if an aggregate is prepared, and the aggregate itself is difficult to be formed.
In addition, the average primary particle diameter of the heat conductive particles (A) in the present invention is a value when measured with a particle size distribution meter (for example, Mastersizer 2000, manufactured by Malvern Instruments).
In addition, the easily deformable aggregate (D) of the present invention is less likely to collapse. For example, the easily deformable aggregate (D) is placed in a glass sample tube so as to have a porosity of 70%, and is shaken. Even if it shakes for 2 hours, it is supported also because the average particle diameter after shaking is 80% or more of the average particle diameter before shaking.
<球状以外の炭素材料(J)>
球状以外の炭素材料(J)は、熱伝導性粒子(A)間の熱伝導を補助する機能を担う。球状の熱伝導性粒子(A)に対し、より粒子径の小さな熱伝導性粒子(A)を併用することで、凝集体中の空隙を減らすことができるが、さらに球状以外の炭素材料を併用し熱伝導性粒子(A)間の熱伝導を補助することで熱伝導率がさらに向上する。
<Carbon material other than spherical (J)>
The carbon material (J) other than the spherical shape has a function of assisting heat conduction between the heat conductive particles (A). By using the thermally conductive particles (A) with a smaller particle diameter in combination with the spherical thermally conductive particles (A), the voids in the aggregate can be reduced, but a carbon material other than the spherical shape is also used in combination. The thermal conductivity is further improved by assisting the thermal conduction between the thermally conductive particles (A).
球状以外の炭素材料(J)は、熱伝導性を有する球状以外の炭素材料であれば特に限定されるものではないが、板状のグラファイト及びカーボンブラック、繊維状炭素(カーボン繊維、グラファイト繊維、気相成長炭素繊維、カーボンナノファイバー及びカーボンナノチューブ)、グラフェン等を単独で、もしくは2種類以上併せて使用することができる。 The non-spherical carbon material (J) is not particularly limited as long as it is a non-spherical carbon material having thermal conductivity, but plate-like graphite and carbon black, fibrous carbon (carbon fiber, graphite fiber, Vapor growth carbon fiber, carbon nanofiber, and carbon nanotube), graphene, or the like can be used alone or in combination of two or more.
繊維状、及び板状の炭素材料は、熱伝導性粒子(A)間に効率よく熱伝導パスを形成できるため好ましい。
繊維状の炭素材料は、平均繊維径が5〜30nm、平均繊維長が0.1〜20μmであることが好ましい。
板状の炭素材料は、平均アスペクト比が10〜1000、平均厚みが0.1〜500nmであることが好ましい。
Fibrous and plate-like carbon materials are preferable because a heat conduction path can be efficiently formed between the heat conductive particles (A).
The fibrous carbon material preferably has an average fiber diameter of 5 to 30 nm and an average fiber length of 0.1 to 20 μm.
The plate-like carbon material preferably has an average aspect ratio of 10 to 1000 and an average thickness of 0.1 to 500 nm.
本発明の易変形性凝集体(D)は、上記熱伝導性粒子(A)100重量部に対し、球状以外の炭素材料(J)を0.5〜10重量部含有することが好ましく、1〜5重量部含有することがより好ましい。上記範囲内であると、絶縁性を保ちながら、熱伝導パスを形成できるためである。 The easily deformable aggregate (D) of the present invention preferably contains 0.5 to 10 parts by weight of a non-spherical carbon material (J) with respect to 100 parts by weight of the heat conductive particles (A). It is more preferable to contain ~ 5 parts by weight. This is because the heat conduction path can be formed while maintaining the insulating property within the above range.
<有機結着剤(B)>
本発明における有機結着剤(B)は、熱伝導性粒子(A)や球状以外の炭素材料(J)を結着させる「つなぎ」の役割を果たす。
有機結着剤(B)としては、特に制限されず、例えば、「つなぎ」の役割を果たせる範囲において分子量は問わず、例えば、
界面活性剤、ポリエーテル樹脂、ポリウレタン樹脂、(不飽和)ポリエステル樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、(メタ)アクリル樹脂、スチレン/(メタ)アクリル樹脂、ポリスチレン樹脂、ニトロセルロース、ベンジルセルロース、セルロース(トリ)アセテート、カゼイン、シェラック、ゼラチン、ギルソナイト、ロジン、ロジンエステル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルニトロセルロース、エチレン/ビニルアルコール樹脂、スチレン/無水マレイン酸樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン樹脂、ポリ酢酸ビニル樹脂、エチレン/酢酸ビニル樹脂、塩化ビニル/酢酸ビニル樹脂、塩化ビニル/酢酸ビニル/マレイン酸樹脂、フッ素樹脂、シリコン樹脂、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、マレイン酸樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ケトン樹脂、石油樹脂、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂、塩素化ポリウレタン樹脂等が挙げられるが、これに制限されない。
有機結着剤(B)は、1種類を単独で用いても、2種類以上を混合して用いても良い。
<Organic binder (B)>
The organic binder (B) in the present invention plays a role of “tethering” for binding the heat conductive particles (A) and the carbon material (J) other than the spherical shape.
The organic binder (B) is not particularly limited, and for example, the molecular weight is not limited as long as it can play the role of “tethering”.
Surfactant, polyether resin, polyurethane resin, (unsaturated) polyester resin, alkyd resin, butyral resin, acetal resin, polyamide resin, (meth) acrylic resin, styrene / (meth) acrylic resin, polystyrene resin, nitrocellulose, Benzylcellulose, cellulose (tri) acetate, casein, shellac, gelatin, gilsonite, rosin, rosin ester, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, ethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, Carboxymethylcellulose, carboxymethylethylcellulose, carboxymethylnitrocell , Ethylene / vinyl alcohol resin, styrene / maleic anhydride resin, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinylidene fluoride resin, polyvinyl acetate resin, ethylene / vinyl acetate resin, vinyl chloride / vinyl acetate Resin, vinyl chloride / vinyl acetate / maleic acid resin, fluorine resin, silicone resin, epoxy resin, phenoxy resin, phenol resin, maleic acid resin, urea resin, melamine resin, benzoguanamine resin, ketone resin, petroleum resin, chlorinated polyolefin resin , Modified chlorinated polyolefin resin, chlorinated polyurethane resin and the like, but are not limited thereto.
An organic binder (B) may be used individually by 1 type, or may be used in mixture of 2 or more types.
また、有機結着剤(B)は、溶剤(F)に不溶であることが好ましい。ここでいう不溶とは、有機結着剤(B)1gを、溶剤(F)100gに入れ、25℃で24時間撹拌したときに、目視で沈殿が確認されることをいう。
有機結着剤(B)は、熱伝導性粒子同士の結着させる「つなぎ」の役割を果たしているため、溶剤(F)に不溶であると、熱伝導性樹脂組成物中で易変形性凝集体(D)がその凝集状態を保持することができるためである。
The organic binder (B) is preferably insoluble in the solvent (F). The term “insoluble” as used herein means that precipitation is visually confirmed when 1 g of the organic binder (B) is put in 100 g of the solvent (F) and stirred at 25 ° C. for 24 hours.
Since the organic binder (B) plays a role of “bonding” for binding the heat conductive particles, if the organic binder (B) is insoluble in the solvent (F), it is easily deformable in the heat conductive resin composition. This is because the aggregate (D) can maintain the aggregation state.
また、有機結着剤(B)は水溶性樹脂であることが好ましい。後述の熱伝導性部材(I)が接着シートである場合は、好適に使用できる。ここでいう水溶性とは、樹脂1gを水100gに入れ、25℃で24時間撹拌したときに、目視で沈殿が確認されないことをいう。
水溶性樹脂は、特に限定されないが、例えば澱粉、寒天、ゼラチン、ポリエチレンオキシド、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
The organic binder (B) is preferably a water-soluble resin. When the heat conductive member (I) described later is an adhesive sheet, it can be suitably used. The term “water-soluble” as used herein means that precipitation is not visually confirmed when 1 g of resin is added to 100 g of water and stirred at 25 ° C. for 24 hours.
The water-soluble resin is not particularly limited, and examples thereof include starch, agar, gelatin, polyethylene oxide, polyvinyl alcohol, and polyvinyl pyrrolidone.
また、上記有機結着剤(B)は、得られる易変形性凝集体(D)の変形性にも影響を与えるため、非硬化性であることが好ましい。
非硬化性とは、有機結着剤(B)が25℃で自己架橋しないことをいう。
なお、有機結着剤(B)に対して硬化剤として機能する成分は、使用しないことが好ましい。
Moreover, since the said organic binder (B) also affects the deformability of the easily deformable aggregate (D) obtained, it is preferable that it is non-hardening.
Non-curable means that the organic binder (B) does not self-crosslink at 25 ° C.
In addition, it is preferable not to use the component which functions as a hardening | curing agent with respect to an organic binder (B).
本発明の易変形性凝集体(D)は、上記熱伝導性粒子(A)100重量部に対し、上記有機結着剤(B)を0.1〜30重量部含有するものであり、1〜10重量部含有することが好ましい。0.1重量部より少ないと、熱伝導性粒子(A)を十分に結着することができず形態を維持するために十分な強度が得られないため好ましくない。また、30重量部より多い場合は、熱伝導性粒子(A)や球状以外の炭素材料(J)を結着させる効果は大きくなるが、熱伝導性粒子(A)や球状以外の炭素材料(J)間に必要以上に結着剤が入り込み、熱伝導性を阻害する恐れがあるため好ましくない。 The easily deformable aggregate (D) of the present invention contains 0.1 to 30 parts by weight of the organic binder (B) with respect to 100 parts by weight of the heat conductive particles (A). It is preferable to contain -10 weight part. If the amount is less than 0.1 part by weight, the heat conductive particles (A) cannot be sufficiently bound, and a sufficient strength for maintaining the form cannot be obtained. When the amount is more than 30 parts by weight, the effect of binding the heat conductive particles (A) and the carbon material (J) other than the sphere is increased, but the heat conductive particles (A) and the carbon material other than the sphere (carbon material ( J) is not preferable because the binder may enter more than necessary in the meantime and may impair the thermal conductivity.
本発明の易変形性凝集体(D)の平均粒子径は2〜100μmが好ましく、より好ましくは5〜50μmである。平均粒子径が2μmより小さい場合、凝集体(D)を構成する熱伝導性粒子(A)の数が少なくなり、凝集体としての効果が低く、変形性にも劣るため好ましくない。平均粒子径が100μmを超えると、単位体積あたりの易変形性凝集体(D)の重量が大きくなり、分散体として用いた場合に沈降したり、形成する熱伝導性部材の膜厚に自由度がなくなる等の問題が生じるため好ましくない。
なお、本発明における易変形性凝集体(D)の平均粒子径は、粒度分布計(例えば、Malvern Instruments社製、マスターサイザー2000)で測定したときの値である。
2-100 micrometers is preferable and, as for the average particle diameter of the easily deformable aggregate (D) of this invention, More preferably, it is 5-50 micrometers. When the average particle diameter is smaller than 2 μm, the number of the heat conductive particles (A) constituting the aggregate (D) is decreased, the effect as the aggregate is low, and the deformability is inferior. When the average particle diameter exceeds 100 μm, the weight of the easily deformable aggregate (D) per unit volume increases, and the degree of freedom in the film thickness of the thermally conductive member that settles or forms when used as a dispersion. This is not preferable because problems such as disappearance occur.
In addition, the average particle diameter of the easily deformable aggregate (D) in the present invention is a value when measured with a particle size distribution meter (for example, Mastersizer 2000 manufactured by Malvern Instruments).
また、易変形性凝集体(D)の比表面積は、特に制限されないが、10m2/g以下であることが好ましく、5m2/g以上であることがさらに好ましい。10m2/gより大きい場合、バインダー樹脂(E)が粒子表面や凝集体内部に吸着し、成膜性の低下・接着力の低下する傾向にあるため、好ましくない。 The specific surface area of the easily deformable aggregate (D) is not particularly limited, but is preferably 10 m 2 / g or less, and more preferably 5 m 2 / g or more. When it is larger than 10 m 2 / g, the binder resin (E) is adsorbed on the particle surface or inside the agglomerates, and tends to decrease film formability and adhesive strength, which is not preferable.
上記比表面積は、BET比表面積計(例えば、日本ベル社製、BELSORP−mini)で測定したときの値である。 The specific surface area is a value measured by a BET specific surface area meter (for example, BELSORP-mini manufactured by Nippon Bell Co., Ltd.).
<易変形性凝集体(D)の製造方法>
このような本発明の易変形性凝集体(D)は、例えば、平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と、球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30重量部と前記有機結着剤(B)を溶解する溶剤(C)とを含有するスラリーを得、次いで、前記スラリーから前記溶剤(C)を除去することによって、得ることができる。
あるいは、熱伝導性粒子(A)100重量部と球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30重量部とを混合することにより得たり、熱伝導性粒子(A)100重量部と球状以外の炭素材料(J)とに、有機結着剤(B)0.1〜30重量部と前記有機結着剤(B)を溶解する溶剤(C)とを含有する有機結着剤溶液を吹き付けた後、もしくは吹き付けつつ、溶剤(C)を除去することによって、得たりすることもできる。
組成が均一な易変形性凝集体(D)を得るためには、熱伝導性粒子(A)と球状以外の炭素材料(J)と有機結着剤(B)とを溶剤(C)中で予め混合してスラリーとする工程を経、その後溶剤(C)を除去することが好ましい。
<Method for producing easily deformable aggregate (D)>
Such an easily deformable aggregate (D) of the present invention includes, for example, 100 parts by weight of spherical heat conductive particles (A) having an average primary particle diameter of 0.1 to 10 μm, and a carbon material other than spherical (J ), 0.1 to 30 parts by weight of the organic binder (B) and the solvent (C) for dissolving the organic binder (B), and then the solvent (C ) Can be obtained.
Alternatively, it can be obtained by mixing 100 parts by weight of the heat conductive particles (A), a carbon material (J) other than a sphere, and 0.1 to 30 parts by weight of the organic binder (B), or heat conductive particles. (A) 0.1 to 30 parts by weight of an organic binder (B) and a solvent (C) for dissolving the organic binder (B) in 100 parts by weight and a carbon material (J) other than a sphere It can also be obtained by removing the solvent (C) after spraying the organic binder solution contained or while spraying.
In order to obtain an easily deformable aggregate (D) having a uniform composition, the thermally conductive particles (A), the carbon material (J) other than the sphere and the organic binder (B) are mixed in the solvent (C). It is preferable that the solvent (C) is removed after passing through a step of mixing in advance to form a slurry.
<溶剤(C)>
溶剤(C)は、熱伝導性粒子(A)、球状以外の炭素材料(J)を分散し、かつ有機結着剤(B)を溶解するものである。
上記溶剤(C)は、有機結着剤(B)を溶解することができれば特に制限はなく、有機結着剤(B)の種類により適宜選択することができる。溶剤(C)としては、例えば、エステル系溶剤、ケトン系溶剤、グリコールエーテル系溶剤、脂肪族系溶剤、芳香族系溶剤、アルコール系溶剤、エーテル系溶剤、水等を使用することができ、2種類以上を混合して使用することもできる。
<Solvent (C)>
The solvent (C) is for dispersing the heat conductive particles (A) and the carbon material (J) other than the spherical shape and dissolving the organic binder (B).
The solvent (C) is not particularly limited as long as it can dissolve the organic binder (B), and can be appropriately selected depending on the type of the organic binder (B). As the solvent (C), for example, ester solvents, ketone solvents, glycol ether solvents, aliphatic solvents, aromatic solvents, alcohol solvents, ether solvents, water and the like can be used. A mixture of more than one can also be used.
上記溶剤(C)は、除去し易さの点から、沸点は低いほうが好ましく、例えば、水、エタノール、メタノール、酢酸エチル等、沸点が110℃以下であると好ましい。
また、上記溶剤(C)の使用量は、除去し易さの点からは少ない方が好ましいが、有機結着剤(B)の溶解性や乾燥用の装置に合わせて適宜変更することができる。
The solvent (C) preferably has a lower boiling point from the viewpoint of easy removal, and preferably has a boiling point of 110 ° C. or lower, such as water, ethanol, methanol, ethyl acetate, or the like.
Further, the amount of the solvent (C) used is preferably small in terms of ease of removal, but can be appropriately changed according to the solubility of the organic binder (B) and the drying apparatus. .
前記スラリーから溶剤(C)を除去する方法は特に制限はなく、市販の装置を用いて易変形性凝集体(D)を製造することができる。例えば、噴霧乾燥、攪拌乾燥、静置乾燥等の方法の中から選択することができる。中でも、比較的丸くて、粒子径の揃った易変形性凝集体(D)を生産性良く得られ、乾燥速度が速く、より変形しやすい易変形性凝集体(D)を得られるという点から、噴霧乾燥を好適に用いることができる。
具体的には、前記スラリーを霧状に噴霧しながら、溶剤(C)を揮発・除去すればよい。噴霧条件や揮発条件を適宜選択することができる。
The method for removing the solvent (C) from the slurry is not particularly limited, and the easily deformable aggregate (D) can be produced using a commercially available apparatus. For example, it can be selected from methods such as spray drying, stirring drying, and stationary drying. Among them, the easily deformable aggregate (D) which is relatively round and has a uniform particle diameter can be obtained with high productivity, and the easily deformable aggregate (D) which is faster in drying rate and more easily deformable can be obtained. Spray drying can be preferably used.
Specifically, the solvent (C) may be volatilized and removed while spraying the slurry in the form of a mist. Spray conditions and volatilization conditions can be selected as appropriate.
<熱伝導性樹脂組成物(G)、熱伝導性部材(H)、(I)>
本発明の熱伝導性樹脂組成物(G)は、上記の本発明の易変形性凝集体(D)20〜90体積%と、バインダー樹脂(E)10〜80体積%と、バインダー樹脂(E)を溶解する溶剤(F)とを含有することが好ましい。
<Thermal conductive resin composition (G), thermal conductive member (H), (I)>
The thermally conductive resin composition (G) of the present invention comprises 20 to 90% by volume of the easily deformable aggregate (D) of the present invention, 10 to 80% by volume of a binder resin (E), and a binder resin (E It is preferable to contain the solvent (F) which melt | dissolves.
基材上に熱伝導性樹脂組成物(G)を塗布して塗膜を形成し、この塗膜から溶剤(F)を除去して、熱伝導層を形成することで、熱伝導性部材(H)を得ることができる。
さらに、熱伝導性部材(H)に圧力を加え、含まれている易変形性凝集体(D)を変形させることによって、熱伝導性部材(H)の熱伝導性を向上させた熱伝導性部材(熱伝導性部材)(I)を得ることができる。
例えば、熱伝導性樹脂組成物(G)を用いて熱伝導性部材(H)として熱伝導性シートを得、放熱対象の物品と放熱部材との間に熱伝導性シートを挟み圧力を加えることによって、熱伝導性部材(I)として熱伝導性が向上された熱伝導性シートを得ることができる。この熱伝導性シートは、放熱対象の物品の熱を効率良く放熱部材に伝えることができる。
熱伝導性部材(H)として、接着性あるいは粘着性を有する熱伝導性シートを得ることができる。この場合、加圧時に放熱対象の物品と放熱部材とを貼り合わせることができる。
A thermally conductive resin composition (G) is applied onto a substrate to form a coating film, and the solvent (F) is removed from the coating film to form a thermally conductive layer. H) can be obtained.
Furthermore, the heat conductivity which improved the heat conductivity of the heat conductive member (H) by applying a pressure to the heat conductive member (H), and deforming the easily deformable aggregate (D) contained. A member (thermally conductive member) (I) can be obtained.
For example, using the thermally conductive resin composition (G) to obtain a thermally conductive sheet as the thermally conductive member (H), and applying pressure by sandwiching the thermally conductive sheet between the object to be radiated and the heat radiating member Thus, a thermally conductive sheet with improved thermal conductivity can be obtained as the thermally conductive member (I). This heat conductive sheet can efficiently transmit the heat of the object to be radiated to the heat radiating member.
As the heat conductive member (H), a heat conductive sheet having adhesiveness or tackiness can be obtained. In this case, the article to be radiated and the radiating member can be bonded together at the time of pressurization.
熱伝導性樹脂組成物(G)に圧力と熱を加え、含まれている易変形性凝集体(D)を変形させることによって、シート状等の熱伝導性部材(I)を直接得ることもできる。 By applying pressure and heat to the thermally conductive resin composition (G) and deforming the easily deformable aggregate (D) contained therein, the sheet-like thermally conductive member (I) can be obtained directly. it can.
易変形性凝集体(D)自体に圧力を加え、易変形性凝集体(D)を変形させることによって、熱伝導性部材(I)を直接得ることもできる。この場合は、易変形性凝集体(D)を構成している有機結着剤(B)がバインダー樹脂(E)の役割をも担う。
例えば、放熱対象の物品と放熱部材との間に易変形性凝集体(D)を挟み、圧力を加えて易変形性凝集体(D)を変形させることによって、放熱対象の物品の熱を効率良く放熱部材に伝えることができる。
The heat conductive member (I) can also be obtained directly by applying pressure to the easily deformable aggregate (D) itself to deform the easily deformable aggregate (D). In this case, the organic binder (B) constituting the easily deformable aggregate (D) also serves as the binder resin (E).
For example, by sandwiching the easily deformable aggregate (D) between the heat dissipation target article and the heat dissipation member and applying pressure to deform the easily deformable aggregate (D), the heat of the heat dissipation target article is efficiently increased. It can be transmitted well to the heat dissipation member.
放熱対象の物品としては、集積回路、ICチップ、ハイブリッドパッケージ、マルチモジュール、パワートランジスタやLED用基板等の種々の電子部品が挙げられる他、建材、車両、航空機、船舶等に用いられる物品であって、熱を帯び易く、耐久性、性能劣化を防ぐためにその熱を外部に逃がす必要がある物品があげられる。 Articles for heat dissipation include articles used in building materials, vehicles, aircraft, ships, etc., as well as various electronic parts such as integrated circuits, IC chips, hybrid packages, multi-modules, power transistors and LED substrates. Thus, there is an article that is easily heated and requires the heat to be released to the outside in order to prevent durability and performance deterioration.
ところで、高熱伝導性を実現するためには、熱を伝えたい方向により多くの熱伝導経路を形成することが重要である。
本発明の易変形性凝集体(D)は、熱伝導性粒子(A)が凝集している。そのため、粒子間の距離が近く、熱伝導経路を予め形成しているので、効率良く熱伝導させることができる。さらに、わずかに形成する空隙にも球状以外の炭素材料が配置され、一層高効率に熱を伝えることができる。
しかも、本発明の易変形性凝集体(D)は「易変形性」であることによって、高熱伝導性を実現できる。即ち、易変形性凝集体(D)に力が加わった際に易変形性凝集体(D)は崩壊することなく、易変形性凝集体(D)内の熱伝導性粒子(A)同士の密着性が向上することにより、予め形成された熱伝導経路を増強できる。あわせて、易変形性凝集体(D)を構成する熱伝導性粒子(A)の位置が容易に変化できることによって、放熱対象の物品と放熱部材との間で、易変形性凝集体(D)が界面の形状に追従し、放熱対象の物品や放熱部材と熱伝導性粒子(A)との接触面積が増え、熱流入面積や熱伝播経路を飛躍的に増大させることができる。
By the way, in order to realize high thermal conductivity, it is important to form more heat conduction paths in the direction in which heat is to be transmitted.
In the easily deformable aggregate (D) of the present invention, the heat conductive particles (A) are aggregated. Therefore, since the distance between the particles is close and the heat conduction path is formed in advance, heat conduction can be performed efficiently. Furthermore, carbon materials other than the spherical shape are also disposed in the slightly formed voids, and heat can be transferred with higher efficiency.
In addition, since the easily deformable aggregate (D) of the present invention is “easy to deform”, high thermal conductivity can be realized. That is, when a force is applied to the easily deformable aggregate (D), the easily deformable aggregate (D) does not collapse, and the heat conductive particles (A) in the easily deformable aggregate (D) are not separated. By improving the adhesion, a previously formed heat conduction path can be enhanced. In addition, since the position of the thermally conductive particles (A) constituting the easily deformable aggregate (D) can be easily changed, the easily deformable aggregate (D) is formed between the heat radiation target article and the heat dissipation member. Follows the shape of the interface, the contact area between the heat radiation target article or heat radiating member and the heat conductive particles (A) increases, and the heat inflow area and the heat propagation path can be dramatically increased.
図に基づいてさらに詳細に説明する。
図3aは、図2に示す平均一次粒子径が1μmの熱伝導性粒子(A)を有機結着剤(B)で凝集させた、平均粒子径10μmの易変形性凝集体を含有する熱硬化性シートの平面のSEM写真であり、図3b、cは、前記熱硬化性シートを加圧下に熱硬化した硬化物の、それぞれ平面、断面のSEM写真である。熱硬化性シートに圧力を加えることによって、易変形性凝集体内の熱伝導性粒子(A)同士がより密着すると共に、熱伝導性粒子(A)が硬化物の表面に多く存在し、界面の形状に追従していることが確認できる。
ここでは、球状以外の炭素材料(J)を含まない易変形性凝集体を用いた熱硬化性シート(図3a、b、c)を用いて説明したが、図1や実施例で示されるとおり、球状以外の炭素材料(J)を更に含む本発明の易変形性凝集体(D)を用いた場合も、同様の効果を奏する。
これに対し、図4に示されるような、凝集させていない熱伝導性粒子(A)であって、その大きさが図3aに示す易変形性凝集体と同程度のものは易変形性を有さないため、熱硬化性シートの加圧の前後で上記のような変化はほとんど確認できない。
このように本発明の易変形性凝集体(D)は「易変形性」であるが故に、熱伝導性に優れる。つまり、本発明の易変形性凝集体(D)は、より少ない使用量で従来と同程度の熱伝導性を熱伝導性部材に付与したり、あるいは従来と同程度の使用量でより高い熱伝導性を熱伝導性部材に付与したりできる。
Further details will be described with reference to the drawings.
FIG. 3a shows a thermosetting containing an easily deformable aggregate having an average particle diameter of 10 μm obtained by aggregating the heat conductive particles (A) having an average primary particle diameter of 1 μm shown in FIG. 2 with an organic binder (B). 3B and 3C are SEM photographs of a plane and a cross section, respectively, of a cured product obtained by thermosetting the thermosetting sheet under pressure. By applying pressure to the thermosetting sheet, the thermally conductive particles (A) in the easily deformable aggregates are more closely adhered to each other, and more of the thermally conductive particles (A) are present on the surface of the cured product. It can be confirmed that it follows the shape.
Here, although it demonstrated using the thermosetting sheet | seat (FIG. 3 a, b, c) using the easily deformable aggregate which does not contain carbon materials (J) other than a spherical shape, as FIG. 1 and an Example show. When the easily deformable aggregate (D) of the present invention further containing a carbon material (J) other than the spherical shape is used, the same effect can be obtained.
On the other hand, non-aggregated thermally conductive particles (A) as shown in FIG. 4 having the same size as the easily deformable aggregate shown in FIG. Since it does not have, the above changes can hardly be confirmed before and after pressing the thermosetting sheet.
Thus, since the easily deformable aggregate (D) of the present invention is “easy to deform”, it has excellent thermal conductivity. That is, the easily deformable aggregate (D) of the present invention imparts the same thermal conductivity to the heat conductive member with a smaller amount of use, or higher heat with the same amount of the conventional one. Conductivity can be imparted to the thermally conductive member.
本発明の熱伝導率(W/m・K)は、試料中を熱が伝導する速度を表す熱拡散率(mm2/s)に測定試料の比熱容量(J/(g・K))と密度(g/cm3)を乗じた下記式で得ることができる。
熱伝導率(W/m・K)=熱拡散率(mm2/s)×比熱容量(J/(g・K))×密度(g/cm3)
熱拡散率の測定は、測定サンプルの形状や目的に応じて、例えば、周期加熱法、ホットディスク法、温度波分析法、フラッシュ法等を選択することができるが、本発明では、キセノンフラッシュアナライザーLFA447 NanoFlash(NETZSCH社製)を用いたフラッシュ法で熱
拡散率を測定した。
The thermal conductivity (W / m · K) of the present invention is the thermal diffusivity (mm 2 / s) representing the rate at which heat is conducted in the sample, and the specific heat capacity (J / (g · K)) of the measurement sample. It can be obtained by the following formula multiplied by the density (g / cm 3 ).
Thermal conductivity (W / m · K) = thermal diffusivity (mm 2 / s) × specific heat capacity (J / (g · K)) × density (g / cm 3 )
For the measurement of thermal diffusivity, for example, a periodic heating method, a hot disk method, a temperature wave analysis method, a flash method, or the like can be selected according to the shape and purpose of the measurement sample. The thermal diffusivity was measured by the flash method using LFA447 NanoFlash (manufactured by NETZSCH).
<バインダー樹脂(E)>
熱伝導性樹脂組成物を得る際に用いられるバインダー樹脂(E)としては、例えば、
ポリウレタン樹脂、ポリエステル樹脂、ポリエステルウレタン樹脂、アルキッド樹脂、ブチラール樹脂、アセタール樹脂、ポリアミド樹脂、アクリル樹脂、スチレン−アクリル樹脂、スチレン樹脂、ニトロセルロース、ベンジルセルロース、セルロース(トリ)アセテート、カゼイン、シェラック、ギルソナイト、ゼラチン、スチレン−無水マレイン酸樹脂、ポリブタジエン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリフッ化ビニリデン樹脂、ポリ酢酸ビニル樹脂、エチレン酢酸ビニル樹脂、塩化ビニル/酢酸ビニル共重合体樹脂、塩化ビニル/酢酸ビニル/マレイン酸共重合体樹脂、フッ素樹脂、シリコン樹脂、エポキシ樹脂、フェノキシ樹脂、フェノール樹脂、マレイン酸樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ケトン樹脂、石油樹脂、ロジン、ロジンエステル、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロース、カルボキシメチルニトロセルロース、エチレン/ビニルアルコール樹脂、ポリオレフィン樹脂、塩素化ポリオレフィン樹脂、変性塩素化ポリオレフィン樹脂および塩素化ポリウレタン樹脂からなる郡より用途に応じて選ばれる1種または2種以上を適宜使用することができる。
中でも柔軟性の観点からウレタン系樹脂、電子部品として用いる際の絶縁性、耐熱性等の観点からエポキシ系樹脂が好適に用いられる。
なお、易変形性凝集体(D)を構成する有機結着剤(B)は、易変形性を確保するために、非硬化性であることが好ましい。しかし、熱伝導性樹脂組成物(G)や熱伝導性部材(H)に含まれるバインダー樹脂(E)は、バインダー樹脂(E)自体硬化するか、もしくは適当な硬化剤との反応により硬化するものを用いることができる。
<Binder resin (E)>
As binder resin (E) used when obtaining a heat conductive resin composition, for example,
Polyurethane resin, polyester resin, polyester urethane resin, alkyd resin, butyral resin, acetal resin, polyamide resin, acrylic resin, styrene-acrylic resin, styrene resin, nitrocellulose, benzylcellulose, cellulose (tri) acetate, casein, shellac, gilsonite , Gelatin, styrene-maleic anhydride resin, polybutadiene resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinylidene fluoride resin, polyvinyl acetate resin, ethylene vinyl acetate resin, vinyl chloride / vinyl acetate copolymer resin, vinyl chloride / Vinyl acetate / maleic acid copolymer resin, fluorine resin, silicone resin, epoxy resin, phenoxy resin, phenol resin, maleic acid resin, urea resin, melamine resin, benzoguanami Resin, ketone resin, petroleum resin, rosin, rosin ester, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, hydroxyethylcellulose, hydroxypropylcellulose, methylcellulose, ethylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, carboxymethylethylcellulose, carboxymethyl One or more selected from the group consisting of nitrocellulose, ethylene / vinyl alcohol resin, polyolefin resin, chlorinated polyolefin resin, modified chlorinated polyolefin resin, and chlorinated polyurethane resin can be used as appropriate. .
Among these, from the viewpoint of flexibility, an epoxy resin is preferably used from the viewpoints of urethane resin and insulation and heat resistance when used as an electronic component.
In addition, it is preferable that the organic binder (B) which comprises an easily deformable aggregate (D) is non-curable in order to ensure easy deformability. However, the binder resin (E) contained in the thermally conductive resin composition (G) and the thermally conductive member (H) is cured by the binder resin (E) itself or by reaction with an appropriate curing agent. Things can be used.
熱伝導性樹脂組成物(G)は、易変形性凝集体(D)と、バインダー樹脂(E)と、溶剤(F)とを含む。用いられる溶剤(F)は、熱伝導性樹脂組成物(G)中に易変形性凝集体(D)及びバインダー樹脂(E)を均一に分散させるために用いられる。
易変形性凝集体(D)は、1種を単独で用いることも、平均粒子径の異なるものや、構成する熱伝導性粒子(A)の種類や平均一次粒子径の異なるものや、構成する球状以外の炭素材料(J)の種類や量の異なるものや、構成する有機結着剤(B)の種類や量の異なるものを、複数併用しても良い。
A heat conductive resin composition (G) contains an easily deformable aggregate (D), binder resin (E), and a solvent (F). The solvent (F) used is used for uniformly dispersing the easily deformable aggregate (D) and the binder resin (E) in the heat conductive resin composition (G).
The easily deformable aggregate (D) may be used alone, or may have a different average particle size, a different type of heat conductive particles (A) or a different average primary particle size, or may be configured. A plurality of carbon materials (J) other than the spherical shape may be used in combination with different types and amounts of the carbon material (J) and different organic binders (B).
<溶剤(F)>
用いられる溶剤(F)は、バインダー樹脂(E)を溶解し得るものであって、易変形性凝集体(D)を構成する有機結着剤(B)を溶解しないものを適宜選択することが重要である。熱伝導性樹脂組成物(G)を得る際、有機結着剤(B)を溶解してしまう溶剤(F)を用いると、易変形性凝集体(D)の凝集状態を保持できなくなる。
例えば、有機結着剤(B)としてポリビニルアルコールやポリビニルピロリドン等の水溶性樹脂を選択した場合には、熱伝導性樹脂組成物(G)を得る際の溶剤(F)として、トルエンやキシレン等の非水性溶剤を選択すれば良い。
有機結着剤(B)としてフェノキシ樹脂や石油樹脂等の非水溶性樹脂を選択した場合には、熱伝導性樹脂組成物(G)を得る際の溶剤(F)として、水やアルコール等の水性溶剤を選択すれば良い。
なお、ここでいう「不溶」とは、有機結着剤(B)1gを、溶剤(F)100gに入れ、25℃で24時間攪拌し、目視で沈殿が確認されることとする。
<Solvent (F)>
The solvent (F) used can dissolve the binder resin (E) and can appropriately select a solvent that does not dissolve the organic binder (B) constituting the easily deformable aggregate (D). is important. When the heat conductive resin composition (G) is obtained, if the solvent (F) that dissolves the organic binder (B) is used, the aggregation state of the easily deformable aggregate (D) cannot be maintained.
For example, when a water-soluble resin such as polyvinyl alcohol or polyvinylpyrrolidone is selected as the organic binder (B), toluene, xylene, or the like is used as the solvent (F) when obtaining the heat conductive resin composition (G). The non-aqueous solvent may be selected.
When a water-insoluble resin such as phenoxy resin or petroleum resin is selected as the organic binder (B), the solvent (F) for obtaining the heat conductive resin composition (G) may be water or alcohol. An aqueous solvent may be selected.
As used herein, “insoluble” means that 1 g of the organic binder (B) is added to 100 g of the solvent (F), stirred at 25 ° C. for 24 hours, and precipitation is confirmed visually.
このとき、易変形性凝集体(D)の含有量は、目標とする熱伝導性、用途に応じて適宜選択することができるが、高熱伝導性を得るために、熱伝導性樹脂組成物(G)の固形分を基準として、20〜90体積%であることが好ましい。さらに好ましくは30〜80体積%の範囲であることが好ましい。20体積%未満の含有量だと、易変形性凝集体(D)の添加効果が薄く十分な熱伝導性が得られない。一方、90体積%を超えると相対的にバインダー樹脂(E)の含有量が少なくなり、形成される熱伝導性部材(H)や熱伝導性部材(I)が脆くなったり、熱伝導性部材(I)内に空隙が出来るおそれがあり、熱伝導性部材(I)を使用している間に熱伝導性が徐々に低下する可能性がある。ここでいう体積%とは、熱伝導性樹脂組成物(G)中の固形分に対する熱伝導性粒子(A)、球状以外の炭素材料(J)、有機結着剤(B)、バインダー樹脂(E)の重量比と比重をもとに計算した理論値を示す。 At this time, although content of easily deformable aggregate (D) can be suitably selected according to target heat conductivity and a use, in order to obtain high heat conductivity, heat conductive resin composition ( It is preferable that it is 20-90 volume% on the basis of solid content of G). More preferably, it is in the range of 30 to 80% by volume. If the content is less than 20% by volume, the effect of adding the easily deformable aggregate (D) is thin and sufficient thermal conductivity cannot be obtained. On the other hand, when the content exceeds 90% by volume, the content of the binder resin (E) is relatively reduced, and the formed heat conductive member (H) or the heat conductive member (I) becomes brittle, or the heat conductive member. There is a possibility that voids may be formed in (I), and there is a possibility that the thermal conductivity gradually decreases while using the thermal conductive member (I). The volume% here means heat conductive particles (A) with respect to the solid content in the heat conductive resin composition (G), carbon material other than spherical (J), organic binder (B), binder resin ( The theoretical value calculated based on the weight ratio and specific gravity of E) is shown.
また、熱伝導性樹脂組成物(G)は、さらに凝集していない熱伝導性粒子も併用することができる。凝集していない熱伝導性粒子も併用することにより、易変形性凝集体(D)間の隙間を埋めたり、易変形性凝集体(D)が変形する際、隙間が生じた場合、熱伝導性粒子(A)間の隙間を埋めたりし、更なる熱伝導性の向上効果が期待できる。
併用し得る熱伝導性粒子としては、例えば熱伝導性粒子(A)や、球状以外の炭素材料(J)として例示したものが挙げられる。
Moreover, the heat conductive resin composition (G) can also use together the heat conductive particle which has not aggregated. By also using thermally conductive particles that are not agglomerated, the gap between the easily deformable aggregates (D) is filled, or when the easily deformable aggregates (D) are deformed, heat conduction is caused. The gap between the conductive particles (A) can be filled, and further improvement in thermal conductivity can be expected.
Examples of thermally conductive particles that can be used in combination include those exemplified as thermally conductive particles (A) and carbon materials (J) other than spherical.
また、熱伝導性樹脂組成物(G)は、さらに必要に応じて、難燃剤等、その他充填剤を添加しても良い。
難燃剤としては、特に限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
Moreover, you may add other fillers, such as a flame retardant, to a heat conductive resin composition (G) further as needed.
Although it does not specifically limit as a flame retardant, For example, aluminum hydroxide, magnesium hydroxide, etc. are mentioned.
熱伝導性樹脂組成物(G)には、必要に応じて各種添加剤を加えることができる。各種添加剤としては、例えば、基材密着性を高めるためのカップリング剤、吸湿時の絶縁信頼性を高めるためのイオン捕捉剤、レベリング剤等が挙げられる。これらは1種を用いてもよいし、複数種を併用することもできる。 Various additives can be added to the heat conductive resin composition (G) as necessary. Examples of the various additives include a coupling agent for improving the adhesion to the substrate, an ion scavenger for increasing the insulation reliability at the time of moisture absorption, and a leveling agent. These may use 1 type and can also use multiple types together.
<熱伝導性樹脂組成物(G)、熱伝導性部材(H)、(I)の製造方法>
熱伝導性樹脂組成物(G)は、易変形性凝集体(D)と、バインダー樹脂(E)と、必要に応じて溶剤(F)とを撹拌混合することで製造することが好ましい。撹拌混合には一般的な撹拌方法を用いることができ、例えば、スキャンデックス、ペイントコンディショナー、サンドミル、らいかい機、メディアレス分散機、三本ロール、ビーズミル等が挙げられ、これらを組み合わせて行うことができる。
<The manufacturing method of a heat conductive resin composition (G), a heat conductive member (H), (I)>
The thermally conductive resin composition (G) is preferably produced by stirring and mixing the easily deformable aggregate (D), the binder resin (E), and, if necessary, the solvent (F). Common stirring methods can be used for stirring and mixing, for example, scandex, paint conditioner, sand mill, rake machine, medialess disperser, three rolls, bead mill, etc. Can do.
撹拌混合後は、熱伝導性樹脂組成物(G)から気泡を除去するために、脱泡工程を経ることが好ましい。脱泡の方法については特に限定されず、一般的な手法を用いて行うことができるが、例えば、真空脱泡、超音波脱泡等が挙げられる。 After stirring and mixing, it is preferable to go through a defoaming step in order to remove bubbles from the heat conductive resin composition (G). The method of defoaming is not particularly limited and can be performed using a general method, and examples thereof include vacuum defoaming and ultrasonic defoaming.
本発明の熱伝導性部材(H)の製造方法は、
基材上に熱伝導性樹脂組成物(G)を塗布して塗膜を形成する工程と、
上記塗膜から溶剤(F)を除去して、熱伝導層を形成する工程とを有する。
The manufacturing method of the heat conductive member (H) of the present invention is:
Applying a thermally conductive resin composition (G) on a substrate to form a coating film;
Removing the solvent (F) from the coating film to form a heat conductive layer.
本発明の熱伝導性部材(I)の製造方法は、
熱伝導性部材(H)を用意する工程と、
上記熱伝導層を加圧する工程とを有する。
The method for producing the heat conductive member (I) of the present invention comprises:
Preparing a thermally conductive member (H);
And pressurizing the heat conductive layer.
熱伝導性部材(H)、(I)として、熱伝導性シート等を製造できる。熱伝導性シートは熱伝導性フィルムと称されることもある。 As the heat conductive members (H) and (I), a heat conductive sheet or the like can be manufactured. A heat conductive sheet may be called a heat conductive film.
基材としては例えば、ポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、およびポリイミドフィルム等のプラスチックフィルム;
および、
上記プラスチックフィルムに離型処理したフィルム(以下、剥離フィルムという);
アルミニウム、銅、ステンレス、およびベリリウム銅等の金属体または金属箔等が挙げられる。
Examples of the substrate include plastic films such as polyester film, polyethylene film, polypropylene film, and polyimide film;
and,
A film obtained by releasing the plastic film (hereinafter referred to as a release film);
Examples thereof include metal bodies or metal foils such as aluminum, copper, stainless steel, and beryllium copper.
基材への熱伝導性樹脂組成物(G)の塗布方法としては例えば、ナイフコート、ダイコート、リップコート、ロールコート、カーテンコート、バーコート、グラビアコート、フレキソコート、ディップコート、スプレーコート、およびスピンコート等が挙げられる。 Examples of the method for applying the thermally conductive resin composition (G) to the substrate include knife coating, die coating, lip coating, roll coating, curtain coating, bar coating, gravure coating, flexographic coating, dip coating, spray coating, and Examples include spin coating.
熱伝導層の厚さは、用途に応じて適宜決定しうる。
熱源とヒートシンク等との間に配置され、熱を逃がすために用いられる熱伝導性シート等の用途では、熱伝導性および種々の物性の観点より、熱伝導層の厚さは通常10〜200μm、好ましくは30〜150μmとするのが良い。また、熱源からの熱がこもらないようにしたいパッケージ等の筐体等の用途では、強度等を鑑みて、熱伝導層の厚さは200μm以上、場合によっては1mm程度の厚さとすることもできる。
The thickness of the heat conductive layer can be appropriately determined according to the application.
In applications such as a heat conductive sheet, which is disposed between a heat source and a heat sink and used to release heat, the thickness of the heat conductive layer is usually 10 to 200 μm from the viewpoint of heat conductivity and various physical properties, The thickness is preferably 30 to 150 μm. In addition, in applications such as a housing such as a package in which heat from a heat source is not trapped, the thickness of the heat conductive layer can be set to 200 μm or more, and in some cases, about 1 mm in view of strength and the like. .
任意の基材上の熱伝導層を形成して熱伝導性部材(H)を製造した後、他の任意の基材を重ね、加熱下で加圧プレスし、熱伝導性部材(I)を得ることができる。
上記2つの基材のうち少なくとも一方を剥離フィルムとすることができる。この場合、剥離フィルムを剥がすことができる。
2つの基材を剥離フィルムとした場合、2枚の剥離フィルムを剥がして、熱伝導層を単離し、これを熱伝導性部材(I)とすることができる。
After the heat conductive layer (H) is manufactured by forming a heat conductive layer on an arbitrary base material, another arbitrary base material is stacked, and press-pressed under heating, and the heat conductive member (I) is Can be obtained.
At least one of the two substrates can be a release film. In this case, the release film can be peeled off.
When two base materials are used as release films, the two release films are peeled off to isolate the heat conductive layer, which can be used as the heat conductive member (I).
加圧プレス処理は、特に限定されず、公知のプレス処理機を使用することができる。また、プレス時の温度は適宜選択することが出来るが、熱硬化性接着シートとして使用するのであれば、バインダー樹脂(E)の熱硬化が起こる温度以上で加熱することが望ましい。 The pressure press treatment is not particularly limited, and a known press processor can be used. Moreover, although the temperature at the time of a press can be selected suitably, if it uses as a thermosetting adhesive sheet, it is desirable to heat above the temperature which the thermosetting of binder resin (E) occurs.
プレス時の圧力は、易変形性凝集体(D)が変形できる圧力を加えることができれば適宜選択することができるが、1MPa以上であることが好ましい。 The pressure at the time of pressing can be appropriately selected as long as a pressure capable of deforming the easily deformable aggregate (D) can be applied, but it is preferably 1 MPa or more.
また、溶剤(F)を含有しない熱伝導性樹脂組成物(G)を加圧下に成型することによって、高熱伝導の成型物を得ることもできる。 Moreover, a highly heat-conductive molding can also be obtained by molding the heat conductive resin composition (G) containing no solvent (F) under pressure.
以下、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例における、「部」および「%」は、それぞれ「重量部」、「重量%」を、「vol%」は「体積%」を表し、Mwは重量平均分子量を意味する。
なお、平均一次粒子径、円形度、平均粒子径、圧縮変形率10%に要する平均圧縮力、崩壊しにくさ等については以下のようにして求めた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, a following example does not restrict | limit the right range of this invention at all. In the examples, “parts” and “%” represent “parts by weight” and “wt%”, “vol%” represents “volume%”, and Mw represents a weight average molecular weight.
The average primary particle size, circularity, average particle size, average compressive force required for a compression deformation rate of 10%, resistance to collapse, and the like were determined as follows.
<平均一次粒子径>
Malvern Instruments社製粒度分布計マスターサイザー2000を用いて測定した。測
定条件は乾式ユニットを用いて空気圧2.5バール、また、フィード速度はサンプルにより最適化を行った。
<Average primary particle size>
It measured using the particle size distribution meter master sizer 2000 by Malvern Instruments. The measurement conditions were a dry unit and an air pressure of 2.5 bar, and the feed rate was optimized by the sample.
<円形度>
東亜医用電子(株)製フロー式粒子像分析装置FPIA−1000を用いて粒子の平均円形度を測定した。具体的にはトルエン10mlに測定したい粒子約5mgを分散させて分散液を調製し、超音波(20kHz、50W)を分散液に5分間照射し、分散液濃度を5,000〜2万個/μlとして、前記装置により測定を行い、円相当径粒子群の円形度を測定し、平均円形度を求めた。
<Circularity>
The average circularity of the particles was measured using a flow type particle image analyzer FPIA-1000 manufactured by Toa Medical Electronics Co., Ltd. Specifically, about 5 mg of particles to be measured are dispersed in 10 ml of toluene to prepare a dispersion, and the dispersion is irradiated with ultrasonic waves (20 kHz, 50 W) for 5 minutes. The dispersion concentration is 5,000 to 20,000 / The measurement was performed with the above apparatus as μl, and the circularity of the circle-equivalent diameter particle group was measured to obtain the average circularity.
<平均粒子径>
Malvern Instruments社製粒度分布計マスターサイザー2000を用いて測定した。測定
条件は乾式ユニットを用いて空気圧2.5バール、また、フィード速度はサンプルにより最適化を行った。
<Average particle size>
It measured using the particle size distribution meter master sizer 2000 by Malvern Instruments. The measurement conditions were a dry unit and an air pressure of 2.5 bar, and the feed rate was optimized by the sample.
<球状以外の炭素材料(J)の形状>
平均繊維径、平均繊維長は、電界放出走査型電子顕微鏡の拡大画像(例えば20,000倍〜100,000倍)から、繊維状炭素30個を抽出し、以下のように測定した線分の長さの平均値を平均繊維径とし、繊維の長さの平均値を平均繊維長とした。ここで、前記線分の長さとは30個の繊維状炭素のそれぞれについて、繊維状炭素の画像の長さ方向の輪郭が描く2本の曲線の一方の曲線の法線が、これら2本の曲線に切り取られる線分の長さをいう。
<Shape of non-spherical carbon material (J)>
The average fiber diameter and average fiber length were obtained by extracting 30 fibrous carbons from an enlarged image (for example, 20,000 times to 100,000 times) of a field emission scanning electron microscope, and measuring the line segments measured as follows: The average value of length was defined as the average fiber diameter, and the average value of fiber length was defined as the average fiber length. Here, the length of the line segment is the normal line of one of the two curves drawn by the contour in the length direction of the image of the fibrous carbon for each of the 30 fibrous carbons. The length of a line segment cut out by a curve.
平均アスペクト比は、平均粒子径をXとしたときに、平均厚みtと、Z=X/tなる関係を示す値と定義する。平坦な基板上(例えば雲母鉱物のへき開面)に希釈分散液を塗布して溶媒を乾燥し、原子間力顕微鏡の拡大画像から、30個を抽出し、測長した平均値を平均粒子径X(長手方向の平均長さ)、高さプロファイルで測定した平均値を平均厚みtとした。 The average aspect ratio is defined as a value indicating a relationship of average thickness t and Z = X / t, where X is the average particle diameter. The diluted dispersion is applied to a flat substrate (for example, cleaved surface of mica mineral), the solvent is dried, 30 samples are extracted from the enlarged image of the atomic force microscope, and the measured average value is the average particle diameter X (Average length in the longitudinal direction), the average value measured with the height profile was defined as the average thickness t.
<圧縮変形率10%に要する平均圧縮力>
圧縮変形率10%に要する平均圧縮力は、微小圧縮試験機(株式会社島津製作所製、MCT−210)圧縮試験により粒子を10%変形させるための荷重を測定領域内で無作為に選んだ10個の粒子について測定し、その平均値とした。
<Average compression force required for 10% compression deformation>
The average compressive force required for a compressive deformation rate of 10% was a random compression tester (manufactured by Shimadzu Corporation, MCT-210), and a load for deforming particles by 10% was randomly selected within the measurement region. It measured about the particle | grains and made it the average value.
<崩壊しにくさ:振とう試験後の平均粒子径の維持率>
ガラスサンプル管に易変形性凝集体(D)を空隙率70%となるように入れ、振とう機にて2時間振とうしたのちに粒子径分布を測定し、処理後の粒子径が処理前の平均粒子径の80%以上であることを指標とし確認した。
<Difficult to collapse: maintenance ratio of average particle diameter after shaking test>
The easily deformable aggregate (D) is put in a glass sample tube so as to have a porosity of 70%, shaken with a shaker for 2 hours, and then the particle size distribution is measured. The average particle diameter was 80% or more of the average particle diameter.
<樹脂合成例1>
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、テレフタル酸とアジピン酸と3−メチル−1,5−ペンタンジオールから得られるポリエステルポリオール((株)クラレ製「クラレポリオールP−1011」、Mn=1006)401.9重量部、ジメチロールブタン酸12.7重量部、イソホロンジイソシアネート151.0重量部、トルエン40重量部を仕込み、窒素雰囲気下90℃3時間反応させ、これにトルエン300部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。 次に、イソホロンジアミン27.8重量部、ジ−n−ブチルアミン3.2重量部、2−プロパノール342.0重量部、トルエン396.0重量部を混合したものに、得られたイソシアネート基を有するウレタンプレポリマー溶液815.1重量部を添加し、70℃3時間反応させ、トルエン144.0重量部、2−プロパノール72.0重量部で希釈し、Mw=54,000、酸価=8mgKOH/gのポリウレタンポリウレア樹脂の溶液E−1を得た。
<Resin synthesis example 1>
Polyester polyol (made by Kuraray Co., Ltd.) obtained from terephthalic acid, adipic acid and 3-methyl-1,5-pentanediol in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen introduction tube. Kuraray polyol P-1011 ", Mn = 1006) 401.9 parts by weight, 12.7 parts by weight of dimethylolbutanoic acid, 151.0 parts by weight of isophorone diisocyanate, 40 parts by weight of toluene, and reacted at 90 ° C for 3 hours in a nitrogen atmosphere Then, 300 parts of toluene was added thereto to obtain a urethane prepolymer solution having an isocyanate group. Next, 27.8 parts by weight of isophorone diamine, 3.2 parts by weight of di-n-butylamine, 342.0 parts by weight of 2-propanol, and 396.0 parts by weight of toluene have the obtained isocyanate group. 815.1 parts by weight of a urethane prepolymer solution was added, reacted at 70 ° C. for 3 hours, diluted with 144.0 parts by weight of toluene and 72.0 parts by weight of 2-propanol, Mw = 54,000, acid value = 8 mgKOH / g of polyurethane polyurea resin solution E-1 was obtained.
<樹脂合成例2>
攪拌機、温度計、還流冷却器、滴下装置、導入管、窒素導入管を備えた4口フラスコに、ポリカーボネートジオール(クラレポリオール C−2090:株式会社クラレ製)292.1重量部、テトラヒドロ無水フタル酸(リカシッドTH:新日本理化株式会社製)44.9重量部、溶剤としてトルエン350.0重量部を仕込み、窒素気流下、攪拌しながら60℃まで昇温し、均一に溶解させた。続いてこのフラスコを110℃に昇温し、3時間反応させた。その後、40℃に冷却後、ビスフェノールA型エポキシ樹脂(YD−8125:東都化成株式会社製)62.9重量部、触媒としてトリフェニルホスフィン4.0重量部を添加して110℃に昇温し、8時間反応させた。室温まで冷却後、トルエンで固形分が35%になるように調整し、Mw=25000のカルボキシル基含有変性エステル樹脂E−2の溶液を得た。
<Resin synthesis example 2>
In a four-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping device, introduction tube, and nitrogen introduction tube, 292.1 parts by weight of polycarbonate diol (Kuraray polyol C-2090: manufactured by Kuraray Co., Ltd.), tetrahydrophthalic anhydride (Licacid TH: manufactured by Shin Nippon Rika Co., Ltd.) 44.9 parts by weight and 350.0 parts by weight of toluene as a solvent were charged, and the mixture was heated to 60 ° C. with stirring in a nitrogen stream, and dissolved uniformly. Subsequently, the flask was heated to 110 ° C. and reacted for 3 hours. Then, after cooling to 40 ° C., 62.9 parts by weight of bisphenol A type epoxy resin (YD-8125: manufactured by Tohto Kasei Co., Ltd.) and 4.0 parts by weight of triphenylphosphine as a catalyst were added, and the temperature was raised to 110 ° C. , Reacted for 8 hours. After cooling to room temperature, the solid content was adjusted to 35% with toluene to obtain a solution of carboxyl group-containing modified ester resin E-2 with Mw = 25000.
<樹脂合成例3>
攪拌機、還流冷却管、窒素導入管、温度計、滴下ロートを備えた4口フラスコに、ブチルアクリレート98.5重量部、アクリル酸1.5重量部、酢酸エチル150.0重量部を仕込み、窒素置換下で70℃まで加熱し、アゾビスイソブチロニトリル0.15重量部を添加し重合を開始した。重合開始後3時間後から1時間おきに5時間後までそれぞれアゾ
ビスイソブチロニトリル0.15重量部を添加し更に2時間重合を行った。その後、酢酸エチル150.0重量部を追加して重合を終了させ、Mw=84000のアクリル樹脂E−3の溶液を得た。
<Resin synthesis example 3>
A four-necked flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel was charged with 98.5 parts by weight of butyl acrylate, 1.5 parts by weight of acrylic acid, and 150.0 parts by weight of ethyl acetate. The mixture was heated to 70 ° C. under substitution, and 0.15 parts by weight of azobisisobutyronitrile was added to initiate polymerization. 0.13 parts by weight of azobisisobutyronitrile was added for another 2 hours from 3 hours after the start of polymerization until 5 hours after every other hour. Thereafter, 150.0 parts by weight of ethyl acetate was added to terminate the polymerization, and a solution of acrylic resin E-3 having Mw = 84000 was obtained.
(実施例1)
アルミナ粒子(株式会社アドマテックス製「AO−502」、平均一次粒子径:約1μm、平均円形度:0.99)100重量部、ポリビニルアルコールの4重量%水溶液(日本合成化学工業株式会社製「ゴーセノールNL−05」):125重量部(固形分:5重量部)、カーボンナノチューブ分散体(CnanoTechnology社製「LB200」、平均繊維径11nm、平均繊維長10μm):100重量部(固形分:5重量部)、及びイオン交換水:25重量部を、超音波ホモジナイザーで1時間、分散してスラリーを得た。
このスラリーをミニスプレードライヤー(日本ビュッヒ社製「B−290」)にて、125℃雰囲気下で、噴霧乾燥し、平均粒子径約10μm、圧縮変形率10%に要する平均圧縮力:約0.7mN、振とう試験後の平均粒子径の維持率:98%の易変形性凝集体D−1を得た。
Example 1
100 parts by weight of alumina particles (“AO-502” manufactured by Admatechs Co., Ltd., average primary particle size: about 1 μm, average circularity: 0.99), 4 wt% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Industry Co., Ltd. GOHSENOL NL-05 "): 125 parts by weight (solid content: 5 parts by weight), carbon nanotube dispersion (" LB200 "manufactured by Cano Technology, average fiber diameter 11 nm, average fiber length 10 µm): 100 parts by weight (solid content: 5 Parts by weight) and ion-exchanged water: 25 parts by weight were dispersed with an ultrasonic homogenizer for 1 hour to obtain a slurry.
This slurry is spray-dried in a mini-spray dryer (“B-290” manufactured by Nihon Büch Co., Ltd.) in an atmosphere of 125 ° C., and the average compressive force required for an average particle size of about 10 μm and a compression deformation rate of 10% is about 0.00. An easily deformable aggregate D-1 having a maintenance rate of 7 mN and an average particle diameter after the shaking test of 98% was obtained.
(実施例2)
アルミナ粒子(昭和電工株式会社製「CB−P02」、平均一次粒子径:約2μm、平均円形度:0.98)100重量部、前記ポリビニルアルコールの4wt%水溶液:50重量部(固形分:2重量部)、カーボンナノチューブ分散体(CnanoTechnology社製「LB200」):40重量部(固形分:2重量部)、及びイオン交換水:100重量部を用いた以外は実施例1と同様にして、平均粒子径約20μm、圧縮変形率10%に要する平均圧縮力:約0.6mN、振とう試験後の平均粒子径の維持率:94%の易変形性凝集体D−2を得た。
(Example 2)
100 parts by weight of alumina particles (“CB-P02” manufactured by Showa Denko KK, average primary particle size: about 2 μm, average circularity: 0.98), 4 wt% aqueous solution of polyvinyl alcohol: 50 parts by weight (solid content: 2 Parts by weight), carbon nanotube dispersion (“LB200” manufactured by Cano Technology): 40 parts by weight (solid content: 2 parts by weight), and ion-exchanged water: 100 parts by weight. An easily deformable aggregate D-2 having an average particle size of about 20 μm, an average compression force required for a compression deformation rate of 10%: about 0.6 mN, and an average particle size maintenance rate after shaking test of 94% was obtained.
(実施例3)
アルミナ粒子(株式会社アドマテックス製「AO−509」、平均一次粒子径:約10μm、平均円形度:0.99)100部、分散剤40wt%水溶液(ビックケミー株式会社製「BYK−190」):1.25重量部(固形分:0.5重量部)、カーボンナノチューブ分散体(CnanoTechnology社製「LB200」):10重量部(固形分:0.5重量部)、及びイオン交換水:137.5重量部を用いた以外は実施例1と同様にして、平均粒子径約50μm、圧縮変形率10%に要する平均圧縮力:約4.1mN、振とう試験後の平均粒子径の維持率:91%の易変形性凝集体D−3を得た。
(Example 3)
Alumina particles (“AO-509” manufactured by Admatechs Co., Ltd., average primary particle size: about 10 μm, average circularity: 0.99) 100 parts, 40 wt% dispersant aqueous solution (“BYK-190” manufactured by Big Chemie Co., Ltd.): 1.25 parts by weight (solid content: 0.5 part by weight), carbon nanotube dispersion (“LB200” manufactured by Cano Technology): 10 parts by weight (solid content: 0.5 part by weight), and ion-exchanged water: 137. Except for using 5 parts by weight, in the same manner as in Example 1, an average particle size of about 50 μm, an average compression force required for a compression deformation rate of 10%: about 4.1 mN, an average particle size maintenance rate after a shaking test: 91% of easily deformable aggregate D-3 was obtained.
(実施例4)
アルミナ粒子(株式会社アドマテックス製「AO−502」、平均一次粒子径:約1μm、平均円形度:0.99)70重量部、アルミナ粒子(株式会社アドマテックス製「AO−509」、平均一次粒子径:約10μm、平均円形度:0.99)30重量部、前記ポリビニルアルコールの4wt%水溶液:50重量部(固形分:2重量部)、カーボンナノチューブ分散体(CnanoTechnology社製「LB200」):40重量部(固形分:2重量部)、及びイオン交換水:100重量部を用いた以外は実施例1と同様にして、平均粒子径約30μm、圧縮変形率10%に要する平均圧縮力:約1.1mN、振とう試験後の平均粒子径の維持率:96%の易変形性凝集体D−4を得た。
Example 4
70 parts by weight of alumina particles (“AO-502” manufactured by Admatechs Co., Ltd., average primary particle size: about 1 μm, average circularity: 0.99), alumina particles (“AO-509” manufactured by Admatechs Co., Ltd.), primary average Particle diameter: about 10 μm, average circularity: 0.99) 30 parts by weight, 4 wt% aqueous solution of polyvinyl alcohol: 50 parts by weight (solid content: 2 parts by weight), carbon nanotube dispersion (“LB200” manufactured by Cano Technology) : 40 parts by weight (solid content: 2 parts by weight) and ion-exchanged water: 100 parts by weight In the same manner as in Example 1, the average compressive force required for an average particle diameter of about 30 μm and a compression deformation rate of 10% : About 1.1 mN, maintenance rate of average particle diameter after shaking test: 96% easily deformable aggregate D-4 was obtained.
(実施例5)
窒化アルミニウム(株式会社トクヤマ製「Hグレード」、平均一次粒子径:約1μm、平均円形度:0.97)100重量部、前記ポリビニルアルコールの4wt%水溶液:50重量部(固形分:2重量部)、カーボンナノチューブ分散体(CnanoTechnology社製「LB200」):100重量部(固形分:5重量部)、及びイオン交換水:100重量部を用いた以外は実施例1と同様にして、平均粒子径約15μm、圧縮変形率10%に要する平均圧縮力:約1.1mN、振とう試験後の平均粒子径の維持率:98%の易変形性凝集体D−5を得た。
(Example 5)
100 parts by weight of aluminum nitride (“H grade” manufactured by Tokuyama Corporation, average primary particle size: about 1 μm, average circularity: 0.97), 4 wt% aqueous solution of the polyvinyl alcohol: 50 parts by weight (solid content: 2 parts by weight) ), Carbon nanotube dispersion (“LB200” manufactured by Cano Technology): 100 parts by weight (solid content: 5 parts by weight) and ion-exchanged water: 100 parts by weight An easily deformable aggregate D-5 having a diameter of about 15 μm, an average compressive force required for a compressive deformation ratio of 10%: about 1.1 mN, and an average particle diameter maintenance ratio after a shaking test of 98% was obtained.
(実施例6)
アルミナ粒子(昭和電工株式会社製「CB−P05」、平均一次粒子径:約5μm、平均円形度:0.99)100重量部、ポリビニルピロリドンの20重量%水溶液(株式会社日本触媒製「K−85W」):25重量部(固形分:10重量部)、カーボンナノチューブ分散体(CnanoTechnology社製「LB200」):100重量部(固形分:5重量部)、及びイオン交換水:125重量部を用いた以外は実施例1と同様にして、平均粒子径約40μm、圧縮変形率10%に要する平均圧縮力:約2.1mN、振とう試験後の平均粒子径の維持率:93%の易変形性凝集体D−6を得た。
(Example 6)
100 parts by weight of alumina particles (“CB-P05” manufactured by Showa Denko KK, average primary particle size: about 5 μm, average circularity: 0.99), 20% by weight aqueous solution of polyvinylpyrrolidone (“K- manufactured by Nippon Shokubai Co., Ltd.”) 85W "): 25 parts by weight (solid content: 10 parts by weight), carbon nanotube dispersion (" LB200 "manufactured by Cano Technology): 100 parts by weight (solid content: 5 parts by weight), and ion-exchanged water: 125 parts by weight Except for use, in the same manner as in Example 1, an average particle size of about 40 μm, an average compression force required for a compression deformation rate of 10%: about 2.1 mN, an average particle size maintenance rate after a shaking test: 93% Deformable aggregate D-6 was obtained.
(実施例7)
前記ポリビニルアルコールの4wt%水溶液を750重量部(固形分:30重量部)とし、イオン交換水を150重量部とした以外は実施例1と同様にして、平均粒子径約20μm、圧縮変形率10%に要する平均圧縮力:約0.8mN、振とう試験後の平均粒子径の維持率:99%の易変形性凝集体D−7を得た。
(Example 7)
The average particle diameter was about 20 μm, and the compressive deformation rate was 10 in the same manner as in Example 1 except that the 4 wt% aqueous solution of polyvinyl alcohol was 750 parts by weight (solid content: 30 parts by weight) and the ion exchange water was 150 parts by weight. Average compressive force required for%: about 0.8 mN, easily deformable aggregate D-7 having an average particle diameter maintenance rate after shaking test of 99% was obtained.
(実施例8)
アルミナ粒子(電気化学工業株式会社製「ASFP−20」、平均一次粒子径:約0.3μm、平均円形度:0.99)100重量部、前記ポリビニルアルコールの4wt%水溶液:50重量部(固形分:2重量部)、XG Sciences社(鱗片状グラフェン粉末Mグレード、平均アスペクト比3000、平均厚み3nm):1重量部、及びイオン交換水:100重量部を用いた以外は実施例1と同様にして、平均粒子径約5μm、圧縮変形率10%に要する平均圧縮力:約0.3mN、振とう試験後の平均粒子径の維持率:99%の易変形性凝集体D−8を得た。
(Example 8)
100 parts by weight of alumina particles (“ASFP-20” manufactured by Denki Kagaku Kogyo Co., Ltd., average primary particle size: about 0.3 μm, average circularity: 0.99), 4 wt% aqueous solution of polyvinyl alcohol: 50 parts by weight (solid Min: 2 parts by weight), XG Sciences (scale-like graphene powder M grade, average aspect ratio 3000, average thickness 3 nm): 1 part by weight, and ion-exchanged water: 100 parts by weight Thus, an easily deformable aggregate D-8 having an average particle size of about 5 μm, an average compression force required for a compression deformation rate of 10%: about 0.3 mN, and an average particle size maintenance rate after a shaking test of 99% is obtained. It was.
(実施例9)
アルミナ粒子(株式会社アドマテックス製「AO−502」、平均一次粒子径:約1μm、平均円形度:0.99)100重量部、ポリエスエテル樹脂(東洋紡績株式会社:バイロン200)の20重量%トルエン溶液:10重量部(固形分:2重量部)、カーボンナノチューブ(宇部興産株式会社製「AMC」、平均繊維径11nm、平均繊維長2μm)3重量部、トルエン:200重量部を用い、噴霧乾燥温度を125℃から140℃に変更した以外は実施例1と同様にして平均粒子径約20μm、圧縮変形率10%に要する平均圧縮力:約0.8mN、振とう試験後の平均粒子径の維持率:94%の易変形性凝集体D−9を得た。
Example 9
100 parts by weight of alumina particles (“AO-502” manufactured by Admatechs Co., Ltd., average primary particle size: about 1 μm, average circularity: 0.99), 20 wt% toluene of polyester resin (Toyobo Co., Ltd .: Byron 200) Solution: 10 parts by weight (solid content: 2 parts by weight), carbon nanotubes (“AMC” manufactured by Ube Industries, Ltd., average fiber diameter 11 nm, average fiber length 2 μm) 3 parts by weight, toluene: 200 parts by weight, spray drying Except that the temperature was changed from 125 ° C. to 140 ° C., the average particle size was about 20 μm, the average compression force required for a compression deformation rate of 10% was about 0.8 mN, and the average particle size after the shaking test was the same as in Example 1. Maintenance rate: 94% easily deformable aggregate D-9 was obtained.
(比較例1)
「CB−P02」の代わりに、アルミナ粒子(昭和電工株式会社製「CB−A20S」、平均一次粒子径:約20μm、平均円形度:0.98、圧縮変形率10%に要する平均圧縮力:約220mN)を用い、実施例2と同様にして前記アルミナ粒子に対し、前記ポリビニルアルコールの4wt%水溶液を用い、易変形性凝集体を得ようとしたが、崩壊し易く、凝集体の態を成さない生成物D’−10を得た。
(Comparative Example 1)
Instead of “CB-P02”, alumina particles (“CB-A20S” manufactured by Showa Denko KK, average primary particle size: about 20 μm, average circularity: 0.98, average compression force required for compression deformation rate of 10%: About 220 mN), a 4 wt% aqueous solution of polyvinyl alcohol was used for the alumina particles in the same manner as in Example 2 to obtain easily deformable aggregates. The unsuccessful product D′-10 was obtained.
(比較例2)
前記ポリビニルアルコールを使用せず、イオン交換水を150重量部とした以外は実施例1と同様にして、易変形性凝集体を得ようとしたが、崩壊し易く、凝集体の態を成さない生成物D’−11を得た。
(Comparative Example 2)
Although the polyvinyl alcohol was not used and ion-exchanged water was used in an amount of 150 parts by weight, an attempt was made to obtain an easily deformable aggregate in the same manner as in Example 1, but it was easy to disintegrate and formed an aggregate state. Product D'-11 was obtained.
(比較例3)
前記ポリビニルアルコールの4wt%水溶液を1250重量部(固形分:50重量部)とし、イオン交換水を50重量部とした以外は実施例1と同様にして、平均粒子径約20μm、圧縮変形率10%に要する平均圧縮力:約0.8mN、振とう試験後の平均粒子径の維持率:97%の易変形性凝集体D‘−12を得た。
(Comparative Example 3)
The average particle diameter was about 20 μm and the compression deformation rate was 10 in the same manner as in Example 1 except that 1250 parts by weight (solid content: 50 parts by weight) of the 4 wt% aqueous solution of polyvinyl alcohol and 50 parts by weight of ion-exchanged water were used. Average compressive force required for%: about 0.8 mN, easily deformable aggregate D′-12 having an average particle diameter maintenance rate after shaking test of 97% was obtained.
(比較例4)
前記ポリビニルアルコールの4wt%水溶液の代わりに、シランカップリング剤(信越化学社製「KBM−04」、テトラメトキシシラン(10重量%溶液):20重量部(固形分:2重量部)を用い、イオン交換水を130重量部とした以外は実施例1と同様にして、スラリーを得、前記スラリーを125℃雰囲気下、噴霧乾燥・硬化し、平均粒子径約15μm、圧縮変形率10%に要する平均圧縮力:約42mN、振とう試験後の平均粒子径の維持率:75%の易変形性凝集体D’−13を得た。
(Comparative Example 4)
Instead of the 4 wt% aqueous solution of polyvinyl alcohol, a silane coupling agent ("KBM-04" manufactured by Shin-Etsu Chemical Co., Ltd.), tetramethoxysilane (10 wt% solution): 20 parts by weight (solid content: 2 parts by weight), A slurry is obtained in the same manner as in Example 1 except that the amount of ion-exchanged water is 130 parts by weight. The slurry is spray-dried and cured in an atmosphere of 125 ° C., and an average particle size of about 15 μm and a compression deformation rate of 10% are required. An easily deformable aggregate D′-13 having an average compressive force of about 42 mN and an average particle size retention rate after the shaking test of 75% was obtained.
(比較例5)
比較例4と同様のスラリーを得、前記スラリーを、125℃雰囲気下で、噴霧乾燥後、アルミナの融点以上の2100℃で焼結し、平均粒子径約15μm、圧縮変形率10%に要する平均圧縮力:約200mN、振とう試験後の平均粒子径の維持率:98%の易変形性凝集体D’−14を得た。
(Comparative Example 5)
A slurry similar to that of Comparative Example 4 was obtained, and the slurry was spray-dried in an atmosphere of 125 ° C., and then sintered at 2100 ° C., which is equal to or higher than the melting point of alumina, and an average required for an average particle size of about 15 μm and a compression deformation rate of 10%. An easily deformable aggregate D′-14 having a compressive force of about 200 mN and an average particle diameter retention rate after shaking test of 98% was obtained.
(比較例6)
実施例3と同様のスラリーを得、前記スラリーを125℃雰囲気下で噴霧乾燥後、有機結着剤の分解温度以上の800℃で加熱し、易変形性凝集体を得ようとしたが、崩壊し易く、凝集体の態を成さない生成物D’−15を得た。
(Comparative Example 6)
A slurry similar to that of Example 3 was obtained, and the slurry was spray-dried in an atmosphere of 125 ° C., and then heated at 800 ° C. above the decomposition temperature of the organic binder to obtain an easily deformable aggregate. Product D′-15 which is easy to be formed and does not form an aggregate is obtained.
(比較例7)
「CB−P02」の代わりに、板状のアルミナ(キンセイマテック株式会社製「セラフ05025」、平均円形度:0.5)を用い、実施例2と同様にして前記アルミナ粒子に対し、前記ポリビニルアルコールの4wt%水溶液を用い、平均粒子径約30μm、圧縮変形率10%に要する平均圧縮力:約15mN、振とう試験後の平均粒子径の維持率:50%の易変形性凝集体D‘−16を得た。
(Comparative Example 7)
Instead of “CB-P02”, a plate-like alumina (“Seraph 05025” manufactured by Kinsei Matec Co., Ltd., average circularity: 0.5) was used, and the polyvinyl particles were added to the alumina particles in the same manner as in Example 2. An easily deformable aggregate D ′ having an average particle diameter of about 30 μm, an average compression force required for a compression deformation ratio of 10%: about 15 mN, and an average particle diameter maintenance ratio after a shaking test of 50% using a 4 wt% aqueous solution of alcohol. -16 was obtained.
(比較例8)
アルミナ粒子(住友化学(株)製、「AL−33」、平均一次粒子径:約12μm、平均円形度:0.9)100重量部、エポキシ樹脂組成物(ジャパンエポキシレジン製、「エピコート1010」2重量部、及びトルエン:148重量部を用いた以外は実施例1と同様にして、易変形性凝集体を得ようとしたが、崩壊し易く、凝集体の態を成さない生成物D’−17を得た。
(Comparative Example 8)
100 parts by weight of alumina particles (manufactured by Sumitomo Chemical Co., Ltd., “AL-33”, average primary particle size: about 12 μm, average circularity: 0.9), epoxy resin composition (manufactured by Japan Epoxy Resin, “Epicoat 1010”) Except for using 2 parts by weight of toluene and 148 parts by weight of toluene, an attempt was made to obtain an easily deformable aggregate in the same manner as in Example 1, but the product D did not easily form agglomerate because it was easily disintegrated. '-17 was obtained.
表1に示すように、凝集体を生成するには、熱伝導性粒子(A)の平均一次粒子径が10μm以下であり、有機結着剤(B)を使用することが必要である。比較例4、5に示すように、Siカップリング剤を有機結着剤として使用したり、アルミナの融点以上で焼結したりと、熱伝導性粒子(A)同士を強固に結着させると、易変形性に乏しくなることがわかる。 As shown in Table 1, in order to produce an aggregate, the average primary particle diameter of the heat conductive particles (A) is 10 μm or less, and it is necessary to use an organic binder (B). As shown in Comparative Examples 4 and 5, when the Si coupling agent is used as an organic binder, or sintered at a melting point of alumina or higher, the thermally conductive particles (A) are firmly bound to each other. It turns out that it becomes scarce easily.
<実施例101>
実施例1で得られた易変形性凝集体D−1(平均粒子径10μm)37.1重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液31.5重量部と、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「エピコート1001)の50%MEK溶液3.15重量部とをディスパー撹拌し、イソプロピルアルコール6.5重量部、トルエン25.8重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率50vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を、コンマコーターを用いて剥離処理シート(厚さ75μmの離型処理ポリエチレンテレフタレートフィルム)に塗工し、100℃で2分加熱乾燥し、熱伝導性層の厚みが50μmの熱伝導部材(H−1)を得た。後述する方法にて求めた熱伝導率は5(W/m・K)であった。
<Example 101>
37.1 parts by weight of easily deformable aggregate D-1 (average particle size 10 μm) obtained in Example 1 and 25% toluene / 2-propanol of the polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 Disperse stirring 31.5 parts by weight of the solution and 3.15 parts by weight of 50% MEK solution of bisphenol A type epoxy resin (“Epicoat 1001” manufactured by Japan Epoxy Resin Co., Ltd.), 6.5 parts by weight of isopropyl alcohol, toluene After adjusting the viscosity with 25.8 parts by weight, ultrasonic degassing was performed to obtain a thermally conductive resin composition having a content of easily deformable aggregates of 50 vol%.
The obtained thermally conductive resin composition was applied to a release-treated sheet (a release-treated polyethylene terephthalate film having a thickness of 75 μm) using a comma coater, and dried by heating at 100 ° C. for 2 minutes. A heat conductive member (H-1) having a thickness of 50 μm was obtained. The thermal conductivity obtained by the method described later was 5 (W / m · K).
<実施例102>
実施例101で得られた熱伝導部材(H−1)の熱伝導性層に剥離処理シートを重ね、150℃、2MPaで1時間プレスして、熱伝導性層の厚みが45μm、易変形性凝集体D−1の含有量は50vol%、熱伝導率8.5(W/m・K)の熱伝導性部材(I−2)を得た。
<Example 102>
The release treatment sheet was stacked on the heat conductive layer of the heat conductive member (H-1) obtained in Example 101, and pressed at 150 ° C. and 2 MPa for 1 hour. The thickness of the heat conductive layer was 45 μm, easily deformable. The content of the aggregate D-1 was 50 vol%, and a thermal conductive member (I-2) having a thermal conductivity of 8.5 (W / m · K) was obtained.
<実施例103>
実施例2で得られた易変形性凝集体D−2(平均粒子径20μm)37.1重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液31.5重量部と、硬化剤としてエピコート1031S(ジャパンエポキシレジン(株)製)の50%MEK溶液3.15重量部とをディスパー撹拌し、イソプロピルアルコール6.5重量部、トルエン25.8重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率70vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を、コンマコーターを用いて剥離処理シート(厚さ75μmの離型処理ポリエチレンテレフタレートフィルム)に塗工し、100℃で2分加熱乾燥した後、熱伝導性層に剥離処理シートを重ね、150℃、2MPaで1時間プレスして、熱伝導性層の厚みが60μm、熱伝導率11(W/m・K)の熱伝導性部材(I−3)を得た。
<Example 103>
37.1 parts by weight of easily deformable aggregate D-2 (average particle size 20 μm) obtained in Example 2 and 25% toluene / 2-propanol of polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 31.5 parts by weight of the solution and 3.15 parts by weight of 50% MEK solution of Epicoat 1031S (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent were dispersed with stirring, 6.5 parts by weight of isopropyl alcohol, and 25.8 of toluene. After adjusting the viscosity with parts by weight, ultrasonic degassing was performed to obtain a thermally conductive resin composition having a content of easily deformable aggregates of 70 vol%.
The obtained thermally conductive resin composition was applied to a release-treated sheet (a release-treated polyethylene terephthalate film having a thickness of 75 μm) using a comma coater, dried by heating at 100 ° C. for 2 minutes, and then the thermally conductive layer. The heat-treated member (I-3) having a heat-conductive layer thickness of 60 μm and a heat conductivity of 11 (W / m · K) is obtained. It was.
<実施例104>
実施例3で得られた易変形性凝集体D−3(平均粒子径50μm)32.4重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液50.4重量部と硬化剤としてエピコート1031S(ジャパンエポキシレジン(株)製)の50%MEK溶液5.0重量部とをディスパー撹拌し、イソプロピルアルコール6.5重量部、トルエン25.8重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率40vol%の熱伝導性樹脂組成物を得た。
得られた熱伝導性樹脂組成物を、実施例103と同様にして、熱伝導性層の厚みが60μm、熱伝導率7(W/m・K)の熱伝導性部材(I−4)を得た。
<Example 104>
32.4 parts by weight of easily deformable aggregate D-3 (average particle size 50 μm) obtained in Example 3 and 25% toluene / 2-propanol of polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 Disperse stirring 50.4 parts by weight of the solution and 5.0 parts by weight of 50% MEK solution of Epicoat 1031S (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 6.5 parts by weight of isopropyl alcohol, 25.8 parts by weight of toluene After adjusting the viscosity at the part, ultrasonic defoaming was performed to obtain a thermally conductive resin composition having a content of easily deformable aggregates of 40 vol%.
The obtained heat conductive resin composition was treated in the same manner as in Example 103, and the heat conductive member (I-4) having a heat conductive layer thickness of 60 μm and a heat conductivity of 7 (W / m · K) was obtained. Obtained.
<実施例105>
実施例4で得られた易変形性凝集体D−4(平均粒子径30μm)36.0重量部と、樹脂合成例2で得られたカルボキシル基含有変性エステル樹脂E−2の25%トルエン溶液36.0重量部と、熱硬化助剤としてケミタイトPZ(株式会社日本触媒製)1重量部とを混合しディスパー撹拌し、イソプロピルアルコール5.8重量部、トルエン23.2重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率50vol%の熱伝導性樹脂組成物を得た。得られた熱伝導性樹脂組成物を、実施例103と同様にして、熱伝導性層の厚みが45μm、熱伝導率8.5(W/m・K)の熱伝導性部材(I−5)を得た。
<Example 105>
25% toluene solution of 36.0 parts by weight of easily deformable aggregate D-4 (average particle size 30 μm) obtained in Example 4 and carboxyl group-containing modified ester resin E-2 obtained in Resin Synthesis Example 2 36.0 parts by weight and 1 part by weight of Chemite PZ (manufactured by Nippon Shokubai Co., Ltd.) as a heat curing aid are mixed and stirred with a disper, and the viscosity is adjusted with 5.8 parts by weight of isopropyl alcohol and 23.2 parts by weight of toluene. Then, ultrasonic defoaming was performed to obtain a thermally conductive resin composition having a content of easily deformable aggregates of 50 vol%. In the same manner as in Example 103, the obtained thermally conductive resin composition was subjected to the thermal conductive member (I-5) having a thermal conductive layer thickness of 45 μm and a thermal conductivity of 8.5 (W / m · K). )
<実施例106>
実施例8で得られた易変形性凝集体D−8(平均粒子径5μm)36.0重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液36.0重量部と硬化剤としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「エピコート1001)の50%MEK溶液3.15重量部とをディスパー撹拌し、イソプロピルアルコール6.5重量部、トルエン25.8重量部で粘度を調整した後、超音波脱泡して異変形成凝集体の易変形性凝集体の含有率50vol%の熱伝導性樹脂組成物を得た。得られた熱伝導性樹脂組成物を、実施例103と同様にして、熱伝導性層の厚みが40μm、熱伝導率7(W/m・K)の熱伝導性部材(I−6)を得た。
<Example 106>
36.0 parts by weight of easily deformable aggregate D-8 (average particle size 5 μm) obtained in Example 8 and 25% toluene / 2-propanol of polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 36.0 parts by weight of the solution and 3.15 parts by weight of 50% MEK solution of bisphenol A type epoxy resin (“Epicoat 1001” manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent are dispersed and 6.5 parts by weight of isopropyl alcohol. After adjusting the viscosity with 25.8 parts by weight of toluene, ultrasonic degassing was performed to obtain a thermally conductive resin composition with a content of easily deformable aggregates of anomalous formation aggregates of 50 vol%. In the same manner as in Example 103, a conductive resin composition (I-6) having a thermal conductive layer thickness of 40 μm and a thermal conductivity of 7 (W / m · K) was obtained.
<実施例107>
実施例1で得られた易変形性凝集体D−1(平均粒子径10μm)7.4重量部と、平均一次粒子径が20μmの球状アルミナ(昭和電工株式会社製、CB−A20S)29.7重量部と、樹脂合成例2で得られたカルボキシル基含有変性エステル樹脂E−2の25%トルエン溶液31.5重量部と、硬化剤としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製「エピコート1001)の50%MEK溶液3.2重量部とをディスパー撹拌し、イソプロピルアルコール0.4重量部、トルエン1.6重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率55vol%の熱伝導性樹脂組成物を得た。得られた熱伝導性樹脂組成物を実施例103と同様にして、熱伝導性層の厚みが40μm、熱伝導率8.5(W/m・K)の熱伝導性部材(I−7)を得た。
<Example 107>
7.4 parts by weight of easily deformable aggregate D-1 (average particle size 10 μm) obtained in Example 1 and spherical alumina (CB-A20S manufactured by Showa Denko KK) having an average primary particle size of 20 μm 29. 7 parts by weight, 31.5 parts by weight of 25% toluene solution of carboxyl group-containing modified ester resin E-2 obtained in Resin Synthesis Example 2, and bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent Disperse stir with 3.2 parts by weight of 50% MEK solution of “Epicoat 1001), adjust viscosity with 0.4 parts by weight of isopropyl alcohol and 1.6 parts by weight of toluene, and then easily defoam by ultrasonic defoaming. A heat conductive resin composition having an agglomerate content of 55 vol% was obtained, and the obtained heat conductive resin composition was treated in the same manner as in Example 103. The thickness of the heat conductive layer was 40 μm and the heat conductivity was 8. 5 ( / M · K) thermal conductivity member (I-7) was obtained.
<実施例108>
実施例2で得られた易変形性凝集体D−2(平均粒子径20μm)19.2重量部と、平均一次粒子径が10μmの球状アルミナ(アドマテックス株式会社製、AO−509)19.2重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液26.1重量部と、熱硬化助剤としてケミタイトPZ(株式会社日本触媒製)2.6重量部とをディスパー撹拌し、イソプロピルアルコール3.3重量部、トルエン13.2重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率60vol%の熱伝導性樹脂組成物を得た。得られた熱伝導性樹脂組成物を、実施例103と同様にして、熱伝導性層の厚みが40μm、熱伝導率8.5(W/m・K)の熱伝導性部材(I−8)を得た。
<Example 108>
19. 1 part by weight of easily deformable aggregate D-2 (average particle size 20 μm) obtained in Example 2 and spherical alumina having an average primary particle size of 10 μm (manufactured by Admatechs Co., Ltd., AO-509) 2 parts by weight, 26.1 parts by weight of a 25% toluene / 2-propanol solution of the polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1, and Chemite PZ (manufactured by Nippon Shokubai Co., Ltd.) 2 as a thermosetting aid 6 parts by weight of the mixture is disper stirred, and after adjusting the viscosity with 3.3 parts by weight of isopropyl alcohol and 13.2 parts by weight of toluene, ultrasonic degassing is performed to conduct heat conduction with an easily deformable aggregate content of 60 vol%. A functional resin composition was obtained. In the same manner as in Example 103, the obtained heat conductive resin composition was heat-conductive member (I-8) having a heat-conductive layer thickness of 40 μm and a heat conductivity of 8.5 (W / m · K). )
<実施例109>
実施例2で得られた易変形性凝集体D−2(平均粒子径20μm)34.0重量部、樹脂合成例3で得られたアクリル樹脂E−3の25%酢酸エチル溶液64.0重量部と、硬化剤としてエポキシ系硬化剤テトラッドX(三菱ガス化学株式会社製)0.8重量部とをディスパー撹拌し、トルエン2.8重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率35vol%の熱伝導性樹脂組成物を得た。得られた熱伝導性樹脂組成物を、剥離処理されたポリエステルフィルム上に均一に塗工して乾燥させ、粘着剤層を設けた。次に、剥離処理された別のポリエステルフィルムを粘着剤層側にラミネートし、熱伝導性層の厚みが50μm、熱伝導率4(W/m・K)の熱伝導性部材(H−9)を得た。
<Example 109>
34.0 parts by weight of the easily deformable aggregate D-2 (average particle size 20 μm) obtained in Example 2 and 64.0% of a 25% ethyl acetate solution of acrylic resin E-3 obtained in Resin Synthesis Example 3 Parts and 0.8 parts by weight of an epoxy curing agent Tetrad X (manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a curing agent, and after adjusting the viscosity with 2.8 parts by weight of toluene, ultrasonic degassing A heat conductive resin composition having an easily deformable aggregate content of 35 vol% was obtained. The obtained heat conductive resin composition was uniformly coated on the peeled polyester film and dried to provide an adhesive layer. Next, another peeled polyester film is laminated on the pressure-sensitive adhesive layer side, and the thermal conductive member (H-9) having a thermal conductive layer thickness of 50 μm and a thermal conductivity of 4 (W / m · K). Got.
<実施例110>
実施例5で得られた易変形性凝集体D−5(平均粒子径15μm)56.5重量部と熱可塑性樹脂としてポリスチレン樹脂PSJポリスチレン679(PSジャパン株式会社製)43.5重量部とを、撹拌・混合したものを、200℃に設定した二軸押出機で溶融混練し、易変形性凝集体の含有率25vol%の熱伝導性樹脂組成物を作成した後、射出成型機(東芝機械(株)製IS−100F)を用い成形し、厚みが1mm、熱伝導率12(W/m・K)の熱伝導性部材(I−10)を得た。
<Example 110>
56.5 parts by weight of easily deformable aggregate D-5 (average particle size 15 μm) obtained in Example 5 and 43.5 parts by weight of polystyrene resin PSJ polystyrene 679 (manufactured by PS Japan Co., Ltd.) as a thermoplastic resin. The mixture obtained by stirring and mixing was melt-kneaded with a twin-screw extruder set at 200 ° C. to prepare a thermally conductive resin composition having a content of easily deformable aggregates of 25 vol%, and then an injection molding machine (Toshiba Machine). The product was molded using IS-100F, and a heat conductive member (I-10) having a thickness of 1 mm and a heat conductivity of 12 (W / m · K) was obtained.
<実施例111>
実施例6で得られた易変形性凝集体D−6(平均粒子径40μm)61.6重量部とポリエステルウレタン樹脂バイロンUR6100(東洋紡績株式会社製)18.7重量部、硬化剤として硬化剤としてエポキシ系硬化剤テトラッドX(三菱ガス化学株式会社製)0.08重量部とをディスパー撹拌し、トルエン20.0重量部で粘度を調整した後、超音波脱泡して易変形性凝集体の含有率65vol%の熱伝導性樹脂組成物を得た。得られた熱伝導性樹脂組成物を、実施例103と同様にして、熱伝導性層の厚みが100μm、熱伝導率8.5(W/m・K)の熱伝導性部材(I−11)を得た。
<Example 111>
61.6 parts by weight of easily deformable aggregate D-6 (average particle size 40 μm) obtained in Example 6 and 18.7 parts by weight of polyester urethane resin Byron UR6100 (manufactured by Toyobo Co., Ltd.), a curing agent as a curing agent Disperse stir with 0.08 parts by weight of epoxy-based curing agent Tetrad X (Mitsubishi Gas Chemical Co., Ltd.), adjust the viscosity with 20.0 parts by weight of toluene, and then defoam ultrasonically to easily deformable aggregates A heat conductive resin composition having a content of 65 vol% was obtained. In the same manner as in Example 103, the obtained heat conductive resin composition was heat conductive member (I-11) having a heat conductive layer thickness of 100 μm and a heat conductivity of 8.5 (W / m · K). )
<実施例112>
実施例7で得られた易変形性凝集体D−7(平均粒子径20μm)94.0重量部とエチ
レンーメタクリル酸共重合体6.0重量部とを混合し、金型に入れ、脱気した後、3MPaの荷重をかけ、150℃1時間押し固めて、易変形性凝集体の含有率80vol%、熱伝導性層の厚みが500μm、熱伝導率8(W/m・K)の熱伝導性部材(I−12)を得た。
<Example 112>
94.0 parts by weight of easily deformable aggregate D-7 (average particle size 20 μm) obtained in Example 7 and 6.0 parts by weight of ethylene-methacrylic acid copolymer were mixed, put into a mold, and removed. After the gas was applied, a load of 3 MPa was applied and the mixture was pressed and hardened at 150 ° C. for 1 hour. The content of the easily deformable aggregate was 80 vol%, the thickness of the heat conductive layer was 500 μm, and the heat conductivity was 8 (W / m · K). A heat conductive member (I-12) was obtained.
<実施例113>
実施例9で得られた易変形性凝集体D−9(平均粒子径20μm)72.0重量部と高密度ポリエチレン樹脂Hizox 2100J(三井住友ポリオレフィン株式会社製)28.0重量部とを混合し、混練機で加熱混合し、冷却粉砕を行った後、押出機により押出成形し、易変形性凝集体の含有率40vol%、熱伝導率7(W/m・k)のペレット状の熱伝導性部材(I−13)を得た。
<Example 113>
72.0 parts by weight of the easily deformable aggregate D-9 (average particle size 20 μm) obtained in Example 9 and 28.0 parts by weight of the high-density polyethylene resin Hizox 2100J (manufactured by Sumitomo Mitsui Polyolefin Co., Ltd.) were mixed. The mixture is heated and mixed with a kneader, cooled and pulverized, and then extruded with an extruder, and the pellet is thermally conductive with an easily deformable aggregate content of 40 vol% and a thermal conductivity of 7 (W / m · k). Sex member (I-13) was obtained.
<比較例101>
平均一次粒子径1umの球状の酸化アルミニウム粉末(アドマテックス株式会社製、AO-502)36.0重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E
−1の25%トルエン/2−プロパノール溶液36.0重量部と、硬化剤としてビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン(株)製)の50%MEK溶液3.6重量部とをディスパー撹拌し、イソプロピルアルコール5.7重量部、トルエン22.7重量部で粘度を調整した後、超音波脱泡して酸化アルミニウムの含有率50vol%の樹脂組成物を得た。得られた樹脂組成物を、コンマコーターを用いて剥離処理シート(厚さ75μmの離型処理ポリエチレンテレフタレートフィルム)に塗工し、100℃で2分加熱乾燥した後、塗布層に剥離処理シートを重ね、150℃、2MPaで1時間プレスして、厚みが45μmのシートを得た。このシートの熱伝導率は0.8(W/m・K)と低いものであった。
<Comparative Example 101>
36.0 parts by weight of spherical aluminum oxide powder (manufactured by Admatechs Co., Ltd., AO-502) having an average primary particle diameter of 1 um, and polyurethane polyurea resin E obtained in Resin Synthesis Example 1
Dispersion of 36.0 parts by weight of 25% toluene / 2-propanol solution of -1 and 3.6 parts by weight of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (Japan Epoxy Resin Co., Ltd.) as a curing agent The mixture was stirred and the viscosity was adjusted with 5.7 parts by weight of isopropyl alcohol and 22.7 parts by weight of toluene, followed by ultrasonic defoaming to obtain a resin composition having an aluminum oxide content of 50 vol%. The obtained resin composition was applied to a release treatment sheet (a release treatment polyethylene terephthalate film having a thickness of 75 μm) using a comma coater, heated and dried at 100 ° C. for 2 minutes, and then the release treatment sheet was applied to the coating layer. The sheet was stacked and pressed at 150 ° C. and 2 MPa for 1 hour to obtain a sheet having a thickness of 45 μm. The thermal conductivity of this sheet was as low as 0.8 (W / m · K).
<比較例102>
平均一次粒子径20umの球状の酸化アルミニウム粉末(昭和電工株式会社製、CB−A20S)36.0重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液36.0重量部と、硬化剤としてビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン(株)製)の50%MEK溶液3.6重量部とをディスパー撹拌し、イソプロピルアルコール5.7重量部、トルエン22.7重量部で粘度を調整した後、超音波脱泡して酸化アルミニウムの含有率50vol%の樹脂組成物を得た。得られた樹脂組成物を、比較例101と同様にして、厚みが45μmのシートを得た。このシートの熱伝導率は0.7(W/m・K)と低いものであった。
<Comparative Example 102>
36.0 parts by weight of spherical aluminum oxide powder (CB-A20S, manufactured by Showa Denko KK) having an average primary particle size of 20 um, and 25% toluene / 2- 2 of the polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 Disperse stirring 36.0 parts by weight of a propanol solution and 3.6 parts by weight of a 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 5.7 weights of isopropyl alcohol After adjusting the viscosity with 22.7 parts by weight of toluene, ultrasonic degassing was performed to obtain a resin composition with an aluminum oxide content of 50 vol%. A sheet having a thickness of 45 μm was obtained from the obtained resin composition in the same manner as in Comparative Example 101. The thermal conductivity of this sheet was as low as 0.7 (W / m · K).
<比較例103>
比較例3で得られた凝集体D’−12(平均粒子径20μm)38.3重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液27.0重量部と、硬化剤としてビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン(株)製)の50%MEK溶液2.7重量部とをディスパー撹拌し、イソプロピルアルコール7.0重量部、トルエン28.0重量部で粘度を調整した後、超音波脱泡して凝集体の含有率60vol%の樹脂組成物を得た。得られた樹脂組成物を、比較例101と同様にして、厚みが50μmのシートを得た。このシートの熱伝導率は0.3(W/m・K)と低いものであった。
<Comparative Example 103>
Aggregate D′-12 (average particle diameter 20 μm) 38.3 parts by weight obtained in Comparative Example 3 and polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 in 25% toluene / 2-propanol solution 27 Disperse stirring 0.0 parts by weight and 2.7 parts by weight of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 7.0 parts by weight of isopropyl alcohol, toluene After adjusting the viscosity with 28.0 parts by weight, ultrasonic degassing was performed to obtain a resin composition having an aggregate content of 60 vol%. A sheet having a thickness of 50 μm was obtained using the obtained resin composition in the same manner as in Comparative Example 101. The thermal conductivity of this sheet was as low as 0.3 (W / m · K).
<比較例104>
比較例4で得られた凝集体D’−13(平均粒子径15μm)38.3重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液27.0重量部と、硬化剤としてビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン(株)製)の50%MEK溶液2.7重量部とをディスパー撹拌し、イソプロピルアルコール7.0重量部、トルエン28.0重量部で粘度を調整した後、超音波脱泡して凝集体の含有率60vol%の樹脂組成物を得た。得られた樹脂組成物を、比較例101と同様にして、厚みが50μmのシートを得た。このシートは粒子が破砕したことに起因するクラックが多く見られ、熱伝導率も0.4(W/m・K)と低いものであった。
<Comparative Example 104>
Aggregate D′-13 (average particle size: 15 μm) 38.3 parts by weight obtained in Comparative Example 4 and polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 in 25% toluene / 2-propanol solution 27 Disperse stirring 0.0 parts by weight and 2.7 parts by weight of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 7.0 parts by weight of isopropyl alcohol, toluene After adjusting the viscosity with 28.0 parts by weight, ultrasonic degassing was performed to obtain a resin composition having an aggregate content of 60 vol%. A sheet having a thickness of 50 μm was obtained using the obtained resin composition in the same manner as in Comparative Example 101. This sheet had many cracks due to the crushing of the particles, and the thermal conductivity was as low as 0.4 (W / m · K).
<比較例105>
比較例5で得られた凝集体D’−14(平均粒子径15μm)38.3重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液27.0重量部と、硬化剤としてビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン(株)製)の50%MEK溶液2.7重量部とをディスパー撹拌し、イソプロピルアルコール7.0重量部、トルエン28.0重量部で粘度を調整した後、超音波脱泡して凝集体の含有率60vol%の樹脂組成物を得た。得られた樹脂組成物を、比較例101と同様にして、厚みが50μmのシートを得た。このシートの表面は粒子由来の凹凸が多く存在し、熱伝導率も0.5(W/m・K)と低いものであった。
<Comparative Example 105>
Aggregate D′-14 (average particle size 15 μm) 38.3 parts by weight obtained in Comparative Example 5 and polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 in 25% toluene / 2-propanol solution 27 Disperse stirring 0.0 parts by weight and 2.7 parts by weight of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 7.0 parts by weight of isopropyl alcohol, toluene After adjusting the viscosity with 28.0 parts by weight, ultrasonic degassing was performed to obtain a resin composition having an aggregate content of 60 vol%. A sheet having a thickness of 50 μm was obtained using the obtained resin composition in the same manner as in Comparative Example 101. The surface of this sheet had many irregularities derived from particles, and the thermal conductivity was as low as 0.5 (W / m · K).
<比較例106>
比較例7で得られた凝集体D’−16(平均粒子径30μm)38.3重量部と、樹脂合成例1で得られたポリウレタンポリウレア樹脂E−1の25%トルエン/2−プロパノール溶液27.0重量部と、硬化剤としてビスフェノールA型エポキシ樹脂エピコート1001(ジャパンエポキシレジン(株)製)の50%MEK溶液2.7重量部とをディスパー撹拌し、イソプロピルアルコール7.0重量部、トルエン28.0重量部で粘度を調整した後、超音波脱泡して凝集体の含有率60vol%の樹脂組成物を得た。得られた樹脂組成物を、比較例101と同様にして、厚みが50μmのシートを得た。このシートの熱伝導率は0.3(W/m・K)と低いものであった。
<Comparative Example 106>
Aggregate D′-16 (average particle diameter 30 μm) 38.3 parts by weight obtained in Comparative Example 7 and polyurethane polyurea resin E-1 obtained in Resin Synthesis Example 1 in 25% toluene / 2-propanol solution 27 Disperse stirring 0.0 parts by weight and 2.7 parts by weight of 50% MEK solution of bisphenol A type epoxy resin Epicoat 1001 (manufactured by Japan Epoxy Resin Co., Ltd.) as a curing agent, 7.0 parts by weight of isopropyl alcohol, toluene After adjusting the viscosity with 28.0 parts by weight, ultrasonic degassing was performed to obtain a resin composition having an aggregate content of 60 vol%. A sheet having a thickness of 50 μm was obtained using the obtained resin composition in the same manner as in Comparative Example 101. The thermal conductivity of this sheet was as low as 0.3 (W / m · K).
<熱伝導率の測定方法>
サンプル試料を15mm角に切り出し、サンプル表面を金蒸着しカーボンスプレーでカーボン被覆した後、キセノンフラッシュアナライザーLFA447 NanoFlash(NETZSCH社製)にて、試料環境25℃での熱拡散率を測定した。また、比熱容量はエスアイアイ・ナノテクノロジー株式会社製の高感度型示差走査熱量計DSC220Cを用いて測定した。さらに、密度は水中置換法を用いて算出した。
<Measurement method of thermal conductivity>
A sample sample was cut into a 15 mm square, and the sample surface was gold-deposited and coated with carbon spray. Then, the thermal diffusivity in a sample environment at 25 ° C. was measured with a Xenon flash analyzer LFA447 NanoFlash (manufactured by NETZSCH). The specific heat capacity was measured using a high-sensitivity differential scanning calorimeter DSC220C manufactured by SII Nano Technology. Furthermore, the density was calculated using an underwater substitution method.
表2の溶剤(F)は、追加で配合したもののみを記載した。
表2に示すように、本発明の凝集体(D)は熱伝導性に優れる。一方、比較例103に示すように、比較例3で得られた易変形性凝集体は熱伝導性の低い有機結着剤が多く含まれていることから、熱伝導性部材(I)の熱伝導率が低い。また、比較例104、105に示すように、比較例4、5で得られた凝集体は易変形性に乏しいため、熱伝導率が低い。また、比較例106に示すように、板状のアルミナを使用した比較例7で得られた凝集体は、熱伝導率が低い。 As shown in Table 2, the aggregate (D) of the present invention is excellent in thermal conductivity. On the other hand, as shown in Comparative Example 103, since the easily deformable aggregate obtained in Comparative Example 3 contains a large amount of an organic binder having low thermal conductivity, the heat of the thermally conductive member (I) is increased. Low conductivity. Further, as shown in Comparative Examples 104 and 105, the aggregates obtained in Comparative Examples 4 and 5 are poorly deformable and thus have low thermal conductivity. Further, as shown in Comparative Example 106, the aggregate obtained in Comparative Example 7 using plate-like alumina has low thermal conductivity.
Claims (9)
平均粒子径が2〜100μm、圧縮変形率10%に要する平均圧縮力が5mN以下である、易変形性凝集体(D)。 100 parts by weight of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm, a carbon material (J) other than a sphere, and 0.1 to 30 parts by weight of an organic binder (B) ,including,
An easily deformable aggregate (D) having an average particle diameter of 2 to 100 μm and an average compression force required for a compression deformation rate of 10% of 5 mN or less.
前記易変形性凝集体(D)が、平均一次粒子径が0.1〜10μmの球状の熱伝導性粒子(A)100重量部と、球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30重量部とを含む、平均粒子径が2〜100μm、圧縮変形率10%に要する平均圧縮力が5mN以下であり、
前記溶有機結着剤(B)が、前記溶剤(F)に溶解しないことを特徴とする、
熱伝導性樹脂組成物(G)。 It is a thermally conductive resin composition containing 20 to 90% by volume of easily deformable aggregate (D), 10 to 80% by volume of binder resin (E), and a solvent (F) for dissolving the binder resin (E). And
The easily deformable aggregate (D) is composed of 100 parts by weight of spherical heat conductive particles (A) having an average primary particle size of 0.1 to 10 μm, a carbon material (J) other than a sphere, and an organic binder. (B) and a 0.1 to 30 parts by weight, an average particle diameter of 2 to 100 m, an average compression force required for the compression deformation ratio of 10% is Ri der less 5 mN,
The dissolved organic binder (B) does not dissolve in the solvent (F),
Thermally conductive resin composition (G).
少なくとも一方の面に剥離フィルムを有する熱伝導性接着シート。 The heat conductive member (H) according to claim 5 or the heat conductive member (I) according to claim 6 ,
A thermally conductive adhesive sheet having a release film on at least one surface.
平均一次粒子径が0.1〜10μmの熱伝導性粒子(A)100質量部と、球状以外の炭素材料(J)と、有機結着剤(B)0.1〜30質量部と、有機結着剤(B)を溶解する溶剤(C)とを含有するスラリーを得る工程と、
前記スラリーから溶剤(C)を除去する工程とを有する、易変形性凝集体(D)の製造方法。 A method for producing the easily deformable aggregate (D) according to claim 1 or 2,
100 parts by mass of thermally conductive particles (A) having an average primary particle size of 0.1 to 10 μm, carbon material (J) other than spherical, 0.1 to 30 parts by mass of organic binder (B), and organic Obtaining a slurry containing a solvent (C) for dissolving the binder (B);
A process for removing the solvent (C) from the slurry, and a method for producing the easily deformable aggregate (D).
前記塗膜から溶剤(F)を除去して、熱伝導層を形成する工程と、
前記熱伝導層を加圧する工程とを有する、熱伝導性部材(I)の製造方法。 Applying a thermally conductive resin composition (G) according to claim 3 or 4 on a substrate to form a coating film;
Removing the solvent (F) from the coating film to form a heat conductive layer;
A method for producing a thermally conductive member (I), comprising a step of pressurizing the thermally conductive layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013129782A JP6127765B2 (en) | 2013-06-20 | 2013-06-20 | Thermally conductive easily deformable aggregate, thermally conductive resin composition, thermally conductive member, and thermally conductive adhesive sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013129782A JP6127765B2 (en) | 2013-06-20 | 2013-06-20 | Thermally conductive easily deformable aggregate, thermally conductive resin composition, thermally conductive member, and thermally conductive adhesive sheet |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2015003980A JP2015003980A (en) | 2015-01-08 |
JP2015003980A5 JP2015003980A5 (en) | 2016-06-02 |
JP6127765B2 true JP6127765B2 (en) | 2017-05-17 |
Family
ID=52300142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013129782A Expired - Fee Related JP6127765B2 (en) | 2013-06-20 | 2013-06-20 | Thermally conductive easily deformable aggregate, thermally conductive resin composition, thermally conductive member, and thermally conductive adhesive sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6127765B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017128662A (en) * | 2016-01-20 | 2017-07-27 | 積水化学工業株式会社 | Composite filler and thermosetting material |
CN112014297B (en) * | 2020-09-22 | 2024-04-02 | 中建西部建设西南有限公司 | Evaluation method for grain shape of machine-made sand grains |
WO2023074652A1 (en) * | 2021-11-01 | 2023-05-04 | 東レ株式会社 | Composition and coating material |
JP2023070122A (en) * | 2021-11-04 | 2023-05-18 | 株式会社豊田中央研究所 | Heat conductive material and method for producing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3144281B2 (en) * | 1995-08-28 | 2001-03-12 | 株式会社龍森 | High thermal conductive composite particles |
JP4883790B2 (en) * | 2007-04-03 | 2012-02-22 | 独立行政法人産業技術総合研究所 | Inorganic material-polymer resin composite granulated product and method for producing the same |
JP5474854B2 (en) * | 2010-03-16 | 2014-04-16 | 積水化成品工業株式会社 | ORGANIC-INORGANIC COMPOSITE PARTICLE AND METHOD FOR PRODUCING SAME, HEAT CONDUCTIVE FILLER, AND HEAT CONDUCTIVE RESIN COMPOSITION AND METHOD FOR PRODUCING SAME |
JP2012131855A (en) * | 2010-12-20 | 2012-07-12 | Nippon Zeon Co Ltd | Powdery and granular composition, heat-conductive pressure-sensitive adhesive composition, heat-conductive pressure-sensitive adhesive sheet-like molding, method for producing them, and electronic component |
JP5967002B2 (en) * | 2013-04-08 | 2016-08-10 | 東洋インキScホールディングス株式会社 | Easily deformable aggregate, heat conductive resin composition, heat conductive member, and heat conductive adhesive sheet |
JP5971795B2 (en) * | 2012-06-27 | 2016-08-17 | 国立研究開発法人産業技術総合研究所 | Carbon fiber composite resin beads, carbon fiber reinforced composite material, and method for producing the same |
-
2013
- 2013-06-20 JP JP2013129782A patent/JP6127765B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2015003980A (en) | 2015-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6221490B2 (en) | Easily deformable aggregate and method for producing the same, heat conductive resin composition, heat conductive member and method for producing the same, and heat conductive adhesive sheet | |
WO2013175744A1 (en) | Easily deformable aggregates and process for producing same, thermally conductive resin composition, thermally conductive member and process for producing same, and thermally conductive adhesion sheet | |
JP5263429B1 (en) | Thermally conductive easily deformable aggregate and method for producing the same | |
TWI738736B (en) | Thermally-conductive insulating sheet and its manufacturing method, and intermediale laminate for manufacturing thermally-conductive insulating sheet | |
KR102368841B1 (en) | Hexagonal boron nitride powder and method for manufacturing same, composition and heat dissipation material using same | |
JP5967002B2 (en) | Easily deformable aggregate, heat conductive resin composition, heat conductive member, and heat conductive adhesive sheet | |
KR102265034B1 (en) | Hexagonal boron nitride powder, its manufacturing method, resin composition, and resin sheet | |
JP6348610B2 (en) | Hexagonal boron nitride powder, production method thereof, resin composition and resin sheet | |
KR102210618B1 (en) | Hexagonal boron nitride powder and its manufacturing method, and composition and heat dissipating material using the same | |
CN105026312B (en) | Boron nitride powder and the resin combination containing the boron nitride powder | |
JP6127765B2 (en) | Thermally conductive easily deformable aggregate, thermally conductive resin composition, thermally conductive member, and thermally conductive adhesive sheet | |
KR101854026B1 (en) | Manufacturing method of boron nitride nano sheet powder and manufacturing method of boron nitride nano sheet/polymer nano composite film using the same | |
JP2015193504A (en) | Boron nitride particle, resin composition and heat-conductive sheet | |
JP6107479B2 (en) | Thermally conductive deformable aggregate, thermally conductive resin composition, thermally conductive member, and method for producing the same | |
JP6693199B2 (en) | Thermally conductive member and device | |
JP6451451B2 (en) | Manufacturing method of conductive sheet | |
JP6131427B2 (en) | Thermally conductive resin composition, thermal conductive member and method for producing the same, and thermal conductive adhesive sheet | |
JP6011390B2 (en) | Easily deformable aggregate, heat conductive resin composition, heat conductive member, and heat conductive adhesive sheet | |
JP7110977B2 (en) | Thermally conductive insulating sheets and composite members |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160406 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170327 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6127765 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |