JP2015010174A - Cleaner for molding machine - Google Patents

Cleaner for molding machine Download PDF

Info

Publication number
JP2015010174A
JP2015010174A JP2013137001A JP2013137001A JP2015010174A JP 2015010174 A JP2015010174 A JP 2015010174A JP 2013137001 A JP2013137001 A JP 2013137001A JP 2013137001 A JP2013137001 A JP 2013137001A JP 2015010174 A JP2015010174 A JP 2015010174A
Authority
JP
Japan
Prior art keywords
resin
weight
molding machine
cleaning agent
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013137001A
Other languages
Japanese (ja)
Other versions
JP5878892B2 (en
Inventor
剛志 中塚
Tsuyoshi Nakatsuka
剛志 中塚
良太 松井
Ryota Matsui
良太 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Kako Co Ltd
Original Assignee
Sanyo Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Kako Co Ltd filed Critical Sanyo Kako Co Ltd
Priority to JP2013137001A priority Critical patent/JP5878892B2/en
Publication of JP2015010174A publication Critical patent/JP2015010174A/en
Application granted granted Critical
Publication of JP5878892B2 publication Critical patent/JP5878892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Detergent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure cleaning force of a cleaner and enhance self discharge ability, because a resin or an additive which was used previously remains on a device, defect occurs, so that a cleaner is put thereinto after completion of molding for discharging a resin remaining on the device, and the cleaner itself is discharged by following resin molding, in which the resin and the additive are efficiently put thereinto alternately.SOLUTION: An inorganic material of 20-120 pts.mass, a fluoro-resin of 0.3-3 pts.mass, and PEG or PEO of 1-5 pts.mass are included with respect to a thermoplastic resin of 100 pts.mass for forming a cleaner for molding machine.

Description

本発明は、射出成形機等の熱可塑性樹脂やゴム材料を溶融して成形する成形機において、色替え、樹脂替えを効率的に行なうための成形機用洗浄剤に関する。   The present invention relates to a molding machine cleaning agent for efficiently performing color change and resin change in a molding machine that melts and molds a thermoplastic resin or rubber material such as an injection molding machine.

射出成形機や押出機等、熱可塑性樹脂やゴム材料を高温で溶融し、着色剤等の添加剤と共に混練、成形を行なう成形機において、前の成形に用いた樹脂とは別の樹脂、添加剤を用いて連続して次の成形を行なう場合、前の材料が装置内に残留していると、後の成形品にてコンタミ等による物性の低下や、外観不良といった不具合を生じる。   In a molding machine that melts a thermoplastic resin or rubber material at a high temperature, such as an injection molding machine or an extruder, and kneads and molds it with an additive such as a colorant, a resin other than the resin used for the previous molding, addition When the next molding is continuously performed using the agent, if the previous material remains in the apparatus, problems such as deterioration of physical properties due to contamination or the like and poor appearance appear in the subsequent molded product.

本来ならば、成形終了後に成形機からスクリューを抜き、完全に成形機のシリンダ内部、及びスクリューの清掃を行なうと良いが、これを毎回行なうには時間やコストが多く消費される。通常は次の樹脂で前の樹脂を流す方法をとるが、着色剤や添加剤によっては成形機内に残留し易いものもあり、この成形材料の切り替えの時間を改善すれば作業効率が上がり、コストを抑えることが出来る。   Originally, it is preferable to remove the screw from the molding machine after the molding is completed, and to completely clean the inside of the cylinder of the molding machine and the screw. However, this process is time consuming and expensive. Normally, the next resin is used to flow the previous resin, but some colorants and additives can easily remain in the molding machine. If the time for switching this molding material is improved, the work efficiency increases and the cost increases. Can be suppressed.

そこで、従来の成形では、前の成形が終了した後に洗浄剤を流して前の樹脂を強く排出し、また洗浄剤自身は後の樹脂によって素早く排出し、樹脂や添加剤の切り替えを効率的に行なう。   Therefore, in the conventional molding, after the previous molding is completed, the cleaning agent is flown and the previous resin is strongly discharged, and the cleaning agent itself is quickly discharged by the subsequent resin, so that the switching of the resin and additives can be performed efficiently. Do.

従来の成形機用洗浄剤はPP樹脂又はAS樹脂をベース樹脂とし、ガラス繊維を主成分としているものが多い。ガラス繊維の洗浄効果として、その形状から成形機内部にこびり付いた樹脂を削り出す効果を持つ。その反面、ガラス繊維は成形機内部に引っかかり易く、成形機の内部に残留し易いという付着性を有している。他の従来技術にはガラス繊維以外にも、大きさを限定した無機物(特許文献1)、高級脂肪酸とほう酸エステルアニオン界面活性剤(特許文献2)、多価アルコールとアルキレングリコール脂肪酸エステル、脂肪酸金属(特許文献3)、スチレン系熱可塑性エラストマーと超高分子(特許文献4)、フッ素系樹脂とウォラストナイト(特許文献5)の配合等、すでに数多くの発明がなされている。   Many of the conventional cleaners for molding machines have PP resin or AS resin as the base resin and glass fiber as the main component. As a glass fiber cleaning effect, it has the effect of scraping resin stuck inside the molding machine from its shape. On the other hand, the glass fiber has an adhesion property that it is easily caught inside the molding machine and easily remains inside the molding machine. In addition to glass fibers, other conventional technologies include inorganic substances with limited sizes (Patent Document 1), higher fatty acids and borate ester anionic surfactants (Patent Document 2), polyhydric alcohols and alkylene glycol fatty acid esters, fatty acid metals Many patents have already been made, such as blending (Patent Document 3), styrene-based thermoplastic elastomer and ultra-high polymer (Patent Document 4), fluorine-based resin and wollastonite (Patent Document 5).

特開平5-295397号公報JP-A-5-295397 特開平8-59905号公報JP-A-8-59905 特開2000-119458号公報JP 2000-119458 A 特開2001-348600号公報Japanese Patent Laid-Open No. 2001-348600 特開2004-107433号公報JP 2004-107433 A

成形機用洗浄剤はその洗浄力向上のための数多くの開発が行なわれてきた。しかし、その後の洗浄剤の排出に関しての開発は少ない。たとえ洗浄力が高くても、次の作業に使用する樹脂への置換に多くの時間が消費されるようでは洗浄剤を使う意味がなくなってしまう。   Numerous developments have been made to improve the cleaning power of molding machine cleaners. However, there is little development regarding the subsequent discharge of cleaning agents. Even if the detergency is high, the use of a cleaning agent is lost if it takes a lot of time to replace the resin used in the next operation.

本発明の課題は、洗浄力を確保しつつ、自己排出性を高めた成形機用洗浄剤を提供することにある。   The subject of this invention is providing the cleaning agent for molding machines which improved self-discharge property, ensuring the cleaning power.

本発明は熱可塑性樹脂100重量部に対し、無機物を20〜120重量部、フッ素系樹脂を0.3〜3重量部、PEG又はPEOを1〜5重量部を含有させた洗浄機用洗浄剤である。   The present invention is a cleaning agent for a washing machine containing 20 to 120 parts by weight of an inorganic substance, 0.3 to 3 parts by weight of a fluororesin, and 1 to 5 parts by weight of PEG or PEO with respect to 100 parts by weight of a thermoplastic resin. .

ベースとなる熱可塑性樹脂としては、ポリプロピレン樹脂(PP)や、アクリロニトリル−スチレン共重合体(AS)等がある。本研究では特に熱可塑性樹脂のメルトフローレイトが1〜15g/10分(220℃・10kg)(220℃は材料溶融温度、10kgは材料押出荷重)であることを特徴とする。   Examples of the base thermoplastic resin include polypropylene resin (PP) and acrylonitrile-styrene copolymer (AS). In this study, the melt flow rate of thermoplastic resin is 1-15g / 10min (220 ℃ ・ 10kg) (220 ℃ is material melting temperature, 10kg is material extrusion load).

フッ素系樹脂としてはポリテトラフルオロエチレン樹脂(PTFE)やエチレン−ポリテトラフルオロエチレン共重合体(ETFE)等がある。一般にはフッ素を配合しているものは他の原料との接着性が悪いため、変性して接着性を高めている場合が多い。本発明は変性を行なわず、通常のフッ素系樹脂を使用することを特徴とする。   Examples of the fluorine-based resin include polytetrafluoroethylene resin (PTFE) and ethylene-polytetrafluoroethylene copolymer (ETFE). In general, those containing fluorine have poor adhesion to other raw materials, and are often modified to improve adhesion. The present invention is characterized in that a normal fluororesin is used without modification.

ポリエチレングリコール(PEG)とポリエチレンオキサイド(PEO)は構造が同じであるが、出発材料のエチレングリコールが脱水縮合して生成されるか、エチレンオキサイドが開環重合するかが本来の差であるが、一般的に分子量によって区別される。つまり、分子量が五万以下のものはPEG、五万以上のものはPEOとされる。本発明は、PEG又はPEOの分子量が1万以上であることを特徴とする。   Polyethylene glycol (PEG) and polyethylene oxide (PEO) have the same structure, but the original difference is whether the starting ethylene glycol is produced by dehydration condensation or ethylene oxide ring-opening polymerization. Generally distinguished by molecular weight. In other words, those with a molecular weight of 50,000 or less are PEG, and those with a molecular weight of 50,000 or more are PEO. The present invention is characterized in that the molecular weight of PEG or PEO is 10,000 or more.

樹脂洗浄剤に添加する無機物としてガラス繊維や炭酸カルシュウムがある。他にも、ウォラストナイトやガラスビーズ等でも同様の効果が得られる。ただし、使用する無機物はベース樹脂に対して十分に接着性を高めたものでなくてはならない。通常のガラス繊維の場合は表面改質剤等で繊維の表面を改善し、溶融樹脂に対して十分な接着性を示している。接着性が十分でない場合、洗浄時に無機物が装置の中に残留し易く、自己排出性が低下する。   Examples of inorganic substances added to the resin cleaner include glass fiber and calcium carbonate. In addition, the same effect can be obtained with wollastonite or glass beads. However, the inorganic substance to be used must have sufficiently improved adhesion to the base resin. In the case of ordinary glass fiber, the surface of the fiber is improved with a surface modifier or the like, and sufficient adhesion to the molten resin is exhibited. If the adhesiveness is not sufficient, the inorganic substance tends to remain in the apparatus during cleaning, and the self-discharge property is reduced.

本発明において、特に洗浄の確保と、自己排出性を高めた理由を下記に示す。   In the present invention, the reason why the cleaning is particularly ensured and the self-discharge property is enhanced will be described below.

洗浄剤において、そのベースとなる熱可塑性樹脂のメルトフレーレイトを1〜15g/10分(220℃・10kg)とする理由は、メルトフローレイトが低いほど成形機内での圧力が大きくなり、より汚れを落とすことが出来る。さらにメルトフローレイトを低くすると洗浄剤を押出機で混練、ペレット化する際、量産性が著しく低下する。よって、洗浄剤のベースとなる熱可塑性樹脂のメルトフローレイトは上記の適度な値を有する必要がある。   The reason for setting the melt rate of the thermoplastic resin as the base in the cleaning agent to 1 to 15 g / 10 min (220 ° C, 10 kg) is that the lower the melt flow rate, the greater the pressure in the molding machine and the more dirty Can be dropped. Further, when the melt flow rate is lowered, mass productivity is significantly lowered when the detergent is kneaded and pelletized with an extruder. Therefore, the melt flow rate of the thermoplastic resin which is the base of the cleaning agent needs to have the above-mentioned appropriate value.

熱可塑性樹脂100重量部に対して無機物を20〜120重量部とする理由は、洗浄効果と量産性を確保することにある。無機物が20重量部未満では成形機の内壁への除去能力が不足し、期待する洗浄効果の向上をしない。120重量部超えでは洗浄剤ペレットの製造において、その生産量の低下等の量産性が低くなるため、実用的ではない。   The reason why the inorganic substance is 20 to 120 parts by weight with respect to 100 parts by weight of the thermoplastic resin is to ensure a cleaning effect and mass productivity. If the inorganic substance is less than 20 parts by weight, the removal ability to the inner wall of the molding machine is insufficient, and the expected cleaning effect is not improved. If it exceeds 120 parts by weight, it is not practical because mass productivity such as a decrease in the production amount of the detergent pellets is reduced.

洗浄剤において、無機物と併せてフッ素系樹脂を用いる理由は、無機物が洗浄剤を構成する熱可塑性樹脂に強く接着してそれら全体で樹脂塊を形成するとき、フッ素系樹脂のフッ素に基づく高い溶融張力がこの樹脂塊の全体のまとまりを強化して該樹脂塊を成形機外へまとめて流出させることに寄与し、熱可塑性樹脂の置換性、即ち自己排出性を向上させるところにある。このとき、フッ素系樹脂は変性フッ素系樹脂ではなく、非変性フッ素系樹脂を使用する。これはフッ素系樹脂を変性したときの全体に占めるフッ素の割合が減少することを防ぎ、ひいてはその溶融張力の低下を回避するためである。フッ素系樹脂の含有量を0.3〜3重量部としたのは、0.3重量部未満では熱可塑性樹脂の自己排出性に寄与せず、3重量部を超えても熱可塑性樹脂の自己排出性が向上しないからである。   The reason why fluorine-based resins are used in combination with inorganic substances in cleaning agents is that when inorganic substances adhere strongly to the thermoplastic resin that constitutes the cleaning agent to form a resin mass as a whole, high melting based on fluorine of fluorine-based resins The tension strengthens the entire mass of the resin mass and contributes to the resin mass being collectively discharged out of the molding machine, thereby improving the replacement property of the thermoplastic resin, that is, the self-discharge property. At this time, the fluorine resin is not a modified fluorine resin but an unmodified fluorine resin. This is to prevent a decrease in the proportion of fluorine in the whole when the fluororesin is modified, and to avoid a decrease in its melt tension. The reason why the fluorine resin content is 0.3 to 3 parts by weight is that if it is less than 0.3 parts by weight, it does not contribute to the self-discharge property of the thermoplastic resin, and if it exceeds 3 parts by weight, the self-discharge property of the thermoplastic resin is improved. Because it does not.

洗浄剤に含有する無機物として、ガラス繊維又は炭酸カルシュウムを用いることができる。   As an inorganic substance contained in the cleaning agent, glass fiber or calcium carbonate can be used.

ガラス繊維は、収束剤によって表面処理されていて活性を有するとき、成形機内スクリュー等への付着性が弱くて好ましい。   When the glass fiber is surface-treated with a sizing agent and has activity, the glass fiber is preferable because it has low adhesion to a screw in the molding machine.

炭酸カルシュウムは、粒径が10μm以上、80μm以下であることが好ましい。洗浄剤において、炭酸カルシュウムの粒径が10μm以上、80μm以下とする理由は、一般の炭酸カルシュウム粉末の製造過程における粉砕方法において、上記の粒径が洗浄効果に適した起伏のある形態を構成し、かつ熱可塑性樹脂への添加が容易であるところにある。通常、炭酸カルシュウム粉末の製造方法は、鉱物を採掘した後、選鉱、粉砕する。このとき、長時間又は強力に粉砕するに従って、岩のような塊から、粒径は小さくなり、また形状も平滑化して球状へと粉砕されていく。成形機の洗浄の場合、球状より繊維状や板状等の起伏のある形状の無機物の方が洗浄効果は高い。即ち、製造方法にもよるが、粉砕して製造される炭酸カルシュウムは粒径が10μm以上になる非球形の方が洗浄効果は高くなる。但し80μmを超える粒径の場合、押出機の混練による分散が困難になり、生産量の低下等の量産性が低くなるため、実用的ではない。   The calcium carbonate preferably has a particle size of 10 μm or more and 80 μm or less. The reason why the particle size of calcium carbonate is 10 μm or more and 80 μm or less in the cleaning agent is that the above particle size constitutes a undulating form suitable for the cleaning effect in the pulverization method in the production process of general calcium carbonate powder. In addition, the addition to the thermoplastic resin is easy. In general, the calcium carbonate powder is manufactured by mining and then mineralizing and grinding. At this time, as the powder is pulverized for a long time or strongly, the particle size is reduced from the rock-like lump, and the shape is also smoothed and pulverized into a spherical shape. In the case of washing of the molding machine, the undulating inorganic material such as fiber or plate has a higher washing effect than the spherical shape. That is, although depending on the production method, the calcium carbonate produced by pulverization has a higher cleaning effect in the non-spherical shape having a particle size of 10 μm or more. However, when the particle diameter exceeds 80 μm, it is difficult to disperse by kneading in an extruder, and mass productivity such as a decrease in production volume is lowered, which is not practical.

但し、粒径10μm未満の炭酸カルシュウムは、粒子形状が球状になって活性を有するものになり、成形機内スクリュー等への付着性が弱くなる点では好ましい。   However, calcium carbonate having a particle size of less than 10 μm is preferable in that the particle shape becomes spherical and becomes active, and the adhesion to a screw or the like in the molding machine becomes weak.

洗浄剤において、PEG又はPEOを使用する理由は、熱可塑性樹脂の成形機内面への金属接着性を低減し、熱可塑性樹脂の離型性という自己排出性を向上するところにある。一般に熱可塑性樹脂はその平均分子量より低い分子量のものを添加すると溶融粘度は低くなり、その平均分子量より高い分子量のものを添加すると溶融粘度は高くなる。これは熱可塑性樹脂にPEG又はPEOを添加した場合も同様で、PEG又はPEOの分子量が1万以上であれば、熱可塑性樹脂は溶融粘度が同等以上になり、洗浄力が高くなり、分子量が低いと溶融粘度が下がり、洗浄力を低下させる。一方で、熱可塑性樹脂の溶融粘度が下がると、流動性が上がるため、自己排出性は向上する。このとき、熱可塑性樹脂がガラス繊維のように高い洗浄力を付加する無機物を併用する場合は、自己排出性向上を優先して分子量が比較的低く、熱可塑性樹脂の溶融粘度を低くするPEGを使用し、炭カルのように洗浄力が高くない無機物を併用する場合は、洗浄力向上を優先して分子量が比較的高く、熱可塑性樹脂の溶融粘度を高くするPEOを使用すると効果的となる。即ち、PEG又はPEOは熱可塑性樹脂に併用する無機物によって選択される。また、PEG又はPEOは、前の成形で使用した硬い成形材料を柔軟にし、前の成形で使用した成形材料を容易に押出し可能にし、洗浄性を向上する。PEG又はPEOの含有量を1〜5重量部としたのは、1重量部未満では熱可塑性樹脂の自己排出性に寄与せず、5重量部を超える量を含有させても熱可塑性樹脂の自己排出性が向上しないからである。   The reason for using PEG or PEO in the cleaning agent is to reduce the metal adhesion of the thermoplastic resin to the inner surface of the molding machine and to improve the self-discharge property of mold release of the thermoplastic resin. In general, when a thermoplastic resin having a molecular weight lower than the average molecular weight is added, the melt viscosity becomes low, and when a thermoplastic resin having a molecular weight higher than the average molecular weight is added, the melt viscosity becomes high. This is the same when PEG or PEO is added to the thermoplastic resin. If the molecular weight of PEG or PEO is 10,000 or more, the thermoplastic resin has the same or higher melt viscosity, the detergency is increased, and the molecular weight is increased. If it is low, the melt viscosity is lowered and the cleaning power is lowered. On the other hand, when the melt viscosity of the thermoplastic resin is lowered, the fluidity is increased, so that the self-discharge property is improved. At this time, when the thermoplastic resin is used in combination with an inorganic substance that adds high detergency, such as glass fiber, PEG that gives a relatively low molecular weight and lowers the melt viscosity of the thermoplastic resin is prioritized to improve self-discharge. When using an inorganic material that does not have a high detergency, such as charcoal cal, it is effective to use PEO that has a relatively high molecular weight and increases the melt viscosity of the thermoplastic resin in order to improve detergency. . That is, PEG or PEO is selected depending on the inorganic substance used in combination with the thermoplastic resin. PEG or PEO also softens the hard molding material used in the previous molding, makes it possible to easily extrude the molding material used in the previous molding, and improves the cleanability. The reason why the content of PEG or PEO is 1 to 5 parts by weight is that if it is less than 1 part by weight, it does not contribute to the self-discharge property of the thermoplastic resin. This is because the discharge performance is not improved.

AS樹脂はSAN-H(テクノポリマー社製)を使用した。低粘度AS樹脂には050SF(ダイセルポリマー社製)を使用した。PP樹脂にはMH4(日本ポリプロ社製)を使用した。ガラス繊維(GF)はECS304A(CPIC社製)を使用した。炭酸カルシュウム(CaCO3)はNN-200(平均粒径14.8μm:日東粉化工業社製)を使用した。小粒径炭酸カルシュウムにはSS-80(平均粒径2μm:日東粉化工業社製)を使用した。PEOにはアルコックスL-11(分子量110,000:明成化学工業社製)を使用した。PEGは20000P(分子量20,000:三洋化成社製)を使用した。低分子PEGは4000N(分子量3,000:三洋化成社製)を使用した。ETFEとしてR-88AX(旭硝子社製)を使用した。変性ETFEとしてA3000(三菱レイヨン社製)を使用した。PTFEとしてC-300(旭硝子社製)を使用した。表1のMFRは220℃・10kgの条件で、単位はg/10分のベース樹脂単体のメルトフローレイトの結果を示す。 As the AS resin, SAN-H (manufactured by Techno Polymer Co., Ltd.) was used. 050SF (manufactured by Daicel Polymer Co., Ltd.) was used as the low viscosity AS resin. MH4 (manufactured by Nippon Polypro) was used as the PP resin. As the glass fiber (GF), ECS304A (manufactured by CPIC) was used. As calcium carbonate (CaCO 3 ), NN-200 (average particle size 14.8 μm, manufactured by Nitto Flour Chemical Co., Ltd.) was used. SS-80 (average particle size: 2 μm, manufactured by Nitto Flour Chemical Co., Ltd.) was used as the small particle size calcium carbonate. Alcox L-11 (molecular weight 110,000: manufactured by Meisei Chemical Industry Co., Ltd.) was used for PEO. As the PEG, 20000P (molecular weight 20,000: manufactured by Sanyo Kasei Co., Ltd.) was used. The low molecular weight PEG used was 4000 N (molecular weight 3,000: manufactured by Sanyo Chemical Co., Ltd.). R-88AX (Asahi Glass Co., Ltd.) was used as ETFE. A3000 (manufactured by Mitsubishi Rayon Co., Ltd.) was used as a modified ETFE. C-300 (Asahi Glass Co., Ltd.) was used as PTFE. The MFR in Table 1 shows the result of the melt flow rate of the base resin alone at 220 ° C. and 10 kg, and the unit is g / 10 min.

表1に示す組成を二軸押出機にて溶融混練して、ペレット状の洗浄剤組成物を得た。これらの組成物を下記の方法で洗浄性能、自己排出性能の試験を行なった。   The composition shown in Table 1 was melt-kneaded with a twin-screw extruder to obtain a pellet-shaped cleaning composition. These compositions were tested for cleaning performance and self-discharge performance by the following methods.

試験機には射出成形機(CN-30 NIIGATA社製)を使用した。表1のシリンダ温度(220℃又は280℃)に設定し、表1のPP又はPC(ポリカーボネイト樹脂)の黒着色樹脂を成形機内に流す。この黒着色樹脂を5分間、成形機内に充満させた後、スクリューを回転させてその黒着色樹脂を成形機から流し出した。その後、成形機内に洗浄剤を流し、その洗浄剤に付く黒着色樹脂の色がなくなるまでに流した該洗浄剤の重量(単位:g)を量る。その重量を洗浄性能の指数とした。結果を表1に示す。   An injection molding machine (CN-30 NIIGATA) was used as a test machine. The cylinder temperature shown in Table 1 (220 ° C or 280 ° C) is set, and the black colored resin of PP or PC (polycarbonate resin) shown in Table 1 is allowed to flow into the molding machine. The black colored resin was filled in the molding machine for 5 minutes, and then the screw was rotated to discharge the black colored resin from the molding machine. Thereafter, the cleaning agent is poured into the molding machine, and the weight (unit: g) of the cleaning agent is measured until the color of the black colored resin attached to the cleaning agent disappears. The weight was used as an index of cleaning performance. The results are shown in Table 1.

自己排出性能に関して、上記の後、スクリューを回転させて余分な洗浄剤を流しだす。その後、表1のシリンダ温度(220℃)に設定し、表1のGPPS(汎用ポリスチレン樹脂)を流し、透明、かつ異物がなくなるまでに流した該洗浄剤の重量(単位:g)を量る。その重量を自己排出性能の指数とした。結果を表1に示す。   Regarding the self-discharge performance, after the above, the screw is rotated and excess cleaning agent is poured out. Thereafter, the cylinder temperature shown in Table 1 (220 ° C.) is set, the GPPS (general-purpose polystyrene resin) shown in Table 1 is passed, and the weight (unit: g) of the cleaning agent passed until the foreign substance disappears is clear. . The weight was used as an index of self-discharge performance. The results are shown in Table 1.

Figure 2015010174
Figure 2015010174

(実施例1)
洗浄剤として、メタルフローレイトが7g/10分のAS樹脂100重量部(ベース樹脂)と、収束剤によって表面処理されたGF 115重量部(無機物)と、分子量2万のPEG 2重量部(添加物)と、PTFE 1重量部(フッ素系樹脂)とを混練混合したものを用いた。
洗浄性能、自己排出性能とも良好であることを認めた。
Example 1
As cleaning agents, 100 parts by weight of AS resin (base resin) with 7 g / 10 min metal flow rate, 115 parts by weight of GF (inorganic) surface-treated with a sizing agent, and 2 parts by weight of PEG with a molecular weight of 20,000 (added) Product) and 1 part by weight of PTFE (fluorine resin) were kneaded and mixed.
It was confirmed that both the cleaning performance and the self-discharge performance were good.

(比較例1)
実施例1の洗浄剤に比して、PEGとPTFEを含有しないものを用いた。
自己排出性能の悪化を認めた。
(Comparative Example 1)
Compared with the cleaning agent of Example 1, one containing no PEG and PTFE was used.
Deterioration of self-discharge performance was observed.

(比較例2)
実施例1の洗浄剤に比して、フッ素系樹脂としてPTFEの代わりに変性ETFE 1重量部を含有するものを用いた。
自己排出性能の悪化を認めた。
(Comparative Example 2)
Compared with the cleaning agent of Example 1, a fluororesin containing 1 part by weight of modified ETFE instead of PTFE was used.
Deterioration of self-discharge performance was observed.

(比較例3)
実施例1の洗浄剤に比して、添加物してPEGの代わりに分子量3000の低分子PEG 2重量部を含有するものを用いた。
洗浄性能、自己排出性能の悪化を認めた。
(Comparative Example 3)
Compared with the cleaning agent of Example 1, an additive containing 2 parts by weight of low molecular weight PEG having a molecular weight of 3000 was used instead of PEG.
Deterioration of cleaning performance and self-discharge performance was observed.

(実施例2)
実施例1の洗浄剤に比して、無機物としてGFの代わりにCaCO3 37重量部を含有し、添加物としてPEGの代わりに分子量11万のPEO 3重量部を含有し、フッ素系樹脂としてPTFEの代わりにETFE 1重量部を含有するものを用いた。
洗浄性能、自己排出性能とも良好であることを認めた。
(Example 2)
Compared with the cleaning agent of Example 1, 37 parts by weight of CaCO 3 is used as an inorganic substance instead of GF, 3 parts by weight of PEO having a molecular weight of 110,000 is contained as an additive, and PTFE is used as a fluororesin. Instead of, one containing 1 part by weight of ETFE was used.
It was confirmed that both the cleaning performance and the self-discharge performance were good.

(実施例3)
実施例2の洗浄剤に比して、フッ素系樹脂としてETFEの代わりにPTFE 1重量部を含有するものを用いた。
洗浄性能、自己排出性能とも良好であることを認めた。
Example 3
As compared with the cleaning agent of Example 2, a fluororesin containing 1 part by weight of PTFE instead of ETFE was used.
It was confirmed that both the cleaning performance and the self-discharge performance were good.

(比較例4)
実施例2の洗浄剤に比して、PEOとETFEを含有しないものを用いた。
洗浄性能、自己排出性能の悪化を認めた。
(Comparative Example 4)
Compared with the cleaning agent of Example 2, the one not containing PEO and ETFE was used.
Deterioration of cleaning performance and self-discharge performance was observed.

(比較例5)
実施例2の洗浄剤に比して、AS樹脂のメタルフローレイトが32g/10分のものを用いた。
洗浄性能、自己排出性能の悪化を認めた。
(Comparative Example 5)
The AS resin metal flow rate was 32 g / 10 min as compared with the cleaning agent of Example 2.
Deterioration of cleaning performance and self-discharge performance was observed.

(比較例6)
実施例2の洗浄剤に比して、無機物としてCaCO3 の代わりに小粒径CaCO3 37重量部を含有するものを用いた。
洗浄性能、自己排出性能の悪化を認めた。
(Comparative Example 6)
Than the cleaning agent in Example 2, it was used which contain small particle size CaCO 3 37 parts by weight instead of CaCO 3 as inorganic.
Deterioration of cleaning performance and self-discharge performance was observed.

(実施例4)
洗浄剤として、メタルフローレイトが5g/10分のPP樹脂100重量部(ベース樹脂)と、CaCO3
76重量部(無機物)と、分子量11万のPEO 4重量部(添加物)と、PTFE 1重量部(フッ素系樹脂)とを混練混合したものを用いた。
洗浄性能、自己排出性能とも良好であることを認めた。
Example 4
100 parts by weight of PP resin (base resin) with a metal flow rate of 5 g / 10 min as a cleaning agent, and CaCO 3
A mixture obtained by kneading and mixing 76 parts by weight (inorganic substance), 4 parts by weight of PEO having a molecular weight of 110,000 (additive), and 1 part by weight of PTFE (fluorine resin) was used.
It was confirmed that both the cleaning performance and the self-discharge performance were good.

(実施例5)
実施例4の洗浄剤に比して、無機物としてCaCO3 37重量部を含有するものを用いた。
洗浄性能、自己排出性能とも良好であることを認めた。
(Example 5)
Compared with the cleaning agent of Example 4, an inorganic material containing 37 parts by weight of CaCO 3 was used.
It was confirmed that both the cleaning performance and the self-discharge performance were good.

(比較例7)
実施例4の洗浄剤に比して、無機物としてCaCO3 15重量部を含有するものを用いた。
洗浄性能の悪化を認めた。
(Comparative Example 7)
Compared with the cleaning agent of Example 4, an inorganic material containing 15 parts by weight of CaCO 3 was used.
Deterioration in cleaning performance was observed.

本発明は、成形機用洗浄剤において、熱可塑性樹脂100重量部に対し、無機物を20〜120重量部、フッ素系樹脂を0.3〜3重量部、PEG又はPEOを1〜5重量部含有するものとした。これにより、洗浄力を確保しつつ、自己排出性を高めることができる。   The present invention relates to a cleaning agent for a molding machine containing 20 to 120 parts by weight of an inorganic substance, 0.3 to 3 parts by weight of a fluororesin, and 1 to 5 parts by weight of PEG or PEO with respect to 100 parts by weight of a thermoplastic resin. It was. Thereby, self-discharge property can be improved, ensuring a cleaning power.

Claims (6)

熱可塑性樹脂100重量部に対し、無機物を20〜120重量部、フッ素系樹脂を0.3〜3重量部、PEG又はPEOを1〜5重量部含有することを特徴とする成形機用洗浄剤。   A cleaning agent for a molding machine comprising 20 to 120 parts by weight of an inorganic substance, 0.3 to 3 parts by weight of a fluororesin, and 1 to 5 parts by weight of PEG or PEO with respect to 100 parts by weight of a thermoplastic resin. 熱可塑性樹脂のメルトフローレイトが、1〜15g/10分(220℃・10kg)であることを特徴とする請求項1記載の成形機用洗浄剤。   2. The molding machine cleaning agent according to claim 1, wherein the thermoplastic resin has a melt flow rate of 1 to 15 g / 10 min (220 ° C. · 10 kg). 無機物がガラス繊維又は炭酸カルシュウムであることを特徴とする請求項1又は2に記載の成形機用洗浄剤。   The cleaning agent for a molding machine according to claim 1 or 2, wherein the inorganic substance is glass fiber or calcium carbonate. フッソ系樹脂がPTFE又はETFEであることを特徴とする請求項1〜3のいずれかに記載の成形機用洗浄剤。   The cleaning agent for a molding machine according to any one of claims 1 to 3, wherein the fluororesin is PTFE or ETFE. PEG又はPEOが分子量1万以上であることを特徴とする請求項1〜4のいずれかに記載の成形機用洗浄剤。   The cleaning agent for molding machines according to any one of claims 1 to 4, wherein PEG or PEO has a molecular weight of 10,000 or more. 炭酸カルシュウムの粒径が10μm以上、80μm以下であることを特徴とする請求項1〜5のいずれかに記載の成形機用洗浄剤。   The cleaning agent for a molding machine according to any one of claims 1 to 5, wherein the particle size of calcium carbonate is 10 µm or more and 80 µm or less.
JP2013137001A 2013-06-28 2013-06-28 Cleaning agent for molding machine Active JP5878892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013137001A JP5878892B2 (en) 2013-06-28 2013-06-28 Cleaning agent for molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013137001A JP5878892B2 (en) 2013-06-28 2013-06-28 Cleaning agent for molding machine

Publications (2)

Publication Number Publication Date
JP2015010174A true JP2015010174A (en) 2015-01-19
JP5878892B2 JP5878892B2 (en) 2016-03-08

Family

ID=52303627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013137001A Active JP5878892B2 (en) 2013-06-28 2013-06-28 Cleaning agent for molding machine

Country Status (1)

Country Link
JP (1) JP5878892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674723A (en) * 2015-12-26 2017-05-17 上海伟星新型建材有限公司 Cleaning agent for screw rod of plastic extruding machine or injection molding machine
CN110621468A (en) * 2017-07-06 2019-12-27 世纪株式会社 Cleaning agent composition and molding material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134770A (en) * 1992-10-23 1994-05-17 Mitsui Toatsu Chem Inc Resin composition for cleaning
JP2002020794A (en) * 2000-07-05 2002-01-23 Ube Cycon Ltd Cleaning agent for molding machine
JP2004107433A (en) * 2002-09-17 2004-04-08 Asahi Kasei Chemicals Corp Excellent cleaner composition
JP2006256236A (en) * 2005-03-18 2006-09-28 Nippon A & L Kk Resin composition for molding machine washing, and its use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134770A (en) * 1992-10-23 1994-05-17 Mitsui Toatsu Chem Inc Resin composition for cleaning
JP2002020794A (en) * 2000-07-05 2002-01-23 Ube Cycon Ltd Cleaning agent for molding machine
JP2004107433A (en) * 2002-09-17 2004-04-08 Asahi Kasei Chemicals Corp Excellent cleaner composition
JP2006256236A (en) * 2005-03-18 2006-09-28 Nippon A & L Kk Resin composition for molding machine washing, and its use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106674723A (en) * 2015-12-26 2017-05-17 上海伟星新型建材有限公司 Cleaning agent for screw rod of plastic extruding machine or injection molding machine
CN106674723B (en) * 2015-12-26 2019-08-23 上海伟星新型建材有限公司 A kind of plastic extruder or screw in injection molding machine cleaning agent
CN110621468A (en) * 2017-07-06 2019-12-27 世纪株式会社 Cleaning agent composition and molding material
KR20200027914A (en) * 2017-07-06 2020-03-13 세이키 코포레이션 Cleanser composition and molding raw material
EP3650193A4 (en) * 2017-07-06 2021-03-17 Seiki Corporation Cleaning agent composition, and molding raw material
CN110621468B (en) * 2017-07-06 2022-04-29 世纪株式会社 Cleaning agent composition and molding material
KR102422671B1 (en) 2017-07-06 2022-07-20 세이키 코포레이션 Detergent composition and molding raw material
US11633880B2 (en) 2017-07-06 2023-04-25 Seiki Corporation Cleaning agent composition and molding raw material

Also Published As

Publication number Publication date
JP5878892B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
KR101140190B1 (en) Purging agent and process for purging a resin molding machine with the same
JP4919513B2 (en) Detergent composition for molding machine
JP5878892B2 (en) Cleaning agent for molding machine
JP4917566B2 (en) Resin composition for cleaning plastic molding machines
CN102241854A (en) Foamed plastic sheet material prepared from waste and old polypropylene and rubber, and preparation method thereof
JP4101596B2 (en) Excellent cleaning composition
JP2011246609A (en) Detergent
JP4504699B2 (en) Cleaning agent for molding machine
JP6710774B2 (en) Cleaning agent and cleaning method for resin processing machine
JP7175958B2 (en) Screw removal aid
JP5789532B2 (en) Granular cleaning agent, manufacturing method thereof, and molding machine cleaning method
JP2015189863A (en) resin composition and cleaning method using the same
JP6476336B1 (en) Cleaning resin composition
CN111440677B (en) Cleaning agent composition for resin molding processing machinery
JP2018144458A (en) Resin composition for cleaning molding machine and extruder
JP2021036036A (en) Cleaning agent for resin mold process machine, and method of cleaning resin mold process machine
JP2017080928A (en) Purge material
JP5451416B2 (en) Cleaning agent for molding machine
JP7425881B2 (en) Cleaning agent for resin processing machinery
JP2005219398A (en) Cleaning agent for molding machine
CN106675079A (en) Manufacturing method for environment-friendly plastic particle
JP4076167B2 (en) Cleaning composition and method for cleaning thermoplastic resin processing apparatus
JP6613384B2 (en) Molding machine cleaner
JP5530076B2 (en) Cleaning resin composition
JP2011136467A (en) Purge material for plastic molding machine and purge method of plastic molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160129

R150 Certificate of patent or registration of utility model

Ref document number: 5878892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250