JP2015010038A - Antimicrobial agent - Google Patents

Antimicrobial agent Download PDF

Info

Publication number
JP2015010038A
JP2015010038A JP2013134151A JP2013134151A JP2015010038A JP 2015010038 A JP2015010038 A JP 2015010038A JP 2013134151 A JP2013134151 A JP 2013134151A JP 2013134151 A JP2013134151 A JP 2013134151A JP 2015010038 A JP2015010038 A JP 2015010038A
Authority
JP
Japan
Prior art keywords
rosemary
clove
magnesium oxide
antibacterial
antibacterial agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013134151A
Other languages
Japanese (ja)
Other versions
JP5952783B2 (en
Inventor
野田 博行
Hiroyuki Noda
博行 野田
幸太郎 栗田
Kotaro Kurita
幸太郎 栗田
幸秀 栗田
Yukihide Kurita
幸秀 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WAHCOM NOGYO KENKYUSHO KK
Original Assignee
WAHCOM NOGYO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WAHCOM NOGYO KENKYUSHO KK filed Critical WAHCOM NOGYO KENKYUSHO KK
Priority to JP2013134151A priority Critical patent/JP5952783B2/en
Publication of JP2015010038A publication Critical patent/JP2015010038A/en
Application granted granted Critical
Publication of JP5952783B2 publication Critical patent/JP5952783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antimicrobial agent which can be produced safely and inexpensively.SOLUTION: There is provided an antimicrobial agent containing magnesium oxide and at least one of clove and rosemary. There can be obtained a high antibacterial effect by an antibacterial effect due to hydrogen peroxide generated by the reaction between polyphenols contained in clove or rosemary and magnesium oxide, an antibacterial effect due to magnesium oxide and a synergistic effect of an antibacterial effect due to clove or rosemary itself.

Description

本発明は、安全で安価に製造することができる抗菌剤に関する。   The present invention relates to an antibacterial agent that can be produced safely and inexpensively.

農業現場における化学合成農薬の使用は、環境汚染や人的被害、土壌への残留などの社会問題を引き起こしており、これらの問題の解決は、安全な農作物生産を行う上で重要である。植物には、抗菌活性成分を含むものが数多く存在することから、これまで比較的安全性の高い植物を抗菌剤として活用する研究が数多く報告されている(例えば、非特許文献1参照)。しかし、植物由来成分を既存の化学合成抗菌剤と比較すると、抗菌効果が低く、多量に散布する必要があるという課題がある。   The use of chemically synthesized pesticides in the agricultural field has caused social problems such as environmental pollution, human damage, and residue on the soil, and solving these problems is important for safe crop production. Many plants contain antibacterial active ingredients, and so far, many studies have been reported on the use of relatively safe plants as antibacterial agents (see, for example, Non-Patent Document 1). However, when plant-derived components are compared with existing chemical synthetic antibacterial agents, there is a problem that the antibacterial effect is low and it is necessary to spray a large amount.

また、インフルエンザウィルスやメチシリン耐性黄色ブドウ球菌、ヘリコバクターピロリ菌などに対して、抗生物質と植物由来成分を混合して投与することで、抗ウイルス作用や抗菌作用を相乗的に増幅させる研究も報告されている。(例えば、非特許文献2参照)。しかし、化学物質と植物由来成分を混合することは、薬剤の毒性に起因する問題が生じることから、有機農業分野での使用は難しい。   Research has also been reported on synergistic amplification of antiviral and antibacterial effects by administering antibiotics and plant-derived components to influenza viruses, methicillin-resistant Staphylococcus aureus, and Helicobacter pylori. ing. (For example, refer nonpatent literature 2). However, mixing chemical substances and plant-derived components causes problems due to the toxicity of the drug, so that it is difficult to use in the organic agriculture field.

Iwasawa,A.,Niwano,Y.,Mokudai.T.,and Kohno,M.(2009),「Antiviral activity of proanthocyanidin against feline calicivirus used as a surrogate for noroviruses, and coxsackievirus used as a representative enteric virus.」 Biocontrol Science,Vol.14,No.3,107−111.Iwasawa, A .; Niwano, Y .; , Mokudai. T. T. et al. , And Kohno, M .; (2009), "Antivital activity of proanthocyanidin against feline calivirius used as a surrogate for noirvirus, and coxsavirevirus. 14, no. 3, 107-111. Wagner,H.,and Ulrich−Merzenich,G.(2009).Synergy research:「Approaching a new generation of phytopharmaceuticals.」 Phytomedicine, Vol.16,No.2−3,97−110.Wagner, H.C. , And Ulrich-Merzenich, G .; (2009). Synergy research: “Approaching a new generation of phytopharmaceuticals.” Phytomedicine, Vol. 16, no. 2-3, 97-110.

本発明は、このような問題に基づきなされたものであり、安全で安価に製造することができる抗菌剤を提供することにある。   This invention is made | formed based on such a problem, and is providing the antibacterial agent which can be manufactured safely and cheaply.

本発明の抗菌剤は、クローブ及びローズマリーのうちの少なくとも1種と、酸化マグネシウムとを含むものである。   The antibacterial agent of the present invention contains at least one of clove and rosemary and magnesium oxide.

本発明の抗菌剤によれば、クローブ及びローズマリーのうちの少なくとも1種と、酸化マグネシウムとを含んでいるので、抗菌効果を増幅することができ、高い抗菌効果を得ることができる。また、植物組織を用いているので、人体への刺激が少なく、河川に排出されても危険が少なく、安全性を高くすることができると共に、安価に製造することができる。更に、この抗菌剤の使用時には過酸化水素が生成するが、使用量が少なくても高い抗菌効果を得ることができるので、毒性が低く、かつ、生成した過酸化水素は遷移金属イオンや微生物が保有する酵素等により徐々に分解されるので、高い安全性を得ることができる。よって、農業にも用いることができる。   According to the antibacterial agent of the present invention, since it contains at least one of clove and rosemary and magnesium oxide, the antibacterial effect can be amplified and a high antibacterial effect can be obtained. In addition, since plant tissue is used, there is little irritation to the human body, there is little danger even if it is discharged into the river, safety can be increased, and it can be manufactured at low cost. Furthermore, hydrogen peroxide is generated when this antibacterial agent is used, but since a high antibacterial effect can be obtained even if the amount used is small, the toxicity is low, and the generated hydrogen peroxide is produced by transition metal ions and microorganisms. Since it is gradually decomposed by the enzyme etc. which it has, high safety can be obtained. Therefore, it can be used for agriculture.

本実施例のクローブ又はローズマリーを用いた抗菌剤の効果を表す図である。It is a figure showing the effect of the antibacterial agent using the clove or rosemary of a present Example. 本実施例のクローブ又はローズマリーを用いた抗菌剤に浸種処理したいもち病菌汚染種子の種子発芽率を表す図である。It is a figure showing the seed germination rate of the blast fungus-contaminated seed to be seeded in an antibacterial agent using clove or rosemary of the present example. 本実施例のクローブ又はローズマリーを用いた抗菌剤に浸種処理したいもち病菌汚染種子の苗いもち発病率を表す図である。It is a figure showing the seedling blast onset rate of the blast fungus contaminated seed which is seeded in the antibacterial agent using the clove or rosemary of the present Example.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本実施の形態に係る抗菌剤は、クローブ及びローズマリーのうちの少なくとも1種と、酸化マグネシウムとを含んでいる。クローブとしては、例えば、枝、葉、花蕾、クローブオイル、又は、抽出物を用いることができる。また、ローズマリーとしては、例えば、葉、茎、又は、抽出物を用いることができる。枝、葉、花蕾、又は、茎等は、例えば、粉末にしたものをそのまま用いることができるので好ましい。抽出物の場合、抽出する際に用いる溶媒は特に限定されないが、親水性溶媒を用いることが好ましく、中でもエタノールを用いることが好ましい。   The antibacterial agent according to the present embodiment includes at least one of clove and rosemary and magnesium oxide. As a clove, for example, a branch, a leaf, a flower bud, a clove oil, or an extract can be used. Moreover, as rosemary, a leaf, a stem, or an extract can be used, for example. Branches, leaves, florets, stems, and the like are preferable because, for example, powdered ones can be used as they are. In the case of an extract, the solvent used for extraction is not particularly limited, but a hydrophilic solvent is preferably used, and ethanol is particularly preferable.

酸化マグネシウムは、抗菌作用を増強するための塩基触媒である。この抗菌剤の作用機構は、例えば、以下のように考えられる。なお、この理論に拘泥するものではない。まず、クローブ又はローズマリーに含まれるポリフェノール化合物等の成分が、酸化マグネシウムの存在下で、容易に酸素を還元する。酸素が還元されて生成するスーパーオキサイドイオン(O )は不均化して過酸化水素を発生する。生成した過酸化水素は細菌の細胞膜を通過して細胞質内の微量金属と反応することにより、殺菌効果を示すヒロキシルラジカル(・OH)を発生する。また同時に、酸化マグネシウムによる抗菌効果と、クローブ又はローズマリー自身による抗菌効果も付加される。そのため、この抗菌剤によれば、発生する過酸化水素量は従来の抗菌剤に比べて低濃度であるにもかかわらず、強い抗菌効果を示す。また、この抗菌剤を用いた場合には、水分があれば使用後3日から5日程度、乾燥すると数時間程度は過酸化水素が蓄積して菌を死滅させる作用を示すが、その後は遷移金属イオンや微生物が保有する酵素等により除々に分解されて水と酸素になる。このため、この抗菌剤を使用しても、使用量が少なくてよく、かつ、過酸化水素が長時間蓄積することがないため安全性が高い。 Magnesium oxide is a base catalyst for enhancing antibacterial action. The action mechanism of this antibacterial agent is considered as follows, for example. It is not bound by this theory. First, components such as polyphenol compounds contained in clove or rosemary easily reduce oxygen in the presence of magnesium oxide. Superoxide ions (O 2 ) generated by reduction of oxygen disproportionate to generate hydrogen peroxide. The generated hydrogen peroxide passes through the bacterial cell membrane and reacts with trace metals in the cytoplasm, thereby generating a hydroxyl radical (.OH) showing a bactericidal effect. At the same time, the antibacterial effect of magnesium oxide and the antibacterial effect of clove or rosemary itself are added. Therefore, according to this antibacterial agent, although the amount of hydrogen peroxide generated is lower than that of conventional antibacterial agents, it exhibits a strong antibacterial effect. In addition, when this antibacterial agent is used, if there is moisture, it will act for 3 to 5 days after use, and for several hours after drying, hydrogen peroxide will accumulate and kill the bacteria. It is gradually decomposed into metal and water by the metal ions and enzymes held by microorganisms. For this reason, even if this antibacterial agent is used, the amount used may be small, and hydrogen peroxide does not accumulate for a long time, so that safety is high.

この抗菌剤の製造方法は特に制限されない。当業者に公知の方法のいずれかを用いて得られたクローブあるいはローズマリーの粉末、オイル、又は、抽出物と、酸化マグネシウムとを混合することにより、容易に抗菌剤を製造することができる。特に、クローブあるいはローズマリーの粉末を用いるようにすれば、成分を抽出する必要がなく、安価に製造することができるので好ましい。   The method for producing this antibacterial agent is not particularly limited. An antibacterial agent can be easily produced by mixing magnesium oxide with a clove or rosemary powder, oil or extract obtained using any method known to those skilled in the art. In particular, it is preferable to use clove or rosemary powder because it is not necessary to extract components and can be manufactured at low cost.

このように、本実施の形態によれば、クローブ及びローズマリーのうちの少なくとも1種と、酸化マグネシウムとを含んでいるので、抗菌効果を増幅することができ、高い抗菌効果を得ることができる。また、植物組織を用いているので、人体への刺激が少なく、河川に排出されても危険が少なく、安全性を高くすることができると共に、安価に製造することができる。更に、この抗菌剤の使用時には過酸化水素が生成するが、使用量が少なくても高い抗菌効果を得ることができるので、毒性が低く、かつ、生成した過酸化水素は遷移金属イオンや微生物が保有する酵素等により徐々に分解されるので、高い安全性を得ることができる。よって、農業にも用いることができる。   Thus, according to this embodiment, since at least one of clove and rosemary and magnesium oxide are contained, the antibacterial effect can be amplified and a high antibacterial effect can be obtained. . In addition, since plant tissue is used, there is little irritation to the human body, there is little danger even if it is discharged into the river, safety can be increased, and it can be manufactured at low cost. Furthermore, hydrogen peroxide is generated when this antibacterial agent is used, but since a high antibacterial effect can be obtained even if the amount used is small, the toxicity is low, and the generated hydrogen peroxide is produced by transition metal ions and microorganisms. Since it is gradually decomposed by the enzyme etc. which it has, high safety can be obtained. Therefore, it can be used for agriculture.

(実施例1−1,1−2)
まず、抗菌剤として、実施例1−1では、クローブの花蕾を乾燥させて粉砕した粉末200mgと、酸化マグネシウム50mgとを混合したものを用意し、実施例1−2では、ローズマリーの葉及び茎を乾燥させて粉砕した粉末200mgと、酸化マグネシウム50mgとを混合したものを用意した。次いで、大気中の細菌、微生物等を内容量約6リットルのデシケータ内に閉じ込め、シャーレにポリペプトン(タンパク質)1%溶液100cmを栄養源として繁殖させた。続いて、シャーレに、用意した実施例1−1又は実施例1−2の抗菌剤をそれぞれ個別に添加した。そののち、デシケータ内において、細菌、微生物等がポリペクトンを酵素等の働きにより分解する際に発生する二酸化炭素の量をガステックを用いて測定した。二酸化炭素の増加は細菌、微生物の増加を意味している。
(Examples 1-1 and 1-2)
First, as an antibacterial agent, in Example 1-1, a mixture of 200 mg of powder obtained by drying and crushing clove florets and 50 mg of magnesium oxide was prepared. In Example 1-2, leaves of rosemary and A mixture of 200 mg of powder obtained by drying and pulverizing the stem and 50 mg of magnesium oxide was prepared. Next, bacteria, microorganisms and the like in the atmosphere were confined in a desiccator having an internal volume of about 6 liters, and the petri dish was propagated using 100 cm 3 of a 1% solution of polypeptone (protein) as a nutrient source. Subsequently, the prepared antimicrobial agents of Example 1-1 or Example 1-2 were individually added to the petri dish. Thereafter, the amount of carbon dioxide generated when bacteria, microorganisms, etc. decompose polypectone by the action of an enzyme or the like in a desiccator was measured using a gas tech. An increase in carbon dioxide means an increase in bacteria and microorganisms.

(比較例1−1)
抗菌剤を添加しなかったことを除き、他は実施例1−1,1−2と同様にしてデシケータ内の二酸化炭素の量を測定した。
(Comparative Example 1-1)
The amount of carbon dioxide in the desiccator was measured in the same manner as in Examples 1-1 and 1-2 except that the antibacterial agent was not added.

(比較例1−2)
抗菌剤として、タイムの葉、茎及び花を乾燥させて粉砕した粉末200mgと、酸化マグネシウム50mgとを混合したものを添加したことを除き、他は実施例1−1,1−2と同様にしてデシケータ内の二酸化炭素の量を測定した。
(Comparative Example 1-2)
As the antibacterial agent, except that a mixture of 200 mg of powder obtained by drying and crushing leaves, stems and flowers of thyme and 50 mg of magnesium oxide was added, the same as in Examples 1-1 and 1-2. The amount of carbon dioxide in the desiccator was measured.

(比較例1−3)
抗菌剤として、セージの葉及び茎を乾燥させて粉砕した粉末200mgと、酸化マグネシウム50mgとを混合したものを添加したことを除き、他は実施例1−1,1−2と同様にしてデシケータ内の二酸化炭素の量を測定した。
(Comparative Example 1-3)
The desiccator was the same as in Examples 1-1 and 1-2 except that 200 mg of a powder obtained by drying and grinding sage leaves and stems and 50 mg of magnesium oxide were added as an antibacterial agent. The amount of carbon dioxide inside was measured.

(結果)
実施例1−1,1−2及び比較例1−2,1−3の結果を図1に示す。図1に示したように、実施例1−1,1−2によれば、70時間を過ぎても二酸化炭素は増加しなかった。これに対して、図1には示していないが、抗菌剤を添加しなかった比較例1−1では、20時間を経過するまでは二酸化炭素の増加量は徐々であったが、20時間を経過したあたりから急激な増加が見られた。また、タイムを添加した比較例1−2、及び、セージを添加した比較例1−3では、50時間あたりから二酸化炭素の急激な増加が見られた。すなわち、クローブ及びローズマリーのうちの少なくとも1種と、酸化マグネシウムとを混合して抗菌剤として用いるようにすれば、高い抗菌効果を得られることが分かった。
(result)
The results of Examples 1-1 and 1-2 and Comparative Examples 1-2 and 1-3 are shown in FIG. As shown in FIG. 1, according to Examples 1-1 and 1-2, carbon dioxide did not increase after 70 hours. On the other hand, although not shown in FIG. 1, in Comparative Example 1-1 in which the antibacterial agent was not added, the amount of increase in carbon dioxide was gradual until 20 hours passed. There was a sharp increase from around the time. Moreover, in Comparative Example 1-2 to which thyme was added and Comparative Example 1-3 to which sage was added, a sharp increase in carbon dioxide was observed from around 50 hours. That is, it has been found that a high antibacterial effect can be obtained if at least one of clove and rosemary and magnesium oxide are mixed and used as an antibacterial agent.

なお、ローズマリー、タイム、及び、セージは、同じシソ科ハーブ類に属するが、抗菌性に大きな差が見られた。この要因の一つとして、これらに含まれる成分と含有量の違いが考えられる。クローブ、ローズマリー、タイム、及び、セージの成分をそれぞれ抽出し、それらの抽出液について、高速液体クロマトグラフシステムにより成分分析を行った。その結果、クローブには、主成分としてオイゲノールが検出され、他に複数のポリフェノールの存在が確認された。また、ローズマリー、タイム、及び、セージには、多くのポリフェノールの存在が確認されたが、中でも、タイム及びセージに比べて、ローズマリーでは、ロズマリン酸が高濃度に検出された。   Note that rosemary, thyme, and sage belong to the same Labiatae herb, but there was a large difference in antibacterial properties. As one of the factors, the difference between the components and the contents contained in these can be considered. Clove, rosemary, thyme, and sage components were extracted, and component analysis was performed on these extracts using a high-performance liquid chromatograph system. As a result, eugenol was detected as the main component in the clove, and the presence of a plurality of other polyphenols was confirmed. Moreover, although the presence of many polyphenols was confirmed in rosemary, thyme, and sage, among them, rosmarinic acid was detected at a higher concentration in rosemary than in thyme and sage.

オイゲノール、並びに、代表的なポリフェノールであるロズマリン酸、没食子酸、没食子酸エピガロカテキン、及び、クロロゲン酸について、実施例1−1,1−2と同様にしてデシケータ内の二酸化炭素の量を測定した。その際、これらの添加量はいずれも0.1mMとした。その結果、ロズマリン酸が最も抗菌効果が高く、次いで、クロロゲン酸、没食子酸、没食子酸エピガロカテキンの順であった。また、オイゲノールには抗菌効果が見られなかった。すなわち、ローズマリーにおける高い抗菌効果は、ロズマリン酸が関係しているものと考えられる。また、クローブにおける高い抗菌効果は、酸化マグネシウム共存下でポリフェノール類と反応して生成する過酸化水素と、オイゲノールが相乗的に作用しているものと考えられる。   For eugenol and representative polyphenols rosmarinic acid, gallic acid, epigallocatechin gallate and chlorogenic acid, the amount of carbon dioxide in the desiccator was measured in the same manner as in Examples 1-1 and 1-2. did. At that time, these addition amounts were all 0.1 mM. As a result, rosmarinic acid had the highest antibacterial effect, followed by chlorogenic acid, gallic acid, and epigallocatechin gallate in this order. In addition, eugenol had no antibacterial effect. That is, the high antibacterial effect in rosemary is considered to be related to rosmarinic acid. In addition, the high antibacterial effect of cloves is considered to be due to the synergistic action of hydrogen peroxide produced by reaction with polyphenols in the presence of magnesium oxide and eugenol.

(実施例2−1,2−2)
実施例1−1,1−2の抗菌剤について、イネいもち病に対する種子消毒効果を調べた。供試植物はイネの栽培品種「はえぬき」を使用した。用いたイネの種子は、前年度いもち病菌を噴霧接種して作成したいもち病菌汚染種子である。実施例1−1,1−2の抗菌剤50mgと、脱塩水100mlとをそれぞれ混合し、個別にシャーレに入れて、そこにいもち病菌汚染種子を加え、25℃暗黒条件下で48時間浸種処理を行った。なお、抗菌剤は、実施例2−1では、クローブの粉末400mgと、酸化マグネシウム50mgとを混合したものを用い、実施例2−2では、ローズマリーの粉末400mgと、酸化マグネシウム50mgとを混合したものを用いた。
(Examples 2-1 and 2-2)
About the antimicrobial agent of Examples 1-1 and 1-2, the seed disinfection effect with respect to rice blast was investigated. The plant cultivar “Haenuki” was used as the test plant. The rice seeds used were blast fungus-contaminated seeds prepared by spray-inoculating blast fungus in the previous year. 50 mg of the antibacterial agent of Examples 1-1 and 1-2 and 100 ml of demineralized water were mixed, put individually in a petri dish, added with blast fungus-contaminated seeds, and soaked in a dark condition at 25 ° C. for 48 hours. Went. In Example 2-1, the antibacterial agent used was a mixture of 400 mg of clove powder and 50 mg of magnesium oxide. In Example 2-2, 400 mg of rosemary powder and 50 mg of magnesium oxide were mixed. What was done was used.

そののち、抗菌剤に浸種処理したいもち病菌汚染種子をイネのシードリングケースに粒播種し(1200粒)、ガラス室で育苗した。出芽期に一旦接種箱に移し、24時間保持した後、ガラス室に戻して育苗し、4週間目に発病調査を行った。種子消毒効果の調査項目は、種子発芽率と苗いもち発病率である。種子発芽率は、用いた汚染種子数を予め揃えておき、種子発芽率=(発芽苗数)/(播種種子数)を求めた。また、苗いもち発病率は、発芽苗が黄化、立枯病状を示したものを苗いもちと診断し、苗いもち発病率=(発病苗数)/(発芽苗数800〜900)×100とした。   After that, the blast fungus-contaminated seeds to be soaked in the antibacterial agent were sown in a seedling case of rice (1200 grains) and grown in a glass chamber. At the time of emergence, it was once transferred to an inoculation box and kept for 24 hours, and then returned to the glass room to grow seedlings. The survey items of the seed disinfection effect are seed germination rate and seedling blast disease rate. For the seed germination rate, the number of contaminated seeds used was prepared in advance, and seed germination rate = (number of germinated seedlings) / (number of seeded seeds) was determined. In addition, the seedling blast incidence rate was determined by diagnosing a seedling having a yellowing and withering disease state as a seedling blast, and the seedling blast incidence rate = (number of diseased seedlings) / (number of germinated seedlings 800-900) × 100. did.

(比較例2−1)
抗菌剤を添加しなかったことを除き、すなわち、脱塩水にいもち病菌汚染種子を浸種処理したことを除き、他は実施例2−1,2−2と同様にして種子発芽率と苗いもち発病率を調べた。
(Comparative Example 2-1)
Except that the antibacterial agent was not added, that is, except that the seeds contaminated with blast fungus were seeded in demineralized water, the seed germination rate and seedling blast were the same as in Examples 2-1 and 2-2. The rate was examined.

種子発芽率の結果を図2に、苗いもち発病率の結果を図3にそれぞれ示す。図2に示したように、種子発芽率については、実施例2−1,2−2と比較例2−1とで差がなかった。しかし、図3に示したように、苗いもち発病率については、実施例2−1、2−2共に、比較例2−1よりも低かった。これは、実施例2−1,2−2の抗菌剤が、発芽直後の種子へのいもち病菌の伸展や侵入を抑制する、いわゆる静菌効果を持つものと解釈される。この効果は、クローブ又はローズマリーと、酸化マグネシウムと、過酸化水素の3つの相乗的作用によるものであると考えられる。すなわち、クローブ及びローズマリーのうちの少なくとも1種と、酸化マグネシウムとを混合して抗菌剤として用いるようにすれば、いもち病に対して発病を抑制することができ、農業に有効に用いることができることが分かった。   The result of the seed germination rate is shown in FIG. 2, and the result of the seedling blast rate is shown in FIG. As shown in FIG. 2, the seed germination rate was not different between Examples 2-1 and 2-2 and Comparative Example 2-1. However, as shown in FIG. 3, the incidence of seedling blast was lower in both Examples 2-1 and 2-2 than in Comparative Example 2-1. This is interpreted that the antibacterial agents of Examples 2-1 and 2-2 have a so-called bacteriostatic effect that suppresses the spread and invasion of blast fungus into seeds immediately after germination. This effect is believed to be due to three synergistic actions of clove or rosemary, magnesium oxide and hydrogen peroxide. That is, if at least one of clove and rosemary and magnesium oxide are mixed and used as an antibacterial agent, the onset of rice blast can be suppressed and it can be used effectively in agriculture. I understood that I could do it.

以上、実施の形態及び実施例を挙げて本発明を説明したが、本発明は上記実施の形態及び実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態及び実施例では、抗菌剤の量を具体的に示して説明したが、種類及び用途に応じて適宜決定することができる。また、本発明の抗菌剤は、上述した成分以外に、溶解補助剤などの他の成分を含んでいてもよい。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, in the said embodiment and Example, although the quantity of the antibacterial agent was shown concretely and demonstrated, it can determine suitably according to a kind and a use. Moreover, the antimicrobial agent of this invention may contain other components, such as a solubilizing agent, in addition to the component mentioned above.

農作物等の抗菌に用いることができる。   It can be used for antibacterial purposes such as crops.

Claims (2)

クローブ及びローズマリーのうちの少なくとも1種と、酸化マグネシウムとを含むことを特徴とする抗菌剤。   An antibacterial agent comprising at least one of clove and rosemary and magnesium oxide. 農業に用いることを特徴とする請求項1記載の抗菌剤。   The antibacterial agent according to claim 1, which is used in agriculture.
JP2013134151A 2013-06-26 2013-06-26 Antibacterial agent Active JP5952783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134151A JP5952783B2 (en) 2013-06-26 2013-06-26 Antibacterial agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134151A JP5952783B2 (en) 2013-06-26 2013-06-26 Antibacterial agent

Publications (2)

Publication Number Publication Date
JP2015010038A true JP2015010038A (en) 2015-01-19
JP5952783B2 JP5952783B2 (en) 2016-07-13

Family

ID=52303507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134151A Active JP5952783B2 (en) 2013-06-26 2013-06-26 Antibacterial agent

Country Status (1)

Country Link
JP (1) JP5952783B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285071A (en) * 1996-01-12 2004-10-14 Procter & Gamble Co Disinfecting compositions and processes for disinfecting surfaces
JP2007530642A (en) * 2004-03-29 2007-11-01 ハイテク バイオ−アクティヴィティーイズ ホールディング ゲーエムベーハー Disinfecting composition having sterilizing, antifungal and virucidal effects simultaneously, and method for producing and using the composition
JP2013144673A (en) * 2011-12-14 2013-07-25 Wahcom Nogyo Kenkyusho:Kk Antimicrobial agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004285071A (en) * 1996-01-12 2004-10-14 Procter & Gamble Co Disinfecting compositions and processes for disinfecting surfaces
JP2007530642A (en) * 2004-03-29 2007-11-01 ハイテク バイオ−アクティヴィティーイズ ホールディング ゲーエムベーハー Disinfecting composition having sterilizing, antifungal and virucidal effects simultaneously, and method for producing and using the composition
JP2013144673A (en) * 2011-12-14 2013-07-25 Wahcom Nogyo Kenkyusho:Kk Antimicrobial agent

Also Published As

Publication number Publication date
JP5952783B2 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
Guedes et al. Hypericum sp.: essential oil composition and biological activities
Caser et al. Activity of Ailanthus altissima (Mill.) swingle extract as a potential bioherbicide for sustainable weed management in horticulture
ES2926368T3 (en) Use of hydroxyapatite as a carrier of bioactive substances to treat vascular diseases in plants
CN103239745B (en) Compound air cleaning agent and preparing method and application thereof
Huang et al. Impact of decomposing Cinnamomum septentrionale leaf litter on the growth of Eucalyptus grandis saplings
Simonetti et al. In vitro antimicrobial activity of plant extracts against Pseudomonas syringae pv. actinidiae causal agent of bacterial canker in kiwifruit
CN102835402A (en) Bactericidal composition containing benziothiazolinone and chitosan oligosaccharide
CN105230617B (en) Applications of linoleoylethanolamine in improvement of gray mold resistance and bacterial leaf spot resistance of plants
Vignesh et al. An effective bio-inspired synthesis of palladium nanoparticles using Crateva religiosa G. Forst. leaf extract: a multi-functional approach for environmental and biomedical applications
JP5952783B2 (en) Antibacterial agent
Rivai et al. Screening of Antimicrobial and Cytotoxic Activities of Endophytic Fungi Isolated from Mangrove Plant Rhizophora mucronata Lam. Int
CN103548849B (en) Synergistic compound biological bactericide and application thereof
CN113749130B (en) Sugarcane organism seed stem coating agent and preparation method thereof
CN103155934A (en) Pseudo-ginseng (seedling) seed-dressing agent and use method thereof
Khatun et al. Insecticidal activity of Acacia catechu bark extract against four stored product pests
Nadeem et al. Novel development of nutritive, enhanced bioactivities, antioxidant, antimicrobial, antiparasitic, DNA protection and new insights
Yeh et al. Antibacterial and antibiofilm effects of Camellia oleifera seed dreg extract and its application in cosmetics
BAMAL et al. Exploring the medicinal potential of in vitro cultures for enhanced production of metabolite empowered by green silver nanoparticles in Alhagi maurorum Medik
Francis Antifungal activity of selected pesticidal plants against phaeoisariopsis personata and phytochemical analysis, central Tanzania
CN107788021A (en) A kind of biological pesticide
JP2019031462A (en) Growth assistant for seeding
Mırzapour et al. Evaluation of Antioxidant Activity of Garden Thyme (Thymus vulgaris L.) Affected by Humic Acid Under Urmia-Iran Condition
Binorkar et al. In-Vitro Trial of Roots of Ishwarmuli (Aristolochia indica Linn.) for Anti-Microbial, Anti-Fungal & Anti-Oxidant Activity
Narayanan et al. Coastal Sand Dune Plants as a Valuable Resource of Bioactive Metabolites in Pharmaceutical Field
Pang et al. Engineered Nanomaterials Suppress the Soft Rot Disease (Rhizopus stolonifer) and Slow Down the Loss of Nutrient in Sweet Potato. Nanomaterials. 2021; 11 (10): 2572

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20150706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250