JP2015009106A - Hemodialysis apparatus and hemodialysis apparatus operation method - Google Patents

Hemodialysis apparatus and hemodialysis apparatus operation method Download PDF

Info

Publication number
JP2015009106A
JP2015009106A JP2013139023A JP2013139023A JP2015009106A JP 2015009106 A JP2015009106 A JP 2015009106A JP 2013139023 A JP2013139023 A JP 2013139023A JP 2013139023 A JP2013139023 A JP 2013139023A JP 2015009106 A JP2015009106 A JP 2015009106A
Authority
JP
Japan
Prior art keywords
dialysate
chamber
feed pump
opening
dialyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013139023A
Other languages
Japanese (ja)
Inventor
浩治 下出
Koji Shimoide
浩治 下出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2013139023A priority Critical patent/JP2015009106A/en
Publication of JP2015009106A publication Critical patent/JP2015009106A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve the dialysis efficiency in a hemodialysis apparatus using a vessel which is capable of strictly controlling the supply volume and discharge volume of a dialysis fluid to the dialyzer.SOLUTION: A hemodialysis apparatus 1 has a control unit 15 which executes a dialysis fluid exchange process and a dialysis fluid supply process alternately to control at least any of a first fluid feed pump 82, a second fluid feed pump 52, on-off valves 83, 84, and on-off valves 60, 61 such that execution time T2 of the dialysis fluid supply process becomes longer than execution time T1 of the dialysis fluid exchange process in one cycle. In the dialysis fluid exchange process, the control unit 15 activates the first fluid feed pump 82 and opens a dialysis fluid exchange circuit 14 by the on-off valves 83, 84 for supplying a dialysis fluid to a first chamber 30 of a vessel 12 to cause a partition wall 32 to displace to the side of a second chamber 31, thereby discharging dialysis waste solution from the second chamber 31 to the outside. In the dialysis fluid supply process, the control unit 15 activates a second fluid feed pump 52 and opens a dialysis fluid supply circuit 13 by the on-off valves 60, 61 to cause the partition wall 32 to displace to the side of a first chamber 30, thereby supplying the dialysis fluid from the first chamber 30 to a dialyzer 10 and discharging the dialysis waste solution from the dialyzer 10 to the second chamber 31.

Description

本発明は、血液透析装置及び血液透析装置の作動方法に関する。   The present invention relates to a hemodialysis apparatus and a method for operating the hemodialysis apparatus.

透析時の除水量を厳格に管理するための血液透析装置として、内部を第1の室と第2の室に隔てる変位可能な隔壁を有する容器(計量容器)を用いるものが提案されている(特許文献1〜4参照)。   As a hemodialysis apparatus for strictly controlling the amount of water removed during dialysis, a device using a container (measuring container) having a displaceable partition that separates the interior into a first chamber and a second chamber has been proposed ( (See Patent Documents 1 to 4).

上述の血液透析装置は、通常、容器の第1の室に新しい透析液を供給するとともに、第2の室の透析廃液を外部に排出する透析液交換回路と、第1の室の新しい透析液を透析器に供給するとともに、透析器から第2の室に透析廃液を排出する透析液供給回路を有し、それらの各回路には、それぞれ所定の流量、所定のタイミングで送液を行うための送液ポンプと開閉弁が設けられている。   The above hemodialysis apparatus normally supplies a new dialysate to the first chamber of the container and discharges the dialysate waste fluid of the second chamber to the outside, and a new dialysate of the first chamber. Is supplied to the dialyzer and the dialysate supply circuit for discharging the dialysate waste fluid from the dialyzer to the second chamber. A liquid feed pump and an on-off valve are provided.

そして、上述の血液透析装置では、透析液交換工程と透析液供給工程が交互に行われる。透析液交換工程では、透析液交換回路において開閉弁が開かれ、送液ポンプにより透析液が容器の第1の室に供給されるとともに、容器の隔壁が第2の室側に押され、第2の室の透析廃液が外部に排液される。透析液供給工程では、透析液供給回路において開閉弁が開かれ、送液ポンプにより容器の第1の室の透析液が透析器に供給され、容器の隔壁が第1の室側に移動するとともに、透析器の透析廃液が容器の第2の室に排液される。この血液透析装置では、原理的に容器の隔壁が移動した分、第1の室の透析液が透析器に供給され、透析器から第2の室に排液されるので、透析器に対する透析液の供給量と排液量を厳格に制御でき、この結果、患者の除水量を厳格に管理できる。   And in the above-mentioned hemodialysis apparatus, a dialysate exchange process and a dialysate supply process are performed alternately. In the dialysate exchange step, the on-off valve is opened in the dialysate exchange circuit, the dialysate is supplied to the first chamber of the container by the liquid feed pump, the partition wall of the container is pushed to the second chamber side, The dialysis waste liquid in chamber 2 is drained to the outside. In the dialysate supply process, the on-off valve is opened in the dialysate supply circuit, the dialysate in the first chamber of the container is supplied to the dialyzer by the liquid feed pump, and the partition wall of the container moves to the first chamber side. The dialysis waste liquid from the dialyzer is drained into the second chamber of the container. In this hemodialysis apparatus, in principle, the dialysate in the first chamber is supplied to the dialyzer and discharged from the dialyzer to the second chamber as much as the partition wall of the container moves. The supply amount and drainage amount can be strictly controlled. As a result, the patient's water removal amount can be strictly controlled.

特開平5−146506号公報JP-A-5-146506 特開2000−126284号公報JP 2000-126284 A 特開昭55−59816号公報JP 55-59816 A 国際公開第2011/049196号International Publication No. 2011/049196

ところで、上述のような血液透析装置では、透析液交換工程を行っている間、透析器に透析液を供給できず、透析効率が低くなる。そこで、透析液交換回路と透析液供給回路を2系列ずつ設け、一方の系で透析液供給工程を行っている間に、他方の系で透析液交換工程を行って透析液の供給を連続的に行うことが考えられる。しかしながら、この場合、装置の部品点数が大幅に増え、装置コストが増大してしまう。   By the way, in the hemodialysis apparatus as described above, the dialysis fluid cannot be supplied to the dialyzer during the dialysis fluid exchange step, and the dialysis efficiency is lowered. Therefore, two dialysate exchange circuits and two dialysate supply circuits are provided. While one system performs the dialysate supply process, the other system performs the dialysate exchange process and continuously supplies the dialysate. Can be considered. However, in this case, the number of parts of the apparatus is greatly increased, and the apparatus cost is increased.

本発明はかかる点に鑑みてなされたものであり、透析液の供給量と排液量の制御を厳格に行うことができる容器を用いた血液透析装置において、一系列の透析交換回路と透析液供給回路を用いる構成であっても、透析器に透析液が流れていない時間を短くする制御を行うことで、透析効率を向上することをその目的とする。   The present invention has been made in view of the above points, and in a hemodialysis apparatus using a container capable of strictly controlling the amount of dialysis fluid supplied and the amount of drainage, a series of dialysis exchange circuits and dialysis fluid Even if it is the structure which uses a supply circuit, it aims at improving the dialysis efficiency by performing control which shortens the time when dialysate is not flowing into a dialyzer.

上記目的を達成する本発明は、透析器と、内部を第1の室と第2の室に隔てる変位可能な隔壁を有する容器と、前記第1の室に透析液を供給するとともに、前記第2の室の透析廃液を外部に排出する透析液交換回路と、前記透析液交換回路を通じて前記第1の室に透析液を送る第1の送液ポンプと、前記透析液交換回路を開閉する第1の開閉装置と、前記第1の室の前記透析液を前記透析器に供給するとともに、前記透析器から前記第2の室に透析廃液を排出する透析液供給回路と、前記透析液供給回路を通じて前記第2の室に透析廃液を送る第2の送液ポンプと、前記透析液供給回路を開閉する第2の開閉装置と、前記第1の送液ポンプを稼働し、前記第1の開閉装置により前記透析液交換回路を開放して、前記第1の室に透析液を供給し、前記隔壁が前記第2の室側に変位し、前記第2の室から外部に透析廃液を排出する透析液交換工程と、前記第2の送液ポンプを稼働し、前記第2の開閉装置により透析液供給回路を開放して、前記隔壁が前記第1の室側に変位し、前記第1の室から前記透析器に透析液を供給し、前記透析器から前記第2の室に透析廃液を排出する透析液供給工程とを交互に実行し、1サイクルにおける前記透析液供給工程の実行時間が前記透析液交換工程の実行時間よりも長くなるように前記第1の送液ポンプ、前記第2の送液ポンプ、前記第1の開閉装置又は前記第2の開閉装置の少なくともいずれかを制御する制御部と、を有する血液透析装置が提供される。なお、「透析液供給工程の実行時間」とは、透析器に透析液が流れている時間であり、「透析液交換工程の実行時間」とは、容器の第1の室内に透析液が流入している時間である。また、隔壁の「変位」には、隔壁全体が移動するもののみならず、隔壁自体の動作で起こる形状変化による変位も含む。   The present invention that achieves the above object provides a dialyzer, a container having a displaceable partition that divides the interior into a first chamber and a second chamber, and a dialysate to the first chamber, A dialysate exchange circuit for discharging the dialysate waste fluid of the second chamber to the outside, a first liquid feed pump for sending dialysate to the first chamber through the dialysate exchange circuit, and a first for opening and closing the dialysate exchange circuit. 1 switchgear, a dialysate supply circuit for supplying the dialysate in the first chamber to the dialyzer, and discharging dialysate waste fluid from the dialyzer to the second chamber, and the dialysate supply circuit A second liquid feeding pump for sending dialysis waste liquid to the second chamber through the second chamber, a second opening / closing device for opening and closing the dialysate supply circuit, and operating the first liquid feeding pump, The dialysate exchange circuit is opened by a device, and dialysate is supplied to the first chamber. The partition wall is displaced to the second chamber side, the dialysate exchange step for discharging the dialysis waste liquid from the second chamber to the outside, the second liquid feed pump is operated, and the second opening / closing device The dialysate supply circuit is opened, the partition wall is displaced toward the first chamber, the dialysate is supplied from the first chamber to the dialyzer, and the dialysate waste liquid is supplied from the dialyzer to the second chamber. The dialysate supply step for discharging the dialysis fluid alternately, and the execution time of the dialysate supply step in one cycle is longer than the execution time of the dialysate exchange step. And a control unit that controls at least one of the first opening / closing device and the second opening / closing device. The “dialyte supply process execution time” is the time during which the dialysate is flowing through the dialyzer, and the “dialyte exchange process execution time” is the time when dialysate flows into the first chamber of the container. It is time to do. Further, the “displacement” of the partition includes not only the movement of the entire partition but also the displacement due to the shape change caused by the operation of the partition itself.

本発明によれば、1サイクルにおける透析液供給工程の実行時間が長くなるので、透析器に対する透析器に透析液が供給されている時間が長くなり、透析効率を向上できる。   According to the present invention, since the execution time of the dialysate supply process in one cycle becomes long, the time during which the dialysate is supplied to the dialyzer with respect to the dialyzer becomes long, and the dialysis efficiency can be improved.

前記制御部は、前記透析液交換工程における前記第1の送液ポンプによる送液流量を、前記透析液供給工程における前記第2の送液ポンプによる送液流量よりも高くして、前記透析液供給工程における前記第2の開閉装置の開放時間を、前記透析液交換工程における前記第1の開閉装置の開放時間よりも長くするようにしてもよい。かかる場合、容器の第1の室に入れる流量を上げることによって、透析液交換工程の実行時間を短縮し、その分透析液供給工程の実行時間を長くすることができる。すなわち、透析液に透析液が流れる透析液供給工程の1サイクルにおける比率が高まり、よって、透析効率を好適に向上できることとなる。   The control unit sets the flow rate of the liquid fed by the first liquid feed pump in the dialysate exchange step to be higher than the flow rate of the liquid fed by the second liquid feed pump in the dialysate supply step. The opening time of the second opening / closing device in the supplying step may be longer than the opening time of the first opening / closing device in the dialysate exchange step. In such a case, by increasing the flow rate put into the first chamber of the container, the execution time of the dialysate exchange process can be shortened, and the execution time of the dialysate supply process can be increased accordingly. That is, the ratio in one cycle of the dialysate supply process in which the dialysate flows into the dialysate is increased, so that the dialysis efficiency can be suitably improved.

上記血液透析装置は、前記第1の室側もしくは第2の室側に変位した前記隔壁を元の位置に戻すための復元力を付与する復元力付与機構を、さらに有していてもよい。第1の室側に復元力が付与されている場合、通常であれば、隔壁が第1の室側に変位する速度が、第2の室側に変位する速度より大きくなり、透析液交換工程の実行時間が長くなる。この場合に、第1の室への透析液の供給流量を上げて透析液交換工程の実行時間を短縮して、透析効率を上げるメリットは大きい。一方、第2の室側に復元力が付与されている場合、第1の室側への透析液の供給流量が多くなり、透析液交換工程の実行時間を簡単に短縮できる。   The hemodialysis apparatus may further include a restoring force applying mechanism that applies a restoring force for returning the partition wall displaced toward the first chamber side or the second chamber side to the original position. When restoring force is applied to the first chamber side, normally, the speed at which the partition wall is displaced toward the first chamber side is greater than the speed at which the partition wall is displaced toward the second chamber side, and the dialysate exchange step The execution time of becomes longer. In this case, there is a great merit in increasing the dialysis efficiency by increasing the supply flow rate of the dialysate to the first chamber to shorten the execution time of the dialysate exchange process. On the other hand, when a restoring force is applied to the second chamber side, the dialysate supply flow rate to the first chamber side increases, and the execution time of the dialysate exchange step can be easily shortened.

上記血液透析装置は、前記隔壁の変位の完了を検出する手段を、さらに有し、前記制御部は、検出した隔壁の変位の完了に基づいて、前記第1の開閉装置又は前記第2の開閉装置の少なくともいずれかを閉鎖するようにしてもよい。隔壁の変位の完了タイミングと開閉装置の閉鎖タイミングがずれると、ポンプ圧により容器が膨張して過剰な液が容器に入る可能性がある。本方法によれば、容器の各室に過剰な液が入るのを抑制できる。   The hemodialysis apparatus further includes means for detecting completion of the displacement of the partition wall, and the control unit is configured to detect the first switching device or the second opening / closing device based on the detected completion of the displacement of the partition wall. At least one of the devices may be closed. If the completion timing of the displacement of the partition wall and the closing timing of the switchgear deviate, the container may expand due to the pump pressure and excessive liquid may enter the container. According to this method, excessive liquid can be prevented from entering each chamber of the container.

別の観点による本発明は、透析器と、内部を第1の室と第2の室に隔てる変位可能な隔壁を有する容器と、前記第1の室に透析液を供給するとともに、前記第2の室の透析廃液を外部に排出する透析液交換回路と、前記透析液交換回路を通じて前記第1の室に透析液を送る第1の送液ポンプと、前記透析液交換回路を開閉する第1の開閉装置と、前記第1の室の前記透析液を前記透析器に供給するとともに、前記透析器から前記第2の室に透析廃液を排出する透析液供給回路と、前記透析液供給回路を通じて前記第2の室に透析廃液を送る第2の送液ポンプと、前記透析液供給回路を開閉する第2の開閉装置と、を有する血液透析装置の作動方法であって、前記第1の送液ポンプを稼働し、前記第1の開閉装置により前記透析液交換回路を開放して、前記第1の室に透析液を供給し、前記隔壁が前記第2の室側に変位し、前記第2の室から外部に透析廃液を排出する透析液交換工程と、前記第2の送液ポンプを稼働し、前記第2の開閉装置により透析液供給回路を開放して、前記隔壁が前記第1の室側に変位し、前記第1の室から前記透析器に透析液を供給し、前記透析器から前記第2の室に透析廃液を排出する透析液供給工程とを交互に実行し、1サイクルにおける前記透析液供給工程の実行時間が前記透析液交換工程の実行時間よりも長くなるように前記第1の送液ポンプ、前記第2の送液ポンプ、前記第1の開閉装置又は前記第2の開閉装置の少なくともいずれかを制御する制御部が作動する、血液透析装置の作動方法である。   According to another aspect of the present invention, there is provided a dialyzer, a container having a displaceable partition partitioning the interior into a first chamber and a second chamber, supplying dialysate to the first chamber, A dialysis fluid exchange circuit for discharging the dialysis waste fluid in the chamber to the outside, a first liquid feed pump for sending the dialysis fluid to the first chamber through the dialysate exchange circuit, and a first for opening and closing the dialysate exchange circuit. An opening and closing device, a dialysate supply circuit for supplying the dialysate from the first chamber to the dialyzer, and discharging dialysate waste fluid from the dialyzer to the second chamber, and through the dialysate supply circuit An operation method of a hemodialysis apparatus, comprising: a second liquid feed pump that sends dialysis waste liquid to the second chamber; and a second opening / closing device that opens and closes the dialysate supply circuit. A fluid pump is operated, and the dialysate exchange circuit is opened by the first switching device. A second dialysate exchange step of supplying dialysate to the first chamber, the partition wall being displaced toward the second chamber, and discharging dialysate waste fluid from the second chamber to the outside; And the second opening / closing device opens the dialysate supply circuit so that the partition wall is displaced toward the first chamber, and dialysate is transferred from the first chamber to the dialyzer. The dialysate supply step of supplying and discharging the dialysate waste solution from the dialyzer to the second chamber is alternately executed, and the execution time of the dialysate supply step in one cycle is longer than the execution time of the dialysate exchange step A hemodialysis apparatus in which a control unit for controlling at least one of the first liquid feeding pump, the second liquid feeding pump, the first opening / closing device and the second opening / closing device is operated so as to be longer This is the operation method.

本発明によれば、透析器に対する透析液の供給量と排液量の制御を厳格に行うことができる容器を用いた血液透析装置において、透析効率を向上できる。   According to the present invention, dialysis efficiency can be improved in a hemodialysis apparatus using a container capable of strictly controlling the amount of dialysate supplied to the dialyzer and the amount of drainage.

血液透析装置の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of the hemodialysis apparatus. 開閉弁の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of an on-off valve. 血液透析装置の新たな透析液の容器への供給、ならびに容器からの透析廃液の排液の状態を示す説明図である。It is explanatory drawing which shows the state of supply to the container of the new dialysate of a hemodialysis apparatus, and the drainage of the dialysis waste liquid from a container. 血液透析装置の透析液の透析器への供給、ならびに透析廃液の容器への排液の状態を示す説明図である。It is explanatory drawing which shows the state of supply to the dialyzer of the dialysate of a hemodialyzer, and the drainage of the dialysate waste liquid to the container. センサを設けた場合の血液透析装置の構成の概略を示す模式図である。It is a schematic diagram which shows the outline of a structure of the hemodialysis apparatus at the time of providing a sensor. 実施例の第1の条件から第3の条件での開閉弁の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the on-off valve in the 3rd condition from the 1st condition of an Example.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態に係る血液透析装置1の構成の概略を示す説明図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the configuration of a hemodialysis apparatus 1 according to the present embodiment.

血液透析装置1は、例えば透析器10と、血液循環回路11と、容器12と、透析液供給回路13と、透析液交換回路14と、制御部15を有している。   The hemodialysis apparatus 1 includes, for example, a dialyzer 10, a blood circulation circuit 11, a container 12, a dialysate supply circuit 13, a dialysate exchange circuit 14, and a control unit 15.

透析器10は、例えば中空糸膜を内蔵した中空糸モジュールであり、中空糸膜の一次側10aに患者の血液を通過させつつ、中空糸膜の二次側10bに透析液を通過させ、一次側10aの血液に含まれる老廃物等を中空糸膜を通じて二次側10bに透過させて血液を浄化することができる。   The dialyzer 10 is, for example, a hollow fiber module incorporating a hollow fiber membrane. The dialyzer is passed through the secondary side 10b of the hollow fiber membrane while allowing the patient's blood to pass through the primary side 10a of the hollow fiber membrane. Waste or the like contained in the blood on the side 10a can be permeated to the secondary side 10b through the hollow fiber membrane to purify the blood.

血液循環回路11は、例えば患者に穿刺される針部20から透析器10の一次側10aの入口端10cに接続された第1の血液流路21と、透析器10の一次側10aの出口端10dから他の針部22に接続された第2の血液流路23を有している。第1の血液回路21には、送液ポンプ24が設けられている。   The blood circulation circuit 11 includes, for example, a first blood channel 21 connected from the needle portion 20 punctured by a patient to the inlet end 10c of the primary side 10a of the dialyzer 10, and the outlet end of the primary side 10a of the dialyzer 10. It has the 2nd blood flow path 23 connected to the other needle part 22 from 10d. The first blood circuit 21 is provided with a liquid feed pump 24.

容器12は、例えば合成樹脂製の円筒状に形成され、例えば内部を軸方向に第1の室30と第2の室31に隔てる変位可能な隔壁32と、当該隔壁32の変位を許容しつつ当該隔壁32に第1の室30側への復元力を与える復元力付与機構33を有している。すなわち、容器12は、いわゆる自己復帰型の隔壁32を有している。   The container 12 is formed in a cylindrical shape made of, for example, a synthetic resin and, for example, a displaceable partition wall 32 that divides the inside into the first chamber 30 and the second chamber 31 in the axial direction, and allows the partition wall 32 to be displaced. The partition wall 32 includes a restoring force applying mechanism 33 that applies a restoring force toward the first chamber 30. That is, the container 12 has a so-called self-returning partition wall 32.

隔壁32は、例えば伸縮性を有するダイアフラムにより構成されている。隔壁32は、容器12の軸方向の中央付近に固定されている。隔壁32は、例えば伸縮性を有するエラストマーからなるダイアフラムであってもよく、その伸縮性そのものが復元力となる。なお、隔壁32は、その他、グラスファイバー強化型のゴム材料からなるダイアフラムや、ステンレスの同心円波状のダイアフラムのようなもので、それ自体が形状復元力をもつものであってもよい。   The partition wall 32 is made of a diaphragm having elasticity, for example. The partition wall 32 is fixed near the center of the container 12 in the axial direction. The partition wall 32 may be, for example, a diaphragm made of a stretchable elastomer, and the stretchability itself becomes a restoring force. In addition, the partition wall 32 may be a diaphragm made of a glass fiber reinforced rubber material or a stainless concentric circular diaphragm, and may itself have a shape restoring force.

復元力付与機構33は、例えば隔壁32を第2の室31側から第1の室30側に押圧する押圧部材40と、当該押圧部材40の軸方向の往復移動をガイドするガイド軸41と、押圧部材40を第1の室30側に付勢する弾性体としてのバネ42を有している。   The restoring force applying mechanism 33 includes, for example, a pressing member 40 that presses the partition wall 32 from the second chamber 31 side to the first chamber 30 side, a guide shaft 41 that guides the reciprocating movement of the pressing member 40 in the axial direction, A spring 42 is provided as an elastic body that urges the pressing member 40 toward the first chamber 30.

押圧部材40は、例えば円筒状に形成され、第2の室31側の面の中央にガイド挿入部40aが形成されている。ガイド軸41は、容器12の軸方向の第2の室31側の内壁面12aの中央から第1の室30側の軸方向に向けて形成されている。ガイド軸41は、押圧部材40のガイド挿入部40aに挿入され、これにより、押圧部材40は、軸方向に往復移動できる。なお、バネ42が伸縮しつつ安定して押圧部材40を移動させることができるのであれば、ガイド軸41は無くても動作上は問題無い。   The pressing member 40 is formed in a cylindrical shape, for example, and a guide insertion portion 40a is formed in the center of the surface on the second chamber 31 side. The guide shaft 41 is formed from the center of the inner wall surface 12a on the second chamber 31 side in the axial direction of the container 12 toward the axial direction on the first chamber 30 side. The guide shaft 41 is inserted into the guide insertion portion 40a of the pressing member 40, whereby the pressing member 40 can reciprocate in the axial direction. Note that there is no problem in operation even if the guide shaft 41 is not provided, as long as the pressing member 40 can be stably moved while the spring 42 expands and contracts.

例えばガイド軸41には、バネ42が挿入され、容器12の軸方向の内壁面12aと押圧部材40との間にバネ42が介在されている。このバネ42により押圧部材40及び隔壁32が第1の室30側に付勢され、隔壁32が第2の室31側に移動した際には復元力が生じる。なお、バネ42の自然長の位置は、隔壁32が第1の室30側に移動し終えたときの初期位置に設定されている。   For example, a spring 42 is inserted into the guide shaft 41, and the spring 42 is interposed between the axial inner wall surface 12 a of the container 12 and the pressing member 40. The spring 42 biases the pressing member 40 and the partition wall 32 toward the first chamber 30, and a restoring force is generated when the partition wall 32 moves toward the second chamber 31. The position of the natural length of the spring 42 is set to the initial position when the partition wall 32 has finished moving to the first chamber 30 side.

透析液供給回路13は、例えば容器12の第1の室30から透析器10に通じる第1の透析液供給流路50と、透析器10から第2の室31に通じる第2の透析液供給流路51を有している。また、第2の透析液供給流路51には、第2の送液ポンプ52が設けられている。第1の透析液供給流路50には、当該流路50を開閉する開閉弁60が設けられており、第2の透析液供給流路51には、当該流路51を開閉する開閉弁61が設けられている。開閉弁61は、第2の送液ポンプ52と容器12の間に設けられている。第2の送液ポンプ52の送液圧力は、透析液供給回路13の圧力損失と、復元力付与機構33の復元力を考慮して定められる。なお、本実施の形態では、開閉弁60、61が、本発明における第2の開閉装置を構成する。   The dialysate supply circuit 13 includes, for example, a first dialysate supply channel 50 that communicates from the first chamber 30 of the container 12 to the dialyzer 10 and a second dialysate supply that communicates from the dialyzer 10 to the second chamber 31. A flow path 51 is provided. The second dialysate supply channel 51 is provided with a second liquid feed pump 52. The first dialysate supply channel 50 is provided with an on-off valve 60 that opens and closes the channel 50, and the second dialysate supply channel 51 has an on-off valve 61 that opens and closes the channel 51. Is provided. The on-off valve 61 is provided between the second liquid feeding pump 52 and the container 12. The liquid feeding pressure of the second liquid feeding pump 52 is determined in consideration of the pressure loss of the dialysate supply circuit 13 and the restoring force of the restoring force applying mechanism 33. In the present embodiment, the on-off valves 60 and 61 constitute the second opening / closing device of the present invention.

透析液交換回路14は、例えば透析液供給源70から容器12の第1の室30に通じる第1の透析液交換流路80と、容器12の第2の室31から外部に通じる第2の透析液交換流路81を有している。第1の透析液交換流路80には、透析液供給源70の透析液を第1の室30に圧送する第1の送液ポンプ82と、当該流路80を開閉する開閉弁83が設けられている。第2の透析液交換流路81には、当該流路81を開閉する開閉弁84が設けられている。開閉弁83は、容器12と第1の送液ポンプ82との間に設けられている。第1の送液ポンプ82の送液圧力は、透析液交換回路14の圧力損失と、復元力付与機構33の復元力を考慮して定められる。なお、本実施の形態において、開閉弁83、84が、本発明における第1の開閉装置を構成する。   The dialysate exchange circuit 14 includes, for example, a first dialysate exchange flow path 80 that communicates from the dialysate supply source 70 to the first chamber 30 of the container 12 and a second dialysate exchange path 80 that communicates from the second chamber 31 of the container 12 to the outside. A dialysate exchange channel 81 is provided. The first dialysate exchange flow path 80 is provided with a first liquid feed pump 82 that pumps the dialysate from the dialysate supply source 70 to the first chamber 30 and an open / close valve 83 that opens and closes the flow path 80. It has been. The second dialysate exchange channel 81 is provided with an on-off valve 84 that opens and closes the channel 81. The on-off valve 83 is provided between the container 12 and the first liquid feed pump 82. The liquid feeding pressure of the first liquid feeding pump 82 is determined in consideration of the pressure loss of the dialysate exchange circuit 14 and the restoring force of the restoring force applying mechanism 33. In the present embodiment, the open / close valves 83 and 84 constitute the first open / close device of the present invention.

第2の透析液供給流路51には、除水量を調整するための分岐路90が接続され、分岐路90には、第2の透析液供給流路51の透析廃液を分岐路90に引き込むための送液ポンプ91が設けられている。   The second dialysate supply channel 51 is connected to a branch path 90 for adjusting the water removal amount. The dialysate waste fluid in the second dialysate supply channel 51 is drawn into the branch path 90. A liquid feed pump 91 is provided.

制御部15は、血液透析装置1の全体の動作を制御するコンピュータであり、例えば後述のようにポンプ24、52、82、91、開閉弁60、61、83、84等の動作を制御して、血液透析装置1を作動させることができる。   The control unit 15 is a computer that controls the overall operation of the hemodialysis apparatus 1. For example, the control unit 15 controls the operation of the pumps 24, 52, 82, 91, the on-off valves 60, 61, 83, 84 and the like as described later. The hemodialysis apparatus 1 can be operated.

次に、以上のように構成された血液透析装置1の動作を説明する。   Next, the operation of the hemodialysis apparatus 1 configured as described above will be described.

血液透析処理時の患者側では、針部20、22が患者に穿刺され、ポンプ24により患者の血液が第1の血液流路21を通じて透析器10に供給される。血液は、透析器10の中空糸膜の一次側10aを通り、その後第2の血液流路23を通って患者に戻される。   On the patient side during hemodialysis, the needles 20 and 22 are punctured into the patient, and the patient's blood is supplied to the dialyzer 10 by the pump 24 through the first blood channel 21. The blood passes through the primary side 10a of the hollow fiber membrane of the dialyzer 10 and then returns to the patient through the second blood channel 23.

一方、容器12側では、透析液交換工程と透析液供給工程が交互に繰り返される。図2に示すように透析液交換工程と透析液供給工程は、1サイクルが予め定められた一定の設定時間Tで行われ、そのうち、透析液交換工程が実行時間T1、透析液供給工程が、実行時間T1より長い実行時間T2で行われる。これらの時間T、T1、T2は、透析治療毎に予め設定される透析液流量に基づいて設定される。図2には、開閉弁60、61、83、84の開閉タイミングも示す。   On the other hand, on the container 12 side, the dialysate exchange process and the dialysate supply process are alternately repeated. As shown in FIG. 2, in the dialysate exchange process and the dialysate supply process, one cycle is performed at a predetermined set time T, in which the dialysate exchange process is executed time T1, the dialysate supply process is The execution time T2 is longer than the execution time T1. These times T, T1, and T2 are set based on the dialysate flow rate set in advance for each dialysis treatment. FIG. 2 also shows opening / closing timings of the on-off valves 60, 61, 83, 84.

例えば透析液交換工程では、予め第1の送液ポンプ82が作動した状態で、図3に示すように開閉弁60、61が閉鎖され、開閉弁83、84が開放され、第1の送液ポンプ82により透析液供給源70の新しい透析液が容器12の第1の室30内に供給される。第1の室30に供給された新しい透析液により、初期位置にあった隔壁32及び押圧部材40が、バネ42の復元力に抗して第2の室31側に押されて、第1の室30の容積が増大する。これに伴い第2の室31の容積が縮小し、既に第2の室31内に充填されている透析廃液が隔壁32及び押圧部材40により押し出され、第2の透析液交換流路81を通じて外部に排出される。隔壁32は、初期位置から第2の室31側の所定の第2の位置まで移動する。こうして、容器12に対する透析液の交換が行われる。第1の室30では、隔壁32が移動し容積が増大した分の透析液が充填され、第2の室31では、隔壁32が移動し容積が減少した分の透析廃液が排出され、それらの透析液と透析廃液の量は一致する。   For example, in the dialysate exchange step, with the first liquid pump 82 activated in advance, the on-off valves 60 and 61 are closed and the on-off valves 83 and 84 are opened as shown in FIG. A new dialysate from the dialysate supply source 70 is supplied into the first chamber 30 of the container 12 by the pump 82. Due to the new dialysate supplied to the first chamber 30, the partition wall 32 and the pressing member 40 in the initial position are pushed against the restoring force of the spring 42 toward the second chamber 31, The volume of the chamber 30 increases. As a result, the volume of the second chamber 31 is reduced, and the dialysis waste liquid already filled in the second chamber 31 is pushed out by the partition wall 32 and the pressing member 40, and is externally passed through the second dialysate exchange channel 81. To be discharged. The partition wall 32 moves from the initial position to a predetermined second position on the second chamber 31 side. Thus, the dialysate is exchanged for the container 12. The first chamber 30 is filled with the dialysate whose volume is increased by moving the partition wall 32, and the dialysis waste liquid whose volume is decreased is discharged in the second chamber 31. The amount of dialysate and dialysis waste liquid are the same.

この透析液交換工程では、第1の送液ポンプ82による透析液の送液流量が、後述の透析液供給工程における第2の送液ポンプ52による透析液の送液流量より高く設定され、相対的に短時間で透析液の交換が行われる。実行時間T1が経過した時点で開閉弁83、84が閉鎖され、第1の室30への透析液の供給が停止され、透析液交換工程が終了する。   In this dialysate exchange step, the dialysate feed flow rate by the first feed pump 82 is set higher than the dialysate feed rate by the second feed pump 52 in the dialysate supply step described later, Therefore, the dialysate is exchanged in a short time. When the execution time T1 has elapsed, the on-off valves 83 and 84 are closed, the supply of the dialysate to the first chamber 30 is stopped, and the dialysate exchange process is completed.

例えば透析液交換工程が終了すると直ちに透析液供給工程が開始される。この透析液供給工程では、予め第2の送液ポンプ52が作動した状態で、図4に示すように開閉弁83、84が閉鎖され、開閉弁60、61が開放され、第2の送液ポンプ52の送液圧力ならびに容器12のバネ42の復元力により、隔壁32及び押圧部材40が第1の室30側に移動し、第1の室30内の新しい透析液が、第1の透析液供給流路50を通じて透析器10に供給される。透析液は、透析器10の二次側10bを流れ、この際、当該透析液には、一次側10aを流れる患者の血液から中空糸膜を通過した老廃物等が取り込まれる。その後、透析器10の老廃物を含む透析廃液は、第2の透析液供給流路51を通じて容器12の第2の室31に排出される。容器12の第1の室30では、隔壁32が移動し容積が減少した分の透析液が送出され、第2の室31では、隔壁32が移動し容積が増大した分の透析廃液が流入し、それらの透析液と透析廃液の量は一致する。このとき隔壁32は、第2の位置から初期位置まで移動する。   For example, the dialysate supply process is started immediately after the dialysate exchange process is completed. In this dialysate supply step, the on-off valves 83 and 84 are closed and the on-off valves 60 and 61 are opened as shown in FIG. The partition wall 32 and the pressing member 40 are moved to the first chamber 30 side by the pumping pressure of the pump 52 and the restoring force of the spring 42 of the container 12, and the new dialysate in the first chamber 30 is moved to the first dialysis. It is supplied to the dialyzer 10 through the liquid supply channel 50. The dialysate flows through the secondary side 10b of the dialyzer 10, and at this time, the waste or the like that has passed through the hollow fiber membrane is taken into the dialysate from the blood of the patient flowing through the primary side 10a. Thereafter, the dialysis waste liquid containing the waste product of the dialyzer 10 is discharged to the second chamber 31 of the container 12 through the second dialysate supply channel 51. In the first chamber 30 of the container 12, the dialysate corresponding to the volume reduced by the partition wall 32 moving is sent out, and in the second chamber 31 dialysis waste fluid corresponding to the volume increased due to the partition wall 32 moving in. The amount of dialysate and dialysis waste liquid are the same. At this time, the partition wall 32 moves from the second position to the initial position.

また、透析液供給工程では、ポンプ91が作動し、第2の透析液供給流路51を通る一部の透析廃液を分岐路90に引き込み排出する。容器12に出入りする透析液と透析廃液の量が一致しているため、この分岐路90を通じて排出された透析廃液の量が、透析器10を通じて患者の血液から排出される除水量となる。   Further, in the dialysate supply process, the pump 91 is operated, and a part of the dialysate waste liquid passing through the second dialysate supply channel 51 is drawn into the branch channel 90 and discharged. Since the amounts of dialysate and dialysis waste fluid entering and exiting the container 12 coincide with each other, the amount of dialysis waste fluid discharged through this branch 90 is the amount of water removed from the patient's blood through the dialyzer 10.

この透析液供給工程における第2の送液ポンプ52による透析液の送液流量は、上述の透析液交換工程における第1の送液ポンプ82による透析液の送液流量より低く、相対的に長時間で透析液の供給が行われる。実行時間T2経過時に開閉弁60、61が閉鎖され、透析器10への透析液の供給が停止され、透析液供給工程が終了する。   The dialysate feed flow rate by the second feed pump 52 in this dialysate supply step is lower than the dialysate feed rate by the first feed pump 82 in the dialysate exchange step described above, and is relatively long. The dialysate is supplied over time. When the execution time T2 elapses, the on-off valves 60 and 61 are closed, the supply of the dialysate to the dialyzer 10 is stopped, and the dialysate supply process ends.

上記透析液交換工程と透析液供給工程が所定回数繰り返されて、血液透析処理が終了する。   The dialysate exchange process and the dialysate supply process are repeated a predetermined number of times to complete the hemodialysis process.

本実施の形態によれば、1サイクル毎の透析液供給工程の実行時間T2を長くすることにより、血液透析処理全体において透析器10に透析液を供給している時間が長くなり、透析器10に透析液を供給しない時間が短縮されるので、透析効率を向上できる。   According to the present embodiment, by increasing the execution time T2 of the dialysate supply process for each cycle, the time during which the dialysate 10 is supplied to the dialyzer 10 in the entire hemodialysis process is increased. Since the time during which no dialysate is supplied is reduced, dialysis efficiency can be improved.

また、本実施の形態によれば、簡単な制御法により、容器12から透析器10に供給される透析液の量と、透析器10を通って容器12に戻される透析廃液の量を精度よく一致させることができると同時に、一つの容器12を備えた血液透析装置1において、透析器10に透析液が流れない時間を短くして透析効率を向上できる。この結果、部品コストの低減、部品点数の削減により装置の小型化、部品点数削減による故障リスクの低減、装置の安全性のさらなる向上が可能となる。さらに、構造が簡略化されることで透析液回路部分のユニット化が容易になるため、定期的にユニットごと交換を行うことでメンテナンスが容易かつ安価に実施できる。   Further, according to the present embodiment, the amount of dialysate supplied from the container 12 to the dialyzer 10 and the amount of dialysate waste fluid returned to the container 12 through the dialyzer 10 are accurately determined by a simple control method. At the same time, in the hemodialysis apparatus 1 having one container 12, the time during which the dialysate does not flow into the dialyzer 10 can be shortened to improve dialysis efficiency. As a result, it is possible to reduce the cost of components, reduce the size of the device by reducing the number of components, reduce the risk of failure by reducing the number of components, and further improve the safety of the device. Furthermore, since the structure is simplified, unitization of the dialysate circuit portion is facilitated, and maintenance can be easily and inexpensively performed by periodically exchanging the units.

また、本実施の形態では、透析液交換工程における第1の送液ポンプ82による送液流量を、透析液供給工程における第2の送液ポンプ52による送液流量よりも高くして、透析液供給工程における開閉弁60、61の開放時間を、透析液交換工程における開閉弁83、84の開放時間よりも長くしている。このように、第1の室30に入る透析液の流量を上げて透析液交換工程の実行時間T1を短縮し、その分透析液供給工程の実行時間T2を長くすることができるので、透析効率を好適に向上できる。   In the present embodiment, the flow rate of the first liquid pump 82 in the dialysate exchange step is set higher than the flow rate of the second liquid pump 52 in the dialysate supply step, so that the dialysate The opening time of the on-off valves 60 and 61 in the supply process is longer than the opening time of the on-off valves 83 and 84 in the dialysate exchange process. Thus, the dialysate exchange process execution time T1 can be shortened by increasing the flow rate of the dialysate entering the first chamber 30, and the dialysate supply process execution time T2 can be increased accordingly. Can be suitably improved.

血液透析装置1は、第2の室31側に変位した隔壁31を元の第1の室30側の初期位置に戻すための復元力を付与する復元力付与機構33を有している。第2の室31側に復元力が付与されている場合、本来であれば、隔壁32が第1の室30側に変位する速度が、第2の室31側に変位する速度より大きくなり、透析液交換工程の実行時間T1が長くなってしまう。よって、本実施の形態のように、第1の室30への透析液の供給流量を上げて透析液交換工程の実行時間T1を短縮し、透析液供給工程T2の実行時間T2を長くして透析効率を上げることのメリットは大きい。   The hemodialysis apparatus 1 has a restoring force applying mechanism 33 that applies a restoring force for returning the partition wall 31 displaced to the second chamber 31 side to the original initial position on the first chamber 30 side. When the restoring force is applied to the second chamber 31 side, the speed at which the partition wall 32 is displaced toward the first chamber 30 side is larger than the speed at which the partition wall 32 is displaced toward the second chamber 31 side. The execution time T1 of the dialysate exchange process becomes long. Therefore, as in the present embodiment, the dialysate supply flow rate to the first chamber 30 is increased to shorten the dialysate exchange process execution time T1, and the dialysate supply process T2 execution time T2 is increased. The benefits of increasing dialysis efficiency are significant.

なお、本実施の形態のように、開閉弁60、61、83、84による透析液交換工程と透析液供給工程の切り替えを、間をおかずに瞬時に行うのが送液量を増やす上では望ましい。一方、隔壁32の動作の安定を考えた場合、透析液交換工程と透析液供給工程の切り替わりの際に、総ての開閉弁60、61、83、84を一時的に閉鎖する待機時間を設けることも効果的である。   As in the present embodiment, it is desirable to increase the amount of liquid delivery by switching the dialysate exchange process and the dialysate supply process by the on-off valves 60, 61, 83, and 84 instantaneously without any gap. . On the other hand, when considering the stability of the operation of the partition wall 32, a standby time is provided for temporarily closing all the on-off valves 60, 61, 83, 84 when the dialysate exchange process and the dialysate supply process are switched. It is also effective.

また、復元力付与機構33は、第2の室31側に復元力が付与されているものであってもよく、かかる場合、隔壁32が第2の室31側に変位する速度が、第1の室30側に変位する速度より大きくなり、透析液交換工程の実行時間T1を簡単に短くできる。この結果、透析液供給工程の実行時間T2を長くして透析効率を向上できる。   Further, the restoring force applying mechanism 33 may be one in which a restoring force is applied to the second chamber 31 side. In such a case, the speed at which the partition wall 32 is displaced to the second chamber 31 side is the first speed. The rate of displacement toward the chamber 30 side is greater, and the execution time T1 of the dialysate exchange step can be easily shortened. As a result, the dialysis efficiency can be improved by extending the execution time T2 of the dialysate supply process.

また、本実施の形態において、復元力付与機構33は必ずしも必要なく、この場合、後述の第2の送液ポンプ52の送液圧を利用することで隔壁32の移動が行われ、容器12の第1の室30から透析器10への透析液の送液と、透析器10から第2の室31への透析廃液の送液を適切に行うことができる。   Further, in the present embodiment, the restoring force imparting mechanism 33 is not necessarily required. In this case, the partition wall 32 is moved by using the liquid feeding pressure of the second liquid feeding pump 52 described later, and the container 12 is moved. The dialysate can be sent from the first chamber 30 to the dialyzer 10 and the dialysate waste solution can be sent from the dialyzer 10 to the second chamber 31 appropriately.

以上の実施の形態において、隔壁32の第1の室30側の初期位置への変位が完了した時又はその直後に、開閉弁60、61により透析液供給回路13を閉鎖してもよいし、隔壁32の第2の室31側の第2の位置への変位が完了した時又はその直後に、開閉弁83、84により透析液交換回路14を閉鎖してもよい。より好ましくは、隔壁32の第1の室30側への変位が完了した時から0.5sec以内に、開閉弁60、61により透析液供給回路13を閉鎖してもよいし、隔壁32の第2の室31側への変位が完了した時から0.5sec以内に、開閉弁83、84により透析液供給回路14を閉鎖してもよい。こうすることにより、隔壁32の移動が完了した後に長時間開閉弁60、61が開放され、ポンプ圧が第2の室31にかかり、第2の室31が膨張して過剰な透析廃液が第2の室31に入り込むことを抑制できる。また、隔壁32が移動した後に長時間開閉弁83、84が開放され、ポンプ圧が第1の室30にかかり、第1の室30が膨張して過剰な透析液が第1の室30に入り込むことを抑制できる。   In the above embodiment, when the displacement of the partition wall 32 to the initial position on the first chamber 30 side is completed or immediately after that, the dialysate supply circuit 13 may be closed by the on-off valves 60 and 61, The dialysate exchange circuit 14 may be closed by the on-off valves 83 and 84 when the displacement of the partition wall 32 to the second position on the second chamber 31 side is completed or immediately thereafter. More preferably, the dialysate supply circuit 13 may be closed by the on-off valves 60 and 61 within 0.5 sec from the completion of the displacement of the partition wall 32 toward the first chamber 30, The dialysate supply circuit 14 may be closed by the on-off valves 83 and 84 within 0.5 sec from the completion of the displacement of the second chamber 31 to the chamber 31 side. By doing so, the on-off valves 60 and 61 are opened for a long time after the movement of the partition wall 32 is completed, the pump pressure is applied to the second chamber 31, the second chamber 31 expands, and excess dialysis waste liquid is discharged. The entry into the second chamber 31 can be suppressed. In addition, the on-off valves 83 and 84 are opened for a long time after the partition wall 32 is moved, the pump pressure is applied to the first chamber 30, the first chamber 30 expands, and excess dialysate enters the first chamber 30. Intrusion can be suppressed.

なお、血液透析装置1は、隔壁32の変位の完了を検出する手段を有していてもよい。かかる場合、例えば図5に示すように容器12内に隔壁32の位置を検出するセンサ100が設けられる。このセンサ100の検出結果は、制御部15に出力される。そして、例えばこのセンサ100により隔壁32が移動し終えたタイミングを正確に把握し、制御部15が、それを受けて、その直後に開閉弁60、61、或いは開閉弁83、84を閉鎖することができる。この結果、隔壁32の移動が完了した後に透析廃液を第2の室31に送りこんだり、透析液を第1の室30に送りこむことを確実に防止できる。なお、センサ100は、隔壁32の第1の室30側への移動の完了タイミングと第2の室32側への移動の完了タイミングの両方を検出するものであってもよいし、片方を検出するものであってもよい。   The hemodialysis apparatus 1 may have a means for detecting the completion of the displacement of the partition wall 32. In such a case, for example, as shown in FIG. 5, a sensor 100 that detects the position of the partition wall 32 is provided in the container 12. The detection result of the sensor 100 is output to the control unit 15. Then, for example, the sensor 100 accurately grasps the timing when the partition wall 32 has finished moving, and the control unit 15 receives it and immediately closes the on-off valves 60, 61 or the on-off valves 83, 84. Can do. As a result, it is possible to reliably prevent the dialysis waste liquid from being fed into the second chamber 31 or the dialysate from being fed into the first chamber 30 after the movement of the partition wall 32 is completed. The sensor 100 may detect both the completion timing of the movement of the partition wall 32 toward the first chamber 30 and the completion timing of the movement of the partition wall 32 toward the second chamber 32, or one of them may be detected. You may do.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

例えば容器12の隔壁32は、ダイアフラム式の構造ではなく、ピストン式の構造であってもよい。   For example, the partition wall 32 of the container 12 may be a piston type structure instead of a diaphragm type structure.

以下に実施例を示す。図1に示す構成の血液透析装置1を用いて、透析液交換回路14の第1の送液ポンプ82と透析液供給回路13の第2の送液ポンプ52の吐出圧力を変化させたり、透析液交換回路14の開閉弁83、84と透析液供給回路13の開閉弁60、61の開閉のタイミングを変化させた時の透析液供給工程の実行比率(透析器10に透析液が流れている時間比率)を測定した。図6に、以下の第1の条件から第3の条件での開閉弁の開閉のタイミングチャートを示す。   Examples are shown below. Using the hemodialyzer 1 having the configuration shown in FIG. 1, the discharge pressures of the first liquid pump 82 of the dialysate exchange circuit 14 and the second liquid pump 52 of the dialysate supply circuit 13 are changed, or dialysis is performed. Execution ratio of dialysate supply process when the opening / closing timings of the on / off valves 83 and 84 of the liquid exchange circuit 14 and the on / off valves 60 and 61 of the dialysate supply circuit 13 are changed (the dialysate is flowing into the dialyzer 10). Time ratio) was measured. FIG. 6 shows a timing chart of opening / closing of the on-off valve under the following first to third conditions.

第1の条件
第1の送液ポンプ82と第2の送液ポンプ52の吐出圧力をそれぞれ100kPa、100kPaに調整し、開閉弁60、61と開閉弁83、84をそれぞれ1.2秒と2秒ずつ交互に開閉させた。すなわち、開閉弁60、61を閉、開閉弁83、84を開の状態を2秒維持し、その後、開閉弁60、61を開、開閉弁83、84を閉の状態を1.2秒維持し、その後再び開閉弁60,61を閉、開閉弁83、84を開にすることを繰り返した。このとき、隔壁32は、開閉弁60、61の開放時間と同じ時間で、第1の室30側の初期位置まで移動し、かつその状態に留まる時間(待機時間)がなく、開閉弁83、84の開放時間と同じ時間で、第2の室31側の第2の位置まで移動することを確認した。つまり、隔壁32が移動し終えるタイミングと、開閉弁60、61、83、84の閉鎖タイミングが一致している。なお、開閉弁60、61を開状態にする時間が短いにも関わらず、隔壁32が第1の室30側の初期位置まで移動するのは、容器12内の復元力付与機構33が隔壁32の移動を助けているからである。この場合、開閉弁60、61の開放時間が透析液供給工程の実行時間T2と等しく、開閉弁83、84の開放時間が透析液交換工程の実行時間T1と等しく、透析液供給工程の実行時間T2が透析液交換工程の実行時間T1より短くなり、透析器10内を透析液が流動する時間の比率はおよそ38%と低かった。
First condition: The discharge pressures of the first liquid pump 82 and the second liquid pump 52 are adjusted to 100 kPa and 100 kPa, respectively, and the on-off valves 60 and 61 and the on-off valves 83 and 84 are set to 1.2 seconds and 2 respectively. It was opened and closed alternately every second. That is, the on-off valves 60 and 61 are closed and the on-off valves 83 and 84 are maintained for 2 seconds, and then the on-off valves 60 and 61 are opened and the on-off valves 83 and 84 are maintained for 1.2 seconds. Thereafter, the on-off valves 60 and 61 were closed again and the on-off valves 83 and 84 were opened again. At this time, the partition wall 32 moves to the initial position on the first chamber 30 side in the same time as the opening time of the on-off valves 60, 61, and has no time (standby time) to remain in that state. It was confirmed that it moved to the second position on the second chamber 31 side in the same time as 84 opening time. That is, the timing when the partition wall 32 finishes moving coincides with the closing timing of the on-off valves 60, 61, 83, and 84. Note that the partition wall 32 moves to the initial position on the first chamber 30 side even though the time for opening the on-off valves 60 and 61 is short, because the restoring force applying mechanism 33 in the container 12 is the partition wall 32. Because it helps to move. In this case, the opening time of the on-off valves 60 and 61 is equal to the execution time T2 of the dialysate supply process, the opening time of the on-off valves 83 and 84 is equal to the execution time T1 of the dialysate exchange process, and the execution time of the dialysate supply process T2 became shorter than the execution time T1 of the dialysate exchange step, and the ratio of the time during which the dialysate flows in the dialyzer 10 was as low as about 38%.

第2の条件
第1の送液ポンプ82と第2の送液ポンプ52の吐出圧力をそれぞれ100kPa、60kPaと「第1の条件」に対し第2の送液ポンプ52の吐出圧力を下げた。この時、開閉弁60、61と開閉弁83、84は、「第1の条件」の場合と異なり、それぞれ1.6秒と2秒で交互に開閉することで、隔壁32が所定の位置(初期位置と第2の位置)まで移動し、かつ待機時間がほぼ観測されない状態となった。よって、開閉弁60、61の開放時間が透析液供給工程の実行時間T2と等しく、開閉弁83、84の開放時間が透析液交換工程の実行時間T1と等しく、透析液供給工程の実行時間T2が透析液交換工程の実行時間T1より短くなる。この場合、透析器10内を透析液が流動する時間の比率はおよそ44%であり、「第1の条件」より透析液が流動している比率が高まった。ただし、容器12が送液を行う1サイクルに掛かる時間が3.6秒であり、「第1の条件」の時の3.2秒より増えているため、単位時間当たりに送液できる液量は減少した。
Second Condition The discharge pressure of the second liquid feed pump 52 was lowered with respect to the “first condition”, with the discharge pressures of the first liquid feed pump 82 and the second liquid feed pump 52 being 100 kPa and 60 kPa, respectively. At this time, unlike the case of the “first condition”, the on-off valves 60 and 61 and the on-off valves 83 and 84 are alternately opened and closed in 1.6 seconds and 2 seconds, respectively, so that the partition wall 32 is in a predetermined position ( It moved to the initial position and the second position), and almost no standby time was observed. Therefore, the opening time of the on-off valves 60 and 61 is equal to the execution time T2 of the dialysate supply process, the opening time of the on-off valves 83 and 84 is equal to the execution time T1 of the dialysate exchange process, and the execution time T2 of the dialysate supply process Becomes shorter than the execution time T1 of the dialysate exchange process. In this case, the ratio of the time during which the dialysate flows in the dialyzer 10 is about 44%, and the ratio at which the dialysate flows is higher than the “first condition”. However, since the time required for one cycle in which the container 12 performs liquid feeding is 3.6 seconds, which is increased from 3.2 seconds in the “first condition”, the amount of liquid that can be delivered per unit time Decreased.

第3の条件
次に、第1の送液ポンプ82と第2の送液ポンプ52の吐出圧力を、それぞれ150kPa、40kPaに調整した。この場合、開閉弁60、61の開放時間(=開閉弁83、84の閉鎖時間)を2秒、開閉弁83、84の開放時間(=開閉弁60、61の閉鎖時間を1.2秒にすることで、隔壁32が所定の位置(初期位置と第2の位置)まで移動し、かつ待機時間がほぼ観測されない状態となった。この場合、開閉弁60、61の開放時間が透析液供給工程の実行時間T2と等しく、開閉弁83、84の開放時間が透析液交換工程の実行時間T1と等しくなり、透析液供給工程の実行時間T2が透析液交換工程の実行時間T1より短くなる。この結果、透析器10内を透析液が流動する時間の比率はおよそ63%であり、透析器11に透析液が流動する時間は「第1の条件」に比べ1.7倍近く長くなった。また、容器12が送液を行う1サイクルに掛かる時間は3.2秒であり「第1の条件」と同じ時間であり、よって単位時間当たりの送液量は「第1の条件」と同じになる。
Third condition Next, the discharge pressures of the first liquid feeding pump 82 and the second liquid feeding pump 52 were adjusted to 150 kPa and 40 kPa, respectively. In this case, the opening time of the on-off valves 60 and 61 (= the closing time of the on-off valves 83 and 84) is 2 seconds, and the opening time of the on-off valves 83 and 84 (= the closing time of the on-off valves 60 and 61 is 1.2 seconds). As a result, the partition wall 32 moves to a predetermined position (initial position and second position), and the waiting time is hardly observed.In this case, the opening time of the on-off valves 60 and 61 is dialysate supply. The opening time of the on-off valves 83 and 84 is equal to the execution time T1 of the dialysate exchange process, and the execution time T2 of the dialysate supply process is shorter than the execution time T1 of the dialysate exchange process. As a result, the ratio of the time during which the dialysate flows through the dialyzer 10 is approximately 63%, and the time during which the dialysate flows through the dialyzer 11 is nearly 1.7 times longer than that of the “first condition”. In addition, it takes one cycle for the container 12 to feed the liquid. Time is the same time as a 3.2 seconds "first condition", thus feeding amount per unit time is the same as the "first condition".

以上の第1の条件から第3の条件の結果を表1にまとめて示す。

Figure 2015009106
Table 1 summarizes the results of the above first to third conditions.
Figure 2015009106

なお、表1に示すポンプ吐出圧、開閉弁の開放時間などの値は、透析液供給回路13、透析液交換回路14の圧損、復元力付与機構33の復元力の程度等により適切な値に設定されるものであり、上記値が常に最適値ではない。   It should be noted that values such as pump discharge pressure and opening / closing time of the on-off valve shown in Table 1 are appropriate values depending on the pressure loss of the dialysate supply circuit 13 and dialysate exchange circuit 14, the degree of restoring force of the restoring force applying mechanism 33, and the like. It is set, and the above value is not always the optimum value.

本発明は、透析器に対する透析液の供給量と排液量の制御を厳格に行うことができる容器を用いた血液透析装置において、透析効率を向上する際に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for improving dialysis efficiency in a hemodialysis apparatus using a container capable of strictly controlling the amount of dialysate supplied to the dialyzer and the amount of drainage.

1 血液透析装置
10 透析器
10a 一次側
10b 二次側
10c 入口端
10d 出口端
11 血液循環回路
12 容器
12a 内壁面
13 透析液供給回路
14 透析液交換回路
15 制御部
20 動脈側針部
21 第1の血液流路
22 静脈側針部
23 第2の血液流路
30 第1の室
31 第2の室
32 隔壁
33 復元力付与機構
40 押圧部材
40a ガイド挿入部
41 ガイド軸
42 バネ
50 第1の透析液供給流路
51 第2の透析液供給流路
52 第2の送液ポンプ
60 開閉弁
61 開閉弁
70 透析液供給源
80 第1の透析液交換流路
81 第2の透析液交換流路
82 第1の送液ポンプ
83 開閉弁
84 開閉弁
90 分岐路
91 ポンプ
DESCRIPTION OF SYMBOLS 1 Hemodialysis apparatus 10 Dialyzer 10a Primary side 10b Secondary side 10c Inlet end 10d Outlet end 11 Blood circulation circuit 12 Container 12a Inner wall surface 13 Dialysate supply circuit 14 Dialysate exchange circuit 15 Control part 20 Arterial side needle part 21 1st Blood channel 22 Venous needle 23 Second blood channel 30 First chamber 31 Second chamber 32 Partition 33 Restoring force applying mechanism 40 Pressing member 40a Guide insertion portion 41 Guide shaft 42 Spring 50 First dialysis Liquid supply flow path 51 Second dialysate supply flow path 52 Second liquid feed pump 60 Open / close valve 61 Open / close valve 70 Dialysate supply source 80 First dialysate exchange flow path 81 Second dialysate exchange flow path 82 First liquid feed pump 83 On-off valve 84 On-off valve 90 Branch path 91 Pump

Claims (5)

透析器と、
内部を第1の室と第2の室に隔てる変位可能な隔壁を有する容器と、
前記第1の室に透析液を供給するとともに、前記第2の室の透析廃液を外部に排出する透析液交換回路と、
前記透析液交換回路を通じて前記第1の室に透析液を送る第1の送液ポンプと、
前記透析液交換回路を開閉する第1の開閉装置と、
前記第1の室の前記透析液を前記透析器に供給するとともに、前記透析器から前記第2の室に透析廃液を排出する透析液供給回路と、
前記透析液供給回路を通じて前記第2の室に透析廃液を送る第2の送液ポンプと、
前記透析液供給回路を開閉する第2の開閉装置と、
前記第1の送液ポンプを稼働し、前記第1の開閉装置により前記透析液交換回路を開放して、前記第1の室に透析液を供給し、前記隔壁が前記第2の室側に変位し、前記第2の室から外部に透析廃液を排出する透析液交換工程と、前記第2の送液ポンプを稼働し、前記第2の開閉装置により透析液供給回路を開放して、前記隔壁が前記第1の室側に変位し、前記第1の室から前記透析器に透析液を供給し、前記透析器から前記第2の室に透析廃液を排出する透析液供給工程とを交互に実行し、1サイクルにおける前記透析液供給工程の実行時間が前記透析液交換工程の実行時間よりも長くなるように前記第1の送液ポンプ、前記第2の送液ポンプ、前記第1の開閉装置又は前記第2の開閉装置の少なくともいずれかを制御する制御部と、を有する血液透析装置。
A dialyzer,
A container having a displaceable partition that separates the interior into a first chamber and a second chamber;
A dialysate exchange circuit for supplying dialysate to the first chamber and discharging the dialysate waste fluid of the second chamber to the outside;
A first liquid pump for sending dialysate to the first chamber through the dialysate exchange circuit;
A first switch for opening and closing the dialysate exchange circuit;
A dialysis fluid supply circuit for supplying the dialysis fluid from the first chamber to the dialyzer and discharging dialysis waste fluid from the dialyzer to the second chamber;
A second liquid feed pump for sending dialysis waste liquid to the second chamber through the dialysate supply circuit;
A second opening / closing device for opening and closing the dialysate supply circuit;
The first liquid supply pump is operated, the dialysate exchange circuit is opened by the first opening and closing device, dialysate is supplied to the first chamber, and the partition wall is located on the second chamber side. Displacement, dialysate exchange process for discharging dialysis waste liquid from the second chamber to the outside, operating the second liquid feed pump, opening the dialysate supply circuit by the second opening and closing device, The partition wall is displaced to the first chamber side, and the dialysate supply step of supplying dialysate from the first chamber to the dialyzer and discharging dialysate waste fluid from the dialyzer to the second chamber is alternately performed. And the first liquid feed pump, the second liquid feed pump, the first liquid feed pump, the first liquid feed pump, the first liquid feed pump, the first liquid feed pump, and the first liquid feed pump, A control unit that controls at least one of the switchgear and the second switchgear. That hemodialysis apparatus.
前記制御部は、前記透析液交換工程における前記第1の送液ポンプによる送液流量を、前記透析液供給工程における前記第2の送液ポンプによる送液流量よりも高くして、前記透析液供給工程における前記第2の開閉装置の開放時間を、前記透析液交換工程における前記第1の開閉装置の開放時間よりも長くする、請求項1に記載の血液透析装置。   The control unit sets the flow rate of the liquid fed by the first liquid feed pump in the dialysate exchange step to be higher than the flow rate of the liquid fed by the second liquid feed pump in the dialysate supply step. The hemodialysis apparatus according to claim 1, wherein an opening time of the second opening / closing device in the supplying step is made longer than an opening time of the first opening / closing device in the dialysate exchange step. 前記第1の室側もしくは第2の室側に変位した前記隔壁を元の位置に戻すための復元力を付与する復元力付与機構を、さらに有する、請求項1又は2に記載の血液透析装置。   The hemodialysis apparatus according to claim 1 or 2, further comprising a restoring force applying mechanism that applies a restoring force for returning the partition wall displaced toward the first chamber side or the second chamber side to an original position. . 前記隔壁の変位の完了を検出する手段を、さらに有し、
前記制御部は、検出した隔壁の変位の完了に基づいて、前記第1の開閉装置又は前記第2の開閉装置の少なくともいずれかを閉鎖する、請求項1〜3のいずれかに記載の血液透析装置。
Means for detecting completion of the displacement of the partition;
The hemodialysis according to any one of claims 1 to 3, wherein the controller closes at least one of the first opening / closing device and the second opening / closing device based on completion of the detected displacement of the partition wall. apparatus.
透析器と、
内部を第1の室と第2の室に隔てる変位可能な隔壁を有する容器と、
前記第1の室に透析液を供給するとともに、前記第2の室の透析廃液を外部に排出する透析液交換回路と、
前記透析液交換回路を通じて前記第1の室に透析液を送る第1の送液ポンプと、
前記透析液交換回路を開閉する第1の開閉装置と、
前記第1の室の前記透析液を前記透析器に供給するとともに、前記透析器から前記第2の室に透析廃液を排出する透析液供給回路と、
前記透析液供給回路を通じて前記第2の室に透析廃液を送る第2の送液ポンプと、
前記透析液供給回路を開閉する第2の開閉装置と、を有する血液透析装置の作動方法であって、
前記第1の送液ポンプを稼働し、前記第1の開閉装置により前記透析液交換回路を開放して、前記第1の室に透析液を供給し、前記隔壁が前記第2の室側に変位し、前記第2の室から外部に透析廃液を排出する透析液交換工程と、前記第2の送液ポンプを稼働し、前記第2の開閉装置により透析液供給回路を開放して、前記隔壁が前記第1の室側に変位し、前記第1の室から前記透析器に透析液を供給し、前記透析器から前記第2の室に透析廃液を排出する透析液供給工程とを交互に実行し、1サイクルにおける前記透析液供給工程の実行時間が前記透析液交換工程の実行時間よりも長くなるように前記第1の送液ポンプ、前記第2の送液ポンプ、前記第1の開閉装置又は前記第2の開閉装置の少なくともいずれかを制御する制御部が作動する、血液透析装置の作動方法。
A dialyzer,
A container having a displaceable partition that separates the interior into a first chamber and a second chamber;
A dialysate exchange circuit for supplying dialysate to the first chamber and discharging the dialysate waste fluid of the second chamber to the outside;
A first liquid pump for sending dialysate to the first chamber through the dialysate exchange circuit;
A first switch for opening and closing the dialysate exchange circuit;
A dialysis fluid supply circuit for supplying the dialysis fluid from the first chamber to the dialyzer and discharging dialysis waste fluid from the dialyzer to the second chamber;
A second liquid feed pump for sending dialysis waste liquid to the second chamber through the dialysate supply circuit;
A second opening / closing device that opens and closes the dialysate supply circuit;
The first liquid supply pump is operated, the dialysate exchange circuit is opened by the first opening and closing device, dialysate is supplied to the first chamber, and the partition wall is located on the second chamber side. Displacement, dialysate exchange process for discharging dialysis waste liquid from the second chamber to the outside, operating the second liquid feed pump, opening the dialysate supply circuit by the second opening and closing device, The partition wall is displaced to the first chamber side, and the dialysate supply step of supplying dialysate from the first chamber to the dialyzer and discharging dialysate waste fluid from the dialyzer to the second chamber is alternately performed. And the first liquid feed pump, the second liquid feed pump, the first liquid feed pump, the first liquid feed pump, the first liquid feed pump, the first liquid feed pump, and the first liquid feed pump, A control unit that controls at least one of the switchgear and the second switchgear operates. , Method of operation of the hemodialysis apparatus.
JP2013139023A 2013-07-02 2013-07-02 Hemodialysis apparatus and hemodialysis apparatus operation method Pending JP2015009106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139023A JP2015009106A (en) 2013-07-02 2013-07-02 Hemodialysis apparatus and hemodialysis apparatus operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139023A JP2015009106A (en) 2013-07-02 2013-07-02 Hemodialysis apparatus and hemodialysis apparatus operation method

Publications (1)

Publication Number Publication Date
JP2015009106A true JP2015009106A (en) 2015-01-19

Family

ID=52302825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139023A Pending JP2015009106A (en) 2013-07-02 2013-07-02 Hemodialysis apparatus and hemodialysis apparatus operation method

Country Status (1)

Country Link
JP (1) JP2015009106A (en)

Similar Documents

Publication Publication Date Title
EP3127564B1 (en) Blood purification device and priming method for blood purification device
ATE550054T1 (en) DEVICE FOR EXTRACORPORAL BLOOD TREATMENT
CN106659839B (en) Method for washing out air bubbles in an extracorporeal blood circulation circuit
CN103764191A (en) Blood purification device
US9168332B2 (en) Hemodialysis apparatus, method of operating hemodialysis apparatus, and water content removal system
CN103732270A (en) Blood purification device
US10576197B2 (en) Blood purification device and priming method
JP2012095843A (en) Blood purifier and method for priming the same
JP2008093193A (en) Supply method of back-filtration dialysate in hemodialyzer and hemodialyzer
KR20150136257A (en) Blood supply unit and hemodialysis apparatus having the same
JP7246258B2 (en) Diaphragm pump and blood purification device using the same
JP2015009106A (en) Hemodialysis apparatus and hemodialysis apparatus operation method
JP5514606B2 (en) Continuous hemodialysis machine
JP2015195833A (en) Blood purification device and draining method of blood purification device
JP2015009105A (en) Hemodialysis apparatus and hemodialysis apparatus operation method
JP5485757B2 (en) Method of operating hemodialysis apparatus and hemodialysis apparatus
US11246969B2 (en) Apparatus for extracorporeal blood treatment and method for operating an extracorporeal blood treatment apparatus
JP6566687B2 (en) Blood purification apparatus, priming method and operating method of blood purification apparatus
JP2022518766A (en) How to fill the membrane filter
JP7048072B2 (en) Single-needle blood purification device
JP2014110856A (en) Dialysis fluid supply device, and actuation method and program of dialysis fluid supply device
JP7228005B2 (en) blood purifier
CN110891628B (en) Blood purification device
KR20160026345A (en) Blood supply unit
JP6513923B2 (en) Blood purification apparatus and priming method