JP2015008257A - High frequency device, and method of manufacturing the same - Google Patents

High frequency device, and method of manufacturing the same Download PDF

Info

Publication number
JP2015008257A
JP2015008257A JP2013133569A JP2013133569A JP2015008257A JP 2015008257 A JP2015008257 A JP 2015008257A JP 2013133569 A JP2013133569 A JP 2013133569A JP 2013133569 A JP2013133569 A JP 2013133569A JP 2015008257 A JP2015008257 A JP 2015008257A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
sample
paste
frequency device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013133569A
Other languages
Japanese (ja)
Other versions
JP6095002B2 (en
Inventor
浩次 山▲崎▼
Koji Yamazaki
浩次 山▲崎▼
智明 加東
Tomoaki Kato
智明 加東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013133569A priority Critical patent/JP6095002B2/en
Publication of JP2015008257A publication Critical patent/JP2015008257A/en
Application granted granted Critical
Publication of JP6095002B2 publication Critical patent/JP6095002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a high frequency device in which, even if a radio wave absorbent includes a ferrous oxide such as ferrite, the radio wave absorbent is joined to a lid body with high joint strength without application of a metal film or metallization and out gas is prevented from being generated even if heated at about 400°C in a seam-welding step of a post step.SOLUTION: There is disclosed a method of manufacturing a high frequency device in which, after a paste containing organic material-coated Ag particles having micro sizes and a solvent is printed on a lid body, and a radio wave absorbent having a surface roughness Ra of 0.5 μm to 10 μm is arranged on the printed paste so that the surface having the surface roughness and the paste come into contact with each other, tapping operation for applying impact to a direction to the lid body from the radio wave absorbent at a speed of 0.1 m/second to 1 m/second is performed three times or more.

Description

本発明は、高周波装置及びその製造方法に関するものである。   The present invention relates to a high-frequency device and a method for manufacturing the same.

通常、高周波装置では、金属又はセラミックス等からなる直方体状の蓋体を基板に取り付けて内部に実装される半導体素子や伝送線路等の保護を行う。従って、高周波装置内部には直方体状の空洞が形成されることから、高周波装置は方形空洞共振器と同様の性質を有する。そのため、空洞の寸法によって定まる遮断周波数より高い周波数帯域で空洞共振を生じるので、この周波数帯域で動作する高周波半導体素子あるいはその他の回路素子を高周波回路用パッケージに実装する場合には、空洞の寸法を小さくすることで、遮断周波数を素子が動作する周波数帯域よりも十分に高くしている。ところが、この方法では素子の動作周波数が高周波化するのに伴い、素子が動作する周波数帯域より空洞共振が生じる周波数の方が低くなるという問題があった。近年、この問題を解決するために、電磁波吸収体を高周波装置内部に装着して、空洞共振時の電界エネルギー又は磁界エネルギーを吸収することにより、空洞共振を抑制する方法が採られるようになってきている。   Usually, in a high-frequency device, a rectangular parallelepiped lid made of metal, ceramics, or the like is attached to a substrate to protect a semiconductor element, a transmission line, or the like mounted therein. Therefore, since a rectangular parallelepiped cavity is formed inside the high frequency device, the high frequency device has the same properties as a rectangular cavity resonator. Therefore, since cavity resonance occurs in a frequency band higher than the cutoff frequency determined by the cavity size, when mounting a high-frequency semiconductor element or other circuit element operating in this frequency band in a high-frequency circuit package, By making it smaller, the cut-off frequency is made sufficiently higher than the frequency band in which the element operates. However, this method has a problem that, as the operating frequency of the element increases, the frequency at which the cavity resonance occurs is lower than the frequency band in which the element operates. In recent years, in order to solve this problem, a method of suppressing cavity resonance by mounting an electromagnetic wave absorber inside a high-frequency device and absorbing electric field energy or magnetic field energy at the time of cavity resonance has been adopted. ing.

例えば、特許文献1では、焼結した電波吸収体の片面にメタライズ層を形成し、このメタライズ層によってマイクロ波集積回路用パッケージの金属製蓋部の内面にろう付けした構造とすることで、マイクロ波集積回路用パッケージ内で生じるマイクロ波の反射共振を抑制する方法が提案されている。   For example, in Patent Document 1, a metallized layer is formed on one side of a sintered radio wave absorber, and this metallized layer is brazed to the inner surface of a metal lid of a microwave integrated circuit package. There has been proposed a method of suppressing reflection resonance of microwaves generated in a package for a wave integrated circuit.

また、特許文献2では、表面に金属膜を形成した金属又はセラミック製の基体と、Feを主成分とし、その残部にNiOを含有する焼結体からなる電波吸収体の表面の少なくとも一部に金属膜を形成したものとを、融点が100℃〜400℃のろう材を用いて止着した高周波回路用パッケージ蓋体が提案されている。特許文献2には、このろう材について、Sn、Zn、Au、Bi、Cu、Pb、In、Ag等の金属のうち2種以上の金属の合金を用いればよいが、金属膜との濡れ性及び融点温度を考慮し、Au−Sn、Sn−Pb、Sn−Ag−Cu、Sn−Bi−Ag、In−Sn等の合金を使用することが好ましいと記載されている。特許文献2には、金属膜の材料について、ろう材との濡れ性を考慮すると、Au、Ag、Al、Sn、Zn、Pd、Cu、Ni、Fe等の金属、及びこれらを含む合金を使用することが好ましく、1層又は2層以上の構成としても構わないことが記載されている。特許文献2には、金属膜としては、化学的安定性が高いことから、Auが好ましいが、特に半田との濡れ性及び封止接合の信頼性の高いことから、表面層をAuとし、その下地層をNiとすることが好ましく、更にNi層と電波吸収体の密着性を向上させる目的で両者の間にCr層を設けることが好ましいと記載されている。 Further, in Patent Document 2, at least the surface of a radio wave absorber composed of a metal or ceramic base having a metal film formed on the surface and a sintered body containing Fe 2 O 3 as a main component and NiO in the remaining part. A package lid for a high-frequency circuit has been proposed in which a metal film formed on a part thereof is fastened using a brazing material having a melting point of 100 ° C. to 400 ° C. In Patent Document 2, for this brazing material, an alloy of two or more kinds of metals such as Sn, Zn, Au, Bi, Cu, Pb, In, and Ag may be used, but wettability with a metal film. In addition, it is described that it is preferable to use an alloy such as Au—Sn, Sn—Pb, Sn—Ag—Cu, Sn—Bi—Ag, and In—Sn in consideration of the melting point temperature. Patent Document 2 uses metals such as Au, Ag, Al, Sn, Zn, Pd, Cu, Ni, and Fe, and alloys containing these, considering the wettability with the brazing material for the metal film material. However, it is described that one layer or two or more layers may be used. In Patent Document 2, Au is preferable as the metal film because of its high chemical stability. However, since the wettability with solder and the reliability of sealing bonding are particularly high, the surface layer is Au, It is described that the underlayer is preferably Ni, and that a Cr layer is preferably provided between them for the purpose of improving the adhesion between the Ni layer and the radio wave absorber.

他に、特許文献3では、金属核の周囲に有機被覆層を形成した複合金属ナノ粒子と、金属ナノフィラー粒子と、金属フィラー粒子を含有する複合ナノ金属ペーストが、電磁波吸収体等の接合に適用できることが示されている。   In addition, in Patent Document 3, a composite metal nanoparticle having an organic coating layer formed around a metal core, a metal nanofiller particle, and a composite nanometal paste containing the metal filler particle are used for joining an electromagnetic wave absorber or the like. It has been shown to be applicable.

実公平2−23035号公報Japanese Utility Model Publication No. 2-33035 特開2005−72156号公報JP 2005-72156 A 特開2011−21255号公報JP 2011-21255 A

高周波装置の製造工程上、最初に蓋体に電波吸収体をろう材等で接合し、後工程では、電波吸収体が搭載された蓋体を基板に高気密に接合する必要がある。このときの接合方法は、量産性の観点から、一般的にシーム溶接が用いられており、蓋体の温度は300℃〜400℃になる。そのため、蓋体への電波吸収体の接合材は400℃以上の耐熱性が必要である。また、高周波装置は、内部が密閉されているため、接合後に内部からアウトガスが発生すると、半導体素子が腐食したり、劣化する懸念がある。また、製品の競争力強化には、出来る限りタクトタイムを小さく、安価であることが望ましい。   In the manufacturing process of the high frequency device, it is necessary to first join the radio wave absorber to the lid with a brazing material or the like, and in the subsequent process, it is necessary to join the lid on which the radio wave absorber is mounted to the substrate in a highly airtight manner. As a joining method at this time, seam welding is generally used from the viewpoint of mass productivity, and the temperature of the lid body is 300 ° C to 400 ° C. Therefore, the bonding material for the radio wave absorber to the lid needs to have a heat resistance of 400 ° C. or higher. In addition, since the inside of the high-frequency device is hermetically sealed, if outgas is generated from the inside after joining, there is a concern that the semiconductor element may be corroded or deteriorated. In order to enhance the competitiveness of the product, it is desirable that the tact time is as small as possible and the cost is low.

特許文献1では、電波吸収体の片面(接合面)にメタライズ層を形成してろう付けしているため、メタライズ層の形成プロセスが必要になるので製造コストが高くなり、タクトタイムが長くなる。   In Patent Document 1, since the metallized layer is formed on one side (bonding surface) of the radio wave absorber and brazed, a process for forming the metallized layer is required, which increases the manufacturing cost and the tact time.

特許文献2では、特許文献1と同様に電波吸収体に金属膜を形成しており、具体的な金属膜の材質や構成が示されているが、例えCrを添加したとしても、電波吸収体がFeやNiOなどの化学的に安定な酸化物であるため、金属膜の密着強度には限界がある。金属膜の初期の密着強度が低いと、後工程でのろう付け、シーム溶接で剥がれる可能性がある。また、特許文献2では、ろう材の具体例を挙げているが、Au−Snの共晶点(Au−20Sn)は約280℃、Sn−Pbの共晶点(Sn−38Pb)は183℃、Sn−Ag−Cuの共晶点(Sn−3Ag−0.5Cu)は約220℃、Sn−Bi−Ag(Sn−57Bi−1Ag)は約140℃、In−Snの共晶点(In−49Sn)は120℃といずれも融点が300℃以下であり、耐熱性が不十分である。融点が400℃以上のろう材としては、Zn(融点420℃)が挙げられるが、Znは酸化し易く、通常のハロゲンフリーのフラックスで接合するのは難しい。ハロゲン含有のフラックスを用いればZnろう材での接合は可能であるが、ハロゲンは腐食性が高く、一般的にはFを含んでいるため、電波吸収体を劣化させる懸念がある。またフラックスを用いると残渣が残り、洗浄工程を要するため、タクトタイムが長くなる。フラックスを用いずに、真空炉や水素還元炉を用いれば、フラックスレスで接合が可能であるが、大掛かりな装置が必要になり、水素還元炉の場合、水素ガスも必要になるので製造コストが高くなる。 In Patent Document 2, a metal film is formed on a radio wave absorber as in Patent Document 1, and a specific material and configuration of the metal film are shown. However, even if Cr is added, the radio wave absorber Is a chemically stable oxide such as Fe 2 O 3 or NiO, so that the adhesion strength of the metal film is limited. If the initial adhesion strength of the metal film is low, it may be peeled off by brazing or seam welding in a later process. In Patent Document 2, a specific example of a brazing material is given. The eutectic point of Au—Sn (Au-20Sn) is about 280 ° C., and the eutectic point of Sn—Pb (Sn-38Pb) is 183 ° C. Sn-Ag-Cu eutectic point (Sn-3Ag-0.5Cu) is about 220 ° C, Sn-Bi-Ag (Sn-57Bi-1Ag) is about 140 ° C, and In-Sn eutectic point (In -49Sn) has a melting point of not more than 300 ° C. at 120 ° C., and has insufficient heat resistance. Examples of the brazing material having a melting point of 400 ° C. or higher include Zn (melting point: 420 ° C.), but Zn is easily oxidized and difficult to join with a normal halogen-free flux. When a halogen-containing flux is used, bonding with a Zn brazing material is possible. However, since halogen is highly corrosive and generally contains F, there is a concern that the radio wave absorber may be deteriorated. Moreover, when a flux is used, a residue remains and a cleaning process is required, so that the tact time is increased. If a vacuum furnace or a hydrogen reduction furnace is used without using a flux, joining can be done without flux, but a large-scale device is required, and in the case of a hydrogen reduction furnace, hydrogen gas is also required, so the production cost is low. Get higher.

特許文献3では、複合ナノ金属ペーストを用いることで、300℃以下の温度で接合して、接合後は金属のバルク体になるため、金属の融点(Agであれば融点960℃)と同じ耐熱性が得られるが、電磁波吸収体への接合方法については詳細が示されていない。この複合ナノ金属ペーストの接合メカニズムは、複合金属ナノ粒子の有機被覆層及び溶剤が加熱によって揮発することで、ナノ粒子の金属面が生成され、ナノサイズの粒子が凝集し、結合することで金属のバルク体が接合部に形成される。このとき、接合プロセスが適正化されていないと、有機被覆層及び溶剤が残留し、接合後の再加熱でアウトガスを発生する可能性がある。また、電磁吸収体は、一般的にはフェライトなど鉄系の酸化物を使用しており、このような化学的に安定な酸化物の表面に高い接合強度で接合するのに、どのような接合メカニズムで接合するか詳細が明らかではない。   In patent document 3, since it joins at the temperature of 300 degrees C or less by using a composite nano metal paste, and becomes a bulk body of metal after joining, it has the same heat resistance as the melting point of metal (melting point of 960 degrees C. for Ag). However, details are not shown about the joining method to an electromagnetic wave absorber. The bonding mechanism of this composite nanometal paste is that the organic coating layer of the composite metal nanoparticles and the solvent are volatilized by heating, the metal surface of the nanoparticles is generated, and the nano-sized particles are aggregated and bonded to form a metal. A bulk body is formed at the junction. At this time, if the bonding process is not optimized, the organic coating layer and the solvent may remain, and outgassing may occur due to reheating after bonding. Electromagnetic absorbers generally use iron-based oxides such as ferrite, and what kind of joints can be used to join such chemically stable oxide surfaces with high joint strength. It is not clear how to join by mechanism.

従って、本発明は、上記のような問題を解決するためになされたものであり、フェライトなど鉄系の酸化物が含まれる電波吸収体であっても、金属膜やメタライズなどを施すことなしに、蓋体と高い接合強度で接合し、後工程のシーム溶接工程で400℃程度に加熱されても、アウトガスが発生しない高周波装置の製造方法を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and even a radio wave absorber containing an iron-based oxide such as ferrite without applying a metal film or metallization. An object of the present invention is to provide a method of manufacturing a high-frequency device that does not generate outgas even when bonded to a lid with high bonding strength and heated to about 400 ° C. in a subsequent seam welding process.

本発明は、マイクロサイズの有機被覆Ag粒子及び溶剤を含有するペーストを蓋体上に印刷し、印刷した前記ペースト上に、0.5μm〜10μmの表面粗さRaを有する電波吸収体を前記表面粗さを有する面と前記ペーストが接触するように配置した後、前記電波吸収体から前記蓋体の方向へ0.1m/秒〜1m/秒の速度で衝撃を加えるタッピング操作を3回以上行うことを含むことを特徴とする高周波装置の製造方法である。   In the present invention, a paste containing micro-sized organic coated Ag particles and a solvent is printed on a lid, and a radio wave absorber having a surface roughness Ra of 0.5 μm to 10 μm is formed on the surface of the printed paste. After arranging the surface having roughness and the paste in contact with each other, a tapping operation for applying an impact at a speed of 0.1 m / sec to 1 m / sec from the radio wave absorber toward the lid is performed three times or more. This is a method for manufacturing a high-frequency device.

本発明によれば、フェライトなど鉄系の酸化物が含まれる電波吸収体であっても、金属膜やメタライズなどを施すことなしに、蓋体と高い接合強度で接合し、後工程のシーム溶接工程で400℃程度に加熱されても、アウトガスが発生しない高周波装置の製造方法を提供することができる。   According to the present invention, even a radio wave absorber containing an iron-based oxide such as ferrite is joined to the lid body with a high joint strength without applying a metal film or metallization, and the seam welding in the subsequent process A method of manufacturing a high-frequency device that does not generate outgas even when heated to about 400 ° C. in the process can be provided.

実施の形態1による高周波装置の製造工程を示す図である。5 is a diagram showing a manufacturing process of the high-frequency device according to Embodiment 1. FIG. 実施の形態1で用いることのできる電波吸収体の模式断面図である。3 is a schematic cross-sectional view of a radio wave absorber that can be used in Embodiment 1. FIG. 実施例及び比較例で作製したサンプルの断面観察結果である。It is a cross-sectional observation result of the sample produced by the Example and the comparative example. 実施例及び比較例で作製したサンプルの断面観察結果である。It is a cross-sectional observation result of the sample produced by the Example and the comparative example.

実施の形態1.
本発明の実施の形態1による高周波装置の製造方法は、マイクロサイズの有機被覆Ag粒子及び溶剤を含有するペーストを蓋体上に印刷し、印刷した前記ペースト上に、0.5μm〜10μmの表面粗さRaを有する電波吸収体を前記表面粗さを有する面と前記ペーストが接触するように配置した後、前記電波吸収体から前記蓋体の方向へ0.1m/秒〜1m/秒の速度で衝撃を加えるタッピング操作を3回以上行うことを含むことを特徴とするものである。
Embodiment 1 FIG.
In the method for manufacturing a high-frequency device according to the first embodiment of the present invention, a paste containing micro-sized organic-coated Ag particles and a solvent is printed on a lid, and a surface of 0.5 μm to 10 μm is printed on the printed paste. A wave absorber having a roughness Ra is disposed so that the surface having the surface roughness and the paste are in contact with each other, and then a velocity of 0.1 m / sec to 1 m / sec from the wave absorber to the lid body. And tapping operation for applying an impact is performed three times or more.

図1は、実施の形態1による高周波装置の製造工程を示す図である。図1(a)に示されるように、マイクロサイズの有機被覆Ag粒子1及び溶剤2を含有するペースト3を蓋体4上に印刷する。ここで用いるマイクロサイズの有機被覆Ag粒子1としては、平均粒子径がマイクロサイズであり、オレイン酸、アビエチン酸、ジエチルへキサン、ステアリン酸、炭素数4以上のアルコール性水酸基を含む有機化合物などの有機成分で被覆されたAg粒子であればよい。有機被覆Ag粒子1は、粒子表面に有機被覆が形成されているので溶剤2中で凝集することなく、単分散する。有機被覆Ag粒子1の平均粒子径は、好ましくは0.1μm〜5μmであり、より好ましくは0.3μm〜3μmである。なお、本発明において、有機被覆Ag粒子1の平均粒子径は、レーザ回折・散乱法で測定した値であり、この測定に用いる装置としては例えば日機装株式会社製マイクロトラック(Microtrac)粒度分布測定装置MT3300が挙げられる。溶剤2としては、プロパノールなどのアルコール、ベンゼン、アセトン、トルエン、キシレン、エーテル、石油エーテルなどが挙げられる。ペースト3の粘度は、後述するタッピング操作により有機被覆Ag粒子1をペースト3内で移動させ易いという点から、10Pa・s〜200Pa・sが好ましい。また、ペースト3には、粘性付与剤を添加してもよい。粘性付与剤としては、例えば、テレピンオイル、ターピネオール、メチルセルロース、エチルセルロース、ブチラール、テルペン誘導体、イソボルニルシクロヘキサノール(IBCH)、グリセリン、常温で固体の炭素数14以上のアルコールなどが挙げられる。テルペン誘導体としては、1,8−テルピンモノアセテート、1,8−テルピンジアセテートなどが挙げられる。
このようなマイクロサイズの有機被覆Ag粒子1及び溶剤2を含有するペースト3は、市販されているものを用いてもよく、例えば、日本データマテリアル株式会社製のMAX101、MAX102、化研テック株式会社製のCM−3212などが挙げられる。
蓋体4としては、当該技術分野で使用されているものを制限なく用いることができ、例えば、コバールなどの合金からなるものを使用することができる。
ペースト3の印刷方法は、特に限定されるものではないが、例えば、スクリーン印刷、ディスペンサが挙げられる。印刷するペーストの厚さは、焼結性及び焼結時のアウトガス抜け性の点から、20μm〜200μmであることが好ましい。
FIG. 1 is a diagram illustrating a manufacturing process of the high-frequency device according to the first embodiment. As shown in FIG. 1A, a paste 3 containing micro-sized organic-coated Ag particles 1 and a solvent 2 is printed on a lid 4. The micro-sized organic-coated Ag particles 1 used here have an average particle size of micro-size, such as oleic acid, abietic acid, diethyl hexane, stearic acid, and organic compounds containing an alcoholic hydroxyl group having 4 or more carbon atoms. Any Ag particles coated with an organic component may be used. The organic coated Ag particles 1 are monodispersed without being aggregated in the solvent 2 because the organic coating is formed on the particle surface. The average particle diameter of the organic coated Ag particles 1 is preferably 0.1 μm to 5 μm, more preferably 0.3 μm to 3 μm. In the present invention, the average particle diameter of the organic-coated Ag particles 1 is a value measured by a laser diffraction / scattering method, and an apparatus used for this measurement is, for example, a Microtrac particle size distribution measuring apparatus manufactured by Nikkiso Co., Ltd. MT3300 is mentioned. Examples of the solvent 2 include alcohols such as propanol, benzene, acetone, toluene, xylene, ether, petroleum ether, and the like. The viscosity of the paste 3 is preferably 10 Pa · s to 200 Pa · s from the viewpoint that the organic coated Ag particles 1 can be easily moved in the paste 3 by a tapping operation described later. Further, a viscosity imparting agent may be added to the paste 3. Examples of the viscosity-imparting agent include turpentine oil, terpineol, methylcellulose, ethylcellulose, butyral, terpene derivatives, isobornylcyclohexanol (IBCH), glycerin, and alcohols having 14 or more carbon atoms that are solid at room temperature. Examples of terpene derivatives include 1,8-terpine monoacetate and 1,8-terpine diacetate.
The paste 3 containing such micro-sized organic-coated Ag particles 1 and the solvent 2 may be a commercially available one. For example, MAX101, MAX102 manufactured by Nippon Data Material Co., Ltd., Kaken Tech Co., Ltd. For example, CM-3212 manufactured by the company is available.
As the cover body 4, what is used in the said technical field can be used without a restriction | limiting, For example, what consists of alloys, such as Kovar, can be used.
Although the printing method of the paste 3 is not specifically limited, For example, screen printing and a dispenser are mentioned. The thickness of the paste to be printed is preferably 20 μm to 200 μm from the viewpoints of sinterability and outgas removal during sintering.

次に、図1(b)に示されるように、印刷されたペースト3上に、電波吸収体5を配置する。ここで、電波吸収体5は、0.5μm〜10μmの表面粗さRaを有する面を備えており、その面とペースト3とが接触するように配置されている。ペースト3と接触する面の表面粗さが0.5μmよりも小さいと、アンカー効果が発揮されないため、十分な接合強度が得られず、一方、10μmよりも大きいと、接合部の厚さばらつきが生じ、また、電波吸収体5内部まで有機被覆Ag粒子1が入り込み難くなるため、十分な接合強度が得られない。電波吸収体5としては、電波吸収特性が良好であり且つ上記表面粗さを有するものが得られ易いという点から、Feを主成分とし、バインダとしてのガラスを20重量%〜45重量%含有するものを焼結させて得られるものが好ましい。ガラスとしては、SiO系及びBi系のものが挙げられる。
また、電波吸収体5として、図2に示すように、厚さ方向に貫通し、直径が100μm〜1000μmである貫通孔8を有するものを用いることが好ましい。このような貫通孔8を有する電波吸収体5を用いることで、焼結時にアウトガスが抜け易くなり、良好な接合強度が得られる。
Next, as shown in FIG. 1B, the radio wave absorber 5 is disposed on the printed paste 3. Here, the radio wave absorber 5 includes a surface having a surface roughness Ra of 0.5 μm to 10 μm, and is disposed so that the surface and the paste 3 are in contact with each other. When the surface roughness of the surface in contact with the paste 3 is smaller than 0.5 μm, the anchor effect is not exhibited, so that sufficient bonding strength cannot be obtained. On the other hand, when the surface roughness is larger than 10 μm, the thickness of the bonded portion varies. In addition, since the organic coated Ag particles 1 are difficult to enter into the radio wave absorber 5, sufficient bonding strength cannot be obtained. As the radio wave absorber 5, it is easy to obtain a radio wave absorber having the above-mentioned surface roughness, and Fe 2 O 3 is the main component, and glass as a binder is 20 wt% to 45 wt%. What is obtained by sintering what is contained in% is preferable. Examples of the glass include those based on SiO 2 and Bi 2 O 3 .
In addition, as shown in FIG. 2, it is preferable to use a radio wave absorber 5 that has a through hole 8 that penetrates in the thickness direction and has a diameter of 100 μm to 1000 μm. By using the radio wave absorber 5 having such a through-hole 8, outgas is easily released during sintering, and good bonding strength is obtained.

次に、図1(c)に示されるように、蓋体4、ペースト3及び電波吸収体5がこの順に積層された積層体に、電波吸収体5から蓋体4の方向へ0.1m/秒〜1m/秒の速度で衝撃を加えるタッピング操作を3回以上行う。タッピング操作を行うことで、タッピング操作前は溶剤2中に均一に分散していた有機被覆Ag粒子1を、蓋体4側に偏在させることができる。具体的なタッピング操作としては、例えば、蓋体4、ペースト3及び電波吸収体5がこの順に積層された積層体の蓋体4側をSUS製テーブルなどに打ち付ける方法などが挙げられる。タッピング速度が0.1m/秒より小さいと、十分な接合強度が得られない上に、アウトガスが抜け難くなり、一方、1.0m/秒よりも大きくすると、有機被覆Ag粒子1がペースト3から流出してしまい、その結果、アウトガスが抜け難くなる。また、タッピング操作の回数が2回以下であると、十分な接合強度が得られない上に、アウトガスが抜け難くなる。タッピング操作の回数は、好ましくは3回〜20回である。タッピング操作の回数が20回を超えると、有機被覆Ag粒子1がペースト3から流出してしまう場合があり、その結果、アウトガスが抜け難くなる場合がある。   Next, as shown in FIG. 1 (c), 0.1 m / in the direction from the radio wave absorber 5 to the lid body 4, the laminated body in which the lid body 4, the paste 3 and the radio wave absorber 5 are laminated in this order. A tapping operation for applying an impact at a speed of 1 to 1 m / sec is performed three times or more. By performing the tapping operation, the organic-coated Ag particles 1 uniformly dispersed in the solvent 2 before the tapping operation can be unevenly distributed on the lid 4 side. As a specific tapping operation, for example, a method of hitting the lid body 4 side of the laminated body in which the lid body 4, the paste 3, and the radio wave absorber 5 are laminated in this order on a SUS table or the like can be cited. If the tapping speed is less than 0.1 m / sec, sufficient bonding strength cannot be obtained and outgas is difficult to escape. On the other hand, if the tapping speed is greater than 1.0 m / sec, the organic coated Ag particles 1 are removed from the paste 3. As a result, the outgas is difficult to escape. Further, when the number of tapping operations is 2 or less, sufficient bonding strength cannot be obtained and outgas is difficult to escape. The number of tapping operations is preferably 3 to 20 times. If the number of tapping operations exceeds 20, the organic coated Ag particles 1 may flow out of the paste 3, and as a result, outgas may be difficult to escape.

上述のタッピング操作後、図1(d)に示されるように、有機被覆Ag粒子1が蓋体4側に偏在した状態のペースト3を蓋体4と電波吸収体5とで挟み込んで加圧すると、有機被覆Ag粒子1の濃度が低い電波吸収体5側では溶剤2が流動して外部に排出される。ここでペースト3に加える圧力は、0.1MPa〜10MPaであることが好ましい。0.1MPaより小さいと、焼結時のAgの緻密性が低く、容易に剥離してしまう場合がある。一方、10MPaより大きいと、加圧時に電波吸収体5が割れる場合があり、極端な場合、この割れが焼結Ag接合部にも進展し、接合部の強度がかえって低くなる懸念がある。このように加圧しながら200℃〜350℃で焼結すると、ボイド発生の原因となる溶剤2が容易に揮発して内部に残存することがない。   After the above-described tapping operation, as shown in FIG. 1 (d), when the paste 3 in a state where the organic coated Ag particles 1 are unevenly distributed on the lid 4 side is sandwiched between the lid 4 and the radio wave absorber 5 and pressed. On the side of the radio wave absorber 5 where the concentration of the organic coated Ag particles 1 is low, the solvent 2 flows and is discharged to the outside. Here, the pressure applied to the paste 3 is preferably 0.1 MPa to 10 MPa. If it is less than 0.1 MPa, the Ag denseness during sintering is low and may be easily peeled off. On the other hand, if the pressure is greater than 10 MPa, the radio wave absorber 5 may break during pressurization, and in an extreme case, this crack may also develop into the sintered Ag joint and the strength of the joint may be lowered. When sintering is performed at 200 ° C. to 350 ° C. while applying pressure in this manner, the solvent 2 that causes the generation of voids does not easily volatilize and remain in the interior.

図1(e)に示されるように、こうして得られる接合構造体6は、Agのバルク体からなる緻密な接合部7を介して蓋体4と電波吸収体5とが強固に接合されている。本実施の形態では、電波吸収体5にメタライズや金属膜を施す必要がないので、タクトタイムを短くすることができる上に、製造コストを低減することができ、また、接合部7に溶剤2が残存していないので、後工程のシーム溶接工程で400℃程度に加熱されてもアウトガスを発生することがない。なお、本実施の形態による高周波装置の構成は、蓋体4と電波吸収体5との接合形態を除いて、公知の高周波装置と同様である。本実施の形態による高周波装置の製造方法は、高速情報通信用及び高周波計測用に使用される光素子装置にも適用することができる。   As shown in FIG. 1 (e), in the bonded structure 6 thus obtained, the lid 4 and the radio wave absorber 5 are firmly bonded via a dense bonded portion 7 made of Ag bulk. . In the present embodiment, since it is not necessary to apply metallization or a metal film to the radio wave absorber 5, the tact time can be shortened and the manufacturing cost can be reduced. Therefore, even if heated to about 400 ° C. in a subsequent seam welding process, no outgas is generated. Note that the configuration of the high-frequency device according to the present embodiment is the same as that of a known high-frequency device except for the joining form of the lid 4 and the radio wave absorber 5. The method for manufacturing a high-frequency device according to the present embodiment can also be applied to an optical element device used for high-speed information communication and high-frequency measurement.

以下、実施例及び比較例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。   Hereinafter, although an Example and a comparative example demonstrate the detail of this invention, this invention is not limited by these.

〔実施例1〕
材質がコバールである25mm×20mm×厚さ1mmの蓋体を用意した。蓋体の表面に2μm程度のAuめっきが施されている。
Feを主成分とし、30重量%のSiOをバインダとして含有するものを焼成した14mm×9mm×厚さ1mmの電波吸収体を用意した。この電波吸収体の表面粗さRaを測定したところ、5μmであった。
また、マイクロサイズの有機被覆Ag粒子及び溶剤を含有するペーストとして、日本データマテリアル株式会社製MAX102を用意した。このペーストに含有される有機被覆Ag粒子の平均粒子径は、0.5μmであった。
開口部が電波吸収体のサイズと同じ14mm×9mmであり且つ厚さが100μmであるメタルマスクを用いて、蓋体上にペーストを印刷した。印刷したペースト上に、電波吸収体を配置したサンプルをピンセットでつまみ、高さ約50mmのところから、表面の材質がSUS304であるテーブルに打ち付ける操作(タッピング操作)を5回繰り返した。なお、タッピングの速度は0.5m/秒であった。
その後、サンプルを無加圧の状態で大気中にて100℃で30分間乾燥させた。次いで、サンプルに2.5MPaの圧力を加えた状態で、100℃から300℃まで約50℃/分で昇温し、300℃で10分間保持して焼結させた後、加圧を開放して自然空冷し、実施例1のサンプルを得た。得られたサンプルの接合部断面をSEMで観察したところ、接合部の厚さは約50μmであった。
[Example 1]
A lid of 25 mm × 20 mm × 1 mm thickness made of Kovar was prepared. Au plating of about 2 μm is applied to the surface of the lid.
A radio wave absorber having a size of 14 mm × 9 mm × thickness 1 mm was prepared by firing a material containing Fe 2 O 3 as a main component and 30 wt% SiO 2 as a binder. The surface roughness Ra of this radio wave absorber was measured and found to be 5 μm.
Further, MAX102 manufactured by Nippon Data Material Co., Ltd. was prepared as a paste containing micro-sized organic coated Ag particles and a solvent. The average particle diameter of the organic coated Ag particles contained in this paste was 0.5 μm.
The paste was printed on the lid using a metal mask having an opening of 14 mm × 9 mm which is the same as the size of the wave absorber and a thickness of 100 μm. An operation (tapping operation) in which a sample having a radio wave absorber placed on a printed paste was picked with tweezers and applied to a table having a surface material of SUS304 from a height of about 50 mm (tapping operation) was repeated five times. The tapping speed was 0.5 m / sec.
Thereafter, the sample was dried at 100 ° C. for 30 minutes in the air under no pressure. Next, with a pressure of 2.5 MPa applied to the sample, the sample was heated from 100 ° C. to 300 ° C. at a rate of about 50 ° C./minute, held at 300 ° C. for 10 minutes and sintered, and then the pressure was released. The sample of Example 1 was obtained. When the cross section of the joint portion of the obtained sample was observed with an SEM, the thickness of the joint portion was about 50 μm.

次に、シェア試験装置(株式会社レスカ製ボンディングテスタPTR−1102)を用いて、実施例1のサンプルのシェア試験を実施したところ、電波吸収体が先に破壊され、接合強度が高いことが分かった。なお、シェア試験は、シェア速度:0.2mm/秒、ツール高さ:蓋材から50μm上の位置、ツール幅:10mmとし、長さ7mmの面から実施した。   Next, when the shear test of the sample of Example 1 was performed using a shear test device (Resca Co., Ltd. bonding tester PTR-1102), it was found that the radio wave absorber was first destroyed and the bonding strength was high. It was. The shear test was carried out from a surface having a shear rate of 0.2 mm / second, a tool height: a position 50 μm above the lid, a tool width of 10 mm, and a length of 7 mm.

また、アウトガス測定装置(日本電子株式会社製JMS−Q1050GC型GC−MS)を用いて、実施例1のサンプルのアウトガス分析を実施した。測定装置内でサンプルを400℃で10分間保持し、発生したガス成分(水分、水素、窒素、酸素、アルゴン、二酸化炭素(炭酸ガス)、メチルアルコール、エチルアルコール、ヘリウム、フルオロカーボン(フロリナート)、ネオン、一酸化炭素、クリプトン、キセノン、メタン、アンモニア)を測定した。リファレンスとして、電波吸収体単体も同様に測定した。実施例1のサンプルは、リファレンスの結果とほぼ同程度であり、良好な結果であった。   Moreover, the outgas analysis of the sample of Example 1 was implemented using the outgas measuring apparatus (JEOL Co., Ltd. product JMS-Q1050GC type GC-MS). The sample is held at 400 ° C. for 10 minutes in the measuring device, and the generated gas components (water, hydrogen, nitrogen, oxygen, argon, carbon dioxide (carbon dioxide), methyl alcohol, ethyl alcohol, helium, fluorocarbon (fluorinate), neon , Carbon monoxide, krypton, xenon, methane, ammonia). As a reference, a single wave absorber was measured in the same manner. The sample of Example 1 was almost the same as the reference result and was a good result.

〔実施例2〕
タッピングの速度を0.1m/秒に変更したこと以外は、実施例1と同様にしてサンプルを作製した。実施例2のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Example 2]
A sample was produced in the same manner as in Example 1 except that the tapping speed was changed to 0.1 m / sec. The sample of Example 2 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例3〕
タッピングの速度を0.2m/秒に変更したこと以外は、実施例1と同様にしてサンプルを作製した。実施例3のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 3
A sample was prepared in the same manner as in Example 1 except that the tapping speed was changed to 0.2 m / sec. The sample of Example 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例4〕
タッピングの速度を1m/秒に変更したこと以外は、実施例1と同様にしてサンプルを作製した。実施例4のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 4
A sample was produced in the same manner as in Example 1 except that the tapping speed was changed to 1 m / sec. The sample of Example 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例5〕
タッピング操作の回数を3回に変更したこと以外は、実施例1と同様にしてサンプルを作製した。実施例5のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 5
A sample was produced in the same manner as in Example 1 except that the number of tapping operations was changed to 3. The sample of Example 5 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例6〕
タッピング操作の回数を10回に変更したこと以外は、実施例1と同様にしてサンプルを作製した。実施例6のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 6
A sample was produced in the same manner as in Example 1 except that the number of tapping operations was changed to 10. The sample of Example 6 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例7〕
タッピング操作の回数を20回に変更したこと以外は、実施例1と同様にしてサンプルを作製した。実施例7のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 7
A sample was produced in the same manner as in Example 1 except that the number of tapping operations was changed to 20. The sample of Example 7 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例8〕
表面粗さが5μmの電波吸収体の代わりに、表面粗さが0.5μmの電波吸収体を用いたこと以外は、実施例1と同様にしてサンプルを作製した。実施例8のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 8
A sample was prepared in the same manner as in Example 1 except that a radio wave absorber having a surface roughness of 0.5 μm was used instead of the radio wave absorber having a surface roughness of 5 μm. The sample of Example 8 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例9〕
表面粗さが5μmの電波吸収体の代わりに、表面粗さが1μmの電波吸収体を用いたこと以外は、実施例1と同様にしてサンプルを作製した。実施例9のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 9
A sample was prepared in the same manner as in Example 1 except that a radio wave absorber having a surface roughness of 1 μm was used instead of the radio wave absorber having a surface roughness of 5 μm. The sample of Example 9 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔実施例10〕
表面粗さが5μmの電波吸収体の代わりに、表面粗さが10μmの電波吸収体を用いたこと以外は、実施例1と同様にしてサンプルを作製した。実施例10のサンプルを実施例1と同様に評価した。結果を表1に示す。
Example 10
A sample was prepared in the same manner as in Example 1 except that a radio wave absorber having a surface roughness of 10 μm was used instead of the radio wave absorber having a surface roughness of 5 μm. The sample of Example 10 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例1〕
マイクロサイズの有機被覆Ag粒子及び溶剤を含有するペーストの代わりに、ナノサイズの有機被覆Ag粒子及び溶剤を含有するペースト(DOWAエレクトロニクス株式会社製T2W−A2、有機被覆Ag粒子の平均粒子径:30nm)を用い、タッピング操作を行わなかったこと以外は、実施例1と同様にしてサンプルを作製した。比較例1のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 1]
Instead of paste containing micro-sized organic coated Ag particles and solvent, paste containing nano-sized organic coated Ag particles and solvent (T2W-A2 manufactured by DOWA Electronics Co., Ltd., average particle diameter of organic coated Ag particles: 30 nm A sample was prepared in the same manner as in Example 1 except that the tapping operation was not performed. The sample of Comparative Example 1 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例2〕
マイクロサイズの有機被覆Ag粒子及び溶剤を含有するペーストの代わりに、ナノサイズの有機被覆Ag粒子及び溶剤を含有するペースト(DOWAエレクトロニクス株式会社製T2W−A2、有機被覆Ag粒子の平均粒子径:30nm)を用いたこと以外は、実施例1と同様にしてサンプルを作製した。比較例2のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 2]
Instead of paste containing micro-sized organic coated Ag particles and solvent, paste containing nano-sized organic coated Ag particles and solvent (T2W-A2 manufactured by DOWA Electronics Co., Ltd., average particle diameter of organic coated Ag particles: 30 nm A sample was prepared in the same manner as in Example 1 except that. The sample of Comparative Example 2 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例3〕
タッピング操作を行わなかったこと以外は、実施例1と同様にしてサンプルを作製した。比較例3のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 3]
A sample was prepared in the same manner as in Example 1 except that the tapping operation was not performed. The sample of Comparative Example 3 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例4〕
タッピングの速度を0.05m/秒に変更したこと以外は、実施例1と同様にしてサンプルを作製した。比較例4のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 4]
A sample was prepared in the same manner as in Example 1 except that the tapping speed was changed to 0.05 m / sec. The sample of Comparative Example 4 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例5〕
タッピングの速度を1.2m/秒に変更したこと以外は、実施例1と同様にしてサンプルを作製した。比較例5のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 5]
A sample was prepared in the same manner as in Example 1 except that the tapping speed was changed to 1.2 m / sec. The sample of Comparative Example 5 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例6〕
タッピング操作の回数を1回に変更したこと以外は、実施例1と同様にしてサンプルを作製した。比較例6のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 6]
A sample was produced in the same manner as in Example 1 except that the number of tapping operations was changed to 1. The sample of Comparative Example 6 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例7〕
タッピング操作の回数を30回に変更したこと以外は、実施例1と同様にしてサンプルを作製した。比較例7のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 7]
A sample was produced in the same manner as in Example 1 except that the number of tapping operations was changed to 30 times. The sample of Comparative Example 7 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例8〕
表面粗さが5μmの電波吸収体の代わりに、表面粗さが0.3μmの電波吸収体を用いたこと以外は、実施例1と同様にしてサンプルを作製した。比較例8のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 8]
A sample was prepared in the same manner as in Example 1 except that a radio wave absorber having a surface roughness of 0.3 μm was used instead of the radio wave absorber having a surface roughness of 5 μm. The sample of Comparative Example 8 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

〔比較例9〕
表面粗さが5μmの電波吸収体の代わりに、表面粗さが12μmの電波吸収体を用いたこと以外は、実施例1と同様にしてサンプルを作製した。比較例9のサンプルを実施例1と同様に評価した。結果を表1に示す。
[Comparative Example 9]
A sample was prepared in the same manner as in Example 1 except that a radio wave absorber having a surface roughness of 12 μm was used instead of the radio wave absorber having a surface roughness of 5 μm. The sample of Comparative Example 9 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

Figure 2015008257
Figure 2015008257

なお、表1中のシェア試験及びアウトガスの結果は、各サンプルを5個ずつ作製して評価を行った結果である。また、表1のシェア試験結果欄に、×と記載されているサンプルは、接合部と電波吸収体との界面で剥離したものであり、○と記載されているサンプルは、電波吸収体が先に破壊され、接合部上に電波吸収体が残存したものである。また、表1のアウトガス欄に、○と記載されているサンプルは、リファレンスの結果(電波吸収体単体の場合)とほぼ同程度であったものであり、×と記載されているサンプルは、ガスの明らかな発生が認められたものである。また、比較例7のサンプルにおいて、評価を△としたのは、5個のサンプルのうち1個だけが×となったためである。   In addition, the result of the share test and outgas in Table 1 is a result of making and evaluating each of the five samples. In the shear test result column in Table 1, the sample described as “x” is peeled off at the interface between the joint and the radio wave absorber, and the sample described as “◯” is the radio wave absorber first. And the radio wave absorber remains on the joint. In addition, the sample indicated by ○ in the outgas column of Table 1 is almost the same as the reference result (in the case of the radio wave absorber alone), and the sample indicated by × is the gas The obvious occurrence of was observed. Moreover, in the sample of Comparative Example 7, the evaluation was Δ because only one of the five samples was x.

タッピング操作をすることで、何故、接合強度が向上し、アウトガスが少なくなったか、その理由が不明である。そこで、タッピング操作を行っていない比較例3のサンプルと、タッピング操作を行った実施例1のサンプルの断面観察を実施した。図3(a)は、比較例3のサンプルの断面観察結果であり、図3(b)は、実施例1のサンプルの断面観察結果である。この結果から分かるように、実施例1のサンプルでは、接合部にポーラスな箇所が少なく、緻密に形成されていることが確認された。これは、シェア試験の結果と相関する傾向である。よって、シェア試験が良好であったのは、接合部が緻密であったということが明確に示された。   It is unclear why the tapping operation improves the bonding strength and reduces the outgas. Therefore, cross-sectional observation was performed on the sample of Comparative Example 3 where the tapping operation was not performed and the sample of Example 1 where the tapping operation was performed. FIG. 3A shows a cross-sectional observation result of the sample of Comparative Example 3, and FIG. 3B shows a cross-sectional observation result of the sample of Example 1. As can be seen from this result, it was confirmed that the sample of Example 1 was densely formed with few porous portions at the joint. This tends to correlate with the results of the share test. Therefore, the good shear test clearly showed that the joint was dense.

しかし、タッピング操作をすることで、何故、緻密になったか、そのメカニズムが不明である。そこで、焼結時間を10分間から1分間に短縮したこと以外は実施例1及び比較例3と同様にしてサンプルを作製し、得られたサンプルの接合部の断面観察を実施した。図4(a)は、比較例3における焼結時間を10分間から1分間に短縮して得られたサンプルの断面観察結果であり、図4(b)は、実施例1における焼結時間を10分間から1分間に短縮して得られたサンプルの断面観察結果である。この結果から分かるように、実施例1における焼結時間を10分間から1分間に短縮して得られたサンプルでは、有機成分(黒い箇所)が少ないことが確認された。   However, it is unclear why it became dense by tapping operation and the mechanism. Therefore, a sample was prepared in the same manner as in Example 1 and Comparative Example 3 except that the sintering time was reduced from 10 minutes to 1 minute, and a cross-sectional observation of the joint portion of the obtained sample was performed. FIG. 4A is a cross-sectional observation result of a sample obtained by shortening the sintering time in Comparative Example 3 from 10 minutes to 1 minute, and FIG. 4B shows the sintering time in Example 1. It is a cross-sectional observation result of the sample obtained by shortening from 10 minutes to 1 minute. As can be seen from this result, it was confirmed that the sample obtained by reducing the sintering time in Example 1 from 10 minutes to 1 minute had few organic components (black spots).

なお、上述した実施例及び比較例では、タッピング操作を約50mmの高さまで持ち上げて、所定のタッピング速度で行ったが、タッピング速度が0.1〜1m/秒の範囲であれば、高さを変えても(例えば30mm〜100mm)同様の効果が得られると推察される。   In the examples and comparative examples described above, the tapping operation was lifted to a height of about 50 mm and performed at a predetermined tapping speed. If the tapping speed was in the range of 0.1 to 1 m / sec, the height was increased. Even if it changes (for example, 30-100 mm), it is guessed that the same effect is acquired.

1 有機被覆Ag粒子、2 溶剤、3 ペースト、4 蓋体、5 電波吸収体、6 接合構造体、7 接合部、8 貫通孔。   DESCRIPTION OF SYMBOLS 1 Organic coating | coated Ag particle | grains, 2 solvent, 3 paste, 4 lid body, 5 electromagnetic wave absorber, 6 junction structure, 7 junction part, 8 through-hole.

Claims (5)

マイクロサイズの有機被覆Ag粒子及び溶剤を含有するペーストを蓋体上に印刷し、印刷した前記ペースト上に、0.5μm〜10μmの表面粗さRaを有する電波吸収体を前記表面粗さを有する面と前記ペーストが接触するように配置した後、前記電波吸収体から前記蓋体の方向へ0.1m/秒〜1m/秒の速度で衝撃を加えるタッピング操作を3回以上行うことを含むことを特徴とする高周波装置の製造方法。   A paste containing micro-sized organic-coated Ag particles and a solvent is printed on the lid, and a radio wave absorber having a surface roughness Ra of 0.5 μm to 10 μm has the surface roughness on the printed paste. Including a tapping operation for applying an impact at a speed of 0.1 m / sec to 1 m / sec from the radio wave absorber toward the lid after the surface and the paste are in contact with each other. A method for manufacturing a high-frequency device. 前記タッピング操作後に、前記ペーストを前記蓋体と前記電波吸収体とで0.1MPa〜10MPaの圧力で挟み込んだまま200℃〜350℃で焼結すること含むことを特徴とする請求項1に記載の高周波装置の製造方法。   2. The method according to claim 1, further comprising sintering the paste at 200 ° C. to 350 ° C. while being sandwiched between the lid and the wave absorber at a pressure of 0.1 MPa to 10 MPa after the tapping operation. Method for manufacturing a high-frequency device. 前記電波吸収体として、Feを主成分とし、20重量%〜45重量%のガラスを含有するものを焼結させたものを用いることを特徴とする請求項1又は2に記載の高周波装置の製造方法。 3. The high frequency wave according to claim 1, wherein the radio wave absorber is formed by sintering a material containing Fe 2 O 3 as a main component and containing 20 wt% to 45 wt% of glass. Device manufacturing method. 前記電波吸収体として、厚さ方向に貫通し、直径が100μm〜1000μmである貫通孔を有するものを用いることを特徴とする請求項1〜3の何れか一項に記載の高周波装置の製造方法。   4. The method of manufacturing a high-frequency device according to claim 1, wherein the radio wave absorber uses a through-hole that penetrates in a thickness direction and has a diameter of 100 μm to 1000 μm. 5. . 請求項1〜4の何れか一項に記載の方法で得られることを特徴とする高周波装置。   A high-frequency device obtained by the method according to any one of claims 1 to 4.
JP2013133569A 2013-06-26 2013-06-26 Manufacturing method of high-frequency device Expired - Fee Related JP6095002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133569A JP6095002B2 (en) 2013-06-26 2013-06-26 Manufacturing method of high-frequency device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133569A JP6095002B2 (en) 2013-06-26 2013-06-26 Manufacturing method of high-frequency device

Publications (2)

Publication Number Publication Date
JP2015008257A true JP2015008257A (en) 2015-01-15
JP6095002B2 JP6095002B2 (en) 2017-03-15

Family

ID=52338340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133569A Expired - Fee Related JP6095002B2 (en) 2013-06-26 2013-06-26 Manufacturing method of high-frequency device

Country Status (1)

Country Link
JP (1) JP6095002B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130905A (en) * 1993-09-10 1995-05-19 Sumitomo Kinzoku Ceramics:Kk Method and device for manufacturing solder lid for sealing semiconductor package
JP2004146505A (en) * 2002-10-23 2004-05-20 Kyocera Corp Electromagnetic wave absorbing member, its manufacturing method, and lid for high frequency circuit package and high frequency circuit package using the member
JP2004235205A (en) * 2003-01-28 2004-08-19 Kyocera Corp Electromagnetic absorber and package for high frequency circuit using same
JP2004339018A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Porous structure and composite material provided with the same
WO2011155615A1 (en) * 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP2012195455A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Cover for high frequency circuit and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130905A (en) * 1993-09-10 1995-05-19 Sumitomo Kinzoku Ceramics:Kk Method and device for manufacturing solder lid for sealing semiconductor package
JP2004146505A (en) * 2002-10-23 2004-05-20 Kyocera Corp Electromagnetic wave absorbing member, its manufacturing method, and lid for high frequency circuit package and high frequency circuit package using the member
JP2004235205A (en) * 2003-01-28 2004-08-19 Kyocera Corp Electromagnetic absorber and package for high frequency circuit using same
JP2004339018A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Porous structure and composite material provided with the same
WO2011155615A1 (en) * 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP2012195455A (en) * 2011-03-16 2012-10-11 Mitsubishi Electric Corp Cover for high frequency circuit and manufacturing method therefor

Also Published As

Publication number Publication date
JP6095002B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP5492191B2 (en) Method for manufacturing metallized substrate, metallized substrate
JP6244405B2 (en) Composition for forming a wiring pattern
EP2124254A1 (en) Metal paste for sealing, method for hermetical sealing of piezoelectric element, and piezoelectric device
JP2013153051A (en) Metallized ceramic via substrate and manufacturing method thereof
JP2012129238A (en) Ceramic via substrate, metallized ceramic via substrate, and method for manufacturing both
JPWO2012090647A1 (en) Metallized substrate, metal paste composition, and method for producing metallized substrate
JPWO2005095040A1 (en) Joining method and joined body
JP2017063109A (en) Via filling substrate, manufacturing method thereof, and precursor
CN110034090B (en) Nano metal film auxiliary substrate and preparation method thereof
CN104973879A (en) Method for jointing Al2O3 ceramic and ceramic sealing alloy
WO2010098357A1 (en) Metal filler, low-temperature-bonding lead-free solder and bonded structure
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP6774898B2 (en) Double-sided wiring board with through electrodes and its manufacturing method
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
JP6095002B2 (en) Manufacturing method of high-frequency device
JP2007080635A (en) Particle for production of conductive component
JP2006049595A (en) Silver solder cladding material, and lid and ring for package sealing
JP2019220641A (en) Manufacturing method of joint
JP2015065442A (en) Ceramic via substrate, metallized ceramic via substrate, and method for manufacturing these substrates
JP6936040B2 (en) Metallized substrate and its manufacturing method
WO2018190226A1 (en) Sealing structure and sealing method of through hole, and transfer substrate for sealing through hole
JP2006120973A (en) Circuit board and manufacturing method thereof
JP5989879B2 (en) Metallized ceramic via substrate and method for manufacturing the same
JP6146707B2 (en) Ceramic-metal bonded body and method for manufacturing the same
CN113976877B (en) Metal composition for preparing AgCuTi soldering lug, soldering lug and preparation method of soldering lug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6095002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees